Properties

Label 392.6.i.b.177.1
Level $392$
Weight $6$
Character 392.177
Analytic conductor $62.870$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 392.177
Dual form 392.6.i.b.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-10.0000 - 17.3205i) q^{3} +(37.0000 - 64.0859i) q^{5} +(-78.5000 + 135.966i) q^{9} +O(q^{10})\) \(q+(-10.0000 - 17.3205i) q^{3} +(37.0000 - 64.0859i) q^{5} +(-78.5000 + 135.966i) q^{9} +(-62.0000 - 107.387i) q^{11} +478.000 q^{13} -1480.00 q^{15} +(599.000 + 1037.50i) q^{17} +(-1522.00 + 2636.18i) q^{19} +(-92.0000 + 159.349i) q^{23} +(-1175.50 - 2036.03i) q^{25} -1720.00 q^{27} -3282.00 q^{29} +(2864.00 + 4960.59i) q^{31} +(-1240.00 + 2147.74i) q^{33} +(-5163.00 + 8942.58i) q^{37} +(-4780.00 - 8279.20i) q^{39} -8886.00 q^{41} -9188.00 q^{43} +(5809.00 + 10061.5i) q^{45} +(-11832.0 + 20493.6i) q^{47} +(11980.0 - 20750.0i) q^{51} +(-5843.00 - 10120.4i) q^{53} -9176.00 q^{55} +60880.0 q^{57} +(-8438.00 - 14615.0i) q^{59} +(9241.00 - 16005.9i) q^{61} +(17686.0 - 30633.1i) q^{65} +(7766.00 + 13451.1i) q^{67} +3680.00 q^{69} -31960.0 q^{71} +(2443.00 + 4231.40i) q^{73} +(-23510.0 + 40720.5i) q^{75} +(-22280.0 + 38590.1i) q^{79} +(36275.5 + 62831.0i) q^{81} +67364.0 q^{83} +88652.0 q^{85} +(32820.0 + 56845.9i) q^{87} +(-35997.0 + 62348.6i) q^{89} +(57280.0 - 99211.9i) q^{93} +(112628. + 195077. i) q^{95} +48866.0 q^{97} +19468.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 20 q^{3} + 74 q^{5} - 157 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 20 q^{3} + 74 q^{5} - 157 q^{9} - 124 q^{11} + 956 q^{13} - 2960 q^{15} + 1198 q^{17} - 3044 q^{19} - 184 q^{23} - 2351 q^{25} - 3440 q^{27} - 6564 q^{29} + 5728 q^{31} - 2480 q^{33} - 10326 q^{37} - 9560 q^{39} - 17772 q^{41} - 18376 q^{43} + 11618 q^{45} - 23664 q^{47} + 23960 q^{51} - 11686 q^{53} - 18352 q^{55} + 121760 q^{57} - 16876 q^{59} + 18482 q^{61} + 35372 q^{65} + 15532 q^{67} + 7360 q^{69} - 63920 q^{71} + 4886 q^{73} - 47020 q^{75} - 44560 q^{79} + 72551 q^{81} + 134728 q^{83} + 177304 q^{85} + 65640 q^{87} - 71994 q^{89} + 114560 q^{93} + 225256 q^{95} + 97732 q^{97} + 38936 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −10.0000 17.3205i −0.641500 1.11111i −0.985098 0.171994i \(-0.944979\pi\)
0.343598 0.939117i \(-0.388354\pi\)
\(4\) 0 0
\(5\) 37.0000 64.0859i 0.661876 1.14640i −0.318246 0.948008i \(-0.603094\pi\)
0.980122 0.198395i \(-0.0635729\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −78.5000 + 135.966i −0.323045 + 0.559531i
\(10\) 0 0
\(11\) −62.0000 107.387i −0.154493 0.267590i 0.778381 0.627792i \(-0.216041\pi\)
−0.932874 + 0.360202i \(0.882708\pi\)
\(12\) 0 0
\(13\) 478.000 0.784458 0.392229 0.919868i \(-0.371704\pi\)
0.392229 + 0.919868i \(0.371704\pi\)
\(14\) 0 0
\(15\) −1480.00 −1.69837
\(16\) 0 0
\(17\) 599.000 + 1037.50i 0.502695 + 0.870693i 0.999995 + 0.00311466i \(0.000991427\pi\)
−0.497300 + 0.867579i \(0.665675\pi\)
\(18\) 0 0
\(19\) −1522.00 + 2636.18i −0.967232 + 1.67529i −0.263737 + 0.964595i \(0.584955\pi\)
−0.703495 + 0.710700i \(0.748378\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −92.0000 + 159.349i −0.0362634 + 0.0628100i −0.883587 0.468266i \(-0.844879\pi\)
0.847324 + 0.531076i \(0.178212\pi\)
\(24\) 0 0
\(25\) −1175.50 2036.03i −0.376160 0.651528i
\(26\) 0 0
\(27\) −1720.00 −0.454066
\(28\) 0 0
\(29\) −3282.00 −0.724676 −0.362338 0.932047i \(-0.618021\pi\)
−0.362338 + 0.932047i \(0.618021\pi\)
\(30\) 0 0
\(31\) 2864.00 + 4960.59i 0.535265 + 0.927106i 0.999150 + 0.0412109i \(0.0131216\pi\)
−0.463886 + 0.885895i \(0.653545\pi\)
\(32\) 0 0
\(33\) −1240.00 + 2147.74i −0.198215 + 0.343319i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5163.00 + 8942.58i −0.620009 + 1.07389i 0.369475 + 0.929241i \(0.379538\pi\)
−0.989483 + 0.144646i \(0.953796\pi\)
\(38\) 0 0
\(39\) −4780.00 8279.20i −0.503230 0.871620i
\(40\) 0 0
\(41\) −8886.00 −0.825556 −0.412778 0.910832i \(-0.635442\pi\)
−0.412778 + 0.910832i \(0.635442\pi\)
\(42\) 0 0
\(43\) −9188.00 −0.757792 −0.378896 0.925439i \(-0.623696\pi\)
−0.378896 + 0.925439i \(0.623696\pi\)
\(44\) 0 0
\(45\) 5809.00 + 10061.5i 0.427632 + 0.740680i
\(46\) 0 0
\(47\) −11832.0 + 20493.6i −0.781292 + 1.35324i 0.149897 + 0.988702i \(0.452106\pi\)
−0.931189 + 0.364536i \(0.881228\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 11980.0 20750.0i 0.644958 1.11710i
\(52\) 0 0
\(53\) −5843.00 10120.4i −0.285724 0.494888i 0.687061 0.726600i \(-0.258901\pi\)
−0.972784 + 0.231712i \(0.925567\pi\)
\(54\) 0 0
\(55\) −9176.00 −0.409022
\(56\) 0 0
\(57\) 60880.0 2.48192
\(58\) 0 0
\(59\) −8438.00 14615.0i −0.315580 0.546601i 0.663981 0.747750i \(-0.268866\pi\)
−0.979561 + 0.201149i \(0.935532\pi\)
\(60\) 0 0
\(61\) 9241.00 16005.9i 0.317976 0.550751i −0.662090 0.749425i \(-0.730330\pi\)
0.980066 + 0.198674i \(0.0636635\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 17686.0 30633.1i 0.519214 0.899305i
\(66\) 0 0
\(67\) 7766.00 + 13451.1i 0.211354 + 0.366076i 0.952139 0.305667i \(-0.0988794\pi\)
−0.740785 + 0.671743i \(0.765546\pi\)
\(68\) 0 0
\(69\) 3680.00 0.0930519
\(70\) 0 0
\(71\) −31960.0 −0.752421 −0.376210 0.926534i \(-0.622773\pi\)
−0.376210 + 0.926534i \(0.622773\pi\)
\(72\) 0 0
\(73\) 2443.00 + 4231.40i 0.0536558 + 0.0929345i 0.891606 0.452812i \(-0.149579\pi\)
−0.837950 + 0.545747i \(0.816246\pi\)
\(74\) 0 0
\(75\) −23510.0 + 40720.5i −0.482614 + 0.835911i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −22280.0 + 38590.1i −0.401650 + 0.695678i −0.993925 0.110058i \(-0.964896\pi\)
0.592275 + 0.805736i \(0.298230\pi\)
\(80\) 0 0
\(81\) 36275.5 + 62831.0i 0.614329 + 1.06405i
\(82\) 0 0
\(83\) 67364.0 1.07333 0.536664 0.843796i \(-0.319684\pi\)
0.536664 + 0.843796i \(0.319684\pi\)
\(84\) 0 0
\(85\) 88652.0 1.33089
\(86\) 0 0
\(87\) 32820.0 + 56845.9i 0.464880 + 0.805195i
\(88\) 0 0
\(89\) −35997.0 + 62348.6i −0.481716 + 0.834357i −0.999780 0.0209851i \(-0.993320\pi\)
0.518064 + 0.855342i \(0.326653\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 57280.0 99211.9i 0.686745 1.18948i
\(94\) 0 0
\(95\) 112628. + 195077.i 1.28038 + 2.21768i
\(96\) 0 0
\(97\) 48866.0 0.527324 0.263662 0.964615i \(-0.415070\pi\)
0.263662 + 0.964615i \(0.415070\pi\)
\(98\) 0 0
\(99\) 19468.0 0.199633
\(100\) 0 0
\(101\) −25803.0 44692.1i −0.251690 0.435941i 0.712301 0.701874i \(-0.247653\pi\)
−0.963991 + 0.265934i \(0.914320\pi\)
\(102\) 0 0
\(103\) −90212.0 + 156252.i −0.837860 + 1.45122i 0.0538212 + 0.998551i \(0.482860\pi\)
−0.891681 + 0.452665i \(0.850473\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 32850.0 56897.9i 0.277381 0.480437i −0.693352 0.720599i \(-0.743867\pi\)
0.970733 + 0.240162i \(0.0772004\pi\)
\(108\) 0 0
\(109\) 56353.0 + 97606.3i 0.454308 + 0.786885i 0.998648 0.0519796i \(-0.0165531\pi\)
−0.544340 + 0.838865i \(0.683220\pi\)
\(110\) 0 0
\(111\) 206520. 1.59094
\(112\) 0 0
\(113\) −23502.0 −0.173145 −0.0865723 0.996246i \(-0.527591\pi\)
−0.0865723 + 0.996246i \(0.527591\pi\)
\(114\) 0 0
\(115\) 6808.00 + 11791.8i 0.0480037 + 0.0831449i
\(116\) 0 0
\(117\) −37523.0 + 64991.7i −0.253415 + 0.438928i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 72837.5 126158.i 0.452264 0.783343i
\(122\) 0 0
\(123\) 88860.0 + 153910.i 0.529595 + 0.917285i
\(124\) 0 0
\(125\) 57276.0 0.327867
\(126\) 0 0
\(127\) −94592.0 −0.520409 −0.260205 0.965553i \(-0.583790\pi\)
−0.260205 + 0.965553i \(0.583790\pi\)
\(128\) 0 0
\(129\) 91880.0 + 159141.i 0.486124 + 0.841991i
\(130\) 0 0
\(131\) −35146.0 + 60874.7i −0.178936 + 0.309926i −0.941516 0.336967i \(-0.890599\pi\)
0.762580 + 0.646893i \(0.223932\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −63640.0 + 110228.i −0.300535 + 0.520543i
\(136\) 0 0
\(137\) −138645. 240140.i −0.631107 1.09311i −0.987326 0.158706i \(-0.949268\pi\)
0.356219 0.934402i \(-0.384066\pi\)
\(138\) 0 0
\(139\) −130308. −0.572050 −0.286025 0.958222i \(-0.592334\pi\)
−0.286025 + 0.958222i \(0.592334\pi\)
\(140\) 0 0
\(141\) 473280. 2.00480
\(142\) 0 0
\(143\) −29636.0 51331.1i −0.121194 0.209913i
\(144\) 0 0
\(145\) −121434. + 210330.i −0.479645 + 0.830770i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 200765. 347735.i 0.740836 1.28317i −0.211278 0.977426i \(-0.567763\pi\)
0.952115 0.305740i \(-0.0989040\pi\)
\(150\) 0 0
\(151\) 37988.0 + 65797.1i 0.135583 + 0.234836i 0.925820 0.377965i \(-0.123376\pi\)
−0.790237 + 0.612801i \(0.790043\pi\)
\(152\) 0 0
\(153\) −188086. −0.649573
\(154\) 0 0
\(155\) 423872. 1.41712
\(156\) 0 0
\(157\) 197161. + 341493.i 0.638369 + 1.10569i 0.985791 + 0.167979i \(0.0537240\pi\)
−0.347421 + 0.937709i \(0.612943\pi\)
\(158\) 0 0
\(159\) −116860. + 202407.i −0.366584 + 0.634941i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5862.00 10153.3i 0.0172813 0.0299321i −0.857255 0.514891i \(-0.827832\pi\)
0.874537 + 0.484959i \(0.161166\pi\)
\(164\) 0 0
\(165\) 91760.0 + 158933.i 0.262388 + 0.454469i
\(166\) 0 0
\(167\) −551928. −1.53141 −0.765705 0.643192i \(-0.777610\pi\)
−0.765705 + 0.643192i \(0.777610\pi\)
\(168\) 0 0
\(169\) −142809. −0.384626
\(170\) 0 0
\(171\) −238954. 413880.i −0.624919 1.08239i
\(172\) 0 0
\(173\) −216447. + 374897.i −0.549840 + 0.952351i 0.448445 + 0.893810i \(0.351978\pi\)
−0.998285 + 0.0585404i \(0.981355\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −168760. + 292301.i −0.404889 + 0.701289i
\(178\) 0 0
\(179\) −279810. 484645.i −0.652726 1.13055i −0.982459 0.186480i \(-0.940292\pi\)
0.329733 0.944074i \(-0.393041\pi\)
\(180\) 0 0
\(181\) 604710. 1.37199 0.685995 0.727607i \(-0.259367\pi\)
0.685995 + 0.727607i \(0.259367\pi\)
\(182\) 0 0
\(183\) −369640. −0.815927
\(184\) 0 0
\(185\) 382062. + 661751.i 0.820738 + 1.42156i
\(186\) 0 0
\(187\) 74276.0 128650.i 0.155326 0.269033i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 204576. 354336.i 0.405762 0.702800i −0.588648 0.808390i \(-0.700340\pi\)
0.994410 + 0.105589i \(0.0336729\pi\)
\(192\) 0 0
\(193\) −270433. 468404.i −0.522596 0.905164i −0.999654 0.0262917i \(-0.991630\pi\)
0.477058 0.878872i \(-0.341703\pi\)
\(194\) 0 0
\(195\) −707440. −1.33230
\(196\) 0 0
\(197\) −629898. −1.15639 −0.578195 0.815898i \(-0.696243\pi\)
−0.578195 + 0.815898i \(0.696243\pi\)
\(198\) 0 0
\(199\) −141524. 245127.i −0.253336 0.438791i 0.711106 0.703085i \(-0.248195\pi\)
−0.964442 + 0.264293i \(0.914861\pi\)
\(200\) 0 0
\(201\) 155320. 269022.i 0.271167 0.469675i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −328782. + 569467.i −0.546416 + 0.946420i
\(206\) 0 0
\(207\) −14444.0 25017.7i −0.0234294 0.0405810i
\(208\) 0 0
\(209\) 377456. 0.597724
\(210\) 0 0
\(211\) 142756. 0.220744 0.110372 0.993890i \(-0.464796\pi\)
0.110372 + 0.993890i \(0.464796\pi\)
\(212\) 0 0
\(213\) 319600. + 553563.i 0.482678 + 0.836023i
\(214\) 0 0
\(215\) −339956. + 588821.i −0.501564 + 0.868735i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 48860.0 84628.0i 0.0688404 0.119235i
\(220\) 0 0
\(221\) 286322. + 495924.i 0.394343 + 0.683022i
\(222\) 0 0
\(223\) 889696. 1.19806 0.599031 0.800726i \(-0.295553\pi\)
0.599031 + 0.800726i \(0.295553\pi\)
\(224\) 0 0
\(225\) 369107. 0.486067
\(226\) 0 0
\(227\) −571578. 990002.i −0.736226 1.27518i −0.954184 0.299222i \(-0.903273\pi\)
0.217958 0.975958i \(-0.430060\pi\)
\(228\) 0 0
\(229\) 347893. 602568.i 0.438386 0.759307i −0.559179 0.829047i \(-0.688884\pi\)
0.997565 + 0.0697396i \(0.0222169\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 173563. 300620.i 0.209444 0.362767i −0.742096 0.670294i \(-0.766168\pi\)
0.951539 + 0.307527i \(0.0995014\pi\)
\(234\) 0 0
\(235\) 875568. + 1.51653e6i 1.03424 + 1.79135i
\(236\) 0 0
\(237\) 891200. 1.03063
\(238\) 0 0
\(239\) −1.64296e6 −1.86051 −0.930255 0.366912i \(-0.880415\pi\)
−0.930255 + 0.366912i \(0.880415\pi\)
\(240\) 0 0
\(241\) 583719. + 1.01103e6i 0.647383 + 1.12130i 0.983746 + 0.179568i \(0.0574699\pi\)
−0.336363 + 0.941733i \(0.609197\pi\)
\(242\) 0 0
\(243\) 516530. 894656.i 0.561151 0.971942i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −727516. + 1.26009e6i −0.758753 + 1.31420i
\(248\) 0 0
\(249\) −673640. 1.16678e6i −0.688541 1.19259i
\(250\) 0 0
\(251\) −790612. −0.792098 −0.396049 0.918229i \(-0.629619\pi\)
−0.396049 + 0.918229i \(0.629619\pi\)
\(252\) 0 0
\(253\) 22816.0 0.0224098
\(254\) 0 0
\(255\) −886520. 1.53550e6i −0.853764 1.47876i
\(256\) 0 0
\(257\) 64895.0 112401.i 0.0612884 0.106155i −0.833753 0.552137i \(-0.813812\pi\)
0.895042 + 0.445983i \(0.147146\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 257637. 446240.i 0.234103 0.405478i
\(262\) 0 0
\(263\) −35444.0 61390.8i −0.0315975 0.0547286i 0.849794 0.527115i \(-0.176726\pi\)
−0.881392 + 0.472386i \(0.843393\pi\)
\(264\) 0 0
\(265\) −864764. −0.756455
\(266\) 0 0
\(267\) 1.43988e6 1.23608
\(268\) 0 0
\(269\) −895087. 1.55034e6i −0.754197 1.30631i −0.945773 0.324829i \(-0.894693\pi\)
0.191576 0.981478i \(-0.438640\pi\)
\(270\) 0 0
\(271\) 886808. 1.53600e6i 0.733511 1.27048i −0.221863 0.975078i \(-0.571214\pi\)
0.955374 0.295400i \(-0.0954528\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −145762. + 252467.i −0.116228 + 0.201314i
\(276\) 0 0
\(277\) 137725. + 238547.i 0.107848 + 0.186799i 0.914898 0.403684i \(-0.132271\pi\)
−0.807050 + 0.590483i \(0.798937\pi\)
\(278\) 0 0
\(279\) −899296. −0.691659
\(280\) 0 0
\(281\) 594170. 0.448895 0.224448 0.974486i \(-0.427942\pi\)
0.224448 + 0.974486i \(0.427942\pi\)
\(282\) 0 0
\(283\) −546214. 946070.i −0.405412 0.702194i 0.588957 0.808164i \(-0.299539\pi\)
−0.994369 + 0.105970i \(0.966205\pi\)
\(284\) 0 0
\(285\) 2.25256e6 3.90155e6i 1.64272 2.84528i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7673.50 + 13290.9i −0.00540442 + 0.00936073i
\(290\) 0 0
\(291\) −488660. 846384.i −0.338278 0.585915i
\(292\) 0 0
\(293\) 333654. 0.227053 0.113527 0.993535i \(-0.463785\pi\)
0.113527 + 0.993535i \(0.463785\pi\)
\(294\) 0 0
\(295\) −1.24882e6 −0.835500
\(296\) 0 0
\(297\) 106640. + 184706.i 0.0701502 + 0.121504i
\(298\) 0 0
\(299\) −43976.0 + 76168.7i −0.0284471 + 0.0492718i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −516060. + 893842.i −0.322919 + 0.559312i
\(304\) 0 0
\(305\) −683834. 1.18444e6i −0.420921 0.729057i
\(306\) 0 0
\(307\) 1.05997e6 0.641872 0.320936 0.947101i \(-0.396003\pi\)
0.320936 + 0.947101i \(0.396003\pi\)
\(308\) 0 0
\(309\) 3.60848e6 2.14995
\(310\) 0 0
\(311\) 668244. + 1.15743e6i 0.391773 + 0.678570i 0.992683 0.120746i \(-0.0385287\pi\)
−0.600911 + 0.799316i \(0.705195\pi\)
\(312\) 0 0
\(313\) −822093. + 1.42391e6i −0.474308 + 0.821525i −0.999567 0.0294171i \(-0.990635\pi\)
0.525260 + 0.850942i \(0.323968\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 861849. 1.49277e6i 0.481707 0.834341i −0.518072 0.855337i \(-0.673350\pi\)
0.999780 + 0.0209956i \(0.00668359\pi\)
\(318\) 0 0
\(319\) 203484. + 352445.i 0.111958 + 0.193916i
\(320\) 0 0
\(321\) −1.31400e6 −0.711759
\(322\) 0 0
\(323\) −3.64671e6 −1.94489
\(324\) 0 0
\(325\) −561889. 973220.i −0.295082 0.511096i
\(326\) 0 0
\(327\) 1.12706e6 1.95213e6i 0.582878 1.00957i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.37481e6 + 2.38125e6i −0.689722 + 1.19463i 0.282206 + 0.959354i \(0.408934\pi\)
−0.971928 + 0.235279i \(0.924399\pi\)
\(332\) 0 0
\(333\) −810591. 1.40398e6i −0.400582 0.693828i
\(334\) 0 0
\(335\) 1.14937e6 0.559561
\(336\) 0 0
\(337\) −3.41489e6 −1.63796 −0.818978 0.573824i \(-0.805459\pi\)
−0.818978 + 0.573824i \(0.805459\pi\)
\(338\) 0 0
\(339\) 235020. + 407067.i 0.111072 + 0.192383i
\(340\) 0 0
\(341\) 355136. 615114.i 0.165390 0.286464i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 136160. 235836.i 0.0615888 0.106675i
\(346\) 0 0
\(347\) −365382. 632860.i −0.162901 0.282153i 0.773007 0.634398i \(-0.218752\pi\)
−0.935908 + 0.352245i \(0.885418\pi\)
\(348\) 0 0
\(349\) −2.29749e6 −1.00969 −0.504847 0.863209i \(-0.668451\pi\)
−0.504847 + 0.863209i \(0.668451\pi\)
\(350\) 0 0
\(351\) −822160. −0.356196
\(352\) 0 0
\(353\) 585359. + 1.01387e6i 0.250026 + 0.433058i 0.963533 0.267590i \(-0.0862274\pi\)
−0.713507 + 0.700649i \(0.752894\pi\)
\(354\) 0 0
\(355\) −1.18252e6 + 2.04818e6i −0.498009 + 0.862578i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.94327e6 + 3.36584e6i −0.795787 + 1.37834i 0.126552 + 0.991960i \(0.459609\pi\)
−0.922339 + 0.386383i \(0.873724\pi\)
\(360\) 0 0
\(361\) −3.39492e6 5.88017e6i −1.37108 2.37477i
\(362\) 0 0
\(363\) −2.91350e6 −1.16051
\(364\) 0 0
\(365\) 361564. 0.142054
\(366\) 0 0
\(367\) −466520. 808036.i −0.180803 0.313160i 0.761351 0.648339i \(-0.224536\pi\)
−0.942154 + 0.335180i \(0.891203\pi\)
\(368\) 0 0
\(369\) 697551. 1.20819e6i 0.266692 0.461924i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 196109. 339671.i 0.0729836 0.126411i −0.827224 0.561872i \(-0.810081\pi\)
0.900208 + 0.435461i \(0.143415\pi\)
\(374\) 0 0
\(375\) −572760. 992049.i −0.210327 0.364297i
\(376\) 0 0
\(377\) −1.56880e6 −0.568477
\(378\) 0 0
\(379\) −4.72930e6 −1.69122 −0.845608 0.533805i \(-0.820762\pi\)
−0.845608 + 0.533805i \(0.820762\pi\)
\(380\) 0 0
\(381\) 945920. + 1.63838e6i 0.333843 + 0.578233i
\(382\) 0 0
\(383\) −948672. + 1.64315e6i −0.330460 + 0.572374i −0.982602 0.185723i \(-0.940537\pi\)
0.652142 + 0.758097i \(0.273871\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 721258. 1.24926e6i 0.244801 0.424008i
\(388\) 0 0
\(389\) 1.86148e6 + 3.22417e6i 0.623711 + 1.08030i 0.988789 + 0.149323i \(0.0477093\pi\)
−0.365077 + 0.930977i \(0.618957\pi\)
\(390\) 0 0
\(391\) −220432. −0.0729177
\(392\) 0 0
\(393\) 1.40584e6 0.459150
\(394\) 0 0
\(395\) 1.64872e6 + 2.85567e6i 0.531685 + 0.920905i
\(396\) 0 0
\(397\) −1.66904e6 + 2.89086e6i −0.531484 + 0.920557i 0.467841 + 0.883813i \(0.345032\pi\)
−0.999325 + 0.0367445i \(0.988301\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.13745e6 + 3.70217e6i −0.663796 + 1.14973i 0.315814 + 0.948821i \(0.397722\pi\)
−0.979610 + 0.200908i \(0.935611\pi\)
\(402\) 0 0
\(403\) 1.36899e6 + 2.37116e6i 0.419893 + 0.727275i
\(404\) 0 0
\(405\) 5.36877e6 1.62644
\(406\) 0 0
\(407\) 1.28042e6 0.383149
\(408\) 0 0
\(409\) 1.28660e6 + 2.22845e6i 0.380306 + 0.658710i 0.991106 0.133075i \(-0.0424852\pi\)
−0.610800 + 0.791785i \(0.709152\pi\)
\(410\) 0 0
\(411\) −2.77290e6 + 4.80280e6i −0.809710 + 1.40246i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.49247e6 4.31708e6i 0.710410 1.23047i
\(416\) 0 0
\(417\) 1.30308e6 + 2.25700e6i 0.366970 + 0.635611i
\(418\) 0 0
\(419\) 5.26828e6 1.46600 0.732999 0.680230i \(-0.238120\pi\)
0.732999 + 0.680230i \(0.238120\pi\)
\(420\) 0 0
\(421\) −973354. −0.267649 −0.133824 0.991005i \(-0.542726\pi\)
−0.133824 + 0.991005i \(0.542726\pi\)
\(422\) 0 0
\(423\) −1.85762e6 3.21750e6i −0.504786 0.874314i
\(424\) 0 0
\(425\) 1.40825e6 2.43916e6i 0.378187 0.655040i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −592720. + 1.02662e6i −0.155491 + 0.269319i
\(430\) 0 0
\(431\) −1.77868e6 3.08076e6i −0.461216 0.798850i 0.537806 0.843069i \(-0.319253\pi\)
−0.999022 + 0.0442188i \(0.985920\pi\)
\(432\) 0 0
\(433\) −1.95496e6 −0.501092 −0.250546 0.968105i \(-0.580610\pi\)
−0.250546 + 0.968105i \(0.580610\pi\)
\(434\) 0 0
\(435\) 4.85736e6 1.23077
\(436\) 0 0
\(437\) −280048. 485057.i −0.0701502 0.121504i
\(438\) 0 0
\(439\) 1.64840e6 2.85512e6i 0.408228 0.707071i −0.586464 0.809976i \(-0.699480\pi\)
0.994691 + 0.102905i \(0.0328136\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.52910e6 4.38053e6i 0.612289 1.06052i −0.378565 0.925575i \(-0.623582\pi\)
0.990854 0.134941i \(-0.0430844\pi\)
\(444\) 0 0
\(445\) 2.66378e6 + 4.61380e6i 0.637673 + 1.10448i
\(446\) 0 0
\(447\) −8.03060e6 −1.90099
\(448\) 0 0
\(449\) 2.12730e6 0.497981 0.248990 0.968506i \(-0.419901\pi\)
0.248990 + 0.968506i \(0.419901\pi\)
\(450\) 0 0
\(451\) 550932. + 954242.i 0.127543 + 0.220911i
\(452\) 0 0
\(453\) 759760. 1.31594e6i 0.173953 0.301295i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −144565. + 250394.i −0.0323797 + 0.0560833i −0.881761 0.471696i \(-0.843642\pi\)
0.849381 + 0.527779i \(0.176975\pi\)
\(458\) 0 0
\(459\) −1.03028e6 1.78450e6i −0.228257 0.395352i
\(460\) 0 0
\(461\) 2.66870e6 0.584854 0.292427 0.956288i \(-0.405537\pi\)
0.292427 + 0.956288i \(0.405537\pi\)
\(462\) 0 0
\(463\) 7.58619e6 1.64464 0.822321 0.569024i \(-0.192679\pi\)
0.822321 + 0.569024i \(0.192679\pi\)
\(464\) 0 0
\(465\) −4.23872e6 7.34168e6i −0.909081 1.57457i
\(466\) 0 0
\(467\) 709806. 1.22942e6i 0.150608 0.260860i −0.780843 0.624727i \(-0.785210\pi\)
0.931451 + 0.363867i \(0.118544\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.94322e6 6.82986e6i 0.819028 1.41860i
\(472\) 0 0
\(473\) 569656. + 986673.i 0.117074 + 0.202778i
\(474\) 0 0
\(475\) 7.15644e6 1.45534
\(476\) 0 0
\(477\) 1.83470e6 0.369207
\(478\) 0 0
\(479\) 942032. + 1.63165e6i 0.187597 + 0.324928i 0.944449 0.328659i \(-0.106597\pi\)
−0.756851 + 0.653587i \(0.773263\pi\)
\(480\) 0 0
\(481\) −2.46791e6 + 4.27455e6i −0.486371 + 0.842419i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.80804e6 3.13162e6i 0.349023 0.604526i
\(486\) 0 0
\(487\) 3.00694e6 + 5.20817e6i 0.574516 + 0.995091i 0.996094 + 0.0882991i \(0.0281431\pi\)
−0.421578 + 0.906792i \(0.638524\pi\)
\(488\) 0 0
\(489\) −234480. −0.0443439
\(490\) 0 0
\(491\) 4.29232e6 0.803504 0.401752 0.915749i \(-0.368401\pi\)
0.401752 + 0.915749i \(0.368401\pi\)
\(492\) 0 0
\(493\) −1.96592e6 3.40507e6i −0.364291 0.630970i
\(494\) 0 0
\(495\) 720316. 1.24762e6i 0.132133 0.228860i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −672546. + 1.16488e6i −0.120912 + 0.209426i −0.920128 0.391618i \(-0.871915\pi\)
0.799215 + 0.601045i \(0.205249\pi\)
\(500\) 0 0
\(501\) 5.51928e6 + 9.55967e6i 0.982399 + 1.70157i
\(502\) 0 0
\(503\) 202008. 0.0355999 0.0177999 0.999842i \(-0.494334\pi\)
0.0177999 + 0.999842i \(0.494334\pi\)
\(504\) 0 0
\(505\) −3.81884e6 −0.666352
\(506\) 0 0
\(507\) 1.42809e6 + 2.47352e6i 0.246738 + 0.427362i
\(508\) 0 0
\(509\) −4.89172e6 + 8.47271e6i −0.836887 + 1.44953i 0.0555970 + 0.998453i \(0.482294\pi\)
−0.892484 + 0.451078i \(0.851040\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.61784e6 4.53423e6i 0.439187 0.760695i
\(514\) 0 0
\(515\) 6.67569e6 + 1.15626e7i 1.10912 + 1.92105i
\(516\) 0 0
\(517\) 2.93434e6 0.482818
\(518\) 0 0
\(519\) 8.65788e6 1.41089
\(520\) 0 0
\(521\) 5.24152e6 + 9.07857e6i 0.845985 + 1.46529i 0.884763 + 0.466041i \(0.154320\pi\)
−0.0387785 + 0.999248i \(0.512347\pi\)
\(522\) 0 0
\(523\) −3.10509e6 + 5.37817e6i −0.496386 + 0.859766i −0.999991 0.00416822i \(-0.998673\pi\)
0.503605 + 0.863934i \(0.332007\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.43107e6 + 5.94279e6i −0.538150 + 0.932103i
\(528\) 0 0
\(529\) 3.20124e6 + 5.54472e6i 0.497370 + 0.861470i
\(530\) 0 0
\(531\) 2.64953e6 0.407787
\(532\) 0 0
\(533\) −4.24751e6 −0.647614
\(534\) 0 0
\(535\) −2.43090e6 4.21044e6i −0.367183 0.635980i
\(536\) 0 0
\(537\) −5.59620e6 + 9.69290e6i −0.837447 + 1.45050i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.54044e6 + 4.40017e6i −0.373178 + 0.646363i −0.990052 0.140699i \(-0.955065\pi\)
0.616875 + 0.787061i \(0.288398\pi\)
\(542\) 0 0
\(543\) −6.04710e6 1.04739e7i −0.880132 1.52443i
\(544\) 0 0
\(545\) 8.34024e6 1.20278
\(546\) 0 0
\(547\) 3.34687e6 0.478267 0.239133 0.970987i \(-0.423137\pi\)
0.239133 + 0.970987i \(0.423137\pi\)
\(548\) 0 0
\(549\) 1.45084e6 + 2.51292e6i 0.205441 + 0.355835i
\(550\) 0 0
\(551\) 4.99520e6 8.65195e6i 0.700929 1.21405i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 7.64124e6 1.32350e7i 1.05301 1.82386i
\(556\) 0 0
\(557\) −3.50189e6 6.06545e6i −0.478260 0.828371i 0.521429 0.853295i \(-0.325399\pi\)
−0.999689 + 0.0249237i \(0.992066\pi\)
\(558\) 0 0
\(559\) −4.39186e6 −0.594456
\(560\) 0 0
\(561\) −2.97104e6 −0.398567
\(562\) 0 0
\(563\) 6.49094e6 + 1.12426e7i 0.863052 + 1.49485i 0.868969 + 0.494867i \(0.164783\pi\)
−0.00591737 + 0.999982i \(0.501884\pi\)
\(564\) 0 0
\(565\) −869574. + 1.50615e6i −0.114600 + 0.198493i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −949709. + 1.64494e6i −0.122973 + 0.212996i −0.920939 0.389707i \(-0.872576\pi\)
0.797966 + 0.602703i \(0.205910\pi\)
\(570\) 0 0
\(571\) 831498. + 1.44020e6i 0.106726 + 0.184855i 0.914442 0.404717i \(-0.132630\pi\)
−0.807716 + 0.589572i \(0.799297\pi\)
\(572\) 0 0
\(573\) −8.18304e6 −1.04119
\(574\) 0 0
\(575\) 432584. 0.0545633
\(576\) 0 0
\(577\) −4.38672e6 7.59802e6i −0.548530 0.950082i −0.998376 0.0569756i \(-0.981854\pi\)
0.449845 0.893106i \(-0.351479\pi\)
\(578\) 0 0
\(579\) −5.40866e6 + 9.36807e6i −0.670491 + 1.16133i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −724532. + 1.25493e6i −0.0882849 + 0.152914i
\(584\) 0 0
\(585\) 2.77670e6 + 4.80939e6i 0.335459 + 0.581032i
\(586\) 0 0
\(587\) 5.18393e6 0.620961 0.310480 0.950580i \(-0.399510\pi\)
0.310480 + 0.950580i \(0.399510\pi\)
\(588\) 0 0
\(589\) −1.74360e7 −2.07090
\(590\) 0 0
\(591\) 6.29898e6 + 1.09102e7i 0.741825 + 1.28488i
\(592\) 0 0
\(593\) −4.24929e6 + 7.35998e6i −0.496226 + 0.859489i −0.999991 0.00435235i \(-0.998615\pi\)
0.503765 + 0.863841i \(0.331948\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.83048e6 + 4.90254e6i −0.325031 + 0.562970i
\(598\) 0 0
\(599\) −5.62355e6 9.74027e6i −0.640388 1.10918i −0.985346 0.170567i \(-0.945440\pi\)
0.344958 0.938618i \(-0.387893\pi\)
\(600\) 0 0
\(601\) −3.46439e6 −0.391238 −0.195619 0.980680i \(-0.562672\pi\)
−0.195619 + 0.980680i \(0.562672\pi\)
\(602\) 0 0
\(603\) −2.43852e6 −0.273108
\(604\) 0 0
\(605\) −5.38997e6 9.33571e6i −0.598685 1.03695i
\(606\) 0 0
\(607\) 499856. 865776.i 0.0550647 0.0953748i −0.837179 0.546929i \(-0.815797\pi\)
0.892244 + 0.451554i \(0.149130\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.65570e6 + 9.79595e6i −0.612891 + 1.06156i
\(612\) 0 0
\(613\) −4.90670e6 8.49865e6i −0.527398 0.913480i −0.999490 0.0319305i \(-0.989834\pi\)
0.472092 0.881549i \(-0.343499\pi\)
\(614\) 0 0
\(615\) 1.31513e7 1.40210
\(616\) 0 0
\(617\) −5.34745e6 −0.565501 −0.282751 0.959193i \(-0.591247\pi\)
−0.282751 + 0.959193i \(0.591247\pi\)
\(618\) 0 0
\(619\) 3.41384e6 + 5.91295e6i 0.358110 + 0.620265i 0.987645 0.156707i \(-0.0500878\pi\)
−0.629535 + 0.776972i \(0.716755\pi\)
\(620\) 0 0
\(621\) 158240. 274080.i 0.0164660 0.0285199i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.79265e6 1.00332e7i 0.593167 1.02740i
\(626\) 0 0
\(627\) −3.77456e6 6.53773e6i −0.383440 0.664138i
\(628\) 0 0
\(629\) −1.23705e7 −1.24670
\(630\) 0 0
\(631\) −3.60970e6 −0.360909 −0.180455 0.983583i \(-0.557757\pi\)
−0.180455 + 0.983583i \(0.557757\pi\)
\(632\) 0 0
\(633\) −1.42756e6 2.47261e6i −0.141607 0.245271i
\(634\) 0 0
\(635\) −3.49990e6 + 6.06201e6i −0.344447 + 0.596599i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.50886e6 4.34547e6i 0.243066 0.421003i
\(640\) 0 0
\(641\) 6.69267e6 + 1.15920e7i 0.643361 + 1.11433i 0.984678 + 0.174385i \(0.0557937\pi\)
−0.341317 + 0.939948i \(0.610873\pi\)
\(642\) 0 0
\(643\) −9.91115e6 −0.945358 −0.472679 0.881235i \(-0.656713\pi\)
−0.472679 + 0.881235i \(0.656713\pi\)
\(644\) 0 0
\(645\) 1.35982e7 1.28701
\(646\) 0 0
\(647\) 8.91796e6 + 1.54464e7i 0.837539 + 1.45066i 0.891946 + 0.452141i \(0.149340\pi\)
−0.0544074 + 0.998519i \(0.517327\pi\)
\(648\) 0 0
\(649\) −1.04631e6 + 1.81227e6i −0.0975101 + 0.168892i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.16162e6 3.74403e6i 0.198379 0.343603i −0.749624 0.661864i \(-0.769766\pi\)
0.948003 + 0.318261i \(0.103099\pi\)
\(654\) 0 0
\(655\) 2.60080e6 + 4.50472e6i 0.236867 + 0.410266i
\(656\) 0 0
\(657\) −767102. −0.0693330
\(658\) 0 0
\(659\) 1.97858e7 1.77476 0.887382 0.461035i \(-0.152522\pi\)
0.887382 + 0.461035i \(0.152522\pi\)
\(660\) 0 0
\(661\) −7.88858e6 1.36634e7i −0.702255 1.21634i −0.967673 0.252209i \(-0.918843\pi\)
0.265417 0.964134i \(-0.414490\pi\)
\(662\) 0 0
\(663\) 5.72644e6 9.91849e6i 0.505942 0.876318i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 301944. 522982.i 0.0262792 0.0455169i
\(668\) 0 0
\(669\) −8.89696e6 1.54100e7i −0.768557 1.33118i
\(670\) 0 0
\(671\) −2.29177e6 −0.196501
\(672\) 0 0
\(673\) 6.78762e6 0.577670 0.288835 0.957379i \(-0.406732\pi\)
0.288835 + 0.957379i \(0.406732\pi\)
\(674\) 0 0
\(675\) 2.02186e6 + 3.50196e6i 0.170801 + 0.295837i
\(676\) 0 0
\(677\) 7.49711e6 1.29854e7i 0.628669 1.08889i −0.359150 0.933280i \(-0.616933\pi\)
0.987819 0.155607i \(-0.0497334\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.14316e7 + 1.98000e7i −0.944578 + 1.63606i
\(682\) 0 0
\(683\) −5.77902e6 1.00096e7i −0.474026 0.821038i 0.525531 0.850774i \(-0.323867\pi\)
−0.999558 + 0.0297363i \(0.990533\pi\)
\(684\) 0 0
\(685\) −2.05195e7 −1.67086
\(686\) 0 0
\(687\) −1.39157e7 −1.12490
\(688\) 0 0
\(689\) −2.79295e6 4.83754e6i −0.224138 0.388219i
\(690\) 0 0
\(691\) 110078. 190661.i 0.00877012 0.0151903i −0.861607 0.507576i \(-0.830542\pi\)
0.870377 + 0.492386i \(0.163875\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.82140e6 + 8.35090e6i −0.378626 + 0.655800i
\(696\) 0 0
\(697\) −5.32271e6 9.21921e6i −0.415003 0.718806i
\(698\) 0 0
\(699\) −6.94252e6 −0.537433
\(700\) 0 0
\(701\) 4.78933e6 0.368111 0.184056 0.982916i \(-0.441077\pi\)
0.184056 + 0.982916i \(0.441077\pi\)
\(702\) 0 0
\(703\) −1.57162e7 2.72212e7i −1.19938 2.07740i
\(704\) 0 0
\(705\) 1.75114e7 3.03306e7i 1.32693 2.29831i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −2.13446e6 + 3.69699e6i −0.159468 + 0.276206i −0.934677 0.355499i \(-0.884311\pi\)
0.775209 + 0.631705i \(0.217644\pi\)
\(710\) 0 0
\(711\) −3.49796e6 6.05864e6i −0.259502 0.449471i
\(712\) 0 0
\(713\) −1.05395e6 −0.0776421
\(714\) 0 0
\(715\) −4.38613e6 −0.320860
\(716\) 0 0
\(717\) 1.64296e7 + 2.84569e7i 1.19352 + 2.06723i
\(718\) 0 0
\(719\) 8.09798e6 1.40261e7i 0.584190 1.01185i −0.410786 0.911732i \(-0.634746\pi\)
0.994976 0.100115i \(-0.0319211\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.16744e7 2.02206e7i 0.830593 1.43863i
\(724\) 0 0
\(725\) 3.85799e6 + 6.68224e6i 0.272594 + 0.472147i
\(726\) 0 0
\(727\) 6.53426e6 0.458522 0.229261 0.973365i \(-0.426369\pi\)
0.229261 + 0.973365i \(0.426369\pi\)
\(728\) 0 0
\(729\) −3.03131e6 −0.211257
\(730\) 0 0
\(731\) −5.50361e6 9.53254e6i −0.380938 0.659804i
\(732\) 0 0
\(733\) −6.58086e6 + 1.13984e7i −0.452400 + 0.783579i −0.998535 0.0541179i \(-0.982765\pi\)
0.546135 + 0.837697i \(0.316099\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 962984. 1.66794e6i 0.0653056 0.113113i
\(738\) 0 0
\(739\) 7.11738e6 + 1.23277e7i 0.479412 + 0.830366i 0.999721 0.0236117i \(-0.00751652\pi\)
−0.520309 + 0.853978i \(0.674183\pi\)
\(740\) 0 0
\(741\) 2.91006e7 1.94696
\(742\) 0 0
\(743\) −2.15835e7 −1.43434 −0.717168 0.696901i \(-0.754562\pi\)
−0.717168 + 0.696901i \(0.754562\pi\)
\(744\) 0 0
\(745\) −1.48566e7 2.57324e7i −0.980684 1.69859i
\(746\) 0 0
\(747\) −5.28807e6 + 9.15921e6i −0.346734 + 0.600560i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.32969e6 + 1.61595e7i −0.603625 + 1.04551i 0.388642 + 0.921389i \(0.372944\pi\)
−0.992267 + 0.124121i \(0.960389\pi\)
\(752\) 0 0
\(753\) 7.90612e6 + 1.36938e7i 0.508131 + 0.880109i
\(754\) 0 0
\(755\) 5.62222e6 0.358956
\(756\) 0 0
\(757\) −2.56681e6 −0.162800 −0.0813999 0.996682i \(-0.525939\pi\)
−0.0813999 + 0.996682i \(0.525939\pi\)
\(758\) 0 0
\(759\) −228160. 395185.i −0.0143759 0.0248998i
\(760\) 0 0
\(761\) 1.29793e7 2.24808e7i 0.812436 1.40718i −0.0987188 0.995115i \(-0.531474\pi\)
0.911155 0.412065i \(-0.135192\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −6.95918e6 + 1.20537e7i −0.429937 + 0.744672i
\(766\) 0 0
\(767\) −4.03336e6 6.98599e6i −0.247559 0.428785i
\(768\) 0 0
\(769\) 5.53267e6 0.337380 0.168690 0.985669i \(-0.446046\pi\)
0.168690 + 0.985669i \(0.446046\pi\)
\(770\) 0 0
\(771\) −2.59580e6 −0.157266
\(772\) 0 0
\(773\) −4.16470e6 7.21347e6i −0.250689 0.434206i 0.713027 0.701137i \(-0.247324\pi\)
−0.963716 + 0.266931i \(0.913990\pi\)
\(774\) 0 0
\(775\) 6.73326e6 1.16624e7i 0.402691 0.697480i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.35245e7 2.34251e7i 0.798504 1.38305i
\(780\) 0 0
\(781\) 1.98152e6 + 3.43209e6i 0.116244 + 0.201341i
\(782\) 0 0
\(783\) 5.64504e6 0.329051
\(784\) 0 0
\(785\) 2.91798e7 1.69009