Properties

Label 392.6.i.g.361.2
Level $392$
Weight $6$
Character 392.361
Analytic conductor $62.870$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-59})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 14x^{2} - 15x + 225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.2
Root \(3.57603 - 1.48727i\) of defining polynomial
Character \(\chi\) \(=\) 392.361
Dual form 392.6.i.g.177.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.152067 - 0.263388i) q^{3} +(17.7603 + 30.7618i) q^{5} +(121.454 + 210.364i) q^{9} +O(q^{10})\) \(q+(0.152067 - 0.263388i) q^{3} +(17.7603 + 30.7618i) q^{5} +(121.454 + 210.364i) q^{9} +(-282.912 + 490.019i) q^{11} -983.594 q^{13} +10.8031 q^{15} +(100.088 - 173.357i) q^{17} +(414.374 + 717.716i) q^{19} +(-2217.71 - 3841.19i) q^{23} +(931.641 - 1613.65i) q^{25} +147.781 q^{27} -3717.74 q^{29} +(496.231 - 859.498i) q^{31} +(86.0435 + 149.032i) q^{33} +(4179.84 + 7239.70i) q^{37} +(-149.572 + 259.067i) q^{39} +13473.0 q^{41} +298.798 q^{43} +(-4314.12 + 7472.27i) q^{45} +(-9368.26 - 16226.3i) q^{47} +(-30.4401 - 52.7238i) q^{51} +(-8018.18 + 13887.9i) q^{53} -20098.5 q^{55} +252.051 q^{57} +(6374.58 - 11041.1i) q^{59} +(-17488.0 - 30290.1i) q^{61} +(-17469.0 - 30257.1i) q^{65} +(-5989.44 + 10374.0i) q^{67} -1348.97 q^{69} -12924.9 q^{71} +(40588.6 - 70301.5i) q^{73} +(-283.344 - 490.767i) q^{75} +(-23499.4 - 40702.2i) q^{79} +(-29490.8 + 51079.5i) q^{81} +111544. q^{83} +7110.36 q^{85} +(-565.347 + 979.210i) q^{87} +(-17363.4 - 30074.3i) q^{89} +(-150.921 - 261.403i) q^{93} +(-14718.8 + 25493.8i) q^{95} -92655.6 q^{97} -137443. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 26 q^{3} - 62 q^{5} - 206 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 26 q^{3} - 62 q^{5} - 206 q^{9} - 972 q^{11} - 156 q^{13} + 5152 q^{15} + 560 q^{17} + 2642 q^{19} - 2272 q^{23} - 4522 q^{25} + 11128 q^{27} - 15616 q^{29} + 5444 q^{31} - 10512 q^{33} - 576 q^{37} - 24120 q^{39} + 33776 q^{41} - 16792 q^{43} - 52406 q^{45} - 4532 q^{47} + 9404 q^{51} - 1420 q^{53} + 39024 q^{55} - 94888 q^{57} + 34146 q^{59} + 19106 q^{61} - 123252 q^{65} - 56952 q^{67} - 116512 q^{69} - 14448 q^{71} + 128828 q^{73} - 168526 q^{75} - 52808 q^{79} - 92366 q^{81} + 168972 q^{83} - 55960 q^{85} + 106460 q^{87} - 130972 q^{89} + 116792 q^{93} + 147392 q^{95} - 389248 q^{97} + 89784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.152067 0.263388i 0.00975512 0.0168964i −0.861107 0.508424i \(-0.830228\pi\)
0.870862 + 0.491528i \(0.163561\pi\)
\(4\) 0 0
\(5\) 17.7603 + 30.7618i 0.317707 + 0.550284i 0.980009 0.198953i \(-0.0637540\pi\)
−0.662303 + 0.749236i \(0.730421\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 121.454 + 210.364i 0.499810 + 0.865696i
\(10\) 0 0
\(11\) −282.912 + 490.019i −0.704969 + 1.22104i 0.261733 + 0.965140i \(0.415706\pi\)
−0.966703 + 0.255903i \(0.917627\pi\)
\(12\) 0 0
\(13\) −983.594 −1.61420 −0.807100 0.590415i \(-0.798964\pi\)
−0.807100 + 0.590415i \(0.798964\pi\)
\(14\) 0 0
\(15\) 10.8031 0.0123971
\(16\) 0 0
\(17\) 100.088 173.357i 0.0839959 0.145485i −0.820967 0.570976i \(-0.806565\pi\)
0.904963 + 0.425490i \(0.139898\pi\)
\(18\) 0 0
\(19\) 414.374 + 717.716i 0.263335 + 0.456109i 0.967126 0.254298i \(-0.0818443\pi\)
−0.703791 + 0.710407i \(0.748511\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2217.71 3841.19i −0.874149 1.51407i −0.857666 0.514207i \(-0.828086\pi\)
−0.0164834 0.999864i \(-0.505247\pi\)
\(24\) 0 0
\(25\) 931.641 1613.65i 0.298125 0.516368i
\(26\) 0 0
\(27\) 147.781 0.0390131
\(28\) 0 0
\(29\) −3717.74 −0.820889 −0.410444 0.911886i \(-0.634626\pi\)
−0.410444 + 0.911886i \(0.634626\pi\)
\(30\) 0 0
\(31\) 496.231 859.498i 0.0927427 0.160635i −0.815922 0.578163i \(-0.803770\pi\)
0.908664 + 0.417527i \(0.137103\pi\)
\(32\) 0 0
\(33\) 86.0435 + 149.032i 0.0137541 + 0.0238229i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4179.84 + 7239.70i 0.501945 + 0.869393i 0.999997 + 0.00224683i \(0.000715188\pi\)
−0.498053 + 0.867147i \(0.665951\pi\)
\(38\) 0 0
\(39\) −149.572 + 259.067i −0.0157467 + 0.0272741i
\(40\) 0 0
\(41\) 13473.0 1.25171 0.625855 0.779940i \(-0.284750\pi\)
0.625855 + 0.779940i \(0.284750\pi\)
\(42\) 0 0
\(43\) 298.798 0.0246437 0.0123218 0.999924i \(-0.496078\pi\)
0.0123218 + 0.999924i \(0.496078\pi\)
\(44\) 0 0
\(45\) −4314.12 + 7472.27i −0.317586 + 0.550074i
\(46\) 0 0
\(47\) −9368.26 16226.3i −0.618606 1.07146i −0.989740 0.142878i \(-0.954364\pi\)
0.371134 0.928579i \(-0.378969\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −30.4401 52.7238i −0.00163878 0.00283845i
\(52\) 0 0
\(53\) −8018.18 + 13887.9i −0.392090 + 0.679121i −0.992725 0.120403i \(-0.961581\pi\)
0.600635 + 0.799524i \(0.294915\pi\)
\(54\) 0 0
\(55\) −20098.5 −0.895894
\(56\) 0 0
\(57\) 252.051 0.0102754
\(58\) 0 0
\(59\) 6374.58 11041.1i 0.238408 0.412935i −0.721849 0.692050i \(-0.756708\pi\)
0.960258 + 0.279115i \(0.0900410\pi\)
\(60\) 0 0
\(61\) −17488.0 30290.1i −0.601748 1.04226i −0.992556 0.121786i \(-0.961138\pi\)
0.390808 0.920472i \(-0.372196\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −17469.0 30257.1i −0.512842 0.888268i
\(66\) 0 0
\(67\) −5989.44 + 10374.0i −0.163004 + 0.282332i −0.935945 0.352147i \(-0.885452\pi\)
0.772940 + 0.634479i \(0.218785\pi\)
\(68\) 0 0
\(69\) −1348.97 −0.0341097
\(70\) 0 0
\(71\) −12924.9 −0.304285 −0.152143 0.988359i \(-0.548617\pi\)
−0.152143 + 0.988359i \(0.548617\pi\)
\(72\) 0 0
\(73\) 40588.6 70301.5i 0.891450 1.54404i 0.0533123 0.998578i \(-0.483022\pi\)
0.838138 0.545459i \(-0.183645\pi\)
\(74\) 0 0
\(75\) −283.344 490.767i −0.00581649 0.0100745i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −23499.4 40702.2i −0.423632 0.733753i 0.572659 0.819793i \(-0.305912\pi\)
−0.996292 + 0.0860408i \(0.972578\pi\)
\(80\) 0 0
\(81\) −29490.8 + 51079.5i −0.499429 + 0.865037i
\(82\) 0 0
\(83\) 111544. 1.77726 0.888632 0.458621i \(-0.151656\pi\)
0.888632 + 0.458621i \(0.151656\pi\)
\(84\) 0 0
\(85\) 7110.36 0.106744
\(86\) 0 0
\(87\) −565.347 + 979.210i −0.00800787 + 0.0138700i
\(88\) 0 0
\(89\) −17363.4 30074.3i −0.232359 0.402458i 0.726143 0.687544i \(-0.241311\pi\)
−0.958502 + 0.285086i \(0.907978\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −150.921 261.403i −0.00180943 0.00313403i
\(94\) 0 0
\(95\) −14718.8 + 25493.8i −0.167326 + 0.289818i
\(96\) 0 0
\(97\) −92655.6 −0.999867 −0.499933 0.866064i \(-0.666642\pi\)
−0.499933 + 0.866064i \(0.666642\pi\)
\(98\) 0 0
\(99\) −137443. −1.40940
\(100\) 0 0
\(101\) −77382.6 + 134031.i −0.754814 + 1.30738i 0.190653 + 0.981657i \(0.438939\pi\)
−0.945467 + 0.325718i \(0.894394\pi\)
\(102\) 0 0
\(103\) −98572.8 170733.i −0.915512 1.58571i −0.806149 0.591712i \(-0.798452\pi\)
−0.109363 0.994002i \(-0.534881\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −31950.6 55340.1i −0.269786 0.467284i 0.699020 0.715102i \(-0.253620\pi\)
−0.968807 + 0.247818i \(0.920286\pi\)
\(108\) 0 0
\(109\) −33455.2 + 57946.1i −0.269710 + 0.467152i −0.968787 0.247895i \(-0.920261\pi\)
0.699077 + 0.715047i \(0.253595\pi\)
\(110\) 0 0
\(111\) 2542.47 0.0195861
\(112\) 0 0
\(113\) −100524. −0.740580 −0.370290 0.928916i \(-0.620742\pi\)
−0.370290 + 0.928916i \(0.620742\pi\)
\(114\) 0 0
\(115\) 78774.6 136442.i 0.555446 0.962061i
\(116\) 0 0
\(117\) −119461. 206913.i −0.806793 1.39741i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −79553.4 137790.i −0.493964 0.855570i
\(122\) 0 0
\(123\) 2048.80 3548.62i 0.0122106 0.0211493i
\(124\) 0 0
\(125\) 177187. 1.01428
\(126\) 0 0
\(127\) −155009. −0.852800 −0.426400 0.904535i \(-0.640218\pi\)
−0.426400 + 0.904535i \(0.640218\pi\)
\(128\) 0 0
\(129\) 45.4373 78.6998i 0.000240402 0.000416389i
\(130\) 0 0
\(131\) −35198.4 60965.4i −0.179203 0.310388i 0.762405 0.647100i \(-0.224018\pi\)
−0.941608 + 0.336712i \(0.890685\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2624.65 + 4546.02i 0.0123947 + 0.0214683i
\(136\) 0 0
\(137\) −87865.9 + 152188.i −0.399962 + 0.692755i −0.993721 0.111888i \(-0.964310\pi\)
0.593758 + 0.804643i \(0.297643\pi\)
\(138\) 0 0
\(139\) −44017.9 −0.193238 −0.0966189 0.995321i \(-0.530803\pi\)
−0.0966189 + 0.995321i \(0.530803\pi\)
\(140\) 0 0
\(141\) −5698.43 −0.0241383
\(142\) 0 0
\(143\) 278271. 481979.i 1.13796 1.97101i
\(144\) 0 0
\(145\) −66028.4 114364.i −0.260802 0.451722i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 60568.1 + 104907.i 0.223500 + 0.387114i 0.955868 0.293795i \(-0.0949183\pi\)
−0.732368 + 0.680909i \(0.761585\pi\)
\(150\) 0 0
\(151\) −199231. + 345079.i −0.711075 + 1.23162i 0.253379 + 0.967367i \(0.418458\pi\)
−0.964454 + 0.264251i \(0.914875\pi\)
\(152\) 0 0
\(153\) 48624.1 0.167928
\(154\) 0 0
\(155\) 35252.9 0.117860
\(156\) 0 0
\(157\) −68369.3 + 118419.i −0.221367 + 0.383418i −0.955223 0.295886i \(-0.904385\pi\)
0.733857 + 0.679304i \(0.237718\pi\)
\(158\) 0 0
\(159\) 2438.61 + 4223.79i 0.00764978 + 0.0132498i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −321205. 556343.i −0.946919 1.64011i −0.751863 0.659319i \(-0.770845\pi\)
−0.195056 0.980792i \(-0.562489\pi\)
\(164\) 0 0
\(165\) −3056.32 + 5293.71i −0.00873955 + 0.0151374i
\(166\) 0 0
\(167\) 290841. 0.806984 0.403492 0.914983i \(-0.367796\pi\)
0.403492 + 0.914983i \(0.367796\pi\)
\(168\) 0 0
\(169\) 596163. 1.60564
\(170\) 0 0
\(171\) −100654. + 174339.i −0.263234 + 0.455935i
\(172\) 0 0
\(173\) −281117. 486909.i −0.714121 1.23689i −0.963298 0.268436i \(-0.913493\pi\)
0.249177 0.968458i \(-0.419840\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1938.73 3357.98i −0.00465141 0.00805647i
\(178\) 0 0
\(179\) 156084. 270345.i 0.364103 0.630646i −0.624528 0.781002i \(-0.714709\pi\)
0.988632 + 0.150356i \(0.0480421\pi\)
\(180\) 0 0
\(181\) −254232. −0.576811 −0.288405 0.957508i \(-0.593125\pi\)
−0.288405 + 0.957508i \(0.593125\pi\)
\(182\) 0 0
\(183\) −10637.4 −0.0234805
\(184\) 0 0
\(185\) −148471. + 257159.i −0.318942 + 0.552424i
\(186\) 0 0
\(187\) 56632.0 + 98089.6i 0.118429 + 0.205125i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 94529.8 + 163730.i 0.187493 + 0.324748i 0.944414 0.328759i \(-0.106630\pi\)
−0.756921 + 0.653507i \(0.773297\pi\)
\(192\) 0 0
\(193\) −330213. + 571946.i −0.638118 + 1.10525i 0.347727 + 0.937596i \(0.386953\pi\)
−0.985845 + 0.167657i \(0.946380\pi\)
\(194\) 0 0
\(195\) −10625.8 −0.0200113
\(196\) 0 0
\(197\) −786619. −1.44410 −0.722052 0.691838i \(-0.756801\pi\)
−0.722052 + 0.691838i \(0.756801\pi\)
\(198\) 0 0
\(199\) 180265. 312228.i 0.322685 0.558907i −0.658356 0.752707i \(-0.728748\pi\)
0.981041 + 0.193800i \(0.0620812\pi\)
\(200\) 0 0
\(201\) 1821.60 + 3155.10i 0.00318025 + 0.00550836i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 239284. + 414453.i 0.397676 + 0.688795i
\(206\) 0 0
\(207\) 538699. 933054.i 0.873817 1.51349i
\(208\) 0 0
\(209\) −468926. −0.742571
\(210\) 0 0
\(211\) −1.13491e6 −1.75491 −0.877455 0.479658i \(-0.840761\pi\)
−0.877455 + 0.479658i \(0.840761\pi\)
\(212\) 0 0
\(213\) −1965.45 + 3404.27i −0.00296834 + 0.00514132i
\(214\) 0 0
\(215\) 5306.74 + 9191.55i 0.00782946 + 0.0135610i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −12344.4 21381.1i −0.0173924 0.0301245i
\(220\) 0 0
\(221\) −98445.5 + 170513.i −0.135586 + 0.234842i
\(222\) 0 0
\(223\) 783934. 1.05564 0.527822 0.849355i \(-0.323009\pi\)
0.527822 + 0.849355i \(0.323009\pi\)
\(224\) 0 0
\(225\) 452605. 0.596023
\(226\) 0 0
\(227\) 300377. 520268.i 0.386903 0.670136i −0.605128 0.796128i \(-0.706878\pi\)
0.992031 + 0.125992i \(0.0402115\pi\)
\(228\) 0 0
\(229\) 739959. + 1.28165e6i 0.932435 + 1.61503i 0.779145 + 0.626844i \(0.215654\pi\)
0.153291 + 0.988181i \(0.451013\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 521749. + 903696.i 0.629610 + 1.09052i 0.987630 + 0.156803i \(0.0501188\pi\)
−0.358020 + 0.933714i \(0.616548\pi\)
\(234\) 0 0
\(235\) 332767. 576369.i 0.393070 0.680818i
\(236\) 0 0
\(237\) −14294.0 −0.0165303
\(238\) 0 0
\(239\) 262948. 0.297767 0.148883 0.988855i \(-0.452432\pi\)
0.148883 + 0.988855i \(0.452432\pi\)
\(240\) 0 0
\(241\) −899728. + 1.55837e6i −0.997857 + 1.72834i −0.442266 + 0.896884i \(0.645825\pi\)
−0.555591 + 0.831456i \(0.687508\pi\)
\(242\) 0 0
\(243\) 26924.6 + 46634.8i 0.0292505 + 0.0506634i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −407575. 705941.i −0.425075 0.736251i
\(248\) 0 0
\(249\) 16962.2 29379.5i 0.0173374 0.0300293i
\(250\) 0 0
\(251\) −1.06631e6 −1.06831 −0.534156 0.845386i \(-0.679370\pi\)
−0.534156 + 0.845386i \(0.679370\pi\)
\(252\) 0 0
\(253\) 2.50967e6 2.46499
\(254\) 0 0
\(255\) 1081.25 1872.79i 0.00104130 0.00180359i
\(256\) 0 0
\(257\) 337589. + 584721.i 0.318827 + 0.552225i 0.980244 0.197794i \(-0.0633777\pi\)
−0.661416 + 0.750019i \(0.730044\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −451534. 782079.i −0.410288 0.710640i
\(262\) 0 0
\(263\) −150968. + 261485.i −0.134585 + 0.233108i −0.925439 0.378897i \(-0.876303\pi\)
0.790854 + 0.612005i \(0.209637\pi\)
\(264\) 0 0
\(265\) −569622. −0.498279
\(266\) 0 0
\(267\) −10561.6 −0.00906678
\(268\) 0 0
\(269\) −408714. + 707914.i −0.344381 + 0.596485i −0.985241 0.171172i \(-0.945244\pi\)
0.640860 + 0.767658i \(0.278578\pi\)
\(270\) 0 0
\(271\) 448310. + 776495.i 0.370813 + 0.642267i 0.989691 0.143220i \(-0.0457458\pi\)
−0.618878 + 0.785487i \(0.712412\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 527146. + 913043.i 0.420338 + 0.728047i
\(276\) 0 0
\(277\) 454810. 787754.i 0.356148 0.616866i −0.631166 0.775648i \(-0.717423\pi\)
0.987314 + 0.158782i \(0.0507566\pi\)
\(278\) 0 0
\(279\) 241077. 0.185415
\(280\) 0 0
\(281\) 762090. 0.575758 0.287879 0.957667i \(-0.407050\pi\)
0.287879 + 0.957667i \(0.407050\pi\)
\(282\) 0 0
\(283\) 465530. 806322.i 0.345527 0.598470i −0.639923 0.768439i \(-0.721034\pi\)
0.985449 + 0.169969i \(0.0543669\pi\)
\(284\) 0 0
\(285\) 4476.51 + 7753.54i 0.00326458 + 0.00565441i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 689893. + 1.19493e6i 0.485889 + 0.841585i
\(290\) 0 0
\(291\) −14089.9 + 24404.4i −0.00975382 + 0.0168941i
\(292\) 0 0
\(293\) −204188. −0.138951 −0.0694755 0.997584i \(-0.522133\pi\)
−0.0694755 + 0.997584i \(0.522133\pi\)
\(294\) 0 0
\(295\) 452859. 0.302976
\(296\) 0 0
\(297\) −41809.2 + 72415.6i −0.0275030 + 0.0476366i
\(298\) 0 0
\(299\) 2.18133e6 + 3.77817e6i 1.41105 + 2.44401i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 23534.7 + 40763.3i 0.0147266 + 0.0255072i
\(304\) 0 0
\(305\) 621184. 1.07592e6i 0.382359 0.662265i
\(306\) 0 0
\(307\) 1.00786e6 0.610314 0.305157 0.952302i \(-0.401291\pi\)
0.305157 + 0.952302i \(0.401291\pi\)
\(308\) 0 0
\(309\) −59958.8 −0.0357238
\(310\) 0 0
\(311\) 888681. 1.53924e6i 0.521009 0.902413i −0.478693 0.877982i \(-0.658889\pi\)
0.999702 0.0244310i \(-0.00777741\pi\)
\(312\) 0 0
\(313\) −865502. 1.49909e6i −0.499352 0.864904i 0.500647 0.865651i \(-0.333095\pi\)
−1.00000 0.000747608i \(0.999762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.11036e6 + 1.92320e6i 0.620605 + 1.07492i 0.989373 + 0.145398i \(0.0464463\pi\)
−0.368768 + 0.929521i \(0.620220\pi\)
\(318\) 0 0
\(319\) 1.05180e6 1.82176e6i 0.578701 1.00234i
\(320\) 0 0
\(321\) −19434.6 −0.0105272
\(322\) 0 0
\(323\) 165895. 0.0884761
\(324\) 0 0
\(325\) −916356. + 1.58718e6i −0.481233 + 0.833521i
\(326\) 0 0
\(327\) 10174.9 + 17623.4i 0.00526212 + 0.00911425i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.22609e6 + 2.12365e6i 0.615109 + 1.06540i 0.990365 + 0.138479i \(0.0442214\pi\)
−0.375256 + 0.926921i \(0.622445\pi\)
\(332\) 0 0
\(333\) −1.01532e6 + 1.75858e6i −0.501753 + 0.869063i
\(334\) 0 0
\(335\) −425498. −0.207150
\(336\) 0 0
\(337\) −2.06932e6 −0.992549 −0.496275 0.868166i \(-0.665299\pi\)
−0.496275 + 0.868166i \(0.665299\pi\)
\(338\) 0 0
\(339\) −15286.4 + 26476.7i −0.00722445 + 0.0125131i
\(340\) 0 0
\(341\) 280780. + 486325.i 0.130762 + 0.226486i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −23958.1 41496.7i −0.0108369 0.0187700i
\(346\) 0 0
\(347\) 1.10969e6 1.92205e6i 0.494743 0.856920i −0.505238 0.862980i \(-0.668595\pi\)
0.999982 + 0.00605935i \(0.00192876\pi\)
\(348\) 0 0
\(349\) −2.92580e6 −1.28582 −0.642911 0.765941i \(-0.722273\pi\)
−0.642911 + 0.765941i \(0.722273\pi\)
\(350\) 0 0
\(351\) −145357. −0.0629749
\(352\) 0 0
\(353\) −1.51660e6 + 2.62682e6i −0.647788 + 1.12200i 0.335862 + 0.941911i \(0.390972\pi\)
−0.983650 + 0.180091i \(0.942361\pi\)
\(354\) 0 0
\(355\) −229550. 397593.i −0.0966735 0.167443i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.83298e6 3.17482e6i −0.750623 1.30012i −0.947521 0.319693i \(-0.896420\pi\)
0.196898 0.980424i \(-0.436913\pi\)
\(360\) 0 0
\(361\) 894639. 1.54956e6i 0.361310 0.625807i
\(362\) 0 0
\(363\) −48389.9 −0.0192747
\(364\) 0 0
\(365\) 2.88347e6 1.13288
\(366\) 0 0
\(367\) −1.73677e6 + 3.00818e6i −0.673098 + 1.16584i 0.303923 + 0.952697i \(0.401703\pi\)
−0.977021 + 0.213143i \(0.931630\pi\)
\(368\) 0 0
\(369\) 1.63634e6 + 2.83423e6i 0.625616 + 1.08360i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −290715. 503534.i −0.108192 0.187394i 0.806846 0.590762i \(-0.201173\pi\)
−0.915038 + 0.403368i \(0.867840\pi\)
\(374\) 0 0
\(375\) 26944.4 46669.0i 0.00989441 0.0171376i
\(376\) 0 0
\(377\) 3.65675e6 1.32508
\(378\) 0 0
\(379\) 1.83859e6 0.657486 0.328743 0.944419i \(-0.393375\pi\)
0.328743 + 0.944419i \(0.393375\pi\)
\(380\) 0 0
\(381\) −23571.8 + 40827.5i −0.00831917 + 0.0144092i
\(382\) 0 0
\(383\) 69566.4 + 120493.i 0.0242328 + 0.0419724i 0.877887 0.478867i \(-0.158952\pi\)
−0.853655 + 0.520839i \(0.825619\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 36290.1 + 62856.3i 0.0123172 + 0.0213339i
\(388\) 0 0
\(389\) −1.10992e6 + 1.92245e6i −0.371894 + 0.644139i −0.989857 0.142068i \(-0.954625\pi\)
0.617963 + 0.786207i \(0.287958\pi\)
\(390\) 0 0
\(391\) −887862. −0.293700
\(392\) 0 0
\(393\) −21410.1 −0.00699258
\(394\) 0 0
\(395\) 834715. 1.44577e6i 0.269182 0.466236i
\(396\) 0 0
\(397\) 252999. + 438207.i 0.0805643 + 0.139541i 0.903492 0.428604i \(-0.140994\pi\)
−0.822928 + 0.568145i \(0.807661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.03331e6 1.78975e6i −0.320901 0.555817i 0.659773 0.751465i \(-0.270652\pi\)
−0.980674 + 0.195648i \(0.937319\pi\)
\(402\) 0 0
\(403\) −488090. + 845396.i −0.149705 + 0.259297i
\(404\) 0 0
\(405\) −2.09507e6 −0.634688
\(406\) 0 0
\(407\) −4.73012e6 −1.41542
\(408\) 0 0
\(409\) 2.98356e6 5.16767e6i 0.881913 1.52752i 0.0327024 0.999465i \(-0.489589\pi\)
0.849211 0.528054i \(-0.177078\pi\)
\(410\) 0 0
\(411\) 26723.1 + 46285.7i 0.00780337 + 0.0135158i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.98106e6 + 3.43130e6i 0.564648 + 0.978000i
\(416\) 0 0
\(417\) −6693.68 + 11593.8i −0.00188506 + 0.00326502i
\(418\) 0 0
\(419\) 569081. 0.158358 0.0791788 0.996860i \(-0.474770\pi\)
0.0791788 + 0.996860i \(0.474770\pi\)
\(420\) 0 0
\(421\) −171377. −0.0471247 −0.0235623 0.999722i \(-0.507501\pi\)
−0.0235623 + 0.999722i \(0.507501\pi\)
\(422\) 0 0
\(423\) 2.27562e6 3.94149e6i 0.618371 1.07105i
\(424\) 0 0
\(425\) −186491. 323013.i −0.0500826 0.0867455i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −84631.8 146587.i −0.0222019 0.0384548i
\(430\) 0 0
\(431\) −2.37965e6 + 4.12168e6i −0.617049 + 1.06876i 0.372972 + 0.927843i \(0.378339\pi\)
−0.990021 + 0.140918i \(0.954995\pi\)
\(432\) 0 0
\(433\) −623369. −0.159781 −0.0798906 0.996804i \(-0.525457\pi\)
−0.0798906 + 0.996804i \(0.525457\pi\)
\(434\) 0 0
\(435\) −40163.0 −0.0101766
\(436\) 0 0
\(437\) 1.83792e6 3.18338e6i 0.460388 0.797415i
\(438\) 0 0
\(439\) −2.62289e6 4.54298e6i −0.649559 1.12507i −0.983228 0.182379i \(-0.941620\pi\)
0.333669 0.942690i \(-0.391713\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.82463e6 4.89241e6i −0.683837 1.18444i −0.973801 0.227403i \(-0.926977\pi\)
0.289964 0.957038i \(-0.406357\pi\)
\(444\) 0 0
\(445\) 616760. 1.06826e6i 0.147644 0.255727i
\(446\) 0 0
\(447\) 36841.7 0.00872110
\(448\) 0 0
\(449\) 812156. 0.190118 0.0950591 0.995472i \(-0.469696\pi\)
0.0950591 + 0.995472i \(0.469696\pi\)
\(450\) 0 0
\(451\) −3.81167e6 + 6.60200e6i −0.882417 + 1.52839i
\(452\) 0 0
\(453\) 60593.2 + 104951.i 0.0138733 + 0.0240292i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 463460. + 802736.i 0.103806 + 0.179797i 0.913250 0.407400i \(-0.133565\pi\)
−0.809444 + 0.587197i \(0.800231\pi\)
\(458\) 0 0
\(459\) 14791.1 25618.9i 0.00327694 0.00567582i
\(460\) 0 0
\(461\) 3.67043e6 0.804386 0.402193 0.915555i \(-0.368248\pi\)
0.402193 + 0.915555i \(0.368248\pi\)
\(462\) 0 0
\(463\) −2.70462e6 −0.586345 −0.293173 0.956060i \(-0.594711\pi\)
−0.293173 + 0.956060i \(0.594711\pi\)
\(464\) 0 0
\(465\) 5360.82 9285.21i 0.00114974 0.00199140i
\(466\) 0 0
\(467\) −4.12215e6 7.13978e6i −0.874645 1.51493i −0.857140 0.515083i \(-0.827761\pi\)
−0.0175052 0.999847i \(-0.505572\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 20793.5 + 36015.4i 0.00431892 + 0.00748059i
\(472\) 0 0
\(473\) −84533.5 + 146416.i −0.0173731 + 0.0300910i
\(474\) 0 0
\(475\) 1.54419e6 0.314027
\(476\) 0 0
\(477\) −3.89535e6 −0.783882
\(478\) 0 0
\(479\) −1.27501e6 + 2.20839e6i −0.253908 + 0.439781i −0.964598 0.263724i \(-0.915049\pi\)
0.710690 + 0.703505i \(0.248383\pi\)
\(480\) 0 0
\(481\) −4.11127e6 7.12092e6i −0.810239 1.40337i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.64559e6 2.85025e6i −0.317664 0.550211i
\(486\) 0 0
\(487\) −3.83408e6 + 6.64081e6i −0.732552 + 1.26882i 0.223238 + 0.974764i \(0.428337\pi\)
−0.955789 + 0.294053i \(0.904996\pi\)
\(488\) 0 0
\(489\) −195379. −0.0369492
\(490\) 0 0
\(491\) 9.33268e6 1.74704 0.873519 0.486790i \(-0.161832\pi\)
0.873519 + 0.486790i \(0.161832\pi\)
\(492\) 0 0
\(493\) −372100. + 644496.i −0.0689513 + 0.119427i
\(494\) 0 0
\(495\) −2.44104e6 4.22800e6i −0.447776 0.775571i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 595327. + 1.03114e6i 0.107030 + 0.185381i 0.914566 0.404437i \(-0.132533\pi\)
−0.807536 + 0.589818i \(0.799199\pi\)
\(500\) 0 0
\(501\) 44227.5 76604.2i 0.00787223 0.0136351i
\(502\) 0 0
\(503\) −2.34213e6 −0.412753 −0.206377 0.978473i \(-0.566167\pi\)
−0.206377 + 0.978473i \(0.566167\pi\)
\(504\) 0 0
\(505\) −5.49736e6 −0.959237
\(506\) 0 0
\(507\) 90657.0 157022.i 0.0156632 0.0271295i
\(508\) 0 0
\(509\) −3.34884e6 5.80035e6i −0.572927 0.992339i −0.996263 0.0863663i \(-0.972474\pi\)
0.423336 0.905973i \(-0.360859\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 61236.7 + 106065.i 0.0102735 + 0.0177942i
\(514\) 0 0
\(515\) 3.50137e6 6.06456e6i 0.581729 1.00758i
\(516\) 0 0
\(517\) 1.06016e7 1.74439
\(518\) 0 0
\(519\) −170995. −0.0278654
\(520\) 0 0
\(521\) 2.90863e6 5.03790e6i 0.469456 0.813121i −0.529934 0.848039i \(-0.677783\pi\)
0.999390 + 0.0349174i \(0.0111168\pi\)
\(522\) 0 0
\(523\) 5.12853e6 + 8.88287e6i 0.819858 + 1.42003i 0.905787 + 0.423734i \(0.139281\pi\)
−0.0859292 + 0.996301i \(0.527386\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −99333.2 172050.i −0.0155800 0.0269854i
\(528\) 0 0
\(529\) −6.61833e6 + 1.14633e7i −1.02827 + 1.78102i
\(530\) 0 0
\(531\) 3.09687e6 0.476635
\(532\) 0 0
\(533\) −1.32519e7 −2.02051
\(534\) 0 0
\(535\) 1.13491e6 1.96572e6i 0.171426 0.296918i
\(536\) 0 0
\(537\) −47470.4 82221.2i −0.00710375 0.0123041i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.63300e6 4.56050e6i −0.386775 0.669914i 0.605239 0.796044i \(-0.293078\pi\)
−0.992014 + 0.126130i \(0.959744\pi\)
\(542\) 0 0
\(543\) −38660.3 + 66961.7i −0.00562686 + 0.00974601i
\(544\) 0 0
\(545\) −2.37670e6 −0.342755
\(546\) 0 0
\(547\) 4.89900e6 0.700066 0.350033 0.936737i \(-0.386170\pi\)
0.350033 + 0.936737i \(0.386170\pi\)
\(548\) 0 0
\(549\) 4.24796e6 7.35768e6i 0.601519 1.04186i
\(550\) 0 0
\(551\) −1.54053e6 2.66828e6i −0.216168 0.374415i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 45155.1 + 78211.0i 0.00622264 + 0.0107779i
\(556\) 0 0
\(557\) 4.58973e6 7.94965e6i 0.626829 1.08570i −0.361355 0.932428i \(-0.617686\pi\)
0.988184 0.153272i \(-0.0489809\pi\)
\(558\) 0 0
\(559\) −293895. −0.0397799
\(560\) 0 0
\(561\) 34447.5 0.00462116
\(562\) 0 0
\(563\) −124736. + 216049.i −0.0165852 + 0.0287264i −0.874199 0.485568i \(-0.838613\pi\)
0.857614 + 0.514294i \(0.171946\pi\)
\(564\) 0 0
\(565\) −1.78533e6 3.09229e6i −0.235287 0.407529i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.57490e6 1.13881e7i −0.851351 1.47458i −0.879989 0.474993i \(-0.842450\pi\)
0.0286383 0.999590i \(-0.490883\pi\)
\(570\) 0 0
\(571\) −7.55189e6 + 1.30803e7i −0.969316 + 1.67891i −0.271774 + 0.962361i \(0.587610\pi\)
−0.697542 + 0.716544i \(0.745723\pi\)
\(572\) 0 0
\(573\) 57499.6 0.00731608
\(574\) 0 0
\(575\) −8.26445e6 −1.04242
\(576\) 0 0
\(577\) −363911. + 630312.i −0.0455046 + 0.0788163i −0.887881 0.460074i \(-0.847823\pi\)
0.842376 + 0.538890i \(0.181156\pi\)
\(578\) 0 0
\(579\) 100429. + 173949.i 0.0124498 + 0.0215638i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.53689e6 7.85812e6i −0.552823 0.957518i
\(584\) 0 0
\(585\) 4.24334e6 7.34968e6i 0.512647 0.887930i
\(586\) 0 0
\(587\) −1.24256e7 −1.48841 −0.744207 0.667949i \(-0.767172\pi\)
−0.744207 + 0.667949i \(0.767172\pi\)
\(588\) 0 0
\(589\) 822500. 0.0976895
\(590\) 0 0
\(591\) −119619. + 207186.i −0.0140874 + 0.0244001i
\(592\) 0 0
\(593\) 3.08990e6 + 5.35187e6i 0.360835 + 0.624984i 0.988098 0.153823i \(-0.0491586\pi\)
−0.627264 + 0.778807i \(0.715825\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −54824.9 94959.5i −0.00629567 0.0109044i
\(598\) 0 0
\(599\) −6.53016e6 + 1.13106e7i −0.743630 + 1.28800i 0.207202 + 0.978298i \(0.433564\pi\)
−0.950832 + 0.309706i \(0.899769\pi\)
\(600\) 0 0
\(601\) −9.01833e6 −1.01845 −0.509225 0.860633i \(-0.670068\pi\)
−0.509225 + 0.860633i \(0.670068\pi\)
\(602\) 0 0
\(603\) −2.90976e6 −0.325884
\(604\) 0 0
\(605\) 2.82579e6 4.89441e6i 0.313871 0.543641i
\(606\) 0 0
\(607\) −6.84174e6 1.18502e7i −0.753694 1.30544i −0.946021 0.324105i \(-0.894937\pi\)
0.192327 0.981331i \(-0.438397\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.21456e6 + 1.59601e7i 0.998554 + 1.72955i
\(612\) 0 0
\(613\) 2.11633e6 3.66559e6i 0.227474 0.393997i −0.729585 0.683891i \(-0.760287\pi\)
0.957059 + 0.289894i \(0.0936199\pi\)
\(614\) 0 0
\(615\) 145549. 0.0155175
\(616\) 0 0
\(617\) 3.32584e6 0.351713 0.175856 0.984416i \(-0.443731\pi\)
0.175856 + 0.984416i \(0.443731\pi\)
\(618\) 0 0
\(619\) −5.99934e6 + 1.03912e7i −0.629328 + 1.09003i 0.358359 + 0.933584i \(0.383336\pi\)
−0.987687 + 0.156444i \(0.949997\pi\)
\(620\) 0 0
\(621\) −327737. 567656.i −0.0341033 0.0590686i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 235525. + 407942.i 0.0241178 + 0.0417732i
\(626\) 0 0
\(627\) −71308.3 + 123510.i −0.00724388 + 0.0125468i
\(628\) 0 0
\(629\) 1.67340e6 0.168645
\(630\) 0 0
\(631\) 9.99962e6 0.999793 0.499896 0.866085i \(-0.333371\pi\)
0.499896 + 0.866085i \(0.333371\pi\)
\(632\) 0 0
\(633\) −172583. + 298922.i −0.0171194 + 0.0296516i
\(634\) 0 0
\(635\) −2.75301e6 4.76835e6i −0.270940 0.469282i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.56978e6 2.71893e6i −0.152085 0.263419i
\(640\) 0 0
\(641\) 1.58312e6 2.74204e6i 0.152184 0.263590i −0.779846 0.625971i \(-0.784703\pi\)
0.932030 + 0.362381i \(0.118036\pi\)
\(642\) 0 0
\(643\) −950578. −0.0906693 −0.0453346 0.998972i \(-0.514435\pi\)
−0.0453346 + 0.998972i \(0.514435\pi\)
\(644\) 0 0
\(645\) 3227.93 0.000305510
\(646\) 0 0
\(647\) −5.73353e6 + 9.93076e6i −0.538470 + 0.932657i 0.460517 + 0.887651i \(0.347664\pi\)
−0.998987 + 0.0450059i \(0.985669\pi\)
\(648\) 0 0
\(649\) 3.60689e6 + 6.24732e6i 0.336141 + 0.582214i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.40468e6 + 2.43297e6i 0.128912 + 0.223282i 0.923255 0.384187i \(-0.125518\pi\)
−0.794343 + 0.607469i \(0.792185\pi\)
\(654\) 0 0
\(655\) 1.25027e6 2.16553e6i 0.113868 0.197225i
\(656\) 0 0
\(657\) 1.97186e7 1.78222
\(658\) 0 0
\(659\) −4.23794e6 −0.380138 −0.190069 0.981771i \(-0.560871\pi\)
−0.190069 + 0.981771i \(0.560871\pi\)
\(660\) 0 0
\(661\) 854514. 1.48006e6i 0.0760703 0.131758i −0.825481 0.564430i \(-0.809096\pi\)
0.901551 + 0.432672i \(0.142429\pi\)
\(662\) 0 0
\(663\) 29940.7 + 51858.8i 0.00264532 + 0.00458183i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.24488e6 + 1.42806e7i 0.717579 + 1.24288i
\(668\) 0 0
\(669\) 119211. 206479.i 0.0102979 0.0178365i
\(670\) 0 0
\(671\) 1.97903e7 1.69686
\(672\) 0 0
\(673\) 1.11371e7 0.947836 0.473918 0.880569i \(-0.342839\pi\)
0.473918 + 0.880569i \(0.342839\pi\)
\(674\) 0 0
\(675\) 137679. 238467.i 0.0116308 0.0201451i
\(676\) 0 0
\(677\) 4.04936e6 + 7.01370e6i 0.339559 + 0.588133i 0.984350 0.176226i \(-0.0563889\pi\)
−0.644791 + 0.764359i \(0.723056\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −91355.1 158232.i −0.00754857 0.0130745i
\(682\) 0 0
\(683\) 7.49319e6 1.29786e7i 0.614632 1.06457i −0.375817 0.926694i \(-0.622638\pi\)
0.990449 0.137880i \(-0.0440287\pi\)
\(684\) 0 0
\(685\) −6.24211e6 −0.508283
\(686\) 0 0
\(687\) 450094. 0.0363841
\(688\) 0 0
\(689\) 7.88663e6 1.36600e7i 0.632912 1.09624i
\(690\) 0 0
\(691\) 1.09285e7 + 1.89286e7i 0.870691 + 1.50808i 0.861284 + 0.508125i \(0.169661\pi\)
0.00940700 + 0.999956i \(0.497006\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −781772. 1.35407e6i −0.0613929 0.106336i
\(696\) 0 0
\(697\) 1.34848e6 2.33563e6i 0.105138 0.182105i
\(698\) 0 0
\(699\) 317364. 0.0245677
\(700\) 0 0
\(701\) −1.21819e7 −0.936307 −0.468154 0.883647i \(-0.655081\pi\)
−0.468154 + 0.883647i \(0.655081\pi\)
\(702\) 0 0
\(703\) −3.46403e6 + 5.99988e6i −0.264359 + 0.457883i
\(704\) 0 0
\(705\) −101206. 175294.i −0.00766890 0.0132829i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.01520e6 + 6.95453e6i 0.299980 + 0.519580i 0.976131 0.217183i \(-0.0696868\pi\)
−0.676151 + 0.736763i \(0.736353\pi\)
\(710\) 0 0
\(711\) 5.70818e6 9.88686e6i 0.423471 0.733473i
\(712\) 0 0
\(713\) −4.40199e6 −0.324284
\(714\) 0 0
\(715\) 1.97687e7 1.44615
\(716\) 0 0
\(717\) 39985.9 69257.6i 0.00290475 0.00503117i
\(718\) 0 0
\(719\) −8.83404e6 1.53010e7i −0.637290 1.10382i −0.986025 0.166598i \(-0.946722\pi\)
0.348735 0.937221i \(-0.386611\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 273638. + 473956.i 0.0194684 + 0.0337203i
\(724\) 0 0
\(725\) −3.46360e6 + 5.99913e6i −0.244728 + 0.423880i
\(726\) 0 0
\(727\) −1.71905e7 −1.20629 −0.603146 0.797631i \(-0.706086\pi\)
−0.603146 + 0.797631i \(0.706086\pi\)
\(728\) 0 0
\(729\) −1.43161e7 −0.997717
\(730\) 0 0
\(731\) 29905.9 51798.6i 0.00206997 0.00358529i
\(732\) 0 0
\(733\) 4.65110e6 + 8.05593e6i 0.319739 + 0.553804i 0.980433 0.196851i \(-0.0630715\pi\)
−0.660695 + 0.750655i \(0.729738\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.38897e6 5.86987e6i −0.229826 0.398070i
\(738\) 0 0
\(739\) 6.48126e6 1.12259e7i 0.436564 0.756151i −0.560858 0.827912i \(-0.689528\pi\)
0.997422 + 0.0717608i \(0.0228618\pi\)
\(740\) 0 0
\(741\) −247915. −0.0165866
\(742\) 0 0
\(743\) 1.45466e7 0.966693 0.483347 0.875429i \(-0.339421\pi\)
0.483347 + 0.875429i \(0.339421\pi\)
\(744\) 0 0
\(745\) −2.15142e6 + 3.72637e6i −0.142015 + 0.245977i
\(746\) 0 0
\(747\) 1.35475e7 + 2.34649e7i 0.888294 + 1.53857i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.24749e6 1.25530e7i −0.468908 0.812173i 0.530460 0.847710i \(-0.322019\pi\)
−0.999368 + 0.0355371i \(0.988686\pi\)
\(752\) 0 0
\(753\) −162150. + 280853.i −0.0104215 + 0.0180506i
\(754\) 0 0
\(755\) −1.41537e7 −0.903653
\(756\) 0 0
\(757\) 2.49809e7 1.58441 0.792207 0.610252i \(-0.208932\pi\)
0.792207 + 0.610252i \(0.208932\pi\)
\(758\) 0 0
\(759\) 381639. 661019.i 0.0240463 0.0416495i
\(760\) 0 0
\(761\) 7.82969e6 + 1.35614e7i 0.490098 + 0.848874i 0.999935 0.0113966i \(-0.00362773\pi\)
−0.509837 + 0.860271i \(0.670294\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 863580. + 1.49576e6i 0.0533518 + 0.0924080i
\(766\) 0 0
\(767\) −6.26999e6 + 1.08599e7i −0.384839 + 0.666560i
\(768\) 0 0
\(769\) −1.30420e7 −0.795292 −0.397646 0.917539i \(-0.630173\pi\)
−0.397646 + 0.917539i \(0.630173\pi\)
\(770\) 0 0
\(771\) 205345. 0.0124408
\(772\) 0 0
\(773\) −7.30422e6 + 1.26513e7i −0.439668 + 0.761527i −0.997664 0.0683164i \(-0.978237\pi\)
0.557996 + 0.829844i \(0.311571\pi\)
\(774\) 0 0
\(775\) −924619. 1.60149e6i −0.0552979 0.0957787i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.58284e6 + 9.66976e6i 0.329618 + 0.570916i
\(780\) 0 0
\(781\) 3.65661e6 6.33344e6i 0.214512 0.371546i
\(782\) 0 0
\(783\) −549413. −0.0320254
\(784\) 0 0
\(785\) −4.85705e6 &m