Properties

Label 392.6.a.d.1.1
Level $392$
Weight $6$
Character 392.1
Self dual yes
Analytic conductor $62.870$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(1,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8704573667\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{345}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 86 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-8.78709\) of defining polynomial
Character \(\chi\) \(=\) 392.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-15.5742 q^{3} -96.7225 q^{5} -0.445054 q^{9} +O(q^{10})\) \(q-15.5742 q^{3} -96.7225 q^{5} -0.445054 q^{9} +281.445 q^{11} +269.393 q^{13} +1506.37 q^{15} -1719.45 q^{17} +1172.84 q^{19} +785.341 q^{23} +6230.25 q^{25} +3791.46 q^{27} +6149.46 q^{29} +7006.58 q^{31} -4383.27 q^{33} -11499.9 q^{37} -4195.57 q^{39} +13245.3 q^{41} -19824.2 q^{43} +43.0467 q^{45} -6887.96 q^{47} +26778.9 q^{51} +8654.97 q^{53} -27222.1 q^{55} -18266.0 q^{57} +47856.6 q^{59} -52762.1 q^{61} -26056.4 q^{65} -24040.2 q^{67} -12231.0 q^{69} +12540.9 q^{71} -4079.29 q^{73} -97031.0 q^{75} -11919.1 q^{79} -58940.7 q^{81} -81916.2 q^{83} +166309. q^{85} -95772.7 q^{87} +96968.7 q^{89} -109122. q^{93} -113440. q^{95} +26410.7 q^{97} -125.258 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 82 q^{5} + 222 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{3} - 82 q^{5} + 222 q^{9} + 340 q^{11} - 910 q^{13} + 1824 q^{15} - 3216 q^{17} + 674 q^{19} - 1104 q^{23} + 3322 q^{25} + 3348 q^{27} + 8064 q^{29} + 6212 q^{31} - 3120 q^{33} - 8512 q^{37} - 29640 q^{39} + 1304 q^{41} - 10004 q^{43} + 3318 q^{45} + 12748 q^{47} - 5508 q^{51} - 11220 q^{53} - 26360 q^{55} - 29028 q^{57} + 12018 q^{59} - 102738 q^{61} - 43420 q^{65} + 24136 q^{67} - 52992 q^{69} + 89720 q^{71} + 55588 q^{73} - 159774 q^{75} + 48824 q^{79} - 122562 q^{81} - 35782 q^{83} + 144276 q^{85} - 54468 q^{87} + 18300 q^{89} - 126264 q^{93} - 120784 q^{95} + 69984 q^{97} + 12900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −15.5742 −0.999084 −0.499542 0.866290i \(-0.666498\pi\)
−0.499542 + 0.866290i \(0.666498\pi\)
\(4\) 0 0
\(5\) −96.7225 −1.73023 −0.865113 0.501578i \(-0.832753\pi\)
−0.865113 + 0.501578i \(0.832753\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.445054 −0.00183150
\(10\) 0 0
\(11\) 281.445 0.701313 0.350657 0.936504i \(-0.385958\pi\)
0.350657 + 0.936504i \(0.385958\pi\)
\(12\) 0 0
\(13\) 269.393 0.442107 0.221054 0.975262i \(-0.429050\pi\)
0.221054 + 0.975262i \(0.429050\pi\)
\(14\) 0 0
\(15\) 1506.37 1.72864
\(16\) 0 0
\(17\) −1719.45 −1.44300 −0.721499 0.692415i \(-0.756547\pi\)
−0.721499 + 0.692415i \(0.756547\pi\)
\(18\) 0 0
\(19\) 1172.84 0.745339 0.372670 0.927964i \(-0.378442\pi\)
0.372670 + 0.927964i \(0.378442\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 785.341 0.309555 0.154778 0.987949i \(-0.450534\pi\)
0.154778 + 0.987949i \(0.450534\pi\)
\(24\) 0 0
\(25\) 6230.25 1.99368
\(26\) 0 0
\(27\) 3791.46 1.00091
\(28\) 0 0
\(29\) 6149.46 1.35782 0.678909 0.734222i \(-0.262453\pi\)
0.678909 + 0.734222i \(0.262453\pi\)
\(30\) 0 0
\(31\) 7006.58 1.30949 0.654744 0.755851i \(-0.272776\pi\)
0.654744 + 0.755851i \(0.272776\pi\)
\(32\) 0 0
\(33\) −4383.27 −0.700671
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −11499.9 −1.38099 −0.690495 0.723337i \(-0.742607\pi\)
−0.690495 + 0.723337i \(0.742607\pi\)
\(38\) 0 0
\(39\) −4195.57 −0.441702
\(40\) 0 0
\(41\) 13245.3 1.23056 0.615279 0.788310i \(-0.289043\pi\)
0.615279 + 0.788310i \(0.289043\pi\)
\(42\) 0 0
\(43\) −19824.2 −1.63502 −0.817512 0.575911i \(-0.804647\pi\)
−0.817512 + 0.575911i \(0.804647\pi\)
\(44\) 0 0
\(45\) 43.0467 0.00316890
\(46\) 0 0
\(47\) −6887.96 −0.454827 −0.227413 0.973798i \(-0.573027\pi\)
−0.227413 + 0.973798i \(0.573027\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 26778.9 1.44168
\(52\) 0 0
\(53\) 8654.97 0.423229 0.211615 0.977353i \(-0.432128\pi\)
0.211615 + 0.977353i \(0.432128\pi\)
\(54\) 0 0
\(55\) −27222.1 −1.21343
\(56\) 0 0
\(57\) −18266.0 −0.744656
\(58\) 0 0
\(59\) 47856.6 1.78983 0.894915 0.446236i \(-0.147236\pi\)
0.894915 + 0.446236i \(0.147236\pi\)
\(60\) 0 0
\(61\) −52762.1 −1.81550 −0.907752 0.419507i \(-0.862203\pi\)
−0.907752 + 0.419507i \(0.862203\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −26056.4 −0.764945
\(66\) 0 0
\(67\) −24040.2 −0.654261 −0.327130 0.944979i \(-0.606082\pi\)
−0.327130 + 0.944979i \(0.606082\pi\)
\(68\) 0 0
\(69\) −12231.0 −0.309272
\(70\) 0 0
\(71\) 12540.9 0.295246 0.147623 0.989044i \(-0.452838\pi\)
0.147623 + 0.989044i \(0.452838\pi\)
\(72\) 0 0
\(73\) −4079.29 −0.0895936 −0.0447968 0.998996i \(-0.514264\pi\)
−0.0447968 + 0.998996i \(0.514264\pi\)
\(74\) 0 0
\(75\) −97031.0 −1.99185
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11919.1 −0.214870 −0.107435 0.994212i \(-0.534264\pi\)
−0.107435 + 0.994212i \(0.534264\pi\)
\(80\) 0 0
\(81\) −58940.7 −0.998165
\(82\) 0 0
\(83\) −81916.2 −1.30519 −0.652596 0.757706i \(-0.726320\pi\)
−0.652596 + 0.757706i \(0.726320\pi\)
\(84\) 0 0
\(85\) 166309. 2.49671
\(86\) 0 0
\(87\) −95772.7 −1.35657
\(88\) 0 0
\(89\) 96968.7 1.29765 0.648824 0.760939i \(-0.275261\pi\)
0.648824 + 0.760939i \(0.275261\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −109122. −1.30829
\(94\) 0 0
\(95\) −113440. −1.28960
\(96\) 0 0
\(97\) 26410.7 0.285004 0.142502 0.989795i \(-0.454485\pi\)
0.142502 + 0.989795i \(0.454485\pi\)
\(98\) 0 0
\(99\) −125.258 −0.00128445
\(100\) 0 0
\(101\) 73137.7 0.713408 0.356704 0.934217i \(-0.383901\pi\)
0.356704 + 0.934217i \(0.383901\pi\)
\(102\) 0 0
\(103\) −87649.5 −0.814060 −0.407030 0.913415i \(-0.633435\pi\)
−0.407030 + 0.913415i \(0.633435\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −115438. −0.974743 −0.487372 0.873195i \(-0.662044\pi\)
−0.487372 + 0.873195i \(0.662044\pi\)
\(108\) 0 0
\(109\) −117303. −0.945675 −0.472837 0.881150i \(-0.656770\pi\)
−0.472837 + 0.881150i \(0.656770\pi\)
\(110\) 0 0
\(111\) 179102. 1.37973
\(112\) 0 0
\(113\) 181535. 1.33741 0.668705 0.743528i \(-0.266849\pi\)
0.668705 + 0.743528i \(0.266849\pi\)
\(114\) 0 0
\(115\) −75960.1 −0.535601
\(116\) 0 0
\(117\) −119.894 −0.000809718 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −81839.7 −0.508160
\(122\) 0 0
\(123\) −206284. −1.22943
\(124\) 0 0
\(125\) −300347. −1.71929
\(126\) 0 0
\(127\) 106111. 0.583780 0.291890 0.956452i \(-0.405716\pi\)
0.291890 + 0.956452i \(0.405716\pi\)
\(128\) 0 0
\(129\) 308745. 1.63353
\(130\) 0 0
\(131\) −300334. −1.52907 −0.764534 0.644584i \(-0.777031\pi\)
−0.764534 + 0.644584i \(0.777031\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −366719. −1.73181
\(136\) 0 0
\(137\) −91892.5 −0.418291 −0.209146 0.977885i \(-0.567068\pi\)
−0.209146 + 0.977885i \(0.567068\pi\)
\(138\) 0 0
\(139\) −153133. −0.672252 −0.336126 0.941817i \(-0.609117\pi\)
−0.336126 + 0.941817i \(0.609117\pi\)
\(140\) 0 0
\(141\) 107274. 0.454410
\(142\) 0 0
\(143\) 75819.3 0.310056
\(144\) 0 0
\(145\) −594791. −2.34933
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 498602. 1.83987 0.919937 0.392066i \(-0.128240\pi\)
0.919937 + 0.392066i \(0.128240\pi\)
\(150\) 0 0
\(151\) 209609. 0.748114 0.374057 0.927406i \(-0.377966\pi\)
0.374057 + 0.927406i \(0.377966\pi\)
\(152\) 0 0
\(153\) 765.245 0.00264285
\(154\) 0 0
\(155\) −677694. −2.26571
\(156\) 0 0
\(157\) 7381.72 0.0239006 0.0119503 0.999929i \(-0.496196\pi\)
0.0119503 + 0.999929i \(0.496196\pi\)
\(158\) 0 0
\(159\) −134794. −0.422842
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 388154. 1.14429 0.572144 0.820153i \(-0.306112\pi\)
0.572144 + 0.820153i \(0.306112\pi\)
\(164\) 0 0
\(165\) 423961. 1.21232
\(166\) 0 0
\(167\) 168240. 0.466808 0.233404 0.972380i \(-0.425013\pi\)
0.233404 + 0.972380i \(0.425013\pi\)
\(168\) 0 0
\(169\) −298720. −0.804541
\(170\) 0 0
\(171\) −521.976 −0.00136509
\(172\) 0 0
\(173\) −321513. −0.816740 −0.408370 0.912817i \(-0.633903\pi\)
−0.408370 + 0.912817i \(0.633903\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −745327. −1.78819
\(178\) 0 0
\(179\) −611906. −1.42742 −0.713710 0.700441i \(-0.752987\pi\)
−0.713710 + 0.700441i \(0.752987\pi\)
\(180\) 0 0
\(181\) −261474. −0.593242 −0.296621 0.954995i \(-0.595860\pi\)
−0.296621 + 0.954995i \(0.595860\pi\)
\(182\) 0 0
\(183\) 821726. 1.81384
\(184\) 0 0
\(185\) 1.11230e6 2.38943
\(186\) 0 0
\(187\) −483929. −1.01199
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 703301. 1.39495 0.697474 0.716610i \(-0.254307\pi\)
0.697474 + 0.716610i \(0.254307\pi\)
\(192\) 0 0
\(193\) 516411. 0.997934 0.498967 0.866621i \(-0.333713\pi\)
0.498967 + 0.866621i \(0.333713\pi\)
\(194\) 0 0
\(195\) 405806. 0.764244
\(196\) 0 0
\(197\) 142579. 0.261752 0.130876 0.991399i \(-0.458221\pi\)
0.130876 + 0.991399i \(0.458221\pi\)
\(198\) 0 0
\(199\) −984837. −1.76292 −0.881458 0.472262i \(-0.843438\pi\)
−0.881458 + 0.472262i \(0.843438\pi\)
\(200\) 0 0
\(201\) 374406. 0.653662
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.28112e6 −2.12914
\(206\) 0 0
\(207\) −349.519 −0.000566950 0
\(208\) 0 0
\(209\) 330089. 0.522716
\(210\) 0 0
\(211\) −242836. −0.375497 −0.187748 0.982217i \(-0.560119\pi\)
−0.187748 + 0.982217i \(0.560119\pi\)
\(212\) 0 0
\(213\) −195315. −0.294976
\(214\) 0 0
\(215\) 1.91745e6 2.82896
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 63531.5 0.0895115
\(220\) 0 0
\(221\) −463206. −0.637960
\(222\) 0 0
\(223\) 797063. 1.07332 0.536661 0.843798i \(-0.319685\pi\)
0.536661 + 0.843798i \(0.319685\pi\)
\(224\) 0 0
\(225\) −2772.79 −0.00365142
\(226\) 0 0
\(227\) 26121.4 0.0336459 0.0168229 0.999858i \(-0.494645\pi\)
0.0168229 + 0.999858i \(0.494645\pi\)
\(228\) 0 0
\(229\) 761592. 0.959695 0.479848 0.877352i \(-0.340692\pi\)
0.479848 + 0.877352i \(0.340692\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 657852. 0.793850 0.396925 0.917851i \(-0.370077\pi\)
0.396925 + 0.917851i \(0.370077\pi\)
\(234\) 0 0
\(235\) 666221. 0.786953
\(236\) 0 0
\(237\) 185630. 0.214673
\(238\) 0 0
\(239\) 965388. 1.09322 0.546609 0.837388i \(-0.315918\pi\)
0.546609 + 0.837388i \(0.315918\pi\)
\(240\) 0 0
\(241\) −35064.2 −0.0388885 −0.0194443 0.999811i \(-0.506190\pi\)
−0.0194443 + 0.999811i \(0.506190\pi\)
\(242\) 0 0
\(243\) −3371.72 −0.00366299
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 315954. 0.329520
\(248\) 0 0
\(249\) 1.27578e6 1.30400
\(250\) 0 0
\(251\) −1.31610e6 −1.31857 −0.659286 0.751892i \(-0.729141\pi\)
−0.659286 + 0.751892i \(0.729141\pi\)
\(252\) 0 0
\(253\) 221030. 0.217095
\(254\) 0 0
\(255\) −2.59013e6 −2.49443
\(256\) 0 0
\(257\) 529802. 0.500358 0.250179 0.968200i \(-0.419511\pi\)
0.250179 + 0.968200i \(0.419511\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −2736.84 −0.00248684
\(262\) 0 0
\(263\) −1.29457e6 −1.15408 −0.577041 0.816715i \(-0.695793\pi\)
−0.577041 + 0.816715i \(0.695793\pi\)
\(264\) 0 0
\(265\) −837130. −0.732282
\(266\) 0 0
\(267\) −1.51021e6 −1.29646
\(268\) 0 0
\(269\) 444336. 0.374396 0.187198 0.982322i \(-0.440059\pi\)
0.187198 + 0.982322i \(0.440059\pi\)
\(270\) 0 0
\(271\) −624757. −0.516759 −0.258379 0.966044i \(-0.583188\pi\)
−0.258379 + 0.966044i \(0.583188\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.75347e6 1.39819
\(276\) 0 0
\(277\) −2.00202e6 −1.56772 −0.783860 0.620938i \(-0.786752\pi\)
−0.783860 + 0.620938i \(0.786752\pi\)
\(278\) 0 0
\(279\) −3118.30 −0.00239832
\(280\) 0 0
\(281\) 249316. 0.188358 0.0941792 0.995555i \(-0.469977\pi\)
0.0941792 + 0.995555i \(0.469977\pi\)
\(282\) 0 0
\(283\) −645136. −0.478835 −0.239417 0.970917i \(-0.576956\pi\)
−0.239417 + 0.970917i \(0.576956\pi\)
\(284\) 0 0
\(285\) 1.76673e6 1.28842
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.53663e6 1.08225
\(290\) 0 0
\(291\) −411325. −0.284743
\(292\) 0 0
\(293\) −2.00830e6 −1.36666 −0.683328 0.730112i \(-0.739468\pi\)
−0.683328 + 0.730112i \(0.739468\pi\)
\(294\) 0 0
\(295\) −4.62881e6 −3.09681
\(296\) 0 0
\(297\) 1.06709e6 0.701954
\(298\) 0 0
\(299\) 211565. 0.136857
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1.13906e6 −0.712754
\(304\) 0 0
\(305\) 5.10328e6 3.14123
\(306\) 0 0
\(307\) 1.71113e6 1.03618 0.518092 0.855325i \(-0.326642\pi\)
0.518092 + 0.855325i \(0.326642\pi\)
\(308\) 0 0
\(309\) 1.36507e6 0.813314
\(310\) 0 0
\(311\) 602050. 0.352965 0.176483 0.984304i \(-0.443528\pi\)
0.176483 + 0.984304i \(0.443528\pi\)
\(312\) 0 0
\(313\) 1.34208e6 0.774318 0.387159 0.922013i \(-0.373457\pi\)
0.387159 + 0.922013i \(0.373457\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.01803e6 0.569001 0.284500 0.958676i \(-0.408172\pi\)
0.284500 + 0.958676i \(0.408172\pi\)
\(318\) 0 0
\(319\) 1.73073e6 0.952256
\(320\) 0 0
\(321\) 1.79786e6 0.973850
\(322\) 0 0
\(323\) −2.01663e6 −1.07552
\(324\) 0 0
\(325\) 1.67838e6 0.881420
\(326\) 0 0
\(327\) 1.82689e6 0.944809
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −532371. −0.267082 −0.133541 0.991043i \(-0.542635\pi\)
−0.133541 + 0.991043i \(0.542635\pi\)
\(332\) 0 0
\(333\) 5118.09 0.00252928
\(334\) 0 0
\(335\) 2.32523e6 1.13202
\(336\) 0 0
\(337\) −234947. −0.112693 −0.0563463 0.998411i \(-0.517945\pi\)
−0.0563463 + 0.998411i \(0.517945\pi\)
\(338\) 0 0
\(339\) −2.82726e6 −1.33618
\(340\) 0 0
\(341\) 1.97197e6 0.918361
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.18302e6 0.535110
\(346\) 0 0
\(347\) −1.90054e6 −0.847330 −0.423665 0.905819i \(-0.639257\pi\)
−0.423665 + 0.905819i \(0.639257\pi\)
\(348\) 0 0
\(349\) −341162. −0.149933 −0.0749665 0.997186i \(-0.523885\pi\)
−0.0749665 + 0.997186i \(0.523885\pi\)
\(350\) 0 0
\(351\) 1.02139e6 0.442511
\(352\) 0 0
\(353\) −673122. −0.287513 −0.143756 0.989613i \(-0.545918\pi\)
−0.143756 + 0.989613i \(0.545918\pi\)
\(354\) 0 0
\(355\) −1.21299e6 −0.510842
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.43301e6 0.586833 0.293417 0.955985i \(-0.405208\pi\)
0.293417 + 0.955985i \(0.405208\pi\)
\(360\) 0 0
\(361\) −1.10055e6 −0.444469
\(362\) 0 0
\(363\) 1.27459e6 0.507694
\(364\) 0 0
\(365\) 394559. 0.155017
\(366\) 0 0
\(367\) 2.04781e6 0.793643 0.396822 0.917896i \(-0.370113\pi\)
0.396822 + 0.917896i \(0.370113\pi\)
\(368\) 0 0
\(369\) −5894.87 −0.00225376
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3.33578e6 −1.24144 −0.620719 0.784033i \(-0.713159\pi\)
−0.620719 + 0.784033i \(0.713159\pi\)
\(374\) 0 0
\(375\) 4.67766e6 1.71771
\(376\) 0 0
\(377\) 1.65662e6 0.600301
\(378\) 0 0
\(379\) 2.29135e6 0.819394 0.409697 0.912222i \(-0.365634\pi\)
0.409697 + 0.912222i \(0.365634\pi\)
\(380\) 0 0
\(381\) −1.65258e6 −0.583245
\(382\) 0 0
\(383\) −1.84422e6 −0.642414 −0.321207 0.947009i \(-0.604089\pi\)
−0.321207 + 0.947009i \(0.604089\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8822.83 0.00299454
\(388\) 0 0
\(389\) 3.66601e6 1.22834 0.614172 0.789172i \(-0.289490\pi\)
0.614172 + 0.789172i \(0.289490\pi\)
\(390\) 0 0
\(391\) −1.35035e6 −0.446688
\(392\) 0 0
\(393\) 4.67746e6 1.52767
\(394\) 0 0
\(395\) 1.15284e6 0.371773
\(396\) 0 0
\(397\) 4.59382e6 1.46284 0.731421 0.681926i \(-0.238858\pi\)
0.731421 + 0.681926i \(0.238858\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.10984e6 −0.344666 −0.172333 0.985039i \(-0.555130\pi\)
−0.172333 + 0.985039i \(0.555130\pi\)
\(402\) 0 0
\(403\) 1.88752e6 0.578934
\(404\) 0 0
\(405\) 5.70089e6 1.72705
\(406\) 0 0
\(407\) −3.23660e6 −0.968507
\(408\) 0 0
\(409\) −3.60689e6 −1.06617 −0.533083 0.846063i \(-0.678967\pi\)
−0.533083 + 0.846063i \(0.678967\pi\)
\(410\) 0 0
\(411\) 1.43115e6 0.417908
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 7.92314e6 2.25828
\(416\) 0 0
\(417\) 2.38492e6 0.671636
\(418\) 0 0
\(419\) −5.51790e6 −1.53546 −0.767731 0.640773i \(-0.778614\pi\)
−0.767731 + 0.640773i \(0.778614\pi\)
\(420\) 0 0
\(421\) −2.59092e6 −0.712440 −0.356220 0.934402i \(-0.615935\pi\)
−0.356220 + 0.934402i \(0.615935\pi\)
\(422\) 0 0
\(423\) 3065.51 0.000833014 0
\(424\) 0 0
\(425\) −1.07126e7 −2.87688
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.18082e6 −0.309772
\(430\) 0 0
\(431\) −3.45364e6 −0.895537 −0.447769 0.894150i \(-0.647781\pi\)
−0.447769 + 0.894150i \(0.647781\pi\)
\(432\) 0 0
\(433\) −397522. −0.101892 −0.0509461 0.998701i \(-0.516224\pi\)
−0.0509461 + 0.998701i \(0.516224\pi\)
\(434\) 0 0
\(435\) 9.26338e6 2.34718
\(436\) 0 0
\(437\) 921077. 0.230724
\(438\) 0 0
\(439\) −1.60903e6 −0.398476 −0.199238 0.979951i \(-0.563847\pi\)
−0.199238 + 0.979951i \(0.563847\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.08182e6 −1.71449 −0.857246 0.514906i \(-0.827827\pi\)
−0.857246 + 0.514906i \(0.827827\pi\)
\(444\) 0 0
\(445\) −9.37906e6 −2.24522
\(446\) 0 0
\(447\) −7.76531e6 −1.83819
\(448\) 0 0
\(449\) −6.46156e6 −1.51259 −0.756295 0.654230i \(-0.772993\pi\)
−0.756295 + 0.654230i \(0.772993\pi\)
\(450\) 0 0
\(451\) 3.72782e6 0.863006
\(452\) 0 0
\(453\) −3.26449e6 −0.747429
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.37073e6 −0.754976 −0.377488 0.926015i \(-0.623212\pi\)
−0.377488 + 0.926015i \(0.623212\pi\)
\(458\) 0 0
\(459\) −6.51920e6 −1.44432
\(460\) 0 0
\(461\) −6.20821e6 −1.36055 −0.680274 0.732958i \(-0.738139\pi\)
−0.680274 + 0.732958i \(0.738139\pi\)
\(462\) 0 0
\(463\) −5.82940e6 −1.26378 −0.631890 0.775058i \(-0.717721\pi\)
−0.631890 + 0.775058i \(0.717721\pi\)
\(464\) 0 0
\(465\) 1.05545e7 2.26363
\(466\) 0 0
\(467\) 174742. 0.0370770 0.0185385 0.999828i \(-0.494099\pi\)
0.0185385 + 0.999828i \(0.494099\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −114964. −0.0238787
\(472\) 0 0
\(473\) −5.57942e6 −1.14666
\(474\) 0 0
\(475\) 7.30707e6 1.48597
\(476\) 0 0
\(477\) −3851.93 −0.000775143 0
\(478\) 0 0
\(479\) −371746. −0.0740299 −0.0370150 0.999315i \(-0.511785\pi\)
−0.0370150 + 0.999315i \(0.511785\pi\)
\(480\) 0 0
\(481\) −3.09800e6 −0.610546
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.55451e6 −0.493121
\(486\) 0 0
\(487\) −8.71307e6 −1.66475 −0.832375 0.554213i \(-0.813019\pi\)
−0.832375 + 0.554213i \(0.813019\pi\)
\(488\) 0 0
\(489\) −6.04519e6 −1.14324
\(490\) 0 0
\(491\) 6.88530e6 1.28890 0.644450 0.764646i \(-0.277086\pi\)
0.644450 + 0.764646i \(0.277086\pi\)
\(492\) 0 0
\(493\) −1.05737e7 −1.95933
\(494\) 0 0
\(495\) 12115.3 0.00222239
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −45442.7 −0.00816982 −0.00408491 0.999992i \(-0.501300\pi\)
−0.00408491 + 0.999992i \(0.501300\pi\)
\(500\) 0 0
\(501\) −2.62020e6 −0.466381
\(502\) 0 0
\(503\) 623417. 0.109865 0.0549324 0.998490i \(-0.482506\pi\)
0.0549324 + 0.998490i \(0.482506\pi\)
\(504\) 0 0
\(505\) −7.07406e6 −1.23436
\(506\) 0 0
\(507\) 4.65233e6 0.803804
\(508\) 0 0
\(509\) −7.69092e6 −1.31578 −0.657891 0.753113i \(-0.728551\pi\)
−0.657891 + 0.753113i \(0.728551\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.44676e6 0.746020
\(514\) 0 0
\(515\) 8.47768e6 1.40851
\(516\) 0 0
\(517\) −1.93858e6 −0.318976
\(518\) 0 0
\(519\) 5.00730e6 0.815991
\(520\) 0 0
\(521\) −7.32268e6 −1.18189 −0.590943 0.806713i \(-0.701244\pi\)
−0.590943 + 0.806713i \(0.701244\pi\)
\(522\) 0 0
\(523\) −5.17976e6 −0.828047 −0.414024 0.910266i \(-0.635877\pi\)
−0.414024 + 0.910266i \(0.635877\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.20474e7 −1.88959
\(528\) 0 0
\(529\) −5.81958e6 −0.904175
\(530\) 0 0
\(531\) −21298.8 −0.00327807
\(532\) 0 0
\(533\) 3.56819e6 0.544038
\(534\) 0 0
\(535\) 1.11655e7 1.68653
\(536\) 0 0
\(537\) 9.52993e6 1.42611
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 9.31804e6 1.36877 0.684387 0.729119i \(-0.260070\pi\)
0.684387 + 0.729119i \(0.260070\pi\)
\(542\) 0 0
\(543\) 4.07224e6 0.592698
\(544\) 0 0
\(545\) 1.13458e7 1.63623
\(546\) 0 0
\(547\) 1.26417e7 1.80650 0.903250 0.429114i \(-0.141174\pi\)
0.903250 + 0.429114i \(0.141174\pi\)
\(548\) 0 0
\(549\) 23482.0 0.00332509
\(550\) 0 0
\(551\) 7.21232e6 1.01204
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.73232e7 −2.38724
\(556\) 0 0
\(557\) −3.84693e6 −0.525384 −0.262692 0.964880i \(-0.584610\pi\)
−0.262692 + 0.964880i \(0.584610\pi\)
\(558\) 0 0
\(559\) −5.34050e6 −0.722856
\(560\) 0 0
\(561\) 7.53680e6 1.01107
\(562\) 0 0
\(563\) −3.69193e6 −0.490888 −0.245444 0.969411i \(-0.578934\pi\)
−0.245444 + 0.969411i \(0.578934\pi\)
\(564\) 0 0
\(565\) −1.75585e7 −2.31402
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.64173e6 −0.860005 −0.430002 0.902828i \(-0.641487\pi\)
−0.430002 + 0.902828i \(0.641487\pi\)
\(570\) 0 0
\(571\) 292599. 0.0375562 0.0187781 0.999824i \(-0.494022\pi\)
0.0187781 + 0.999824i \(0.494022\pi\)
\(572\) 0 0
\(573\) −1.09533e7 −1.39367
\(574\) 0 0
\(575\) 4.89287e6 0.617154
\(576\) 0 0
\(577\) −3.55569e6 −0.444615 −0.222307 0.974977i \(-0.571359\pi\)
−0.222307 + 0.974977i \(0.571359\pi\)
\(578\) 0 0
\(579\) −8.04267e6 −0.997020
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.43590e6 0.296816
\(584\) 0 0
\(585\) 11596.5 0.00140099
\(586\) 0 0
\(587\) 2.64810e6 0.317204 0.158602 0.987343i \(-0.449301\pi\)
0.158602 + 0.987343i \(0.449301\pi\)
\(588\) 0 0
\(589\) 8.21758e6 0.976013
\(590\) 0 0
\(591\) −2.22055e6 −0.261512
\(592\) 0 0
\(593\) −1.05356e6 −0.123034 −0.0615168 0.998106i \(-0.519594\pi\)
−0.0615168 + 0.998106i \(0.519594\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.53380e7 1.76130
\(598\) 0 0
\(599\) 9.19012e6 1.04654 0.523268 0.852168i \(-0.324713\pi\)
0.523268 + 0.852168i \(0.324713\pi\)
\(600\) 0 0
\(601\) −3.46924e6 −0.391785 −0.195893 0.980625i \(-0.562760\pi\)
−0.195893 + 0.980625i \(0.562760\pi\)
\(602\) 0 0
\(603\) 10699.2 0.00119828
\(604\) 0 0
\(605\) 7.91574e6 0.879231
\(606\) 0 0
\(607\) 744150. 0.0819764 0.0409882 0.999160i \(-0.486949\pi\)
0.0409882 + 0.999160i \(0.486949\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.85557e6 −0.201082
\(612\) 0 0
\(613\) 1.14578e7 1.23154 0.615772 0.787925i \(-0.288844\pi\)
0.615772 + 0.787925i \(0.288844\pi\)
\(614\) 0 0
\(615\) 1.99524e7 2.12719
\(616\) 0 0
\(617\) −3.90052e6 −0.412486 −0.206243 0.978501i \(-0.566124\pi\)
−0.206243 + 0.978501i \(0.566124\pi\)
\(618\) 0 0
\(619\) −2.65029e6 −0.278014 −0.139007 0.990291i \(-0.544391\pi\)
−0.139007 + 0.990291i \(0.544391\pi\)
\(620\) 0 0
\(621\) 2.97758e6 0.309838
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9.58083e6 0.981077
\(626\) 0 0
\(627\) −5.14087e6 −0.522237
\(628\) 0 0
\(629\) 1.97735e7 1.99277
\(630\) 0 0
\(631\) −8.97599e6 −0.897447 −0.448723 0.893671i \(-0.648121\pi\)
−0.448723 + 0.893671i \(0.648121\pi\)
\(632\) 0 0
\(633\) 3.78197e6 0.375153
\(634\) 0 0
\(635\) −1.02633e7 −1.01007
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5581.39 −0.000540742 0
\(640\) 0 0
\(641\) −2.87152e6 −0.276036 −0.138018 0.990430i \(-0.544073\pi\)
−0.138018 + 0.990430i \(0.544073\pi\)
\(642\) 0 0
\(643\) −1.38761e7 −1.32354 −0.661772 0.749705i \(-0.730195\pi\)
−0.661772 + 0.749705i \(0.730195\pi\)
\(644\) 0 0
\(645\) −2.98626e7 −2.82637
\(646\) 0 0
\(647\) 7.24853e6 0.680752 0.340376 0.940289i \(-0.389446\pi\)
0.340376 + 0.940289i \(0.389446\pi\)
\(648\) 0 0
\(649\) 1.34690e7 1.25523
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.23719e7 −1.13541 −0.567706 0.823231i \(-0.692169\pi\)
−0.567706 + 0.823231i \(0.692169\pi\)
\(654\) 0 0
\(655\) 2.90491e7 2.64563
\(656\) 0 0
\(657\) 1815.50 0.000164090 0
\(658\) 0 0
\(659\) −572294. −0.0513341 −0.0256670 0.999671i \(-0.508171\pi\)
−0.0256670 + 0.999671i \(0.508171\pi\)
\(660\) 0 0
\(661\) −6.73679e6 −0.599721 −0.299861 0.953983i \(-0.596940\pi\)
−0.299861 + 0.953983i \(0.596940\pi\)
\(662\) 0 0
\(663\) 7.21405e6 0.637376
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.82942e6 0.420320
\(668\) 0 0
\(669\) −1.24136e7 −1.07234
\(670\) 0 0
\(671\) −1.48496e7 −1.27324
\(672\) 0 0
\(673\) −1.22608e7 −1.04348 −0.521738 0.853106i \(-0.674716\pi\)
−0.521738 + 0.853106i \(0.674716\pi\)
\(674\) 0 0
\(675\) 2.36217e7 1.99550
\(676\) 0 0
\(677\) 462085. 0.0387481 0.0193741 0.999812i \(-0.493833\pi\)
0.0193741 + 0.999812i \(0.493833\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −406819. −0.0336151
\(682\) 0 0
\(683\) −1.15378e7 −0.946392 −0.473196 0.880957i \(-0.656900\pi\)
−0.473196 + 0.880957i \(0.656900\pi\)
\(684\) 0 0
\(685\) 8.88807e6 0.723738
\(686\) 0 0
\(687\) −1.18612e7 −0.958816
\(688\) 0 0
\(689\) 2.33159e6 0.187113
\(690\) 0 0
\(691\) −3.09921e6 −0.246920 −0.123460 0.992350i \(-0.539399\pi\)
−0.123460 + 0.992350i \(0.539399\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.48114e7 1.16315
\(696\) 0 0
\(697\) −2.27746e7 −1.77569
\(698\) 0 0
\(699\) −1.02455e7 −0.793122
\(700\) 0 0
\(701\) 5.83889e6 0.448782 0.224391 0.974499i \(-0.427961\pi\)
0.224391 + 0.974499i \(0.427961\pi\)
\(702\) 0 0
\(703\) −1.34876e7 −1.02931
\(704\) 0 0
\(705\) −1.03758e7 −0.786232
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 75435.7 0.00563587 0.00281794 0.999996i \(-0.499103\pi\)
0.00281794 + 0.999996i \(0.499103\pi\)
\(710\) 0 0
\(711\) 5304.63 0.000393533 0
\(712\) 0 0
\(713\) 5.50255e6 0.405359
\(714\) 0 0
\(715\) −7.33343e6 −0.536466
\(716\) 0 0
\(717\) −1.50351e7 −1.09222
\(718\) 0 0
\(719\) 1.30869e7 0.944091 0.472045 0.881574i \(-0.343516\pi\)
0.472045 + 0.881574i \(0.343516\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 546096. 0.0388529
\(724\) 0 0
\(725\) 3.83126e7 2.70705
\(726\) 0 0
\(727\) 3.58160e6 0.251328 0.125664 0.992073i \(-0.459894\pi\)
0.125664 + 0.992073i \(0.459894\pi\)
\(728\) 0 0
\(729\) 1.43751e7 1.00182
\(730\) 0 0
\(731\) 3.40866e7 2.35934
\(732\) 0 0
\(733\) 9.23826e6 0.635083 0.317541 0.948244i \(-0.397143\pi\)
0.317541 + 0.948244i \(0.397143\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.76599e6 −0.458842
\(738\) 0 0
\(739\) −1.90444e7 −1.28279 −0.641397 0.767210i \(-0.721645\pi\)
−0.641397 + 0.767210i \(0.721645\pi\)
\(740\) 0 0
\(741\) −4.92073e6 −0.329218
\(742\) 0 0
\(743\) 9.30669e6 0.618477 0.309238 0.950985i \(-0.399926\pi\)
0.309238 + 0.950985i \(0.399926\pi\)
\(744\) 0 0
\(745\) −4.82260e7 −3.18340
\(746\) 0 0
\(747\) 36457.1 0.00239046
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.56243e7 1.65788 0.828939 0.559339i \(-0.188945\pi\)
0.828939 + 0.559339i \(0.188945\pi\)
\(752\) 0 0
\(753\) 2.04971e7 1.31736
\(754\) 0 0
\(755\) −2.02739e7 −1.29441
\(756\) 0 0
\(757\) 5.60956e6 0.355786 0.177893 0.984050i \(-0.443072\pi\)
0.177893 + 0.984050i \(0.443072\pi\)
\(758\) 0 0
\(759\) −3.44236e6 −0.216896
\(760\) 0 0
\(761\) 2.83985e7 1.77760 0.888799 0.458298i \(-0.151541\pi\)
0.888799 + 0.458298i \(0.151541\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −74016.5 −0.00457272
\(766\) 0 0
\(767\) 1.28922e7 0.791297
\(768\) 0 0
\(769\) 2.41205e6 0.147086 0.0735429 0.997292i \(-0.476569\pi\)
0.0735429 + 0.997292i \(0.476569\pi\)
\(770\) 0 0
\(771\) −8.25123e6 −0.499899
\(772\) 0 0
\(773\) −5.93891e6 −0.357485 −0.178743 0.983896i \(-0.557203\pi\)
−0.178743 + 0.983896i \(0.557203\pi\)
\(774\) 0 0
\(775\) 4.36527e7 2.61070
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.55346e7 0.917183
\(780\) 0 0
\(781\) 3.52958e6 0.207060
\(782\) 0 0
\(783\) 2.33154e7 1.35906
\(784\) 0 0
\(785\) −713979. −0.0413534
\(786\) 0 0
\(787\) −2.62637e7 −1.51154 −0.755769 0.654839i \(-0.772737\pi\)
−0.755769 + 0.654839i \(0.772737\pi\)
\(788\) 0 0
\(789\) 2.01619e7 1.15302
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.42137e7 −0.802648
\(794\) 0 0
\(795\) 1.30376e7 0.731611
\(796\) 0 0
\(797\) 9.33689e6 0.520663 0.260331 0.965519i \(-0.416168\pi\)
0.260331 + 0.965519i \(0.416168\pi\)
\(798\) 0 0
\(799\) 1.18435e7 0.656315
\(800\) 0 0
\(801\) −43156.3 −0.00237664
\(802\) 0 0
\(803\) −1.14809e6 −0.0628332
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.92017e6 −0.374053
\(808\) 0 0
\(809\) −3.43772e7 −1.84671 −0.923357 0.383942i \(-0.874566\pi\)
−0.923357 + 0.383942i \(0.874566\pi\)
\(810\) 0 0
\(811\) 2.02626e7 1.08179 0.540896 0.841090i \(-0.318085\pi\)
0.540896 + 0.841090i \(0.318085\pi\)
\(812\) 0 0
\(813\) 9.73008e6 0.516285
\(814\) 0 0
\(815\) −3.75433e7 −1.97988
\(816\) 0 0
\(817\) −2.32506e7 −1.21865
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.73641e7 0.899073 0.449537 0.893262i \(-0.351589\pi\)
0.449537 + 0.893262i \(0.351589\pi\)
\(822\) 0 0
\(823\) −2.65094e7 −1.36427 −0.682136 0.731226i \(-0.738949\pi\)
−0.682136 + 0.731226i \(0.738949\pi\)
\(824\) 0 0
\(825\) −2.73089e7 −1.39691
\(826\) 0 0
\(827\) −2.30816e6 −0.117355 −0.0586775 0.998277i \(-0.518688\pi\)
−0.0586775 + 0.998277i \(0.518688\pi\)
\(828\) 0 0
\(829\) 6.14314e6 0.310459 0.155230 0.987878i \(-0.450388\pi\)
0.155230 + 0.987878i \(0.450388\pi\)
\(830\) 0 0
\(831\) 3.11798e7 1.56628
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.62726e7 −0.807684
\(836\) 0 0
\(837\) 2.65651e7 1.31068
\(838\) 0 0
\(839\) −1.04628e7 −0.513150 −0.256575 0.966524i \(-0.582594\pi\)
−0.256575 + 0.966524i \(0.582594\pi\)
\(840\) 0 0
\(841\) 1.73047e7 0.843671
\(842\) 0 0
\(843\) −3.88290e6 −0.188186
\(844\) 0 0
\(845\) 2.88930e7 1.39204
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.00475e7 0.478396
\(850\) 0 0
\(851\) −9.03136e6 −0.427493
\(852\) 0 0
\(853\) 3.45134e7 1.62411 0.812054 0.583583i \(-0.198350\pi\)
0.812054 + 0.583583i \(0.198350\pi\)
\(854\) 0 0
\(855\) 50486.8 0.00236191
\(856\) 0 0
\(857\) 1.35665e7 0.630978 0.315489 0.948929i \(-0.397831\pi\)
0.315489 + 0.948929i \(0.397831\pi\)
\(858\) 0 0
\(859\) −3.12783e7 −1.44630 −0.723152 0.690688i \(-0.757308\pi\)
−0.723152 + 0.690688i \(0.757308\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.98071e7 −0.905305 −0.452653 0.891687i \(-0.649522\pi\)
−0.452653 + 0.891687i \(0.649522\pi\)
\(864\) 0 0
\(865\) 3.10976e7 1.41314
\(866\) 0 0
\(867\) −2.39318e7 −1.08125
\(868\) 0 0
\(869\) −3.35457e6 −0.150691
\(870\) 0 0
\(871\) −6.47626e6 −0.289254
\(872\) 0 0
\(873\) −11754.2 −0.000521984 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.74647e6 −0.0766765 −0.0383383 0.999265i \(-0.512206\pi\)
−0.0383383 + 0.999265i \(0.512206\pi\)
\(878\) 0 0
\(879\) 3.12776e7 1.36540
\(880\) 0 0
\(881\) −1.17415e7 −0.509663 −0.254832 0.966985i \(-0.582020\pi\)
−0.254832 + 0.966985i \(0.582020\pi\)
\(882\) 0 0
\(883\) −4.26514e7 −1.84091 −0.920453 0.390854i \(-0.872180\pi\)
−0.920453 + 0.390854i \(0.872180\pi\)
\(884\) 0 0
\(885\) 7.20899e7 3.09397
\(886\) 0 0
\(887\) 4.28737e7 1.82971 0.914854 0.403785i \(-0.132306\pi\)
0.914854 + 0.403785i \(0.132306\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.65886e7 −0.700026
\(892\) 0 0
\(893\) −8.07846e6 −0.339000
\(894\) 0 0
\(895\) 5.91851e7 2.46976
\(896\) 0 0
\(897\) −3.29495e6 −0.136731
\(898\) 0 0
\(899\) 4.30866e7 1.77805
\(900\) 0 0
\(901\) −1.48817e7 −0.610719
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.52904e7 1.02644
\(906\) 0 0
\(907\) −1.99065e7 −0.803482 −0.401741 0.915753i \(-0.631595\pi\)
−0.401741 + 0.915753i \(0.631595\pi\)
\(908\) 0 0
\(909\) −32550.2 −0.00130660
\(910\) 0 0
\(911\) −1.12063e7 −0.447371 −0.223685 0.974661i \(-0.571809\pi\)
−0.223685 + 0.974661i \(0.571809\pi\)
\(912\) 0 0
\(913\) −2.30549e7 −0.915348
\(914\) 0 0
\(915\) −7.94794e7 −3.13835
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.38620e7 1.32259 0.661293 0.750128i \(-0.270008\pi\)
0.661293 + 0.750128i \(0.270008\pi\)
\(920\) 0 0
\(921\) −2.66494e7 −1.03523
\(922\) 0 0
\(923\) 3.37844e6 0.130530
\(924\) 0 0
\(925\) −7.16474e7 −2.75325
\(926\) 0 0
\(927\) 39008.7 0.00149095
\(928\) 0 0
\(929\) 2.29019e7 0.870627 0.435313 0.900279i \(-0.356638\pi\)
0.435313 + 0.900279i \(0.356638\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −9.37644e6 −0.352642
\(934\) 0 0
\(935\) 4.68069e7 1.75098
\(936\) 0 0
\(937\) −2.97781e7 −1.10802 −0.554011 0.832510i \(-0.686903\pi\)
−0.554011 + 0.832510i \(0.686903\pi\)
\(938\) 0 0
\(939\) −2.09019e7 −0.773608
\(940\) 0 0
\(941\) 1.30322e7 0.479782 0.239891 0.970800i \(-0.422888\pi\)
0.239891 + 0.970800i \(0.422888\pi\)
\(942\) 0 0
\(943\) 1.04021e7 0.380926
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.66683e7 1.69101 0.845506 0.533966i \(-0.179299\pi\)
0.845506 + 0.533966i \(0.179299\pi\)
\(948\) 0 0
\(949\) −1.09893e6 −0.0396100
\(950\) 0 0
\(951\) −1.58550e7 −0.568480
\(952\) 0 0
\(953\) 2.00948e7 0.716724 0.358362 0.933583i \(-0.383335\pi\)
0.358362 + 0.933583i \(0.383335\pi\)
\(954\) 0 0
\(955\) −6.80251e7 −2.41357
\(956\) 0 0
\(957\) −2.69548e7 −0.951383
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.04630e7 0.714760
\(962\) 0 0
\(963\) 51376.2 0.00178524
\(964\) 0 0
\(965\) −4.99485e7 −1.72665
\(966\) 0 0
\(967\) 7.33633e6 0.252297 0.126149 0.992011i \(-0.459738\pi\)
0.126149 + 0.992011i \(0.459738\pi\)
\(968\) 0 0
\(969\) 3.14074e7 1.07454
\(970\) 0 0
\(971\) −4.01630e7 −1.36703 −0.683514 0.729937i \(-0.739549\pi\)
−0.683514 + 0.729937i \(0.739549\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −2.61394e7 −0.880613
\(976\) 0 0
\(977\) 2.65602e7 0.890216 0.445108 0.895477i \(-0.353165\pi\)
0.445108 + 0.895477i \(0.353165\pi\)
\(978\) 0 0
\(979\) 2.72914e7 0.910057
\(980\) 0 0
\(981\) 52206.0 0.00173200
\(982\) 0 0
\(983\) −2.77362e7 −0.915510 −0.457755 0.889078i \(-0.651346\pi\)
−0.457755 + 0.889078i \(0.651346\pi\)
\(984\) 0 0
\(985\) −1.37906e7 −0.452890
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.55687e7 −0.506131
\(990\) 0 0
\(991\) −2.35437e7 −0.761536 −0.380768 0.924671i \(-0.624340\pi\)
−0.380768 + 0.924671i \(0.624340\pi\)
\(992\) 0 0
\(993\) 8.29123e6 0.266837
\(994\) 0 0
\(995\) 9.52559e7 3.05024
\(996\) 0 0
\(997\) 4.05582e7 1.29223 0.646117 0.763239i \(-0.276392\pi\)
0.646117 + 0.763239i \(0.276392\pi\)
\(998\) 0 0
\(999\) −4.36015e7 −1.38225
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.6.a.d.1.1 2
4.3 odd 2 784.6.a.u.1.2 2
7.2 even 3 392.6.i.i.361.2 4
7.3 odd 6 392.6.i.j.177.1 4
7.4 even 3 392.6.i.i.177.2 4
7.5 odd 6 392.6.i.j.361.1 4
7.6 odd 2 56.6.a.e.1.2 2
21.20 even 2 504.6.a.i.1.1 2
28.27 even 2 112.6.a.i.1.1 2
56.13 odd 2 448.6.a.v.1.1 2
56.27 even 2 448.6.a.t.1.2 2
84.83 odd 2 1008.6.a.bd.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.a.e.1.2 2 7.6 odd 2
112.6.a.i.1.1 2 28.27 even 2
392.6.a.d.1.1 2 1.1 even 1 trivial
392.6.i.i.177.2 4 7.4 even 3
392.6.i.i.361.2 4 7.2 even 3
392.6.i.j.177.1 4 7.3 odd 6
392.6.i.j.361.1 4 7.5 odd 6
448.6.a.t.1.2 2 56.27 even 2
448.6.a.v.1.1 2 56.13 odd 2
504.6.a.i.1.1 2 21.20 even 2
784.6.a.u.1.2 2 4.3 odd 2
1008.6.a.bd.1.1 2 84.83 odd 2