Properties

Label 392.6.i.h.361.1
Level $392$
Weight $6$
Character 392.361
Analytic conductor $62.870$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,6,Mod(177,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.177"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-14,0,42,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{193})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 49x^{2} + 48x + 2304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(3.72311 - 6.44862i\) of defining polynomial
Character \(\chi\) \(=\) 392.361
Dual form 392.6.i.h.177.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-10.4462 + 18.0934i) q^{3} +(45.2311 + 78.3426i) q^{5} +(-96.7471 - 167.571i) q^{9} +(276.247 - 478.474i) q^{11} +593.172 q^{13} -1889.98 q^{15} +(-711.096 + 1231.65i) q^{17} +(159.499 + 276.260i) q^{19} +(-329.977 - 571.537i) q^{23} +(-2529.21 + 4380.71i) q^{25} -1034.30 q^{27} -8185.27 q^{29} +(-4799.02 + 8312.14i) q^{31} +(5771.48 + 9996.49i) q^{33} +(-2590.28 - 4486.50i) q^{37} +(-6196.40 + 10732.5i) q^{39} +2192.46 q^{41} +7458.29 q^{43} +(8751.96 - 15158.8i) q^{45} +(-9780.88 - 16941.0i) q^{47} +(-14856.5 - 25732.3i) q^{51} +(-18284.8 + 31670.2i) q^{53} +49979.9 q^{55} -6664.63 q^{57} +(8180.87 - 14169.7i) q^{59} +(-5446.57 - 9433.74i) q^{61} +(26829.8 + 46470.6i) q^{65} +(-4017.95 + 6959.30i) q^{67} +13788.0 q^{69} +55983.3 q^{71} +(-38876.3 + 67335.6i) q^{73} +(-52841.3 - 91523.8i) q^{75} +(1604.22 + 2778.58i) q^{79} +(34314.0 - 59433.7i) q^{81} -76626.9 q^{83} -128655. q^{85} +(85505.2 - 148099. i) q^{87} +(-42144.3 - 72996.1i) q^{89} +(-100263. - 173661. i) q^{93} +(-14428.6 + 24991.1i) q^{95} -101273. q^{97} -106904. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{3} + 42 q^{5} + 2 q^{9} + 716 q^{11} + 1428 q^{13} - 4448 q^{15} - 1344 q^{17} - 1946 q^{19} + 1792 q^{23} - 4282 q^{25} + 3976 q^{27} - 2400 q^{29} - 6804 q^{31} + 10416 q^{33} - 14640 q^{37}+ \cdots - 149880 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −10.4462 + 18.0934i −0.670125 + 1.16069i 0.307743 + 0.951470i \(0.400426\pi\)
−0.977868 + 0.209222i \(0.932907\pi\)
\(4\) 0 0
\(5\) 45.2311 + 78.3426i 0.809119 + 1.40143i 0.913475 + 0.406895i \(0.133388\pi\)
−0.104356 + 0.994540i \(0.533278\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −96.7471 167.571i −0.398136 0.689592i
\(10\) 0 0
\(11\) 276.247 478.474i 0.688361 1.19228i −0.284007 0.958822i \(-0.591664\pi\)
0.972368 0.233453i \(-0.0750027\pi\)
\(12\) 0 0
\(13\) 593.172 0.973469 0.486734 0.873550i \(-0.338188\pi\)
0.486734 + 0.873550i \(0.338188\pi\)
\(14\) 0 0
\(15\) −1889.98 −2.16884
\(16\) 0 0
\(17\) −711.096 + 1231.65i −0.596769 + 1.03363i 0.396526 + 0.918023i \(0.370216\pi\)
−0.993295 + 0.115610i \(0.963118\pi\)
\(18\) 0 0
\(19\) 159.499 + 276.260i 0.101361 + 0.175563i 0.912246 0.409643i \(-0.134347\pi\)
−0.810884 + 0.585206i \(0.801013\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −329.977 571.537i −0.130066 0.225281i 0.793636 0.608393i \(-0.208186\pi\)
−0.923702 + 0.383112i \(0.874852\pi\)
\(24\) 0 0
\(25\) −2529.21 + 4380.71i −0.809346 + 1.40183i
\(26\) 0 0
\(27\) −1034.30 −0.273046
\(28\) 0 0
\(29\) −8185.27 −1.80733 −0.903667 0.428237i \(-0.859135\pi\)
−0.903667 + 0.428237i \(0.859135\pi\)
\(30\) 0 0
\(31\) −4799.02 + 8312.14i −0.896908 + 1.55349i −0.0654826 + 0.997854i \(0.520859\pi\)
−0.831425 + 0.555636i \(0.812475\pi\)
\(32\) 0 0
\(33\) 5771.48 + 9996.49i 0.922576 + 1.59795i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2590.28 4486.50i −0.311059 0.538770i 0.667533 0.744580i \(-0.267350\pi\)
−0.978592 + 0.205810i \(0.934017\pi\)
\(38\) 0 0
\(39\) −6196.40 + 10732.5i −0.652346 + 1.12990i
\(40\) 0 0
\(41\) 2192.46 0.203691 0.101846 0.994800i \(-0.467525\pi\)
0.101846 + 0.994800i \(0.467525\pi\)
\(42\) 0 0
\(43\) 7458.29 0.615131 0.307566 0.951527i \(-0.400486\pi\)
0.307566 + 0.951527i \(0.400486\pi\)
\(44\) 0 0
\(45\) 8751.96 15158.8i 0.644279 1.11592i
\(46\) 0 0
\(47\) −9780.88 16941.0i −0.645853 1.11865i −0.984104 0.177594i \(-0.943169\pi\)
0.338251 0.941056i \(-0.390165\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −14856.5 25732.3i −0.799820 1.38533i
\(52\) 0 0
\(53\) −18284.8 + 31670.2i −0.894129 + 1.54868i −0.0592509 + 0.998243i \(0.518871\pi\)
−0.834878 + 0.550434i \(0.814462\pi\)
\(54\) 0 0
\(55\) 49979.9 2.22786
\(56\) 0 0
\(57\) −6664.63 −0.271700
\(58\) 0 0
\(59\) 8180.87 14169.7i 0.305963 0.529944i −0.671512 0.740994i \(-0.734355\pi\)
0.977475 + 0.211050i \(0.0676881\pi\)
\(60\) 0 0
\(61\) −5446.57 9433.74i −0.187412 0.324608i 0.756974 0.653445i \(-0.226677\pi\)
−0.944387 + 0.328837i \(0.893343\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 26829.8 + 46470.6i 0.787652 + 1.36425i
\(66\) 0 0
\(67\) −4017.95 + 6959.30i −0.109350 + 0.189399i −0.915507 0.402302i \(-0.868210\pi\)
0.806157 + 0.591701i \(0.201544\pi\)
\(68\) 0 0
\(69\) 13788.0 0.348642
\(70\) 0 0
\(71\) 55983.3 1.31799 0.658996 0.752146i \(-0.270981\pi\)
0.658996 + 0.752146i \(0.270981\pi\)
\(72\) 0 0
\(73\) −38876.3 + 67335.6i −0.853841 + 1.47890i 0.0238742 + 0.999715i \(0.492400\pi\)
−0.877716 + 0.479182i \(0.840933\pi\)
\(74\) 0 0
\(75\) −52841.3 91523.8i −1.08473 1.87880i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1604.22 + 2778.58i 0.0289198 + 0.0500906i 0.880123 0.474746i \(-0.157460\pi\)
−0.851203 + 0.524836i \(0.824127\pi\)
\(80\) 0 0
\(81\) 34314.0 59433.7i 0.581111 1.00651i
\(82\) 0 0
\(83\) −76626.9 −1.22092 −0.610458 0.792049i \(-0.709015\pi\)
−0.610458 + 0.792049i \(0.709015\pi\)
\(84\) 0 0
\(85\) −128655. −1.93143
\(86\) 0 0
\(87\) 85505.2 148099.i 1.21114 2.09776i
\(88\) 0 0
\(89\) −42144.3 72996.1i −0.563980 0.976843i −0.997144 0.0755272i \(-0.975936\pi\)
0.433163 0.901315i \(-0.357397\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −100263. 173661.i −1.20208 2.08207i
\(94\) 0 0
\(95\) −14428.6 + 24991.1i −0.164027 + 0.284103i
\(96\) 0 0
\(97\) −101273. −1.09286 −0.546428 0.837506i \(-0.684013\pi\)
−0.546428 + 0.837506i \(0.684013\pi\)
\(98\) 0 0
\(99\) −106904. −1.09625
\(100\) 0 0
\(101\) 38728.3 67079.3i 0.377767 0.654312i −0.612970 0.790106i \(-0.710025\pi\)
0.990737 + 0.135794i \(0.0433586\pi\)
\(102\) 0 0
\(103\) −28358.4 49118.3i −0.263384 0.456194i 0.703755 0.710443i \(-0.251505\pi\)
−0.967139 + 0.254248i \(0.918172\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19349.6 + 33514.5i 0.163385 + 0.282991i 0.936081 0.351786i \(-0.114425\pi\)
−0.772696 + 0.634777i \(0.781092\pi\)
\(108\) 0 0
\(109\) 8297.63 14371.9i 0.0668941 0.115864i −0.830639 0.556812i \(-0.812024\pi\)
0.897533 + 0.440948i \(0.145358\pi\)
\(110\) 0 0
\(111\) 108235. 0.833794
\(112\) 0 0
\(113\) −76723.9 −0.565242 −0.282621 0.959232i \(-0.591204\pi\)
−0.282621 + 0.959232i \(0.591204\pi\)
\(114\) 0 0
\(115\) 29850.4 51702.5i 0.210478 0.364558i
\(116\) 0 0
\(117\) −57387.6 99398.3i −0.387573 0.671296i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −72099.4 124880.i −0.447681 0.775406i
\(122\) 0 0
\(123\) −22902.9 + 39669.0i −0.136499 + 0.236423i
\(124\) 0 0
\(125\) −174901. −1.00119
\(126\) 0 0
\(127\) 68539.3 0.377077 0.188539 0.982066i \(-0.439625\pi\)
0.188539 + 0.982066i \(0.439625\pi\)
\(128\) 0 0
\(129\) −77910.9 + 134946.i −0.412215 + 0.713978i
\(130\) 0 0
\(131\) 47968.1 + 83083.2i 0.244216 + 0.422995i 0.961911 0.273363i \(-0.0881360\pi\)
−0.717695 + 0.696358i \(0.754803\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −46782.4 81029.5i −0.220927 0.382656i
\(136\) 0 0
\(137\) −145648. + 252269.i −0.662983 + 1.14832i 0.316845 + 0.948477i \(0.397376\pi\)
−0.979828 + 0.199842i \(0.935957\pi\)
\(138\) 0 0
\(139\) 281554. 1.23602 0.618009 0.786171i \(-0.287939\pi\)
0.618009 + 0.786171i \(0.287939\pi\)
\(140\) 0 0
\(141\) 408693. 1.73121
\(142\) 0 0
\(143\) 163862. 283817.i 0.670097 1.16064i
\(144\) 0 0
\(145\) −370229. 641256.i −1.46235 2.53286i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 64141.4 + 111096.i 0.236686 + 0.409952i 0.959761 0.280817i \(-0.0906054\pi\)
−0.723075 + 0.690769i \(0.757272\pi\)
\(150\) 0 0
\(151\) −9508.87 + 16469.8i −0.0339380 + 0.0587824i −0.882496 0.470321i \(-0.844138\pi\)
0.848558 + 0.529103i \(0.177472\pi\)
\(152\) 0 0
\(153\) 275186. 0.950381
\(154\) 0 0
\(155\) −868259. −2.90282
\(156\) 0 0
\(157\) −136494. + 236415.i −0.441941 + 0.765465i −0.997834 0.0657895i \(-0.979043\pi\)
0.555892 + 0.831254i \(0.312377\pi\)
\(158\) 0 0
\(159\) −382014. 661668.i −1.19836 2.07562i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −157925. 273533.i −0.465565 0.806383i 0.533661 0.845698i \(-0.320816\pi\)
−0.999227 + 0.0393152i \(0.987482\pi\)
\(164\) 0 0
\(165\) −522101. + 904305.i −1.49295 + 2.58586i
\(166\) 0 0
\(167\) 588655. 1.63331 0.816657 0.577123i \(-0.195825\pi\)
0.816657 + 0.577123i \(0.195825\pi\)
\(168\) 0 0
\(169\) −19440.5 −0.0523590
\(170\) 0 0
\(171\) 30862.1 53454.7i 0.0807114 0.139796i
\(172\) 0 0
\(173\) 359128. + 622028.i 0.912292 + 1.58014i 0.810818 + 0.585298i \(0.199022\pi\)
0.101474 + 0.994838i \(0.467644\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 170918. + 296039.i 0.410068 + 0.710258i
\(178\) 0 0
\(179\) −26818.6 + 46451.2i −0.0625610 + 0.108359i −0.895609 0.444841i \(-0.853260\pi\)
0.833048 + 0.553200i \(0.186593\pi\)
\(180\) 0 0
\(181\) 392213. 0.889867 0.444934 0.895564i \(-0.353227\pi\)
0.444934 + 0.895564i \(0.353227\pi\)
\(182\) 0 0
\(183\) 227584. 0.502359
\(184\) 0 0
\(185\) 234323. 405859.i 0.503367 0.871858i
\(186\) 0 0
\(187\) 392876. + 680482.i 0.821584 + 1.42303i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −197754. 342521.i −0.392232 0.679365i 0.600512 0.799616i \(-0.294963\pi\)
−0.992744 + 0.120251i \(0.961630\pi\)
\(192\) 0 0
\(193\) 281446. 487478.i 0.543878 0.942024i −0.454799 0.890594i \(-0.650289\pi\)
0.998677 0.0514299i \(-0.0163779\pi\)
\(194\) 0 0
\(195\) −1.12108e6 −2.11130
\(196\) 0 0
\(197\) 402202. 0.738378 0.369189 0.929354i \(-0.379635\pi\)
0.369189 + 0.929354i \(0.379635\pi\)
\(198\) 0 0
\(199\) −227987. + 394886.i −0.408111 + 0.706869i −0.994678 0.103032i \(-0.967146\pi\)
0.586567 + 0.809901i \(0.300479\pi\)
\(200\) 0 0
\(201\) −83944.9 145397.i −0.146556 0.253843i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 99167.4 + 171763.i 0.164810 + 0.285460i
\(206\) 0 0
\(207\) −63848.6 + 110589.i −0.103568 + 0.179385i
\(208\) 0 0
\(209\) 176244. 0.279093
\(210\) 0 0
\(211\) −1.18264e6 −1.82871 −0.914356 0.404911i \(-0.867302\pi\)
−0.914356 + 0.404911i \(0.867302\pi\)
\(212\) 0 0
\(213\) −584814. + 1.01293e6i −0.883220 + 1.52978i
\(214\) 0 0
\(215\) 337347. + 584301.i 0.497714 + 0.862066i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −812220. 1.40681e6i −1.14436 1.98209i
\(220\) 0 0
\(221\) −421802. + 730582.i −0.580935 + 1.00621i
\(222\) 0 0
\(223\) −931112. −1.25383 −0.626917 0.779086i \(-0.715683\pi\)
−0.626917 + 0.779086i \(0.715683\pi\)
\(224\) 0 0
\(225\) 978774. 1.28892
\(226\) 0 0
\(227\) 96326.7 166843.i 0.124074 0.214903i −0.797296 0.603588i \(-0.793737\pi\)
0.921371 + 0.388685i \(0.127071\pi\)
\(228\) 0 0
\(229\) −391967. 678907.i −0.493925 0.855503i 0.506051 0.862504i \(-0.331105\pi\)
−0.999975 + 0.00700082i \(0.997772\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 699881. + 1.21223e6i 0.844568 + 1.46283i 0.885996 + 0.463693i \(0.153476\pi\)
−0.0414277 + 0.999142i \(0.513191\pi\)
\(234\) 0 0
\(235\) 884800. 1.53252e6i 1.04514 1.81024i
\(236\) 0 0
\(237\) −67032.0 −0.0775196
\(238\) 0 0
\(239\) −643631. −0.728857 −0.364429 0.931231i \(-0.618736\pi\)
−0.364429 + 0.931231i \(0.618736\pi\)
\(240\) 0 0
\(241\) −29378.2 + 50884.5i −0.0325824 + 0.0564343i −0.881857 0.471517i \(-0.843706\pi\)
0.849274 + 0.527952i \(0.177040\pi\)
\(242\) 0 0
\(243\) 591237. + 1.02405e6i 0.642312 + 1.11252i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 94610.1 + 163869.i 0.0986722 + 0.170905i
\(248\) 0 0
\(249\) 800461. 1.38644e6i 0.818167 1.41711i
\(250\) 0 0
\(251\) 641680. 0.642886 0.321443 0.946929i \(-0.395832\pi\)
0.321443 + 0.946929i \(0.395832\pi\)
\(252\) 0 0
\(253\) −364621. −0.358129
\(254\) 0 0
\(255\) 1.34395e6 2.32780e6i 1.29430 2.24179i
\(256\) 0 0
\(257\) 405335. + 702061.i 0.382809 + 0.663044i 0.991463 0.130392i \(-0.0416235\pi\)
−0.608654 + 0.793436i \(0.708290\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 791902. + 1.37161e6i 0.719565 + 1.24632i
\(262\) 0 0
\(263\) 1.02031e6 1.76722e6i 0.909581 1.57544i 0.0949342 0.995484i \(-0.469736\pi\)
0.814647 0.579957i \(-0.196931\pi\)
\(264\) 0 0
\(265\) −3.30817e6 −2.89383
\(266\) 0 0
\(267\) 1.76100e6 1.51175
\(268\) 0 0
\(269\) −641499. + 1.11111e6i −0.540524 + 0.936216i 0.458349 + 0.888772i \(0.348441\pi\)
−0.998874 + 0.0474437i \(0.984893\pi\)
\(270\) 0 0
\(271\) −11255.6 19495.3i −0.00930994 0.0161253i 0.861333 0.508041i \(-0.169630\pi\)
−0.870643 + 0.491916i \(0.836297\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.39737e6 + 2.42032e6i 1.11424 + 1.92993i
\(276\) 0 0
\(277\) −184105. + 318879.i −0.144167 + 0.249705i −0.929062 0.369924i \(-0.879384\pi\)
0.784895 + 0.619629i \(0.212717\pi\)
\(278\) 0 0
\(279\) 1.85716e6 1.42837
\(280\) 0 0
\(281\) 2.03709e6 1.53902 0.769511 0.638634i \(-0.220500\pi\)
0.769511 + 0.638634i \(0.220500\pi\)
\(282\) 0 0
\(283\) −328205. + 568468.i −0.243601 + 0.421929i −0.961737 0.273973i \(-0.911662\pi\)
0.718136 + 0.695902i \(0.244995\pi\)
\(284\) 0 0
\(285\) −301449. 522125.i −0.219837 0.380769i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −301387. 522017.i −0.212265 0.367654i
\(290\) 0 0
\(291\) 1.05792e6 1.83237e6i 0.732351 1.26847i
\(292\) 0 0
\(293\) 962295. 0.654846 0.327423 0.944878i \(-0.393820\pi\)
0.327423 + 0.944878i \(0.393820\pi\)
\(294\) 0 0
\(295\) 1.48012e6 0.990243
\(296\) 0 0
\(297\) −285722. + 494884.i −0.187954 + 0.325546i
\(298\) 0 0
\(299\) −195733. 339019.i −0.126615 0.219304i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 809128. + 1.40145e6i 0.506303 + 0.876943i
\(304\) 0 0
\(305\) 492709. 853397.i 0.303278 0.525293i
\(306\) 0 0
\(307\) 296468. 0.179528 0.0897638 0.995963i \(-0.471389\pi\)
0.0897638 + 0.995963i \(0.471389\pi\)
\(308\) 0 0
\(309\) 1.18495e6 0.706001
\(310\) 0 0
\(311\) 560317. 970497.i 0.328498 0.568975i −0.653716 0.756740i \(-0.726791\pi\)
0.982214 + 0.187765i \(0.0601243\pi\)
\(312\) 0 0
\(313\) 874540. + 1.51475e6i 0.504567 + 0.873935i 0.999986 + 0.00528142i \(0.00168114\pi\)
−0.495419 + 0.868654i \(0.664986\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.58749e6 2.74961e6i −0.887284 1.53682i −0.843073 0.537799i \(-0.819256\pi\)
−0.0442112 0.999022i \(-0.514077\pi\)
\(318\) 0 0
\(319\) −2.26116e6 + 3.91644e6i −1.24410 + 2.15484i
\(320\) 0 0
\(321\) −808520. −0.437954
\(322\) 0 0
\(323\) −453675. −0.241957
\(324\) 0 0
\(325\) −1.50025e6 + 2.59852e6i −0.787873 + 1.36464i
\(326\) 0 0
\(327\) 173358. + 300264.i 0.0896549 + 0.155287i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −439202. 760721.i −0.220341 0.381641i 0.734571 0.678532i \(-0.237384\pi\)
−0.954911 + 0.296891i \(0.904050\pi\)
\(332\) 0 0
\(333\) −501205. + 868112.i −0.247688 + 0.429008i
\(334\) 0 0
\(335\) −726946. −0.353908
\(336\) 0 0
\(337\) 2.05261e6 0.984536 0.492268 0.870444i \(-0.336168\pi\)
0.492268 + 0.870444i \(0.336168\pi\)
\(338\) 0 0
\(339\) 801475. 1.38819e6i 0.378783 0.656072i
\(340\) 0 0
\(341\) 2.65143e6 + 4.59241e6i 1.23479 + 2.13872i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 623649. + 1.08019e6i 0.282093 + 0.488599i
\(346\) 0 0
\(347\) −238091. + 412385.i −0.106150 + 0.183857i −0.914207 0.405247i \(-0.867186\pi\)
0.808058 + 0.589103i \(0.200519\pi\)
\(348\) 0 0
\(349\) −351681. −0.154556 −0.0772780 0.997010i \(-0.524623\pi\)
−0.0772780 + 0.997010i \(0.524623\pi\)
\(350\) 0 0
\(351\) −613515. −0.265802
\(352\) 0 0
\(353\) −868608. + 1.50447e6i −0.371011 + 0.642611i −0.989721 0.143009i \(-0.954322\pi\)
0.618710 + 0.785619i \(0.287656\pi\)
\(354\) 0 0
\(355\) 2.53219e6 + 4.38588e6i 1.06641 + 1.84708i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 848653. + 1.46991e6i 0.347531 + 0.601942i 0.985810 0.167863i \(-0.0536867\pi\)
−0.638279 + 0.769805i \(0.720353\pi\)
\(360\) 0 0
\(361\) 1.18717e6 2.05624e6i 0.479452 0.830435i
\(362\) 0 0
\(363\) 3.01267e6 1.20001
\(364\) 0 0
\(365\) −7.03366e6 −2.76344
\(366\) 0 0
\(367\) −559599. + 969254.i −0.216876 + 0.375640i −0.953851 0.300279i \(-0.902920\pi\)
0.736975 + 0.675920i \(0.236253\pi\)
\(368\) 0 0
\(369\) −212114. 367393.i −0.0810968 0.140464i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 418911. + 725575.i 0.155901 + 0.270029i 0.933387 0.358872i \(-0.116838\pi\)
−0.777486 + 0.628901i \(0.783505\pi\)
\(374\) 0 0
\(375\) 1.82705e6 3.16455e6i 0.670924 1.16207i
\(376\) 0 0
\(377\) −4.85527e6 −1.75938
\(378\) 0 0
\(379\) −1.94713e6 −0.696300 −0.348150 0.937439i \(-0.613190\pi\)
−0.348150 + 0.937439i \(0.613190\pi\)
\(380\) 0 0
\(381\) −715976. + 1.24011e6i −0.252689 + 0.437670i
\(382\) 0 0
\(383\) −101032. 174992.i −0.0351933 0.0609566i 0.847892 0.530169i \(-0.177871\pi\)
−0.883086 + 0.469212i \(0.844538\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −721568. 1.24979e6i −0.244906 0.424190i
\(388\) 0 0
\(389\) −1.61870e6 + 2.80368e6i −0.542367 + 0.939408i 0.456400 + 0.889775i \(0.349139\pi\)
−0.998768 + 0.0496333i \(0.984195\pi\)
\(390\) 0 0
\(391\) 938581. 0.310477
\(392\) 0 0
\(393\) −2.00434e6 −0.654622
\(394\) 0 0
\(395\) −145121. + 251357.i −0.0467991 + 0.0810584i
\(396\) 0 0
\(397\) 411960. + 713536.i 0.131183 + 0.227216i 0.924133 0.382071i \(-0.124789\pi\)
−0.792950 + 0.609287i \(0.791456\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.19668e6 2.07272e6i −0.371637 0.643693i 0.618181 0.786036i \(-0.287870\pi\)
−0.989817 + 0.142342i \(0.954537\pi\)
\(402\) 0 0
\(403\) −2.84664e6 + 4.93052e6i −0.873112 + 1.51227i
\(404\) 0 0
\(405\) 6.20825e6 1.88075
\(406\) 0 0
\(407\) −2.86223e6 −0.856483
\(408\) 0 0
\(409\) −290900. + 503854.i −0.0859876 + 0.148935i −0.905812 0.423681i \(-0.860738\pi\)
0.819824 + 0.572616i \(0.194071\pi\)
\(410\) 0 0
\(411\) −3.04294e6 5.27052e6i −0.888563 1.53904i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3.46592e6 6.00315e6i −0.987866 1.71103i
\(416\) 0 0
\(417\) −2.94118e6 + 5.09427e6i −0.828288 + 1.43464i
\(418\) 0 0
\(419\) −3.11898e6 −0.867915 −0.433957 0.900933i \(-0.642883\pi\)
−0.433957 + 0.900933i \(0.642883\pi\)
\(420\) 0 0
\(421\) −1.14481e6 −0.314796 −0.157398 0.987535i \(-0.550311\pi\)
−0.157398 + 0.987535i \(0.550311\pi\)
\(422\) 0 0
\(423\) −1.89254e6 + 3.27798e6i −0.514275 + 0.890750i
\(424\) 0 0
\(425\) −3.59702e6 6.23022e6i −0.965985 1.67313i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.42348e6 + 5.92963e6i 0.898099 + 1.55555i
\(430\) 0 0
\(431\) 2.15506e6 3.73267e6i 0.558812 0.967891i −0.438784 0.898593i \(-0.644591\pi\)
0.997596 0.0692985i \(-0.0220761\pi\)
\(432\) 0 0
\(433\) 2.79301e6 0.715901 0.357950 0.933741i \(-0.383476\pi\)
0.357950 + 0.933741i \(0.383476\pi\)
\(434\) 0 0
\(435\) 1.54700e7 3.91982
\(436\) 0 0
\(437\) 105262. 182319.i 0.0263674 0.0456696i
\(438\) 0 0
\(439\) 126234. + 218643.i 0.0312618 + 0.0541470i 0.881233 0.472682i \(-0.156714\pi\)
−0.849971 + 0.526829i \(0.823381\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.71641e6 + 2.97291e6i 0.415539 + 0.719734i 0.995485 0.0949208i \(-0.0302598\pi\)
−0.579946 + 0.814655i \(0.696926\pi\)
\(444\) 0 0
\(445\) 3.81247e6 6.60339e6i 0.912654 1.58076i
\(446\) 0 0
\(447\) −2.68014e6 −0.634437
\(448\) 0 0
\(449\) −1.68031e6 −0.393345 −0.196673 0.980469i \(-0.563014\pi\)
−0.196673 + 0.980469i \(0.563014\pi\)
\(450\) 0 0
\(451\) 605661. 1.04904e6i 0.140213 0.242856i
\(452\) 0 0
\(453\) −198663. 344095.i −0.0454855 0.0787831i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.47293e6 + 2.55118e6i 0.329906 + 0.571414i 0.982493 0.186300i \(-0.0596495\pi\)
−0.652587 + 0.757714i \(0.726316\pi\)
\(458\) 0 0
\(459\) 735484. 1.27390e6i 0.162945 0.282229i
\(460\) 0 0
\(461\) 1.91583e6 0.419860 0.209930 0.977716i \(-0.432676\pi\)
0.209930 + 0.977716i \(0.432676\pi\)
\(462\) 0 0
\(463\) −3.75401e6 −0.813847 −0.406924 0.913462i \(-0.633398\pi\)
−0.406924 + 0.913462i \(0.633398\pi\)
\(464\) 0 0
\(465\) 9.07003e6 1.57097e7i 1.94525 3.36928i
\(466\) 0 0
\(467\) −1.05297e6 1.82380e6i −0.223421 0.386976i 0.732424 0.680849i \(-0.238389\pi\)
−0.955845 + 0.293873i \(0.905056\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −2.85169e6 4.93928e6i −0.592312 1.02592i
\(472\) 0 0
\(473\) 2.06033e6 3.56860e6i 0.423432 0.733406i
\(474\) 0 0
\(475\) −1.61362e6 −0.328146
\(476\) 0 0
\(477\) 7.07600e6 1.42394
\(478\) 0 0
\(479\) −137463. + 238093.i −0.0273745 + 0.0474141i −0.879388 0.476106i \(-0.842048\pi\)
0.852014 + 0.523520i \(0.175381\pi\)
\(480\) 0 0
\(481\) −1.53648e6 2.66126e6i −0.302806 0.524476i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.58068e6 7.93396e6i −0.884250 1.53157i
\(486\) 0 0
\(487\) −3.83564e6 + 6.64353e6i −0.732851 + 1.26934i 0.222809 + 0.974862i \(0.428477\pi\)
−0.955660 + 0.294473i \(0.904856\pi\)
\(488\) 0 0
\(489\) 6.59886e6 1.24795
\(490\) 0 0
\(491\) −2.42352e6 −0.453673 −0.226837 0.973933i \(-0.572838\pi\)
−0.226837 + 0.973933i \(0.572838\pi\)
\(492\) 0 0
\(493\) 5.82052e6 1.00814e7i 1.07856 1.86812i
\(494\) 0 0
\(495\) −4.83541e6 8.37517e6i −0.886993 1.53632i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.11158e6 + 7.12147e6i 0.739193 + 1.28032i 0.952859 + 0.303413i \(0.0981262\pi\)
−0.213666 + 0.976907i \(0.568540\pi\)
\(500\) 0 0
\(501\) −6.14922e6 + 1.06508e7i −1.09453 + 1.89577i
\(502\) 0 0
\(503\) −2.98186e6 −0.525493 −0.262746 0.964865i \(-0.584628\pi\)
−0.262746 + 0.964865i \(0.584628\pi\)
\(504\) 0 0
\(505\) 7.00689e6 1.22263
\(506\) 0 0
\(507\) 203080. 351745.i 0.0350871 0.0607726i
\(508\) 0 0
\(509\) −3.13433e6 5.42883e6i −0.536230 0.928777i −0.999103 0.0423525i \(-0.986515\pi\)
0.462873 0.886425i \(-0.346819\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −164969. 285735.i −0.0276763 0.0479368i
\(514\) 0 0
\(515\) 2.56537e6 4.44335e6i 0.426218 0.738231i
\(516\) 0 0
\(517\) −1.08078e7 −1.77832
\(518\) 0 0
\(519\) −1.50061e7 −2.44540
\(520\) 0 0
\(521\) −2.06067e6 + 3.56919e6i −0.332594 + 0.576070i −0.983020 0.183500i \(-0.941257\pi\)
0.650426 + 0.759570i \(0.274591\pi\)
\(522\) 0 0
\(523\) −2.35234e6 4.07438e6i −0.376051 0.651339i 0.614433 0.788969i \(-0.289385\pi\)
−0.990484 + 0.137630i \(0.956052\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.82512e6 1.18215e7i −1.07049 1.85415i
\(528\) 0 0
\(529\) 3.00040e6 5.19685e6i 0.466166 0.807423i
\(530\) 0 0
\(531\) −3.16590e6 −0.487261
\(532\) 0 0
\(533\) 1.30051e6 0.198287
\(534\) 0 0
\(535\) −1.75041e6 + 3.03179e6i −0.264396 + 0.457947i
\(536\) 0 0
\(537\) −560307. 970479.i −0.0838475 0.145228i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.23920e6 3.87841e6i −0.328927 0.569719i 0.653372 0.757037i \(-0.273354\pi\)
−0.982299 + 0.187318i \(0.940020\pi\)
\(542\) 0 0
\(543\) −4.09714e6 + 7.09646e6i −0.596323 + 1.03286i
\(544\) 0 0
\(545\) 1.50124e6 0.216501
\(546\) 0 0
\(547\) −6.49187e6 −0.927687 −0.463843 0.885917i \(-0.653530\pi\)
−0.463843 + 0.885917i \(0.653530\pi\)
\(548\) 0 0
\(549\) −1.05388e6 + 1.82537e6i −0.149231 + 0.258476i
\(550\) 0 0
\(551\) −1.30554e6 2.26126e6i −0.183194 0.317301i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 4.89557e6 + 8.47938e6i 0.674638 + 1.16851i
\(556\) 0 0
\(557\) 1.25429e6 2.17249e6i 0.171301 0.296702i −0.767574 0.640960i \(-0.778536\pi\)
0.938875 + 0.344259i \(0.111870\pi\)
\(558\) 0 0
\(559\) 4.42404e6 0.598811
\(560\) 0 0
\(561\) −1.64163e7 −2.20226
\(562\) 0 0
\(563\) −1.76351e6 + 3.05449e6i −0.234480 + 0.406132i −0.959122 0.282994i \(-0.908672\pi\)
0.724641 + 0.689126i \(0.242006\pi\)
\(564\) 0 0
\(565\) −3.47031e6 6.01075e6i −0.457348 0.792150i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.87641e6 8.44620e6i −0.631422 1.09366i −0.987261 0.159108i \(-0.949138\pi\)
0.355839 0.934547i \(-0.384195\pi\)
\(570\) 0 0
\(571\) −850427. + 1.47298e6i −0.109156 + 0.189063i −0.915428 0.402481i \(-0.868148\pi\)
0.806273 + 0.591544i \(0.201481\pi\)
\(572\) 0 0
\(573\) 8.26314e6 1.05138
\(574\) 0 0
\(575\) 3.33832e6 0.421074
\(576\) 0 0
\(577\) −5.85328e6 + 1.01382e7i −0.731914 + 1.26771i 0.224150 + 0.974555i \(0.428039\pi\)
−0.956064 + 0.293157i \(0.905294\pi\)
\(578\) 0 0
\(579\) 5.88009e6 + 1.01846e7i 0.728933 + 1.26255i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.01022e7 + 1.74976e7i 1.23097 + 2.13210i
\(584\) 0 0
\(585\) 5.19141e6 8.99179e6i 0.627185 1.08632i
\(586\) 0 0
\(587\) 3.75683e6 0.450015 0.225007 0.974357i \(-0.427759\pi\)
0.225007 + 0.974357i \(0.427759\pi\)
\(588\) 0 0
\(589\) −3.06175e6 −0.363648
\(590\) 0 0
\(591\) −4.20149e6 + 7.27720e6i −0.494806 + 0.857029i
\(592\) 0 0
\(593\) 4.32169e6 + 7.48539e6i 0.504681 + 0.874133i 0.999985 + 0.00541364i \(0.00172322\pi\)
−0.495304 + 0.868720i \(0.664943\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.76321e6 8.25013e6i −0.546971 0.947382i
\(598\) 0 0
\(599\) −4.65965e6 + 8.07075e6i −0.530623 + 0.919067i 0.468738 + 0.883337i \(0.344709\pi\)
−0.999361 + 0.0357296i \(0.988625\pi\)
\(600\) 0 0
\(601\) −910438. −0.102817 −0.0514084 0.998678i \(-0.516371\pi\)
−0.0514084 + 0.998678i \(0.516371\pi\)
\(602\) 0 0
\(603\) 1.55490e6 0.174144
\(604\) 0 0
\(605\) 6.52227e6 1.12969e7i 0.724454 1.25479i
\(606\) 0 0
\(607\) 2.85087e6 + 4.93784e6i 0.314054 + 0.543958i 0.979236 0.202723i \(-0.0649792\pi\)
−0.665182 + 0.746682i \(0.731646\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.80174e6 1.00489e7i −0.628717 1.08897i
\(612\) 0 0
\(613\) −8.06637e6 + 1.39714e7i −0.867016 + 1.50172i −0.00198504 + 0.999998i \(0.500632\pi\)
−0.865031 + 0.501718i \(0.832701\pi\)
\(614\) 0 0
\(615\) −4.14370e6 −0.441774
\(616\) 0 0
\(617\) −5.53575e6 −0.585415 −0.292708 0.956202i \(-0.594556\pi\)
−0.292708 + 0.956202i \(0.594556\pi\)
\(618\) 0 0
\(619\) −9.42242e6 + 1.63201e7i −0.988407 + 1.71197i −0.362716 + 0.931900i \(0.618151\pi\)
−0.625691 + 0.780071i \(0.715183\pi\)
\(620\) 0 0
\(621\) 341294. + 591139.i 0.0355140 + 0.0615121i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7189.06 12451.8i −0.000736160 0.00127507i
\(626\) 0 0
\(627\) −1.84109e6 + 3.18885e6i −0.187027 + 0.323941i
\(628\) 0 0
\(629\) 7.36776e6 0.742521
\(630\) 0 0
\(631\) 2.63269e6 0.263224 0.131612 0.991301i \(-0.457985\pi\)
0.131612 + 0.991301i \(0.457985\pi\)
\(632\) 0 0
\(633\) 1.23541e7 2.13979e7i 1.22547 2.12257i
\(634\) 0 0
\(635\) 3.10011e6 + 5.36954e6i 0.305100 + 0.528449i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5.41622e6 9.38118e6i −0.524740 0.908877i
\(640\) 0 0
\(641\) −7.14693e6 + 1.23788e7i −0.687028 + 1.18997i 0.285767 + 0.958299i \(0.407752\pi\)
−0.972795 + 0.231668i \(0.925582\pi\)
\(642\) 0 0
\(643\) 1.63874e7 1.56308 0.781542 0.623853i \(-0.214434\pi\)
0.781542 + 0.623853i \(0.214434\pi\)
\(644\) 0 0
\(645\) −1.40960e7 −1.33412
\(646\) 0 0
\(647\) 5.96516e6 1.03320e7i 0.560224 0.970336i −0.437253 0.899339i \(-0.644049\pi\)
0.997477 0.0709972i \(-0.0226181\pi\)
\(648\) 0 0
\(649\) −4.51988e6 7.82867e6i −0.421226 0.729585i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.73931e6 3.01257e6i −0.159622 0.276474i 0.775110 0.631826i \(-0.217694\pi\)
−0.934733 + 0.355352i \(0.884361\pi\)
\(654\) 0 0
\(655\) −4.33930e6 + 7.51589e6i −0.395200 + 0.684506i
\(656\) 0 0
\(657\) 1.50447e7 1.35978
\(658\) 0 0
\(659\) 2.09397e7 1.87826 0.939131 0.343560i \(-0.111633\pi\)
0.939131 + 0.343560i \(0.111633\pi\)
\(660\) 0 0
\(661\) −5.12829e6 + 8.88246e6i −0.456530 + 0.790733i −0.998775 0.0494878i \(-0.984241\pi\)
0.542245 + 0.840220i \(0.317574\pi\)
\(662\) 0 0
\(663\) −8.81247e6 1.52637e7i −0.778599 1.34857i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.70095e6 + 4.67818e6i 0.235073 + 0.407158i
\(668\) 0 0
\(669\) 9.72661e6 1.68470e7i 0.840226 1.45531i
\(670\) 0 0
\(671\) −6.01840e6 −0.516029
\(672\) 0 0
\(673\) 716398. 0.0609701 0.0304851 0.999535i \(-0.490295\pi\)
0.0304851 + 0.999535i \(0.490295\pi\)
\(674\) 0 0
\(675\) 2.61595e6 4.53096e6i 0.220989 0.382764i
\(676\) 0 0
\(677\) 472813. + 818935.i 0.0396476 + 0.0686717i 0.885168 0.465271i \(-0.154043\pi\)
−0.845521 + 0.533943i \(0.820710\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.01250e6 + 3.48575e6i 0.166291 + 0.288024i
\(682\) 0 0
\(683\) −1.78496e6 + 3.09164e6i −0.146412 + 0.253593i −0.929899 0.367815i \(-0.880106\pi\)
0.783487 + 0.621408i \(0.213439\pi\)
\(684\) 0 0
\(685\) −2.63512e7 −2.14573
\(686\) 0 0
\(687\) 1.63783e7 1.32397
\(688\) 0 0
\(689\) −1.08460e7 + 1.87859e7i −0.870407 + 1.50759i
\(690\) 0 0
\(691\) 4.83905e6 + 8.38149e6i 0.385536 + 0.667768i 0.991843 0.127462i \(-0.0406831\pi\)
−0.606307 + 0.795231i \(0.707350\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.27350e7 + 2.20577e7i 1.00009 + 1.73220i
\(696\) 0 0
\(697\) −1.55905e6 + 2.70035e6i −0.121556 + 0.210542i
\(698\) 0 0
\(699\) −2.92445e7 −2.26387
\(700\) 0 0
\(701\) 2.52404e7 1.94000 0.970000 0.243105i \(-0.0781659\pi\)
0.970000 + 0.243105i \(0.0781659\pi\)
\(702\) 0 0
\(703\) 826293. 1.43118e6i 0.0630588 0.109221i
\(704\) 0 0
\(705\) 1.84856e7 + 3.20181e7i 1.40075 + 2.42618i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.73720e6 + 1.51333e7i 0.652765 + 1.13062i 0.982449 + 0.186531i \(0.0597245\pi\)
−0.329684 + 0.944091i \(0.606942\pi\)
\(710\) 0 0
\(711\) 310407. 537640.i 0.0230280 0.0398857i
\(712\) 0 0
\(713\) 6.33426e6 0.466629
\(714\) 0 0
\(715\) 2.96466e7 2.16875
\(716\) 0 0
\(717\) 6.72352e6 1.16455e7i 0.488426 0.845978i
\(718\) 0 0
\(719\) −4.86681e6 8.42955e6i −0.351093 0.608110i 0.635348 0.772226i \(-0.280856\pi\)
−0.986441 + 0.164115i \(0.947523\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −613782. 1.06310e6i −0.0436685 0.0756361i
\(724\) 0 0
\(725\) 2.07023e7 3.58573e7i 1.46276 2.53357i
\(726\) 0 0
\(727\) 1.60454e7 1.12594 0.562971 0.826477i \(-0.309658\pi\)
0.562971 + 0.826477i \(0.309658\pi\)
\(728\) 0 0
\(729\) −8.02815e6 −0.559496
\(730\) 0 0
\(731\) −5.30356e6 + 9.18603e6i −0.367091 + 0.635820i
\(732\) 0 0
\(733\) 5.22668e6 + 9.05288e6i 0.359307 + 0.622339i 0.987845 0.155440i \(-0.0496796\pi\)
−0.628538 + 0.777779i \(0.716346\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.21990e6 + 3.84497e6i 0.150544 + 0.260750i
\(738\) 0 0
\(739\) 3.73819e6 6.47474e6i 0.251797 0.436125i −0.712224 0.701953i \(-0.752312\pi\)
0.964021 + 0.265827i \(0.0856451\pi\)
\(740\) 0 0
\(741\) −3.95327e6 −0.264491
\(742\) 0 0
\(743\) −1.33998e7 −0.890483 −0.445241 0.895411i \(-0.646882\pi\)
−0.445241 + 0.895411i \(0.646882\pi\)
\(744\) 0 0
\(745\) −5.80237e6 + 1.00500e7i −0.383014 + 0.663400i
\(746\) 0 0
\(747\) 7.41343e6 + 1.28404e7i 0.486091 + 0.841934i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4.56952e6 7.91463e6i −0.295645 0.512072i 0.679490 0.733685i \(-0.262201\pi\)
−0.975135 + 0.221613i \(0.928868\pi\)
\(752\) 0 0
\(753\) −6.70313e6 + 1.16102e7i −0.430815 + 0.746193i
\(754\) 0 0
\(755\) −1.72039e6 −0.109840
\(756\) 0 0
\(757\) −1.16376e7 −0.738117 −0.369059 0.929406i \(-0.620320\pi\)
−0.369059 + 0.929406i \(0.620320\pi\)
\(758\) 0 0
\(759\) 3.80891e6 6.59722e6i 0.239992 0.415678i
\(760\) 0 0
\(761\) −4.03536e6 6.98945e6i −0.252593 0.437503i 0.711646 0.702538i \(-0.247950\pi\)
−0.964239 + 0.265035i \(0.914617\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.24470e7 + 2.15588e7i 0.768971 + 1.33190i
\(766\) 0 0
\(767\) 4.85266e6 8.40505e6i 0.297846 0.515884i
\(768\) 0 0
\(769\) 1.30085e7 0.793255 0.396628 0.917980i \(-0.370180\pi\)
0.396628 + 0.917980i \(0.370180\pi\)
\(770\) 0 0
\(771\) −1.69369e7 −1.02612
\(772\) 0 0
\(773\) 1.18819e7 2.05800e7i 0.715214 1.23879i −0.247663 0.968846i \(-0.579663\pi\)
0.962877 0.269941i \(-0.0870041\pi\)
\(774\) 0 0
\(775\) −2.42754e7 4.20462e7i −1.45182 2.51462i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 349694. + 605689.i 0.0206464 + 0.0357607i
\(780\) 0 0
\(781\) 1.54652e7 2.67866e7i 0.907254 1.57141i
\(782\) 0 0
\(783\) 8.46600e6 0.493485
\(784\) 0 0
\(785\) −2.46951e7 −1.43033
\(786\) 0 0
\(787\) −1.42470e7 + 2.46765e7i −0.819947 + 1.42019i 0.0857729 + 0.996315i \(0.472664\pi\)
−0.905720 + 0.423876i \(0.860669\pi\)
\(788\) 0 0
\(789\) 2.13167e7 + 3.69216e7i 1.21907 + 2.11149i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.23075e6 5.59582e6i −0.182440 0.315996i
\(794\) 0 0
\(795\) 3.45578e7 5.98559e7i 1.93923 3.35884i
\(796\) 0 0
\(797\) −1.43450e7 −0.799938 −0.399969 0.916529i \(-0.630979\pi\)
−0.399969 + 0.916529i \(0.630979\pi\)
\(798\) 0 0
\(799\) 2.78206e7 1.54170
\(800\) 0 0
\(801\) −8.15468e6 + 1.41243e7i −0.449082 + 0.777833i
\(802\) 0 0
\(803\) 2.14789e7 + 3.72026e7i 1.17550 + 2.03603i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.34025e7 2.32138e7i −0.724438 1.25476i
\(808\) 0 0
\(809\) 1.79642e6 3.11149e6i 0.0965020 0.167146i −0.813733 0.581240i \(-0.802568\pi\)
0.910234 + 0.414093i \(0.135901\pi\)
\(810\) 0 0
\(811\) −3.52968e7 −1.88445 −0.942223 0.334988i \(-0.891268\pi\)
−0.942223 + 0.334988i \(0.891268\pi\)
\(812\) 0 0
\(813\) 470316. 0.0249553
\(814\) 0 0
\(815\) 1.42862e7 2.47444e7i 0.753395 1.30492i
\(816\) 0 0
\(817\) 1.18959e6 + 2.06042e6i 0.0623506 + 0.107994i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.22792e6 9.05502e6i −0.270689 0.468847i 0.698349 0.715757i \(-0.253918\pi\)
−0.969038 + 0.246910i \(0.920585\pi\)
\(822\) 0 0
\(823\) −2.49595e6 + 4.32311e6i −0.128451 + 0.222483i −0.923076 0.384616i \(-0.874334\pi\)
0.794626 + 0.607099i \(0.207667\pi\)
\(824\) 0 0
\(825\) −5.83890e7 −2.98673
\(826\) 0 0
\(827\) −2.06198e7 −1.04839 −0.524193 0.851599i \(-0.675633\pi\)
−0.524193 + 0.851599i \(0.675633\pi\)
\(828\) 0 0
\(829\) −253421. + 438939.i −0.0128073 + 0.0221829i −0.872358 0.488868i \(-0.837410\pi\)
0.859551 + 0.511050i \(0.170743\pi\)
\(830\) 0 0
\(831\) −3.84640e6 6.66217e6i −0.193220 0.334667i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.66255e7 + 4.61168e7i 1.32155 + 2.28898i
\(836\) 0 0
\(837\) 4.96361e6 8.59722e6i 0.244897 0.424174i
\(838\) 0 0
\(839\) 4.41851e6 0.216706 0.108353 0.994112i \(-0.465442\pi\)
0.108353 + 0.994112i \(0.465442\pi\)
\(840\) 0 0
\(841\) 4.64876e7 2.26645
\(842\) 0 0
\(843\) −2.12799e7 + 3.68579e7i −1.03134 + 1.78633i
\(844\) 0 0
\(845\) −879316. 1.52302e6i −0.0423646 0.0733777i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −6.85700e6 1.18767e7i −0.326486 0.565491i
\(850\) 0 0
\(851\) −1.70947e6 + 2.96088e6i −0.0809164 + 0.140151i
\(852\) 0 0
\(853\) 1.11737e7 0.525806 0.262903 0.964822i \(-0.415320\pi\)
0.262903 + 0.964822i \(0.415320\pi\)
\(854\) 0 0
\(855\) 5.58370e6 0.261220
\(856\) 0 0
\(857\) 1.06154e7 1.83864e7i 0.493724 0.855155i −0.506250 0.862387i \(-0.668969\pi\)
0.999974 + 0.00723167i \(0.00230193\pi\)
\(858\) 0 0
\(859\) 1.82114e7 + 3.15432e7i 0.842096 + 1.45855i 0.888119 + 0.459613i \(0.152012\pi\)
−0.0460234 + 0.998940i \(0.514655\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.26649e7 + 2.19362e7i 0.578861 + 1.00262i 0.995610 + 0.0935954i \(0.0298360\pi\)
−0.416749 + 0.909022i \(0.636831\pi\)
\(864\) 0 0
\(865\) −3.24875e7 + 5.62700e7i −1.47631 + 2.55704i
\(866\) 0 0
\(867\) 1.25934e7 0.568978
\(868\) 0 0
\(869\) 1.77264e6 0.0796290
\(870\) 0 0
\(871\) −2.38334e6 + 4.12806e6i −0.106449 + 0.184374i
\(872\) 0 0
\(873\) 9.79784e6 + 1.69704e7i 0.435106 + 0.753625i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 288569. + 499816.i 0.0126692 + 0.0219438i 0.872291 0.488988i \(-0.162634\pi\)
−0.859621 + 0.510932i \(0.829300\pi\)
\(878\) 0 0
\(879\) −1.00524e7 + 1.74112e7i −0.438829 + 0.760074i
\(880\) 0 0
\(881\) 2.15071e7 0.933561 0.466781 0.884373i \(-0.345414\pi\)
0.466781 + 0.884373i \(0.345414\pi\)
\(882\) 0 0
\(883\) −3.71948e6 −0.160539 −0.0802695 0.996773i \(-0.525578\pi\)
−0.0802695 + 0.996773i \(0.525578\pi\)
\(884\) 0 0
\(885\) −1.54617e7 + 2.67804e7i −0.663587 + 1.14937i
\(886\) 0 0
\(887\) 9.08802e6 + 1.57409e7i 0.387847 + 0.671770i 0.992160 0.124977i \(-0.0398856\pi\)
−0.604313 + 0.796747i \(0.706552\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.89583e7 3.28368e7i −0.800028 1.38569i
\(892\) 0 0
\(893\) 3.12007e6 5.40413e6i 0.130929 0.226776i
\(894\) 0 0
\(895\) −4.85214e6 −0.202477
\(896\) 0 0
\(897\) 8.17868e6 0.339392
\(898\) 0 0
\(899\) 3.92813e7 6.80371e7i 1.62101 2.80767i
\(900\) 0 0
\(901\) −2.60045e7 4.50411e7i −1.06718 1.84840i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.77402e7 + 3.07270e7i 0.720008 + 1.24709i
\(906\) 0 0
\(907\) 6.77151e6 1.17286e7i 0.273317 0.473400i −0.696392 0.717662i \(-0.745212\pi\)
0.969709 + 0.244262i \(0.0785458\pi\)
\(908\) 0 0
\(909\) −1.49874e7 −0.601612
\(910\) 0 0
\(911\) −412746. −0.0164773 −0.00823866 0.999966i \(-0.502622\pi\)
−0.00823866 + 0.999966i \(0.502622\pi\)
\(912\) 0 0
\(913\) −2.11680e7 + 3.66640e7i −0.840431 + 1.45567i
\(914\) 0 0
\(915\) 1.02939e7 + 1.78295e7i 0.406468 + 0.704024i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.39529e7 2.41672e7i −0.544976 0.943925i −0.998608 0.0527367i \(-0.983206\pi\)
0.453633 0.891189i \(-0.350128\pi\)
\(920\) 0 0
\(921\) −3.09697e6 + 5.36411e6i −0.120306 + 0.208376i
\(922\) 0 0
\(923\) 3.32077e7 1.28302
\(924\) 0 0
\(925\) 2.62054e7 1.00702
\(926\) 0 0
\(927\) −5.48719e6 + 9.50410e6i −0.209725 + 0.363255i
\(928\) 0 0
\(929\) −9.74202e6 1.68737e7i −0.370348 0.641461i 0.619271 0.785177i \(-0.287428\pi\)
−0.989619 + 0.143716i \(0.954095\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.17064e7 + 2.02761e7i 0.440270 + 0.762569i
\(934\) 0 0
\(935\) −3.55405e7 + 6.15579e7i −1.32952 + 2.30279i
\(936\) 0 0
\(937\) 1.89631e7 0.705602 0.352801 0.935698i \(-0.385229\pi\)
0.352801 + 0.935698i \(0.385229\pi\)
\(938\) 0 0
\(939\) −3.65425e7 −1.35249
\(940\) 0 0
\(941\) −1.15249e7 + 1.99617e7i −0.424290 + 0.734891i −0.996354 0.0853175i \(-0.972810\pi\)
0.572064 + 0.820209i \(0.306143\pi\)
\(942\) 0 0
\(943\) −723461. 1.25307e6i −0.0264933 0.0458877i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.74655e7 + 3.02511e7i 0.632858 + 1.09614i 0.986965 + 0.160937i \(0.0514517\pi\)
−0.354107 + 0.935205i \(0.615215\pi\)
\(948\) 0 0
\(949\) −2.30603e7 + 3.99416e7i −0.831188 + 1.43966i
\(950\) 0 0
\(951\) 6.63331e7 2.37837
\(952\) 0 0
\(953\) 2.74501e7 0.979066 0.489533 0.871985i \(-0.337167\pi\)
0.489533 + 0.871985i \(0.337167\pi\)
\(954\) 0 0
\(955\) 1.78893e7 3.09852e7i 0.634724 1.09937i
\(956\) 0 0
\(957\) −4.72411e7 8.18240e7i −1.66740 2.88803i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −3.17465e7 5.49866e7i −1.10889 1.92065i
\(962\) 0 0
\(963\) 3.74403e6 6.48486e6i 0.130099 0.225338i
\(964\) 0 0
\(965\) 5.09204e7 1.76025
\(966\) 0 0
\(967\) −9.37608e6 −0.322445 −0.161222 0.986918i \(-0.551544\pi\)
−0.161222 + 0.986918i \(0.551544\pi\)
\(968\) 0 0
\(969\) 4.73919e6 8.20852e6i 0.162142 0.280838i
\(970\) 0 0
\(971\) 3.61679e6 + 6.26447e6i 0.123105 + 0.213224i 0.920991 0.389585i \(-0.127381\pi\)
−0.797886 + 0.602809i \(0.794048\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.13440e7 5.42893e7i −1.05595 1.82895i
\(976\) 0 0
\(977\) 1.44011e7 2.49434e7i 0.482680 0.836026i −0.517122 0.855912i \(-0.672997\pi\)
0.999802 + 0.0198853i \(0.00633011\pi\)
\(978\) 0 0
\(979\) −4.65690e7 −1.55289
\(980\) 0 0
\(981\) −3.21109e6 −0.106532
\(982\) 0 0
\(983\) 2.60924e7 4.51934e7i 0.861252 1.49173i −0.00946931 0.999955i \(-0.503014\pi\)
0.870721 0.491777i \(-0.163652\pi\)
\(984\) 0 0
\(985\) 1.81921e7 + 3.15096e7i 0.597436 + 1.03479i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.46106e6 4.26268e6i −0.0800077 0.138577i
\(990\) 0 0
\(991\) 1.94789e7 3.37385e7i 0.630058 1.09129i −0.357481 0.933920i \(-0.616364\pi\)
0.987539 0.157373i \(-0.0503024\pi\)
\(992\) 0 0
\(993\) 1.83520e7 0.590624
\(994\) 0 0
\(995\) −4.12485e7 −1.32084
\(996\) 0 0
\(997\) −1.50858e7 + 2.61294e7i −0.480652 + 0.832514i −0.999754 0.0221985i \(-0.992933\pi\)
0.519101 + 0.854713i \(0.326267\pi\)
\(998\) 0 0
\(999\) 2.67912e6 + 4.64037e6i 0.0849334 + 0.147109i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.6.i.h.361.1 4
7.2 even 3 inner 392.6.i.h.177.1 4
7.3 odd 6 56.6.a.d.1.1 2
7.4 even 3 392.6.a.e.1.2 2
7.5 odd 6 392.6.i.k.177.2 4
7.6 odd 2 392.6.i.k.361.2 4
21.17 even 6 504.6.a.m.1.1 2
28.3 even 6 112.6.a.j.1.2 2
28.11 odd 6 784.6.a.q.1.1 2
56.3 even 6 448.6.a.r.1.1 2
56.45 odd 6 448.6.a.x.1.2 2
84.59 odd 6 1008.6.a.bi.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.a.d.1.1 2 7.3 odd 6
112.6.a.j.1.2 2 28.3 even 6
392.6.a.e.1.2 2 7.4 even 3
392.6.i.h.177.1 4 7.2 even 3 inner
392.6.i.h.361.1 4 1.1 even 1 trivial
392.6.i.k.177.2 4 7.5 odd 6
392.6.i.k.361.2 4 7.6 odd 2
448.6.a.r.1.1 2 56.3 even 6
448.6.a.x.1.2 2 56.45 odd 6
504.6.a.m.1.1 2 21.17 even 6
784.6.a.q.1.1 2 28.11 odd 6
1008.6.a.bi.1.1 2 84.59 odd 6