Properties

Label 392.4.a.j
Level $392$
Weight $4$
Character orbit 392.a
Self dual yes
Analytic conductor $23.129$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,4,Mod(1,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 392.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-1,0,-13,0,0,0,50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1287487223\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1929.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 10x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( - \beta_1 - 4) q^{5} + ( - 2 \beta_{2} + 3 \beta_1 + 15) q^{9} + ( - 3 \beta_{2} + \beta_1 - 5) q^{11} + ( - 6 \beta_{2} - \beta_1 - 25) q^{13} + ( - 11 \beta_{2} - \beta_1 - 17) q^{15}+ \cdots + ( - 100 \beta_{2} - 11 \beta_1 + 335) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} - 13 q^{5} + 50 q^{9} - 11 q^{11} - 70 q^{13} - 41 q^{15} - 97 q^{17} + 81 q^{19} + 191 q^{23} + 12 q^{25} - 115 q^{27} - 162 q^{29} - 597 q^{31} - 343 q^{33} + 217 q^{37} - 806 q^{39} - 698 q^{41}+ \cdots + 1094 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 10x + 13 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} + 2\nu - 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{2} - \beta _1 + 29 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.36922
−3.27144
2.90222
0 −8.51203 0 −8.47688 0 0 0 45.4547 0
1.2 0 −0.138208 0 10.0858 0 0 0 −26.9809 0
1.3 0 7.65024 0 −14.6089 0 0 0 31.5262 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 392.4.a.j 3
4.b odd 2 1 784.4.a.bd 3
7.b odd 2 1 392.4.a.k 3
7.c even 3 2 392.4.i.n 6
7.d odd 6 2 56.4.i.a 6
21.g even 6 2 504.4.s.i 6
28.d even 2 1 784.4.a.bc 3
28.f even 6 2 112.4.i.f 6
56.j odd 6 2 448.4.i.l 6
56.m even 6 2 448.4.i.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.4.i.a 6 7.d odd 6 2
112.4.i.f 6 28.f even 6 2
392.4.a.j 3 1.a even 1 1 trivial
392.4.a.k 3 7.b odd 2 1
392.4.i.n 6 7.c even 3 2
448.4.i.k 6 56.m even 6 2
448.4.i.l 6 56.j odd 6 2
504.4.s.i 6 21.g even 6 2
784.4.a.bc 3 28.d even 2 1
784.4.a.bd 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(392))\):

\( T_{3}^{3} + T_{3}^{2} - 65T_{3} - 9 \) Copy content Toggle raw display
\( T_{5}^{3} + 13T_{5}^{2} - 109T_{5} - 1249 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} - 65T - 9 \) Copy content Toggle raw display
$5$ \( T^{3} + 13 T^{2} + \cdots - 1249 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 11 T^{2} + \cdots - 8099 \) Copy content Toggle raw display
$13$ \( T^{3} + 70 T^{2} + \cdots - 17752 \) Copy content Toggle raw display
$17$ \( T^{3} + 97 T^{2} + \cdots - 586557 \) Copy content Toggle raw display
$19$ \( T^{3} - 81 T^{2} + \cdots + 123377 \) Copy content Toggle raw display
$23$ \( T^{3} - 191 T^{2} + \cdots + 3492279 \) Copy content Toggle raw display
$29$ \( T^{3} + 162 T^{2} + \cdots - 1324296 \) Copy content Toggle raw display
$31$ \( T^{3} + 597 T^{2} + \cdots + 4663139 \) Copy content Toggle raw display
$37$ \( T^{3} - 217 T^{2} + \cdots + 15110373 \) Copy content Toggle raw display
$41$ \( T^{3} + 698 T^{2} + \cdots - 6465192 \) Copy content Toggle raw display
$43$ \( T^{3} + 308 T^{2} + \cdots + 38848 \) Copy content Toggle raw display
$47$ \( T^{3} + 139 T^{2} + \cdots - 18709731 \) Copy content Toggle raw display
$53$ \( T^{3} - 197 T^{2} + \cdots - 2914839 \) Copy content Toggle raw display
$59$ \( T^{3} + 353 T^{2} + \cdots - 37291113 \) Copy content Toggle raw display
$61$ \( T^{3} + 449 T^{2} + \cdots + 9942147 \) Copy content Toggle raw display
$67$ \( T^{3} + 519 T^{2} + \cdots - 21323807 \) Copy content Toggle raw display
$71$ \( T^{3} - 224 T^{2} + \cdots + 7551488 \) Copy content Toggle raw display
$73$ \( T^{3} + 1701 T^{2} + \cdots + 72721831 \) Copy content Toggle raw display
$79$ \( T^{3} - 1143 T^{2} + \cdots + 297161663 \) Copy content Toggle raw display
$83$ \( T^{3} - 1380 T^{2} + \cdots - 4797376 \) Copy content Toggle raw display
$89$ \( T^{3} + 1749 T^{2} + \cdots - 155620521 \) Copy content Toggle raw display
$97$ \( T^{3} + 2602 T^{2} + \cdots + 528741144 \) Copy content Toggle raw display
show more
show less