Properties

Label 392.6.i.h.177.2
Level $392$
Weight $6$
Character 392.177
Analytic conductor $62.870$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,6,Mod(177,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.177"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-14,0,42,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{193})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 49x^{2} + 48x + 2304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.2
Root \(-3.22311 - 5.58259i\) of defining polynomial
Character \(\chi\) \(=\) 392.177
Dual form 392.6.i.h.361.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.44622 + 5.96903i) q^{3} +(-24.2311 + 41.9695i) q^{5} +(97.7471 - 169.303i) q^{9} +(81.7529 + 141.600i) q^{11} +120.828 q^{13} -334.023 q^{15} +(39.0960 + 67.7162i) q^{17} +(-1132.50 + 1961.55i) q^{19} +(1225.98 - 2123.45i) q^{23} +(388.207 + 672.394i) q^{25} +3022.30 q^{27} +6985.27 q^{29} +(1397.02 + 2419.70i) q^{31} +(-563.477 + 975.971i) q^{33} +(-4729.72 + 8192.11i) q^{37} +(416.402 + 721.229i) q^{39} -10088.5 q^{41} -6934.29 q^{43} +(4737.04 + 8204.80i) q^{45} +(582.882 - 1009.58i) q^{47} +(-269.467 + 466.730i) q^{51} +(-4281.21 - 7415.27i) q^{53} -7923.85 q^{55} -15611.4 q^{57} +(3110.13 + 5386.90i) q^{59} +(-20964.4 + 36311.5i) q^{61} +(-2927.81 + 5071.11i) q^{65} +(-906.046 - 1569.32i) q^{67} +16900.0 q^{69} -56823.3 q^{71} +(-22149.7 - 38364.5i) q^{73} +(-2675.69 + 4634.44i) q^{75} +(-17456.2 + 30235.1i) q^{79} +(-13337.0 - 23100.4i) q^{81} +39652.9 q^{83} -3789.36 q^{85} +(24072.8 + 41695.3i) q^{87} +(-63149.7 + 109378. i) q^{89} +(-9628.85 + 16677.7i) q^{93} +(-54883.4 - 95060.8i) q^{95} +145513. q^{97} +31964.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{3} + 42 q^{5} + 2 q^{9} + 716 q^{11} + 1428 q^{13} - 4448 q^{15} - 1344 q^{17} - 1946 q^{19} + 1792 q^{23} - 4282 q^{25} + 3976 q^{27} - 2400 q^{29} - 6804 q^{31} + 10416 q^{33} - 14640 q^{37}+ \cdots - 149880 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.44622 + 5.96903i 0.221075 + 0.382914i 0.955135 0.296172i \(-0.0957100\pi\)
−0.734060 + 0.679085i \(0.762377\pi\)
\(4\) 0 0
\(5\) −24.2311 + 41.9695i −0.433459 + 0.750773i −0.997168 0.0751998i \(-0.976041\pi\)
0.563709 + 0.825973i \(0.309374\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 97.7471 169.303i 0.402251 0.696720i
\(10\) 0 0
\(11\) 81.7529 + 141.600i 0.203714 + 0.352843i 0.949722 0.313093i \(-0.101365\pi\)
−0.746008 + 0.665937i \(0.768032\pi\)
\(12\) 0 0
\(13\) 120.828 0.198295 0.0991473 0.995073i \(-0.468389\pi\)
0.0991473 + 0.995073i \(0.468389\pi\)
\(14\) 0 0
\(15\) −334.023 −0.383308
\(16\) 0 0
\(17\) 39.0960 + 67.7162i 0.0328103 + 0.0568291i 0.881964 0.471316i \(-0.156221\pi\)
−0.849154 + 0.528145i \(0.822888\pi\)
\(18\) 0 0
\(19\) −1132.50 + 1961.55i −0.719704 + 1.24656i 0.241414 + 0.970422i \(0.422389\pi\)
−0.961117 + 0.276141i \(0.910944\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1225.98 2123.45i 0.483240 0.836996i −0.516575 0.856242i \(-0.672793\pi\)
0.999815 + 0.0192461i \(0.00612660\pi\)
\(24\) 0 0
\(25\) 388.207 + 672.394i 0.124226 + 0.215166i
\(26\) 0 0
\(27\) 3022.30 0.797862
\(28\) 0 0
\(29\) 6985.27 1.54237 0.771185 0.636611i \(-0.219664\pi\)
0.771185 + 0.636611i \(0.219664\pi\)
\(30\) 0 0
\(31\) 1397.02 + 2419.70i 0.261094 + 0.452228i 0.966533 0.256543i \(-0.0825834\pi\)
−0.705439 + 0.708771i \(0.749250\pi\)
\(32\) 0 0
\(33\) −563.477 + 975.971i −0.0900724 + 0.156010i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4729.72 + 8192.11i −0.567977 + 0.983765i 0.428789 + 0.903405i \(0.358941\pi\)
−0.996766 + 0.0803606i \(0.974393\pi\)
\(38\) 0 0
\(39\) 416.402 + 721.229i 0.0438380 + 0.0759297i
\(40\) 0 0
\(41\) −10088.5 −0.937271 −0.468636 0.883392i \(-0.655254\pi\)
−0.468636 + 0.883392i \(0.655254\pi\)
\(42\) 0 0
\(43\) −6934.29 −0.571914 −0.285957 0.958242i \(-0.592311\pi\)
−0.285957 + 0.958242i \(0.592311\pi\)
\(44\) 0 0
\(45\) 4737.04 + 8204.80i 0.348719 + 0.603999i
\(46\) 0 0
\(47\) 582.882 1009.58i 0.0384889 0.0666648i −0.846139 0.532962i \(-0.821079\pi\)
0.884628 + 0.466297i \(0.154412\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −269.467 + 466.730i −0.0145071 + 0.0251270i
\(52\) 0 0
\(53\) −4281.21 7415.27i −0.209352 0.362608i 0.742159 0.670224i \(-0.233802\pi\)
−0.951511 + 0.307616i \(0.900469\pi\)
\(54\) 0 0
\(55\) −7923.85 −0.353207
\(56\) 0 0
\(57\) −15611.4 −0.636435
\(58\) 0 0
\(59\) 3110.13 + 5386.90i 0.116318 + 0.201469i 0.918306 0.395871i \(-0.129557\pi\)
−0.801988 + 0.597341i \(0.796224\pi\)
\(60\) 0 0
\(61\) −20964.4 + 36311.5i −0.721371 + 1.24945i 0.239080 + 0.971000i \(0.423154\pi\)
−0.960451 + 0.278451i \(0.910179\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2927.81 + 5071.11i −0.0859526 + 0.148874i
\(66\) 0 0
\(67\) −906.046 1569.32i −0.0246583 0.0427095i 0.853433 0.521203i \(-0.174516\pi\)
−0.878091 + 0.478493i \(0.841183\pi\)
\(68\) 0 0
\(69\) 16900.0 0.427329
\(70\) 0 0
\(71\) −56823.3 −1.33777 −0.668884 0.743367i \(-0.733228\pi\)
−0.668884 + 0.743367i \(0.733228\pi\)
\(72\) 0 0
\(73\) −22149.7 38364.5i −0.486476 0.842602i 0.513403 0.858148i \(-0.328385\pi\)
−0.999879 + 0.0155461i \(0.995051\pi\)
\(74\) 0 0
\(75\) −2675.69 + 4634.44i −0.0549266 + 0.0951357i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −17456.2 + 30235.1i −0.314690 + 0.545058i −0.979371 0.202068i \(-0.935234\pi\)
0.664682 + 0.747127i \(0.268567\pi\)
\(80\) 0 0
\(81\) −13337.0 23100.4i −0.225864 0.391208i
\(82\) 0 0
\(83\) 39652.9 0.631800 0.315900 0.948793i \(-0.397694\pi\)
0.315900 + 0.948793i \(0.397694\pi\)
\(84\) 0 0
\(85\) −3789.36 −0.0568877
\(86\) 0 0
\(87\) 24072.8 + 41695.3i 0.340980 + 0.590594i
\(88\) 0 0
\(89\) −63149.7 + 109378.i −0.845077 + 1.46372i 0.0404777 + 0.999180i \(0.487112\pi\)
−0.885554 + 0.464536i \(0.846221\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −9628.85 + 16677.7i −0.115443 + 0.199953i
\(94\) 0 0
\(95\) −54883.4 95060.8i −0.623924 1.08067i
\(96\) 0 0
\(97\) 145513. 1.57026 0.785130 0.619331i \(-0.212596\pi\)
0.785130 + 0.619331i \(0.212596\pi\)
\(98\) 0 0
\(99\) 31964.4 0.327777
\(100\) 0 0
\(101\) 49772.7 + 86208.9i 0.485499 + 0.840909i 0.999861 0.0166644i \(-0.00530468\pi\)
−0.514362 + 0.857573i \(0.671971\pi\)
\(102\) 0 0
\(103\) −64895.6 + 112402.i −0.602729 + 1.04396i 0.389677 + 0.920952i \(0.372587\pi\)
−0.992406 + 0.123005i \(0.960747\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −109406. + 189496.i −0.923804 + 1.60008i −0.130332 + 0.991470i \(0.541604\pi\)
−0.793473 + 0.608606i \(0.791729\pi\)
\(108\) 0 0
\(109\) −100814. 174614.i −0.812743 1.40771i −0.910938 0.412544i \(-0.864640\pi\)
0.0981950 0.995167i \(-0.468693\pi\)
\(110\) 0 0
\(111\) −65198.6 −0.502263
\(112\) 0 0
\(113\) 31803.9 0.234306 0.117153 0.993114i \(-0.462623\pi\)
0.117153 + 0.993114i \(0.462623\pi\)
\(114\) 0 0
\(115\) 59413.6 + 102907.i 0.418930 + 0.725607i
\(116\) 0 0
\(117\) 11810.6 20456.6i 0.0797643 0.138156i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 67158.4 116322.i 0.417001 0.722267i
\(122\) 0 0
\(123\) −34767.1 60218.3i −0.207207 0.358894i
\(124\) 0 0
\(125\) −189071. −1.08231
\(126\) 0 0
\(127\) −318115. −1.75015 −0.875075 0.483988i \(-0.839188\pi\)
−0.875075 + 0.483988i \(0.839188\pi\)
\(128\) 0 0
\(129\) −23897.1 41391.0i −0.126436 0.218994i
\(130\) 0 0
\(131\) −152597. + 264306.i −0.776905 + 1.34564i 0.156812 + 0.987628i \(0.449878\pi\)
−0.933717 + 0.358011i \(0.883455\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −73233.6 + 126844.i −0.345841 + 0.599014i
\(136\) 0 0
\(137\) −90022.3 155923.i −0.409778 0.709757i 0.585086 0.810971i \(-0.301061\pi\)
−0.994865 + 0.101214i \(0.967727\pi\)
\(138\) 0 0
\(139\) 323204. 1.41886 0.709430 0.704776i \(-0.248953\pi\)
0.709430 + 0.704776i \(0.248953\pi\)
\(140\) 0 0
\(141\) 8034.96 0.0340358
\(142\) 0 0
\(143\) 9878.08 + 17109.3i 0.0403954 + 0.0699669i
\(144\) 0 0
\(145\) −169261. + 293169.i −0.668554 + 1.15797i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −147079. + 254749.i −0.542733 + 0.940041i 0.456013 + 0.889973i \(0.349277\pi\)
−0.998746 + 0.0500677i \(0.984056\pi\)
\(150\) 0 0
\(151\) 167481. + 290085.i 0.597754 + 1.03534i 0.993152 + 0.116831i \(0.0372736\pi\)
−0.395397 + 0.918510i \(0.629393\pi\)
\(152\) 0 0
\(153\) 15286.1 0.0527919
\(154\) 0 0
\(155\) −135405. −0.452694
\(156\) 0 0
\(157\) −72574.9 125703.i −0.234984 0.407003i 0.724284 0.689501i \(-0.242170\pi\)
−0.959268 + 0.282498i \(0.908837\pi\)
\(158\) 0 0
\(159\) 29508.0 51109.3i 0.0925650 0.160327i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 88110.6 152612.i 0.259752 0.449904i −0.706423 0.707790i \(-0.749692\pi\)
0.966175 + 0.257886i \(0.0830258\pi\)
\(164\) 0 0
\(165\) −27307.4 47297.7i −0.0780854 0.135248i
\(166\) 0 0
\(167\) 45460.7 0.126138 0.0630689 0.998009i \(-0.479911\pi\)
0.0630689 + 0.998009i \(0.479911\pi\)
\(168\) 0 0
\(169\) −356693. −0.960679
\(170\) 0 0
\(171\) 221397. + 383471.i 0.579004 + 1.00286i
\(172\) 0 0
\(173\) −102921. + 178264.i −0.261450 + 0.452844i −0.966627 0.256186i \(-0.917534\pi\)
0.705178 + 0.709031i \(0.250867\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −21436.4 + 37128.9i −0.0514302 + 0.0890798i
\(178\) 0 0
\(179\) 99602.6 + 172517.i 0.232348 + 0.402438i 0.958499 0.285097i \(-0.0920260\pi\)
−0.726151 + 0.687535i \(0.758693\pi\)
\(180\) 0 0
\(181\) −198411. −0.450162 −0.225081 0.974340i \(-0.572265\pi\)
−0.225081 + 0.974340i \(0.572265\pi\)
\(182\) 0 0
\(183\) −288992. −0.637909
\(184\) 0 0
\(185\) −229213. 397008.i −0.492390 0.852845i
\(186\) 0 0
\(187\) −6392.42 + 11072.0i −0.0133678 + 0.0231538i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −186474. + 322982.i −0.369857 + 0.640611i −0.989543 0.144239i \(-0.953927\pi\)
0.619686 + 0.784850i \(0.287260\pi\)
\(192\) 0 0
\(193\) −87509.8 151571.i −0.169108 0.292903i 0.768999 0.639250i \(-0.220755\pi\)
−0.938106 + 0.346347i \(0.887422\pi\)
\(194\) 0 0
\(195\) −40359.5 −0.0760080
\(196\) 0 0
\(197\) 883770. 1.62246 0.811229 0.584728i \(-0.198799\pi\)
0.811229 + 0.584728i \(0.198799\pi\)
\(198\) 0 0
\(199\) 392921. + 680560.i 0.703353 + 1.21824i 0.967283 + 0.253701i \(0.0816478\pi\)
−0.263930 + 0.964542i \(0.585019\pi\)
\(200\) 0 0
\(201\) 6244.87 10816.4i 0.0109027 0.0188840i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 244455. 423408.i 0.406269 0.703678i
\(206\) 0 0
\(207\) −239671. 415123.i −0.388768 0.673366i
\(208\) 0 0
\(209\) −370340. −0.586456
\(210\) 0 0
\(211\) 763861. 1.18116 0.590579 0.806980i \(-0.298899\pi\)
0.590579 + 0.806980i \(0.298899\pi\)
\(212\) 0 0
\(213\) −195826. 339180.i −0.295747 0.512249i
\(214\) 0 0
\(215\) 168025. 291029.i 0.247901 0.429378i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 152666. 264425.i 0.215096 0.372557i
\(220\) 0 0
\(221\) 4723.91 + 8182.05i 0.00650610 + 0.0112689i
\(222\) 0 0
\(223\) 204400. 0.275245 0.137623 0.990485i \(-0.456054\pi\)
0.137623 + 0.990485i \(0.456054\pi\)
\(224\) 0 0
\(225\) 151784. 0.199881
\(226\) 0 0
\(227\) 504028. + 873003.i 0.649218 + 1.12448i 0.983310 + 0.181938i \(0.0582369\pi\)
−0.334093 + 0.942540i \(0.608430\pi\)
\(228\) 0 0
\(229\) −122162. + 211591.i −0.153938 + 0.266629i −0.932672 0.360726i \(-0.882529\pi\)
0.778734 + 0.627355i \(0.215862\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10411.4 + 18033.1i −0.0125638 + 0.0217611i −0.872239 0.489080i \(-0.837333\pi\)
0.859675 + 0.510841i \(0.170666\pi\)
\(234\) 0 0
\(235\) 28247.7 + 48926.5i 0.0333668 + 0.0577929i
\(236\) 0 0
\(237\) −240632. −0.278280
\(238\) 0 0
\(239\) −474033. −0.536801 −0.268401 0.963307i \(-0.586495\pi\)
−0.268401 + 0.963307i \(0.586495\pi\)
\(240\) 0 0
\(241\) −851950. 1.47562e6i −0.944869 1.63656i −0.756014 0.654555i \(-0.772856\pi\)
−0.188854 0.982005i \(-0.560477\pi\)
\(242\) 0 0
\(243\) 459134. 795243.i 0.498797 0.863941i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −136838. + 237010.i −0.142713 + 0.247187i
\(248\) 0 0
\(249\) 136653. + 236689.i 0.139675 + 0.241925i
\(250\) 0 0
\(251\) 810918. 0.812442 0.406221 0.913775i \(-0.366846\pi\)
0.406221 + 0.913775i \(0.366846\pi\)
\(252\) 0 0
\(253\) 400909. 0.393771
\(254\) 0 0
\(255\) −13059.0 22618.8i −0.0125765 0.0217831i
\(256\) 0 0
\(257\) 633283. 1.09688e6i 0.598088 1.03592i −0.395016 0.918674i \(-0.629261\pi\)
0.993103 0.117244i \(-0.0374058\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 682790. 1.18263e6i 0.620420 1.07460i
\(262\) 0 0
\(263\) 980241. + 1.69783e6i 0.873863 + 1.51358i 0.857969 + 0.513702i \(0.171726\pi\)
0.0158947 + 0.999874i \(0.494940\pi\)
\(264\) 0 0
\(265\) 414954. 0.362982
\(266\) 0 0
\(267\) −870511. −0.747302
\(268\) 0 0
\(269\) −746790. 1.29348e6i −0.629242 1.08988i −0.987704 0.156335i \(-0.950032\pi\)
0.358462 0.933544i \(-0.383301\pi\)
\(270\) 0 0
\(271\) 618128. 1.07063e6i 0.511275 0.885555i −0.488639 0.872486i \(-0.662507\pi\)
0.999915 0.0130691i \(-0.00416013\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −63474.0 + 109940.i −0.0506133 + 0.0876647i
\(276\) 0 0
\(277\) 85075.0 + 147354.i 0.0666197 + 0.115389i 0.897411 0.441195i \(-0.145445\pi\)
−0.830792 + 0.556584i \(0.812112\pi\)
\(278\) 0 0
\(279\) 546217. 0.420102
\(280\) 0 0
\(281\) 1.29957e6 0.981824 0.490912 0.871209i \(-0.336664\pi\)
0.490912 + 0.871209i \(0.336664\pi\)
\(282\) 0 0
\(283\) −187016. 323921.i −0.138807 0.240422i 0.788238 0.615370i \(-0.210994\pi\)
−0.927045 + 0.374949i \(0.877660\pi\)
\(284\) 0 0
\(285\) 378281. 655201.i 0.275868 0.477818i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 706872. 1.22434e6i 0.497847 0.862296i
\(290\) 0 0
\(291\) 501469. + 868570.i 0.347146 + 0.601274i
\(292\) 0 0
\(293\) −1.15022e6 −0.782728 −0.391364 0.920236i \(-0.627997\pi\)
−0.391364 + 0.920236i \(0.627997\pi\)
\(294\) 0 0
\(295\) −301448. −0.201677
\(296\) 0 0
\(297\) 247082. + 427958.i 0.162536 + 0.281520i
\(298\) 0 0
\(299\) 148133. 256574.i 0.0958238 0.165972i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −343056. + 594190.i −0.214664 + 0.371808i
\(304\) 0 0
\(305\) −1.01598e6 1.75973e6i −0.625370 1.08317i
\(306\) 0 0
\(307\) −2.61214e6 −1.58179 −0.790897 0.611949i \(-0.790386\pi\)
−0.790897 + 0.611949i \(0.790386\pi\)
\(308\) 0 0
\(309\) −894578. −0.532994
\(310\) 0 0
\(311\) −703229. 1.21803e6i −0.412283 0.714095i 0.582856 0.812576i \(-0.301935\pi\)
−0.995139 + 0.0984801i \(0.968602\pi\)
\(312\) 0 0
\(313\) 1.18965e6 2.06053e6i 0.686369 1.18883i −0.286635 0.958040i \(-0.592537\pi\)
0.973004 0.230786i \(-0.0741298\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 281600. 487745.i 0.157393 0.272612i −0.776535 0.630074i \(-0.783025\pi\)
0.933928 + 0.357462i \(0.116358\pi\)
\(318\) 0 0
\(319\) 571066. + 989116.i 0.314203 + 0.544215i
\(320\) 0 0
\(321\) −1.50814e6 −0.816921
\(322\) 0 0
\(323\) −177105. −0.0944547
\(324\) 0 0
\(325\) 46906.4 + 81244.3i 0.0246334 + 0.0426662i
\(326\) 0 0
\(327\) 694852. 1.20352e6i 0.359355 0.622420i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 425324. 736683.i 0.213378 0.369582i −0.739391 0.673276i \(-0.764887\pi\)
0.952770 + 0.303694i \(0.0982200\pi\)
\(332\) 0 0
\(333\) 924633. + 1.60151e6i 0.456939 + 0.791442i
\(334\) 0 0
\(335\) 87818.0 0.0427535
\(336\) 0 0
\(337\) 4.01506e6 1.92582 0.962912 0.269814i \(-0.0869623\pi\)
0.962912 + 0.269814i \(0.0869623\pi\)
\(338\) 0 0
\(339\) 109603. + 189838.i 0.0517993 + 0.0897191i
\(340\) 0 0
\(341\) −228420. + 395635.i −0.106377 + 0.184251i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −409505. + 709283.i −0.185230 + 0.320828i
\(346\) 0 0
\(347\) 1.19980e6 + 2.07812e6i 0.534918 + 0.926505i 0.999167 + 0.0408002i \(0.0129907\pi\)
−0.464250 + 0.885704i \(0.653676\pi\)
\(348\) 0 0
\(349\) 919171. 0.403955 0.201977 0.979390i \(-0.435263\pi\)
0.201977 + 0.979390i \(0.435263\pi\)
\(350\) 0 0
\(351\) 365179. 0.158212
\(352\) 0 0
\(353\) 538418. + 932568.i 0.229976 + 0.398331i 0.957801 0.287433i \(-0.0928018\pi\)
−0.727825 + 0.685763i \(0.759468\pi\)
\(354\) 0 0
\(355\) 1.37689e6 2.38485e6i 0.579868 1.00436i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 621095. 1.07577e6i 0.254344 0.440537i −0.710373 0.703825i \(-0.751474\pi\)
0.964717 + 0.263288i \(0.0848071\pi\)
\(360\) 0 0
\(361\) −1.32706e6 2.29853e6i −0.535947 0.928287i
\(362\) 0 0
\(363\) 925771. 0.368754
\(364\) 0 0
\(365\) 2.14685e6 0.843471
\(366\) 0 0
\(367\) 2.08647e6 + 3.61387e6i 0.808624 + 1.40058i 0.913817 + 0.406125i \(0.133120\pi\)
−0.105194 + 0.994452i \(0.533546\pi\)
\(368\) 0 0
\(369\) −986118. + 1.70801e6i −0.377019 + 0.653016i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 861191. 1.49163e6i 0.320500 0.555121i −0.660092 0.751185i \(-0.729483\pi\)
0.980591 + 0.196064i \(0.0628159\pi\)
\(374\) 0 0
\(375\) −651581. 1.12857e6i −0.239271 0.414430i
\(376\) 0 0
\(377\) 844020. 0.305844
\(378\) 0 0
\(379\) 1.72998e6 0.618647 0.309324 0.950957i \(-0.399897\pi\)
0.309324 + 0.950957i \(0.399897\pi\)
\(380\) 0 0
\(381\) −1.09630e6 1.89884e6i −0.386915 0.670156i
\(382\) 0 0
\(383\) −1.67441e6 + 2.90016e6i −0.583262 + 1.01024i 0.411827 + 0.911262i \(0.364891\pi\)
−0.995090 + 0.0989781i \(0.968443\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −677806. + 1.17400e6i −0.230053 + 0.398464i
\(388\) 0 0
\(389\) 2.59346e6 + 4.49200e6i 0.868970 + 1.50510i 0.863050 + 0.505118i \(0.168551\pi\)
0.00592035 + 0.999982i \(0.498115\pi\)
\(390\) 0 0
\(391\) 191723. 0.0634209
\(392\) 0 0
\(393\) −2.10353e6 −0.687018
\(394\) 0 0
\(395\) −845967. 1.46526e6i −0.272810 0.472521i
\(396\) 0 0
\(397\) −651353. + 1.12818e6i −0.207415 + 0.359254i −0.950900 0.309500i \(-0.899838\pi\)
0.743484 + 0.668753i \(0.233172\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 765180. 1.32533e6i 0.237631 0.411588i −0.722403 0.691472i \(-0.756963\pi\)
0.960034 + 0.279884i \(0.0902959\pi\)
\(402\) 0 0
\(403\) 168799. + 292369.i 0.0517735 + 0.0896744i
\(404\) 0 0
\(405\) 1.29269e6 0.391611
\(406\) 0 0
\(407\) −1.54667e6 −0.462820
\(408\) 0 0
\(409\) −1.46845e6 2.54343e6i −0.434062 0.751817i 0.563157 0.826350i \(-0.309587\pi\)
−0.997219 + 0.0745332i \(0.976253\pi\)
\(410\) 0 0
\(411\) 620474. 1.07469e6i 0.181184 0.313819i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −960833. + 1.66421e6i −0.273859 + 0.474339i
\(416\) 0 0
\(417\) 1.11383e6 + 1.92921e6i 0.313675 + 0.543301i
\(418\) 0 0
\(419\) 1.16465e6 0.324085 0.162043 0.986784i \(-0.448192\pi\)
0.162043 + 0.986784i \(0.448192\pi\)
\(420\) 0 0
\(421\) −1.58204e6 −0.435022 −0.217511 0.976058i \(-0.569794\pi\)
−0.217511 + 0.976058i \(0.569794\pi\)
\(422\) 0 0
\(423\) −113950. 197367.i −0.0309644 0.0536320i
\(424\) 0 0
\(425\) −30354.6 + 52575.8i −0.00815179 + 0.0141193i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −68084.1 + 117925.i −0.0178609 + 0.0309359i
\(430\) 0 0
\(431\) −3.05116e6 5.28477e6i −0.791174 1.37035i −0.925240 0.379382i \(-0.876137\pi\)
0.134066 0.990972i \(-0.457197\pi\)
\(432\) 0 0
\(433\) −1.08115e6 −0.277118 −0.138559 0.990354i \(-0.544247\pi\)
−0.138559 + 0.990354i \(0.544247\pi\)
\(434\) 0 0
\(435\) −2.33324e6 −0.591203
\(436\) 0 0
\(437\) 2.77683e6 + 4.80962e6i 0.695579 + 1.20478i
\(438\) 0 0
\(439\) −3.52403e6 + 6.10381e6i −0.872728 + 1.51161i −0.0135639 + 0.999908i \(0.504318\pi\)
−0.859164 + 0.511701i \(0.829016\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.16016e6 2.00945e6i 0.280871 0.486483i −0.690729 0.723114i \(-0.742710\pi\)
0.971599 + 0.236631i \(0.0760434\pi\)
\(444\) 0 0
\(445\) −3.06037e6 5.30072e6i −0.732613 1.26892i
\(446\) 0 0
\(447\) −2.02747e6 −0.479939
\(448\) 0 0
\(449\) −5.45039e6 −1.27589 −0.637943 0.770084i \(-0.720214\pi\)
−0.637943 + 0.770084i \(0.720214\pi\)
\(450\) 0 0
\(451\) −824761. 1.42853e6i −0.190935 0.330710i
\(452\) 0 0
\(453\) −1.15435e6 + 1.99940e6i −0.264297 + 0.457777i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.31338e6 + 5.73895e6i −0.742132 + 1.28541i 0.209391 + 0.977832i \(0.432852\pi\)
−0.951523 + 0.307578i \(0.900482\pi\)
\(458\) 0 0
\(459\) 118160. + 204659.i 0.0261781 + 0.0453417i
\(460\) 0 0
\(461\) −606397. −0.132894 −0.0664469 0.997790i \(-0.521166\pi\)
−0.0664469 + 0.997790i \(0.521166\pi\)
\(462\) 0 0
\(463\) 3.65855e6 0.793153 0.396576 0.918002i \(-0.370198\pi\)
0.396576 + 0.918002i \(0.370198\pi\)
\(464\) 0 0
\(465\) −466635. 808236.i −0.100080 0.173343i
\(466\) 0 0
\(467\) 2.81356e6 4.87323e6i 0.596986 1.03401i −0.396277 0.918131i \(-0.629698\pi\)
0.993263 0.115879i \(-0.0369686\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 500219. 866404.i 0.103898 0.179957i
\(472\) 0 0
\(473\) −566898. 981896.i −0.116507 0.201796i
\(474\) 0 0
\(475\) −1.75857e6 −0.357624
\(476\) 0 0
\(477\) −1.67390e6 −0.336848
\(478\) 0 0
\(479\) 2.12553e6 + 3.68153e6i 0.423281 + 0.733145i 0.996258 0.0864268i \(-0.0275449\pi\)
−0.572977 + 0.819571i \(0.694212\pi\)
\(480\) 0 0
\(481\) −571485. + 989840.i −0.112627 + 0.195075i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.52593e6 + 6.10710e6i −0.680644 + 1.17891i
\(486\) 0 0
\(487\) −2.64378e6 4.57916e6i −0.505130 0.874911i −0.999982 0.00593382i \(-0.998111\pi\)
0.494852 0.868977i \(-0.335222\pi\)
\(488\) 0 0
\(489\) 1.21459e6 0.229699
\(490\) 0 0
\(491\) −3.33842e6 −0.624939 −0.312469 0.949928i \(-0.601156\pi\)
−0.312469 + 0.949928i \(0.601156\pi\)
\(492\) 0 0
\(493\) 273096. + 473016.i 0.0506056 + 0.0876514i
\(494\) 0 0
\(495\) −774534. + 1.34153e6i −0.142078 + 0.246087i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.26424e6 + 2.18972e6i −0.227288 + 0.393675i −0.957003 0.290076i \(-0.906319\pi\)
0.729715 + 0.683751i \(0.239653\pi\)
\(500\) 0 0
\(501\) 156668. + 271356.i 0.0278859 + 0.0482999i
\(502\) 0 0
\(503\) 5.94498e6 1.04768 0.523842 0.851815i \(-0.324498\pi\)
0.523842 + 0.851815i \(0.324498\pi\)
\(504\) 0 0
\(505\) −4.82420e6 −0.841776
\(506\) 0 0
\(507\) −1.22924e6 2.12911e6i −0.212382 0.367857i
\(508\) 0 0
\(509\) −301762. + 522668.i −0.0516263 + 0.0894193i −0.890684 0.454624i \(-0.849774\pi\)
0.839057 + 0.544043i \(0.183107\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.42275e6 + 5.92837e6i −0.574224 + 0.994585i
\(514\) 0 0
\(515\) −3.14498e6 5.44727e6i −0.522517 0.905026i
\(516\) 0 0
\(517\) 190609. 0.0313630
\(518\) 0 0
\(519\) −1.41875e6 −0.231200
\(520\) 0 0
\(521\) 5.16943e6 + 8.95371e6i 0.834350 + 1.44514i 0.894559 + 0.446951i \(0.147490\pi\)
−0.0602088 + 0.998186i \(0.519177\pi\)
\(522\) 0 0
\(523\) −4.41155e6 + 7.64103e6i −0.705240 + 1.22151i 0.261364 + 0.965240i \(0.415828\pi\)
−0.966605 + 0.256272i \(0.917506\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −109235. + 189201.i −0.0171331 + 0.0296755i
\(528\) 0 0
\(529\) 212133. + 367425.i 0.0329586 + 0.0570860i
\(530\) 0 0
\(531\) 1.21602e6 0.187157
\(532\) 0 0
\(533\) −1.21897e6 −0.185856
\(534\) 0 0
\(535\) −5.30204e6 9.18340e6i −0.800863 1.38714i
\(536\) 0 0
\(537\) −686505. + 1.18906e6i −0.102733 + 0.177938i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −584056. + 1.01161e6i −0.0857949 + 0.148601i −0.905730 0.423856i \(-0.860676\pi\)
0.819935 + 0.572457i \(0.194010\pi\)
\(542\) 0 0
\(543\) −683767. 1.18432e6i −0.0995196 0.172373i
\(544\) 0 0
\(545\) 9.77130e6 1.40916
\(546\) 0 0
\(547\) 9.17075e6 1.31050 0.655249 0.755413i \(-0.272564\pi\)
0.655249 + 0.755413i \(0.272564\pi\)
\(548\) 0 0
\(549\) 4.09842e6 + 7.09868e6i 0.580345 + 1.00519i
\(550\) 0 0
\(551\) −7.91081e6 + 1.37019e7i −1.11005 + 1.92266i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.57984e6 2.73636e6i 0.217710 0.377086i
\(556\) 0 0
\(557\) −3.11211e6 5.39033e6i −0.425027 0.736168i 0.571396 0.820674i \(-0.306402\pi\)
−0.996423 + 0.0845062i \(0.973069\pi\)
\(558\) 0 0
\(559\) −837859. −0.113407
\(560\) 0 0
\(561\) −88118.8 −0.0118212
\(562\) 0 0
\(563\) −2.82021e6 4.88475e6i −0.374982 0.649488i 0.615342 0.788260i \(-0.289018\pi\)
−0.990324 + 0.138772i \(0.955684\pi\)
\(564\) 0 0
\(565\) −770643. + 1.33479e6i −0.101562 + 0.175911i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.26432e6 9.11807e6i 0.681650 1.18065i −0.292827 0.956165i \(-0.594596\pi\)
0.974477 0.224487i \(-0.0720707\pi\)
\(570\) 0 0
\(571\) 3.65698e6 + 6.33407e6i 0.469388 + 0.813004i 0.999388 0.0349941i \(-0.0111413\pi\)
−0.530000 + 0.847998i \(0.677808\pi\)
\(572\) 0 0
\(573\) −2.57052e6 −0.327065
\(574\) 0 0
\(575\) 1.90373e6 0.240124
\(576\) 0 0
\(577\) 1.33267e6 + 2.30825e6i 0.166641 + 0.288631i 0.937237 0.348693i \(-0.113375\pi\)
−0.770596 + 0.637324i \(0.780041\pi\)
\(578\) 0 0
\(579\) 603156. 1.04470e6i 0.0747710 0.129507i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 700002. 1.21244e6i 0.0852959 0.147737i
\(584\) 0 0
\(585\) 572369. + 991373.i 0.0691491 + 0.119770i
\(586\) 0 0
\(587\) −4.92431e6 −0.589861 −0.294931 0.955519i \(-0.595297\pi\)
−0.294931 + 0.955519i \(0.595297\pi\)
\(588\) 0 0
\(589\) −6.32847e6 −0.751641
\(590\) 0 0
\(591\) 3.04567e6 + 5.27525e6i 0.358685 + 0.621261i
\(592\) 0 0
\(593\) −2.54368e6 + 4.40578e6i −0.297047 + 0.514501i −0.975459 0.220181i \(-0.929335\pi\)
0.678412 + 0.734682i \(0.262668\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.70819e6 + 4.69072e6i −0.310988 + 0.538646i
\(598\) 0 0
\(599\) −2.32339e6 4.02423e6i −0.264579 0.458263i 0.702875 0.711314i \(-0.251900\pi\)
−0.967453 + 0.253050i \(0.918566\pi\)
\(600\) 0 0
\(601\) 4.35424e6 0.491730 0.245865 0.969304i \(-0.420928\pi\)
0.245865 + 0.969304i \(0.420928\pi\)
\(602\) 0 0
\(603\) −354254. −0.0396754
\(604\) 0 0
\(605\) 3.25465e6 + 5.63721e6i 0.361506 + 0.626147i
\(606\) 0 0
\(607\) −6.27303e6 + 1.08652e7i −0.691043 + 1.19692i 0.280453 + 0.959868i \(0.409515\pi\)
−0.971496 + 0.237054i \(0.923818\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 70428.7 121986.i 0.00763214 0.0132193i
\(612\) 0 0
\(613\) 2.03818e6 + 3.53024e6i 0.219075 + 0.379448i 0.954525 0.298130i \(-0.0963629\pi\)
−0.735451 + 0.677578i \(0.763030\pi\)
\(614\) 0 0
\(615\) 3.36978e6 0.359264
\(616\) 0 0
\(617\) −8.88533e6 −0.939639 −0.469819 0.882763i \(-0.655681\pi\)
−0.469819 + 0.882763i \(0.655681\pi\)
\(618\) 0 0
\(619\) −6.42650e6 1.11310e7i −0.674136 1.16764i −0.976721 0.214516i \(-0.931183\pi\)
0.302584 0.953123i \(-0.402151\pi\)
\(620\) 0 0
\(621\) 3.70527e6 6.41771e6i 0.385559 0.667807i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.36826e6 5.83399e6i 0.344910 0.597401i
\(626\) 0 0
\(627\) −1.27627e6 2.21057e6i −0.129651 0.224562i
\(628\) 0 0
\(629\) −739652. −0.0745420
\(630\) 0 0
\(631\) −288616. −0.0288567 −0.0144283 0.999896i \(-0.504593\pi\)
−0.0144283 + 0.999896i \(0.504593\pi\)
\(632\) 0 0
\(633\) 2.63243e6 + 4.55951e6i 0.261125 + 0.452282i
\(634\) 0 0
\(635\) 7.70829e6 1.33511e7i 0.758619 1.31397i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5.55432e6 + 9.62036e6i −0.538119 + 0.932050i
\(640\) 0 0
\(641\) 9.72953e6 + 1.68520e7i 0.935291 + 1.61997i 0.774114 + 0.633046i \(0.218196\pi\)
0.161177 + 0.986926i \(0.448471\pi\)
\(642\) 0 0
\(643\) −1.30171e7 −1.24161 −0.620805 0.783965i \(-0.713194\pi\)
−0.620805 + 0.783965i \(0.713194\pi\)
\(644\) 0 0
\(645\) 2.31621e6 0.219219
\(646\) 0 0
\(647\) 3.21432e6 + 5.56736e6i 0.301876 + 0.522864i 0.976561 0.215242i \(-0.0690539\pi\)
−0.674685 + 0.738106i \(0.735721\pi\)
\(648\) 0 0
\(649\) −508524. + 880790.i −0.0473914 + 0.0820844i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.01012e6 + 8.67778e6i −0.459796 + 0.796390i −0.998950 0.0458174i \(-0.985411\pi\)
0.539154 + 0.842207i \(0.318744\pi\)
\(654\) 0 0
\(655\) −7.39519e6 1.28089e7i −0.673514 1.16656i
\(656\) 0 0
\(657\) −8.66030e6 −0.782743
\(658\) 0 0
\(659\) 1.49356e7 1.33971 0.669854 0.742493i \(-0.266357\pi\)
0.669854 + 0.742493i \(0.266357\pi\)
\(660\) 0 0
\(661\) −675276. 1.16961e6i −0.0601143 0.104121i 0.834402 0.551156i \(-0.185813\pi\)
−0.894516 + 0.447035i \(0.852480\pi\)
\(662\) 0 0
\(663\) −32559.3 + 56394.3i −0.00287668 + 0.00498255i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.56378e6 1.48329e7i 0.745334 1.29096i
\(668\) 0 0
\(669\) 704409. + 1.22007e6i 0.0608499 + 0.105395i
\(670\) 0 0
\(671\) −6.85561e6 −0.587814
\(672\) 0 0
\(673\) 6.59401e6 0.561193 0.280596 0.959826i \(-0.409468\pi\)
0.280596 + 0.959826i \(0.409468\pi\)
\(674\) 0 0
\(675\) 1.17328e6 + 2.03217e6i 0.0991153 + 0.171673i
\(676\) 0 0
\(677\) 7.12586e6 1.23424e7i 0.597538 1.03497i −0.395645 0.918404i \(-0.629479\pi\)
0.993183 0.116563i \(-0.0371878\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −3.47399e6 + 6.01712e6i −0.287052 + 0.497188i
\(682\) 0 0
\(683\) 3.82503e6 + 6.62515e6i 0.313749 + 0.543430i 0.979171 0.203038i \(-0.0650815\pi\)
−0.665421 + 0.746468i \(0.731748\pi\)
\(684\) 0 0
\(685\) 8.72536e6 0.710489
\(686\) 0 0
\(687\) −1.68399e6 −0.136128
\(688\) 0 0
\(689\) −517292. 895976.i −0.0415133 0.0719032i
\(690\) 0 0
\(691\) 6.93274e6 1.20079e7i 0.552344 0.956688i −0.445761 0.895152i \(-0.647067\pi\)
0.998105 0.0615362i \(-0.0196000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.83159e6 + 1.35647e7i −0.615018 + 1.06524i
\(696\) 0 0
\(697\) −394418. 683153.i −0.0307521 0.0532642i
\(698\) 0 0
\(699\) −143521. −0.0111102
\(700\) 0 0
\(701\) −2.38825e6 −0.183563 −0.0917814 0.995779i \(-0.529256\pi\)
−0.0917814 + 0.995779i \(0.529256\pi\)
\(702\) 0 0
\(703\) −1.07128e7 1.85551e7i −0.817551 1.41604i
\(704\) 0 0
\(705\) −194696. + 337223.i −0.0147531 + 0.0255532i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 7.78204e6 1.34789e7i 0.581404 1.00702i −0.413909 0.910318i \(-0.635837\pi\)
0.995313 0.0967032i \(-0.0308298\pi\)
\(710\) 0 0
\(711\) 3.41259e6 + 5.91078e6i 0.253169 + 0.438501i
\(712\) 0 0
\(713\) 6.85083e6 0.504684
\(714\) 0 0
\(715\) −957427. −0.0700391
\(716\) 0 0
\(717\) −1.63362e6 2.82952e6i −0.118673 0.205548i
\(718\) 0 0
\(719\) 9.12775e6 1.58097e7i 0.658478 1.14052i −0.322531 0.946559i \(-0.604534\pi\)
0.981010 0.193959i \(-0.0621329\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 5.87202e6 1.01706e7i 0.417774 0.723606i
\(724\) 0 0
\(725\) 2.71173e6 + 4.69685e6i 0.191603 + 0.331865i
\(726\) 0 0
\(727\) 2.11427e6 0.148362 0.0741812 0.997245i \(-0.476366\pi\)
0.0741812 + 0.997245i \(0.476366\pi\)
\(728\) 0 0
\(729\) −152693. −0.0106414
\(730\) 0 0
\(731\) −271103. 469564.i −0.0187647 0.0325013i
\(732\) 0 0
\(733\) 1.06466e6 1.84404e6i 0.0731898 0.126768i −0.827108 0.562043i \(-0.810015\pi\)
0.900298 + 0.435275i \(0.143349\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 148144. 256593.i 0.0100465 0.0174010i
\(738\) 0 0
\(739\) 4.04335e6 + 7.00329e6i 0.272352 + 0.471728i 0.969464 0.245235i \(-0.0788651\pi\)
−0.697112 + 0.716963i \(0.745532\pi\)
\(740\) 0 0
\(741\) −1.88630e6 −0.126202
\(742\) 0 0
\(743\) −1.18944e7 −0.790442 −0.395221 0.918586i \(-0.629332\pi\)
−0.395221 + 0.918586i \(0.629332\pi\)
\(744\) 0 0
\(745\) −7.12779e6 1.23457e7i −0.470505 0.814939i
\(746\) 0 0
\(747\) 3.87595e6 6.71335e6i 0.254142 0.440188i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 9.27692e6 1.60681e7i 0.600211 1.03960i −0.392578 0.919719i \(-0.628417\pi\)
0.992789 0.119877i \(-0.0382500\pi\)
\(752\) 0 0
\(753\) 2.79460e6 + 4.84039e6i 0.179611 + 0.311095i
\(754\) 0 0
\(755\) −1.62330e7 −1.03641
\(756\) 0 0
\(757\) 9.32534e6 0.591459 0.295730 0.955272i \(-0.404437\pi\)
0.295730 + 0.955272i \(0.404437\pi\)
\(758\) 0 0
\(759\) 1.38162e6 + 2.39304e6i 0.0870531 + 0.150780i
\(760\) 0 0
\(761\) 4.00378e6 6.93475e6i 0.250616 0.434079i −0.713080 0.701083i \(-0.752700\pi\)
0.963696 + 0.267004i \(0.0860336\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −370399. + 641549.i −0.0228832 + 0.0396348i
\(766\) 0 0
\(767\) 375792. + 650891.i 0.0230653 + 0.0399503i
\(768\) 0 0
\(769\) −2.02720e7 −1.23618 −0.618089 0.786108i \(-0.712093\pi\)
−0.618089 + 0.786108i \(0.712093\pi\)
\(770\) 0 0
\(771\) 8.72973e6 0.528889
\(772\) 0 0
\(773\) 1.43940e6 + 2.49312e6i 0.0866431 + 0.150070i 0.906090 0.423085i \(-0.139053\pi\)
−0.819447 + 0.573155i \(0.805719\pi\)
\(774\) 0 0
\(775\) −1.08466e6 + 1.87869e6i −0.0648694 + 0.112357i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.14252e7 1.97890e7i 0.674557 1.16837i
\(780\) 0 0
\(781\) −4.64547e6 8.04619e6i −0.272522 0.472023i
\(782\) 0 0
\(783\) 2.11116e7 1.23060
\(784\) 0 0
\(785\) 7.03428e6 0.407423
\(786\) 0 0
\(787\) −1.01754e7 1.76243e7i −0.585618 1.01432i −0.994798 0.101867i \(-0.967518\pi\)
0.409180 0.912454i \(-0.365815\pi\)
\(788\) 0 0
\(789\) −6.75626e6 + 1.17022e7i −0.386379 + 0.669228i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.53310e6 + 4.38746e6i −0.143044 + 0.247759i
\(794\) 0 0
\(795\) 1.43002e6 + 2.47687e6i 0.0802463 + 0.138991i
\(796\) 0 0
\(797\) 2.24765e7 1.25338 0.626689 0.779269i \(-0.284410\pi\)
0.626689 + 0.779269i \(0.284410\pi\)
\(798\) 0 0
\(799\) 91153.3 0.00505133
\(800\) 0 0
\(801\) 1.23454e7 + 2.13829e7i 0.679867 + 1.17756i
\(802\) 0 0
\(803\) 3.62161e6 6.27282e6i 0.198204 0.343300i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5.14721e6 8.91523e6i 0.278220 0.481891i
\(808\) 0 0
\(809\) 577134. + 999625.i 0.0310031 + 0.0536990i 0.881111 0.472910i \(-0.156796\pi\)
−0.850108 + 0.526609i \(0.823463\pi\)
\(810\) 0 0
\(811\) 2.26698e7 1.21031 0.605154 0.796108i \(-0.293112\pi\)
0.605154 + 0.796108i \(0.293112\pi\)
\(812\) 0 0
\(813\) 8.52082e6 0.452121
\(814\) 0 0
\(815\) 4.27003e6 + 7.39592e6i 0.225184 + 0.390030i
\(816\) 0 0
\(817\) 7.85307e6 1.36019e7i 0.411608 0.712927i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.20829e6 2.09281e6i 0.0625622 0.108361i −0.833048 0.553201i \(-0.813406\pi\)
0.895610 + 0.444840i \(0.146739\pi\)
\(822\) 0 0
\(823\) 1.05085e6 + 1.82012e6i 0.0540804 + 0.0936699i 0.891798 0.452433i \(-0.149444\pi\)
−0.837718 + 0.546103i \(0.816111\pi\)
\(824\) 0 0
\(825\) −874982. −0.0447574
\(826\) 0 0
\(827\) 1.53997e7 0.782977 0.391489 0.920183i \(-0.371960\pi\)
0.391489 + 0.920183i \(0.371960\pi\)
\(828\) 0 0
\(829\) −1.16920e7 2.02511e7i −0.590883 1.02344i −0.994114 0.108341i \(-0.965446\pi\)
0.403231 0.915098i \(-0.367887\pi\)
\(830\) 0 0
\(831\) −586375. + 1.01563e6i −0.0294559 + 0.0510192i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.10156e6 + 1.90796e6i −0.0546756 + 0.0947009i
\(836\) 0 0
\(837\) 4.22219e6 + 7.31305e6i 0.208317 + 0.360815i
\(838\) 0 0
\(839\) −2.03016e7 −0.995695 −0.497848 0.867265i \(-0.665876\pi\)
−0.497848 + 0.867265i \(0.665876\pi\)
\(840\) 0 0
\(841\) 2.82829e7 1.37890
\(842\) 0 0
\(843\) 4.47860e6 + 7.75717e6i 0.217057 + 0.375954i
\(844\) 0 0
\(845\) 8.64308e6 1.49703e7i 0.416415 0.721253i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.28900e6 2.23261e6i 0.0613738 0.106303i
\(850\) 0 0
\(851\) 1.15971e7 + 2.00867e7i 0.548938 + 0.950789i
\(852\) 0 0
\(853\) −3.35163e7 −1.57719 −0.788594 0.614914i \(-0.789191\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(854\) 0 0
\(855\) −2.14588e7 −1.00390
\(856\) 0 0
\(857\) −1.15331e7 1.99759e7i −0.536405 0.929081i −0.999094 0.0425602i \(-0.986449\pi\)
0.462689 0.886521i \(-0.346885\pi\)
\(858\) 0 0
\(859\) 1.92805e7 3.33947e7i 0.891527 1.54417i 0.0534819 0.998569i \(-0.482968\pi\)
0.838045 0.545601i \(-0.183699\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.93446e7 + 3.35058e7i −0.884163 + 1.53142i −0.0374930 + 0.999297i \(0.511937\pi\)
−0.846670 + 0.532118i \(0.821396\pi\)
\(864\) 0 0
\(865\) −4.98778e6 8.63908e6i −0.226656 0.392579i
\(866\) 0 0
\(867\) 9.74414e6 0.440247
\(868\) 0 0
\(869\) −5.70838e6 −0.256427
\(870\) 0 0
\(871\) −109476. 189618.i −0.00488961 0.00846905i
\(872\) 0 0
\(873\) 1.42234e7 2.46357e7i 0.631639 1.09403i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.08685e7 1.88247e7i 0.477166 0.826476i −0.522492 0.852644i \(-0.674997\pi\)
0.999658 + 0.0261687i \(0.00833072\pi\)
\(878\) 0 0
\(879\) −3.96390e6 6.86568e6i −0.173042 0.299717i
\(880\) 0 0
\(881\) −8.42086e6 −0.365525 −0.182762 0.983157i \(-0.558504\pi\)
−0.182762 + 0.983157i \(0.558504\pi\)
\(882\) 0 0
\(883\) 3.22954e7 1.39392 0.696962 0.717108i \(-0.254535\pi\)
0.696962 + 0.717108i \(0.254535\pi\)
\(884\) 0 0
\(885\) −1.03886e6 1.79935e6i −0.0445858 0.0772249i
\(886\) 0 0
\(887\) −2.10900e7 + 3.65290e7i −0.900052 + 1.55894i −0.0726278 + 0.997359i \(0.523139\pi\)
−0.827424 + 0.561577i \(0.810195\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.18068e6 3.77705e6i 0.0920234 0.159389i
\(892\) 0 0
\(893\) 1.32023e6 + 2.28670e6i 0.0554012 + 0.0959577i
\(894\) 0 0
\(895\) −9.65393e6 −0.402853
\(896\) 0 0
\(897\) 2.04200e6 0.0847371
\(898\) 0 0
\(899\) 9.75853e6 + 1.69023e7i 0.402703 + 0.697503i
\(900\) 0 0
\(901\) 334756. 579815.i 0.0137378 0.0237945i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.80771e6 8.32720e6i 0.195127 0.337970i
\(906\) 0 0
\(907\) 3.82259e6 + 6.62092e6i 0.154291 + 0.267239i 0.932800 0.360393i \(-0.117357\pi\)
−0.778510 + 0.627632i \(0.784024\pi\)
\(908\) 0 0
\(909\) 1.94606e7 0.781170
\(910\) 0 0
\(911\) −3.93310e7 −1.57014 −0.785072 0.619405i \(-0.787374\pi\)
−0.785072 + 0.619405i \(0.787374\pi\)
\(912\) 0 0
\(913\) 3.24174e6 + 5.61485e6i 0.128707 + 0.222926i
\(914\) 0 0
\(915\) 7.00260e6 1.21289e7i 0.276507 0.478925i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.76102e7 + 3.05018e7i −0.687822 + 1.19134i 0.284720 + 0.958611i \(0.408100\pi\)
−0.972541 + 0.232731i \(0.925234\pi\)
\(920\) 0 0
\(921\) −9.00201e6 1.55919e7i −0.349696 0.605691i
\(922\) 0 0
\(923\) −6.86587e6 −0.265272
\(924\) 0 0
\(925\) −7.34443e6 −0.282230
\(926\) 0 0
\(927\) 1.26867e7 + 2.19740e7i 0.484897 + 0.839866i
\(928\) 0 0
\(929\) −8.31501e6 + 1.44020e7i −0.316099 + 0.547500i −0.979671 0.200613i \(-0.935707\pi\)
0.663571 + 0.748113i \(0.269040\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 4.84696e6 8.39519e6i 0.182291 0.315738i
\(934\) 0 0
\(935\) −309791. 536574.i −0.0115888 0.0200724i
\(936\) 0 0
\(937\) −2.07121e7 −0.770681 −0.385341 0.922774i \(-0.625916\pi\)
−0.385341 + 0.922774i \(0.625916\pi\)
\(938\) 0 0
\(939\) 1.63992e7 0.606957
\(940\) 0 0
\(941\) −5.48985e6 9.50871e6i −0.202110 0.350064i 0.747098 0.664713i \(-0.231446\pi\)
−0.949208 + 0.314649i \(0.898113\pi\)
\(942\) 0 0
\(943\) −1.23682e7 + 2.14224e7i −0.452927 + 0.784492i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.35861e6 + 2.35319e6i −0.0492290 + 0.0852672i −0.889590 0.456760i \(-0.849010\pi\)
0.840361 + 0.542027i \(0.182343\pi\)
\(948\) 0 0
\(949\) −2.67632e6 4.63552e6i −0.0964656 0.167083i
\(950\) 0 0
\(951\) 3.88182e6 0.139182
\(952\) 0 0
\(953\) −9.24083e6 −0.329594 −0.164797 0.986328i \(-0.552697\pi\)
−0.164797 + 0.986328i \(0.552697\pi\)
\(954\) 0 0
\(955\) −9.03693e6 1.56524e7i −0.320636 0.555358i
\(956\) 0 0
\(957\) −3.93604e6 + 6.81743e6i −0.138925 + 0.240625i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.04113e7 1.80329e7i 0.363660 0.629877i
\(962\) 0 0
\(963\) 2.13882e7 + 3.70454e7i 0.743203 + 1.28727i
\(964\) 0 0
\(965\) 8.48183e6 0.293205
\(966\) 0 0
\(967\) −1.50444e7 −0.517379 −0.258690 0.965960i \(-0.583291\pi\)
−0.258690 + 0.965960i \(0.583291\pi\)
\(968\) 0 0
\(969\) −610342. 1.05714e6i −0.0208816 0.0361680i
\(970\) 0 0
\(971\) 1.13947e7 1.97362e7i 0.387842 0.671763i −0.604317 0.796744i \(-0.706554\pi\)
0.992159 + 0.124981i \(0.0398871\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −323300. + 559972.i −0.0108917 + 0.0188649i
\(976\) 0 0
\(977\) 1.98341e7 + 3.43537e7i 0.664777 + 1.15143i 0.979346 + 0.202193i \(0.0648069\pi\)
−0.314568 + 0.949235i \(0.601860\pi\)
\(978\) 0 0
\(979\) −2.06507e7 −0.688617
\(980\) 0 0
\(981\) −3.94170e7 −1.30771
\(982\) 0 0
\(983\) 1.38546e7 + 2.39969e7i 0.457310 + 0.792085i 0.998818 0.0486112i \(-0.0154795\pi\)
−0.541507 + 0.840696i \(0.682146\pi\)
\(984\) 0 0
\(985\) −2.14147e7 + 3.70914e7i −0.703270 + 1.21810i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.50127e6 + 1.47246e7i −0.276372 + 0.478690i
\(990\) 0 0
\(991\) −2.39267e7 4.14423e7i −0.773926 1.34048i −0.935396 0.353601i \(-0.884957\pi\)
0.161470 0.986878i \(-0.448376\pi\)
\(992\) 0 0
\(993\) 5.86305e6 0.188691
\(994\) 0 0
\(995\) −3.80837e7 −1.21950
\(996\) 0 0
\(997\) −2.74144e7 4.74832e7i −0.873457 1.51287i −0.858398 0.512985i \(-0.828540\pi\)
−0.0150590 0.999887i \(-0.504794\pi\)
\(998\) 0 0
\(999\) −1.42946e7 + 2.47590e7i −0.453167 + 0.784909i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.6.i.h.177.2 4
7.2 even 3 392.6.a.e.1.1 2
7.3 odd 6 392.6.i.k.361.1 4
7.4 even 3 inner 392.6.i.h.361.2 4
7.5 odd 6 56.6.a.d.1.2 2
7.6 odd 2 392.6.i.k.177.1 4
21.5 even 6 504.6.a.m.1.2 2
28.19 even 6 112.6.a.j.1.1 2
28.23 odd 6 784.6.a.q.1.2 2
56.5 odd 6 448.6.a.x.1.1 2
56.19 even 6 448.6.a.r.1.2 2
84.47 odd 6 1008.6.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.a.d.1.2 2 7.5 odd 6
112.6.a.j.1.1 2 28.19 even 6
392.6.a.e.1.1 2 7.2 even 3
392.6.i.h.177.2 4 1.1 even 1 trivial
392.6.i.h.361.2 4 7.4 even 3 inner
392.6.i.k.177.1 4 7.6 odd 2
392.6.i.k.361.1 4 7.3 odd 6
448.6.a.r.1.2 2 56.19 even 6
448.6.a.x.1.1 2 56.5 odd 6
504.6.a.m.1.2 2 21.5 even 6
784.6.a.q.1.2 2 28.23 odd 6
1008.6.a.bi.1.2 2 84.47 odd 6