Newspace parameters
Level: | \( N \) | \(=\) | \( 392 = 2^{3} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 392.i (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(62.8704573667\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{9}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 8) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).
\(n\) | \(197\) | \(295\) | \(297\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-\zeta_{6}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
177.1 |
|
0 | 10.0000 | + | 17.3205i | 0 | −37.0000 | + | 64.0859i | 0 | 0 | 0 | −78.5000 | + | 135.966i | 0 | ||||||||||||||||||
361.1 | 0 | 10.0000 | − | 17.3205i | 0 | −37.0000 | − | 64.0859i | 0 | 0 | 0 | −78.5000 | − | 135.966i | 0 | |||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 392.6.i.e | 2 | |
7.b | odd | 2 | 1 | 392.6.i.b | 2 | ||
7.c | even | 3 | 1 | 392.6.a.b | 1 | ||
7.c | even | 3 | 1 | inner | 392.6.i.e | 2 | |
7.d | odd | 6 | 1 | 8.6.a.a | ✓ | 1 | |
7.d | odd | 6 | 1 | 392.6.i.b | 2 | ||
21.g | even | 6 | 1 | 72.6.a.f | 1 | ||
28.f | even | 6 | 1 | 16.6.a.a | 1 | ||
28.g | odd | 6 | 1 | 784.6.a.l | 1 | ||
35.i | odd | 6 | 1 | 200.6.a.a | 1 | ||
35.k | even | 12 | 2 | 200.6.c.a | 2 | ||
56.j | odd | 6 | 1 | 64.6.a.a | 1 | ||
56.m | even | 6 | 1 | 64.6.a.g | 1 | ||
77.i | even | 6 | 1 | 968.6.a.a | 1 | ||
84.j | odd | 6 | 1 | 144.6.a.k | 1 | ||
112.v | even | 12 | 2 | 256.6.b.d | 2 | ||
112.x | odd | 12 | 2 | 256.6.b.f | 2 | ||
140.s | even | 6 | 1 | 400.6.a.l | 1 | ||
140.x | odd | 12 | 2 | 400.6.c.d | 2 | ||
168.ba | even | 6 | 1 | 576.6.a.g | 1 | ||
168.be | odd | 6 | 1 | 576.6.a.h | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
8.6.a.a | ✓ | 1 | 7.d | odd | 6 | 1 | |
16.6.a.a | 1 | 28.f | even | 6 | 1 | ||
64.6.a.a | 1 | 56.j | odd | 6 | 1 | ||
64.6.a.g | 1 | 56.m | even | 6 | 1 | ||
72.6.a.f | 1 | 21.g | even | 6 | 1 | ||
144.6.a.k | 1 | 84.j | odd | 6 | 1 | ||
200.6.a.a | 1 | 35.i | odd | 6 | 1 | ||
200.6.c.a | 2 | 35.k | even | 12 | 2 | ||
256.6.b.d | 2 | 112.v | even | 12 | 2 | ||
256.6.b.f | 2 | 112.x | odd | 12 | 2 | ||
392.6.a.b | 1 | 7.c | even | 3 | 1 | ||
392.6.i.b | 2 | 7.b | odd | 2 | 1 | ||
392.6.i.b | 2 | 7.d | odd | 6 | 1 | ||
392.6.i.e | 2 | 1.a | even | 1 | 1 | trivial | |
392.6.i.e | 2 | 7.c | even | 3 | 1 | inner | |
400.6.a.l | 1 | 140.s | even | 6 | 1 | ||
400.6.c.d | 2 | 140.x | odd | 12 | 2 | ||
576.6.a.g | 1 | 168.ba | even | 6 | 1 | ||
576.6.a.h | 1 | 168.be | odd | 6 | 1 | ||
784.6.a.l | 1 | 28.g | odd | 6 | 1 | ||
968.6.a.a | 1 | 77.i | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} - 20T_{3} + 400 \)
acting on \(S_{6}^{\mathrm{new}}(392, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} - 20T + 400 \)
$5$
\( T^{2} + 74T + 5476 \)
$7$
\( T^{2} \)
$11$
\( T^{2} + 124T + 15376 \)
$13$
\( (T + 478)^{2} \)
$17$
\( T^{2} + 1198 T + 1435204 \)
$19$
\( T^{2} - 3044 T + 9265936 \)
$23$
\( T^{2} + 184T + 33856 \)
$29$
\( (T + 3282)^{2} \)
$31$
\( T^{2} + 5728 T + 32809984 \)
$37$
\( T^{2} + 10326 T + 106626276 \)
$41$
\( (T - 8886)^{2} \)
$43$
\( (T + 9188)^{2} \)
$47$
\( T^{2} - 23664 T + 559984896 \)
$53$
\( T^{2} + 11686 T + 136562596 \)
$59$
\( T^{2} - 16876 T + 284799376 \)
$61$
\( T^{2} + 18482 T + 341584324 \)
$67$
\( T^{2} - 15532 T + 241243024 \)
$71$
\( (T + 31960)^{2} \)
$73$
\( T^{2} + 4886 T + 23872996 \)
$79$
\( T^{2} + 44560 T + 1985593600 \)
$83$
\( (T + 67364)^{2} \)
$89$
\( T^{2} - 71994 T + 5183136036 \)
$97$
\( (T + 48866)^{2} \)
show more
show less