Defining parameters
Level: | \( N \) | \(=\) | \( 392 = 2^{3} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 392.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(392))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 296 | 51 | 245 |
Cusp forms | 264 | 51 | 213 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(11\) |
\(+\) | \(-\) | \(-\) | \(14\) |
\(-\) | \(+\) | \(-\) | \(13\) |
\(-\) | \(-\) | \(+\) | \(13\) |
Plus space | \(+\) | \(24\) | |
Minus space | \(-\) | \(27\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(392))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(392))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(392)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 2}\)