Properties

Label 392.3.k.o
Level 392
Weight 3
Character orbit 392.k
Analytic conductor 10.681
Analytic rank 0
Dimension 16
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 392.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.6812263629\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{2} + ( -\beta_{1} + \beta_{2} - \beta_{8} - \beta_{10} ) q^{3} + ( -\beta_{2} + \beta_{3} ) q^{4} + ( -1 + \beta_{1} + \beta_{2} - \beta_{9} - \beta_{14} ) q^{5} + ( -3 - \beta_{4} - \beta_{6} - \beta_{7} - \beta_{14} - \beta_{15} ) q^{6} + ( 1 - \beta_{4} - \beta_{7} - \beta_{8} - \beta_{12} - \beta_{14} - \beta_{15} ) q^{8} + ( -6 + \beta_{1} + 6 \beta_{2} - \beta_{4} - \beta_{5} + \beta_{6} + \beta_{9} - \beta_{10} + \beta_{11} ) q^{9} +O(q^{10})\) \( q -\beta_{1} q^{2} + ( -\beta_{1} + \beta_{2} - \beta_{8} - \beta_{10} ) q^{3} + ( -\beta_{2} + \beta_{3} ) q^{4} + ( -1 + \beta_{1} + \beta_{2} - \beta_{9} - \beta_{14} ) q^{5} + ( -3 - \beta_{4} - \beta_{6} - \beta_{7} - \beta_{14} - \beta_{15} ) q^{6} + ( 1 - \beta_{4} - \beta_{7} - \beta_{8} - \beta_{12} - \beta_{14} - \beta_{15} ) q^{8} + ( -6 + \beta_{1} + 6 \beta_{2} - \beta_{4} - \beta_{5} + \beta_{6} + \beta_{9} - \beta_{10} + \beta_{11} ) q^{9} + ( -\beta_{1} - 2 \beta_{2} - \beta_{3} - \beta_{7} - \beta_{8} - 2 \beta_{10} + \beta_{13} + \beta_{15} ) q^{10} + ( 2 \beta_{1} + 4 \beta_{2} + \beta_{5} + 2 \beta_{8} - \beta_{13} - \beta_{15} ) q^{11} + ( -3 + 3 \beta_{1} + 3 \beta_{2} - 2 \beta_{4} + 2 \beta_{5} - \beta_{6} + \beta_{9} + \beta_{10} - 2 \beta_{11} - \beta_{12} + \beta_{13} ) q^{12} + ( 1 + \beta_{3} - 2 \beta_{4} + \beta_{7} + \beta_{8} - \beta_{9} - 2 \beta_{11} + \beta_{14} - 2 \beta_{15} ) q^{13} + ( -1 + \beta_{3} + 3 \beta_{4} + \beta_{6} + 3 \beta_{8} - \beta_{9} + 3 \beta_{11} + 2 \beta_{12} + 3 \beta_{15} ) q^{15} + ( 10 - 2 \beta_{1} - 10 \beta_{2} - \beta_{4} + 2 \beta_{5} - \beta_{6} - \beta_{9} + \beta_{10} - 2 \beta_{11} + \beta_{14} ) q^{16} + ( 4 \beta_{1} + 10 \beta_{2} + 4 \beta_{8} + 4 \beta_{10} ) q^{17} + ( 6 \beta_{1} + 3 \beta_{2} - \beta_{3} + 2 \beta_{5} - 2 \beta_{7} + 6 \beta_{8} + 3 \beta_{10} + \beta_{13} ) q^{18} + ( -7 + \beta_{1} + 7 \beta_{2} - \beta_{6} + \beta_{10} ) q^{19} + ( -13 - \beta_{3} + 3 \beta_{6} + 2 \beta_{7} - \beta_{8} + \beta_{9} + 2 \beta_{11} + \beta_{12} + 2 \beta_{14} ) q^{20} + ( 11 - 3 \beta_{3} - 2 \beta_{4} - 5 \beta_{6} + 3 \beta_{8} + 3 \beta_{9} - 2 \beta_{11} - \beta_{12} - 2 \beta_{15} ) q^{22} + ( -1 - 3 \beta_{1} + \beta_{2} - \beta_{4} + \beta_{5} - \beta_{6} - 3 \beta_{9} + \beta_{10} - \beta_{11} + 2 \beta_{12} - 2 \beta_{13} - 2 \beta_{14} ) q^{23} + ( 6 \beta_{1} - 4 \beta_{3} + 4 \beta_{5} + 4 \beta_{7} + 6 \beta_{8} + 2 \beta_{10} - 2 \beta_{13} ) q^{24} + ( \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{5} + \beta_{8} - \beta_{10} + \beta_{15} ) q^{25} + ( -6 + 3 \beta_{1} + 6 \beta_{2} - \beta_{4} + 4 \beta_{5} - 2 \beta_{6} - \beta_{9} + 2 \beta_{10} - 4 \beta_{11} - \beta_{12} + \beta_{13} - 7 \beta_{14} ) q^{26} + ( -4 - 2 \beta_{4} + 4 \beta_{6} + 8 \beta_{8} + 2 \beta_{11} - 2 \beta_{12} - 2 \beta_{15} ) q^{27} + ( -2 + 6 \beta_{3} + 2 \beta_{4} + 4 \beta_{6} + 2 \beta_{7} + 2 \beta_{8} - 6 \beta_{9} + 2 \beta_{11} + 2 \beta_{12} + 2 \beta_{14} + 2 \beta_{15} ) q^{29} + ( -9 - 3 \beta_{1} + 9 \beta_{2} - 6 \beta_{5} + 3 \beta_{6} + 5 \beta_{9} - 3 \beta_{10} + 6 \beta_{11} - 3 \beta_{12} + 3 \beta_{13} + 6 \beta_{14} ) q^{30} + ( 6 \beta_{3} + 6 \beta_{7} + 6 \beta_{10} ) q^{31} + ( -6 \beta_{1} + 4 \beta_{2} + \beta_{3} + 2 \beta_{5} + 7 \beta_{7} - 6 \beta_{8} + \beta_{10} + \beta_{15} ) q^{32} + ( -4 + 8 \beta_{1} + 4 \beta_{2} + 4 \beta_{4} + 4 \beta_{5} - 4 \beta_{11} + 4 \beta_{12} - 4 \beta_{13} ) q^{33} + ( 12 + 4 \beta_{4} + 4 \beta_{6} + 4 \beta_{7} + 14 \beta_{8} + 4 \beta_{14} + 4 \beta_{15} ) q^{34} + ( 3 - 5 \beta_{3} + 2 \beta_{4} + 4 \beta_{6} + 10 \beta_{7} + 10 \beta_{8} + 5 \beta_{9} - 2 \beta_{12} + 10 \beta_{14} + 2 \beta_{15} ) q^{36} + ( 2 - 6 \beta_{1} - 2 \beta_{2} + 6 \beta_{4} - 6 \beta_{5} + 8 \beta_{6} - 2 \beta_{9} - 8 \beta_{10} + 6 \beta_{11} + 2 \beta_{12} - 2 \beta_{13} + 10 \beta_{14} ) q^{37} + ( 8 \beta_{1} + 3 \beta_{2} + \beta_{7} + 8 \beta_{8} + \beta_{10} + \beta_{15} ) q^{38} + ( 11 \beta_{1} + 7 \beta_{2} - 11 \beta_{3} + 3 \beta_{5} + 4 \beta_{7} + 11 \beta_{8} - 3 \beta_{10} + 2 \beta_{13} + 3 \beta_{15} ) q^{39} + ( -12 + 14 \beta_{1} + 12 \beta_{2} + 2 \beta_{4} - 4 \beta_{6} - 2 \beta_{9} + 4 \beta_{10} - 2 \beta_{12} + 2 \beta_{13} + 2 \beta_{14} ) q^{40} + ( 16 - 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{6} - 14 \beta_{8} + 2 \beta_{9} - 2 \beta_{11} + 4 \beta_{12} + 2 \beta_{15} ) q^{41} + ( -4 \beta_{3} - 3 \beta_{4} + 4 \beta_{6} - 6 \beta_{8} + 4 \beta_{9} + 3 \beta_{11} + \beta_{12} - 3 \beta_{15} ) q^{43} + ( -4 - 4 \beta_{1} + 4 \beta_{2} - 2 \beta_{4} + 4 \beta_{5} - 6 \beta_{6} + 6 \beta_{9} + 6 \beta_{10} - 4 \beta_{11} + 4 \beta_{12} - 4 \beta_{13} - 6 \beta_{14} ) q^{44} + ( \beta_{1} - 7 \beta_{2} + 13 \beta_{3} - 2 \beta_{5} - 7 \beta_{7} + \beta_{8} + 4 \beta_{13} - 2 \beta_{15} ) q^{45} + ( -\beta_{1} + 19 \beta_{2} + 3 \beta_{3} + 2 \beta_{5} + 2 \beta_{7} - \beta_{8} - 5 \beta_{10} + 5 \beta_{13} + 4 \beta_{15} ) q^{46} + ( -6 + 14 \beta_{1} + 6 \beta_{2} + 2 \beta_{4} - 2 \beta_{5} + 4 \beta_{6} - 4 \beta_{9} - 4 \beta_{10} + 2 \beta_{11} - 4 \beta_{12} + 4 \beta_{13} - 2 \beta_{14} ) q^{47} + ( 22 - 8 \beta_{3} + 2 \beta_{4} - 16 \beta_{6} + 2 \beta_{7} - 6 \beta_{8} + 8 \beta_{9} + 2 \beta_{12} + 2 \beta_{14} + 2 \beta_{15} ) q^{48} + ( 3 - \beta_{3} + 3 \beta_{6} - 2 \beta_{7} + 2 \beta_{8} + \beta_{9} + 2 \beta_{11} + \beta_{12} - 2 \beta_{14} ) q^{50} + ( 46 - 18 \beta_{1} - 46 \beta_{2} + 4 \beta_{4} + 4 \beta_{5} + 10 \beta_{6} - 4 \beta_{9} - 10 \beta_{10} - 4 \beta_{11} ) q^{51} + ( -5 \beta_{1} - 17 \beta_{2} - 5 \beta_{3} + 2 \beta_{5} - 6 \beta_{7} - 5 \beta_{8} - 17 \beta_{10} - 3 \beta_{13} ) q^{52} + ( 4 \beta_{2} - 4 \beta_{3} - 2 \beta_{5} + 4 \beta_{7} - 2 \beta_{13} - 2 \beta_{15} ) q^{53} + ( 34 + 2 \beta_{1} - 34 \beta_{2} + 4 \beta_{5} - 6 \beta_{6} + 6 \beta_{9} + 6 \beta_{10} - 4 \beta_{11} - 2 \beta_{12} + 2 \beta_{13} + 4 \beta_{14} ) q^{54} + ( -4 + 6 \beta_{3} + 4 \beta_{4} + 10 \beta_{6} + 6 \beta_{7} - 12 \beta_{8} - 6 \beta_{9} + 4 \beta_{11} - 4 \beta_{12} + 6 \beta_{14} + 4 \beta_{15} ) q^{55} + ( 7 + \beta_{3} + \beta_{4} + 7 \beta_{6} + 9 \beta_{8} - \beta_{9} - \beta_{11} + \beta_{15} ) q^{57} + ( -6 + 6 \beta_{2} - 2 \beta_{4} - 4 \beta_{5} + 2 \beta_{6} - 2 \beta_{10} + 4 \beta_{11} - 8 \beta_{12} + 8 \beta_{13} - 2 \beta_{14} ) q^{58} + ( -7 \beta_{1} - 13 \beta_{2} - 8 \beta_{3} + 6 \beta_{5} - 7 \beta_{8} + 13 \beta_{10} + 2 \beta_{13} - 6 \beta_{15} ) q^{59} + ( 18 \beta_{1} - 28 \beta_{2} + 6 \beta_{3} - 2 \beta_{7} + 18 \beta_{8} + 24 \beta_{10} - 2 \beta_{13} - 2 \beta_{15} ) q^{60} + ( -3 + 3 \beta_{1} + 3 \beta_{2} - 8 \beta_{4} + 8 \beta_{5} - 8 \beta_{6} - 3 \beta_{9} + 8 \beta_{10} - 8 \beta_{11} - 11 \beta_{14} ) q^{61} + ( 6 + 6 \beta_{3} - 6 \beta_{6} - 12 \beta_{7} - 6 \beta_{8} - 6 \beta_{9} - 6 \beta_{12} - 12 \beta_{14} ) q^{62} + ( -14 + 5 \beta_{3} - \beta_{4} - 15 \beta_{6} - 11 \beta_{7} - 8 \beta_{8} - 5 \beta_{9} + 2 \beta_{11} - 2 \beta_{12} - 11 \beta_{14} - \beta_{15} ) q^{64} + ( 9 + 21 \beta_{1} - 9 \beta_{2} - 5 \beta_{4} - 5 \beta_{5} - 11 \beta_{6} + 5 \beta_{9} + 11 \beta_{10} + 5 \beta_{11} ) q^{65} + ( 44 \beta_{2} - 12 \beta_{3} - 8 \beta_{5} - 20 \beta_{10} - 4 \beta_{13} - 8 \beta_{15} ) q^{66} + ( -16 \beta_{1} - 38 \beta_{2} - 4 \beta_{3} + 3 \beta_{5} - 16 \beta_{8} - 6 \beta_{10} + \beta_{13} - 3 \beta_{15} ) q^{67} + ( 26 - 12 \beta_{1} - 26 \beta_{2} + 8 \beta_{4} - 8 \beta_{5} + 4 \beta_{6} + 10 \beta_{9} - 4 \beta_{10} + 8 \beta_{11} + 4 \beta_{12} - 4 \beta_{13} ) q^{68} + ( -4 + 2 \beta_{3} + 6 \beta_{4} - 8 \beta_{6} - 12 \beta_{7} + 20 \beta_{8} - 2 \beta_{9} + 6 \beta_{11} + 12 \beta_{12} - 12 \beta_{14} + 6 \beta_{15} ) q^{69} + ( 6 + 8 \beta_{3} - 10 \beta_{4} + 4 \beta_{6} + 10 \beta_{7} + 6 \beta_{8} - 8 \beta_{9} - 10 \beta_{11} + 10 \beta_{14} - 10 \beta_{15} ) q^{71} + ( 23 + 11 \beta_{1} - 23 \beta_{2} + 11 \beta_{4} - 4 \beta_{5} - 14 \beta_{6} + 6 \beta_{9} + 14 \beta_{10} + 4 \beta_{11} + 9 \beta_{12} - 9 \beta_{13} - 9 \beta_{14} ) q^{72} + ( -8 \beta_{1} + 14 \beta_{2} - 4 \beta_{5} - 8 \beta_{8} + 4 \beta_{13} + 4 \beta_{15} ) q^{73} + ( 4 \beta_{1} + 2 \beta_{2} + 4 \beta_{3} - 12 \beta_{5} + 2 \beta_{7} + 4 \beta_{8} + 10 \beta_{10} + 4 \beta_{13} - 6 \beta_{15} ) q^{74} + ( -9 - 13 \beta_{1} + 9 \beta_{2} - 2 \beta_{4} - 2 \beta_{5} + 9 \beta_{6} - 9 \beta_{10} + 2 \beta_{11} - 2 \beta_{12} + 2 \beta_{13} ) q^{75} + ( 11 - 7 \beta_{3} + 2 \beta_{4} + \beta_{6} + 3 \beta_{8} + 7 \beta_{9} + 2 \beta_{11} + \beta_{12} + 2 \beta_{15} ) q^{76} + ( -29 - 17 \beta_{3} + 8 \beta_{4} - 9 \beta_{6} + 6 \beta_{7} - \beta_{8} + 17 \beta_{9} + 6 \beta_{11} + 9 \beta_{12} + 6 \beta_{14} + 8 \beta_{15} ) q^{78} + ( -14 + 22 \beta_{1} + 14 \beta_{2} - 2 \beta_{4} + 2 \beta_{5} + 4 \beta_{6} - 16 \beta_{9} - 4 \beta_{10} - 2 \beta_{11} - 4 \beta_{12} + 4 \beta_{13} - 10 \beta_{14} ) q^{79} + ( 18 \beta_{1} - 6 \beta_{2} - 10 \beta_{3} - 4 \beta_{5} + 8 \beta_{7} + 18 \beta_{8} + 6 \beta_{10} - 2 \beta_{13} + 4 \beta_{15} ) q^{80} + ( 29 \beta_{1} - 6 \beta_{2} + 5 \beta_{3} + 3 \beta_{5} + 29 \beta_{8} + 3 \beta_{10} - 8 \beta_{13} - 3 \beta_{15} ) q^{81} + ( -62 - 16 \beta_{1} + 62 \beta_{2} + 4 \beta_{4} - 4 \beta_{5} + 10 \beta_{6} - 14 \beta_{9} - 10 \beta_{10} + 4 \beta_{11} + 2 \beta_{12} - 2 \beta_{13} ) q^{82} + ( 9 + 8 \beta_{3} + 2 \beta_{4} - \beta_{6} + 27 \beta_{8} - 8 \beta_{9} - 2 \beta_{11} - 6 \beta_{12} + 2 \beta_{15} ) q^{83} + ( -10 + 10 \beta_{3} - 12 \beta_{4} - 4 \beta_{6} - 14 \beta_{7} - 26 \beta_{8} - 10 \beta_{9} - 12 \beta_{11} - 8 \beta_{12} - 14 \beta_{14} - 12 \beta_{15} ) q^{85} + ( -23 - \beta_{1} + 23 \beta_{2} + 2 \beta_{4} + 6 \beta_{5} - 7 \beta_{6} - 7 \beta_{9} + 7 \beta_{10} - 6 \beta_{11} - 3 \beta_{12} + 3 \beta_{13} + 8 \beta_{14} ) q^{86} + ( 2 \beta_{1} - 14 \beta_{2} + 18 \beta_{3} + 10 \beta_{5} - 8 \beta_{7} + 2 \beta_{8} + 6 \beta_{10} + 8 \beta_{13} + 10 \beta_{15} ) q^{87} + ( 56 \beta_{2} + 6 \beta_{3} + 4 \beta_{5} - 6 \beta_{7} - 14 \beta_{10} - 4 \beta_{13} - 2 \beta_{15} ) q^{88} + ( 64 + 2 \beta_{1} - 64 \beta_{2} - 6 \beta_{4} - 6 \beta_{5} - 6 \beta_{6} + 2 \beta_{9} + 6 \beta_{10} + 6 \beta_{11} - 4 \beta_{12} + 4 \beta_{13} ) q^{89} + ( -26 + \beta_{3} - 13 \beta_{4} + 18 \beta_{6} - 3 \beta_{7} + 5 \beta_{8} - \beta_{9} - 4 \beta_{11} - 17 \beta_{12} - 3 \beta_{14} - 13 \beta_{15} ) q^{90} + ( -60 - 6 \beta_{3} - 6 \beta_{4} - 6 \beta_{7} + 14 \beta_{8} + 6 \beta_{9} + 8 \beta_{11} - 6 \beta_{12} - 6 \beta_{14} - 6 \beta_{15} ) q^{92} + ( -12 \beta_{4} + 12 \beta_{5} - 12 \beta_{6} + 12 \beta_{10} - 12 \beta_{11} - 12 \beta_{14} ) q^{93} + ( -4 \beta_{1} - 56 \beta_{2} - 16 \beta_{3} - 4 \beta_{5} - 8 \beta_{7} - 4 \beta_{8} - 4 \beta_{10} ) q^{94} + ( -11 \beta_{1} - 7 \beta_{2} + 7 \beta_{3} - 3 \beta_{5} - 8 \beta_{7} - 11 \beta_{8} - \beta_{10} - 2 \beta_{13} - 3 \beta_{15} ) q^{95} + ( -68 - 4 \beta_{1} + 68 \beta_{2} - 6 \beta_{4} - 4 \beta_{5} - 14 \beta_{6} + 10 \beta_{9} + 14 \beta_{10} + 4 \beta_{11} + 8 \beta_{12} - 8 \beta_{13} - 10 \beta_{14} ) q^{96} + ( 8 - 10 \beta_{3} - 2 \beta_{4} + 6 \beta_{6} - 30 \beta_{8} + 10 \beta_{9} + 2 \beta_{11} + 8 \beta_{12} - 2 \beta_{15} ) q^{97} + ( 32 + 7 \beta_{4} - 12 \beta_{6} - 26 \beta_{8} - 7 \beta_{11} + 7 \beta_{12} + 7 \beta_{15} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - q^{2} + 8q^{3} - 5q^{4} - 44q^{6} + 26q^{8} - 48q^{9} + O(q^{10}) \) \( 16q - q^{2} + 8q^{3} - 5q^{4} - 44q^{6} + 26q^{8} - 48q^{9} - 16q^{10} + 32q^{11} - 30q^{12} + 71q^{16} + 80q^{17} + 29q^{18} - 56q^{19} - 216q^{20} + 132q^{22} - 22q^{24} + 16q^{25} - 24q^{26} - 64q^{27} - 96q^{30} + 19q^{32} - 32q^{33} + 148q^{34} - 66q^{36} + 14q^{38} - 84q^{40} + 256q^{41} - 50q^{44} + 152q^{46} + 268q^{48} + 66q^{50} + 368q^{51} - 132q^{52} + 228q^{54} + 112q^{57} - 24q^{58} - 104q^{59} - 192q^{60} + 240q^{62} - 110q^{64} + 72q^{65} + 276q^{66} - 304q^{67} + 190q^{68} + 209q^{72} + 112q^{73} - 8q^{74} - 72q^{75} + 140q^{76} - 608q^{78} - 124q^{80} - 48q^{81} - 450q^{82} + 144q^{83} - 210q^{86} + 486q^{88} + 512q^{89} - 368q^{90} - 944q^{92} - 472q^{94} - 558q^{96} + 128q^{97} + 512q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{16} - x^{15} + 3 x^{14} + 6 x^{13} - 22 x^{12} + 44 x^{11} - 20 x^{10} - 112 x^{9} + 368 x^{8} - 448 x^{7} - 320 x^{6} + 2816 x^{5} - 5632 x^{4} + 6144 x^{3} + 12288 x^{2} - 16384 x + 65536\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( -9 \nu^{15} - 71 \nu^{14} + 165 \nu^{13} - 246 \nu^{12} - 234 \nu^{11} + 852 \nu^{10} - 2412 \nu^{9} + 1968 \nu^{8} + 4560 \nu^{7} - 18624 \nu^{6} + 26688 \nu^{5} - 20736 \nu^{4} - 136704 \nu^{3} + 282624 \nu^{2} - 528384 \nu + 49152 \)\()/802816\)
\(\beta_{3}\)\(=\)\((\)\( -9 \nu^{15} - 71 \nu^{14} + 165 \nu^{13} - 246 \nu^{12} - 234 \nu^{11} + 852 \nu^{10} - 2412 \nu^{9} + 1968 \nu^{8} + 4560 \nu^{7} - 18624 \nu^{6} + 26688 \nu^{5} - 20736 \nu^{4} - 136704 \nu^{3} + 1085440 \nu^{2} - 528384 \nu + 49152 \)\()/802816\)
\(\beta_{4}\)\(=\)\((\)\( 7 \nu^{15} - 19 \nu^{14} - 79 \nu^{13} - 74 \nu^{12} - 50 \nu^{11} - 356 \nu^{10} - 572 \nu^{9} + 544 \nu^{8} + 17040 \nu^{7} - 6016 \nu^{6} + 6208 \nu^{5} + 512 \nu^{4} - 38400 \nu^{3} + 122880 \nu^{2} + 135168 \nu + 98304 \)\()/401408\)
\(\beta_{5}\)\(=\)\((\)\(43 \nu^{15} + 173 \nu^{14} + 361 \nu^{13} - 1174 \nu^{12} + 3326 \nu^{11} - 4300 \nu^{10} - 4092 \nu^{9} + 34960 \nu^{8} - 34864 \nu^{7} + 32960 \nu^{6} + 118336 \nu^{5} - 332544 \nu^{4} + 353792 \nu^{3} + 1024000 \nu^{2} - 2306048 \nu + 7880704\)\()/802816\)
\(\beta_{6}\)\(=\)\((\)\( 4 \nu^{15} + 13 \nu^{14} - 43 \nu^{13} + 105 \nu^{12} - 108 \nu^{11} - 178 \nu^{10} + 1024 \nu^{9} - 972 \nu^{8} + 456 \nu^{7} + 752 \nu^{6} - 11168 \nu^{5} + 7872 \nu^{4} + 6016 \nu^{3} - 86528 \nu^{2} + 210944 \nu - 92160 \)\()/100352\)
\(\beta_{7}\)\(=\)\((\)\( 21 \nu^{15} - 81 \nu^{14} + 35 \nu^{13} + 226 \nu^{12} - 446 \nu^{11} + 1204 \nu^{10} - 36 \nu^{9} - 5792 \nu^{8} + 10192 \nu^{7} - 10880 \nu^{6} - 62144 \nu^{5} + 86016 \nu^{4} - 140288 \nu^{3} + 40960 \nu^{2} + 458752 \nu - 851968 \)\()/401408\)
\(\beta_{8}\)\(=\)\((\)\( 5 \nu^{15} - 12 \nu^{14} + 12 \nu^{13} + 27 \nu^{12} - 78 \nu^{11} + 162 \nu^{10} - 60 \nu^{9} - 492 \nu^{8} + 1416 \nu^{7} - 1488 \nu^{6} - 288 \nu^{5} + 11712 \nu^{4} - 21120 \nu^{3} + 26112 \nu^{2} + 6144 \nu - 36864 \)\()/50176\)
\(\beta_{9}\)\(=\)\((\)\( 103 \nu^{15} - 23 \nu^{14} + 213 \nu^{13} - 758 \nu^{12} + 694 \nu^{11} + 212 \nu^{10} - 3500 \nu^{9} + 8752 \nu^{8} - 7472 \nu^{7} - 39616 \nu^{6} + 64576 \nu^{5} - 133376 \nu^{4} - 62976 \nu^{3} + 1167360 \nu^{2} - 1249280 \nu + 4489216 \)\()/802816\)
\(\beta_{10}\)\(=\)\((\)\( -117 \nu^{15} + 13 \nu^{14} - 215 \nu^{13} + 74 \nu^{12} - 738 \nu^{11} + 1588 \nu^{10} + 580 \nu^{9} + 2192 \nu^{8} + 8272 \nu^{7} - 24128 \nu^{6} + 23104 \nu^{5} + 22784 \nu^{4} - 98816 \nu^{3} - 491520 \nu^{2} + 36864 \nu - 4767744 \)\()/802816\)
\(\beta_{11}\)\(=\)\((\)\( -19 \nu^{15} + 78 \nu^{14} - 42 \nu^{13} - 91 \nu^{12} + 738 \nu^{11} - 1050 \nu^{10} + 148 \nu^{9} + 5004 \nu^{8} - 11592 \nu^{7} + 16112 \nu^{6} + 15648 \nu^{5} - 100800 \nu^{4} + 159360 \nu^{3} - 99840 \nu^{2} - 301056 \nu + 964608 \)\()/100352\)
\(\beta_{12}\)\(=\)\((\)\( -23 \nu^{15} + 24 \nu^{14} + 48 \nu^{13} - 245 \nu^{12} + 618 \nu^{11} - 318 \nu^{10} - 204 \nu^{9} + 4596 \nu^{8} - 7608 \nu^{7} + 1584 \nu^{6} + 28128 \nu^{5} - 72768 \nu^{4} + 125568 \nu^{3} + 87552 \nu^{2} - 534528 \nu + 612352 \)\()/100352\)
\(\beta_{13}\)\(=\)\((\)\(-233 \nu^{15} + 17 \nu^{14} - 611 \nu^{13} - 670 \nu^{12} + 2326 \nu^{11} - 4444 \nu^{10} + 3540 \nu^{9} + 16272 \nu^{8} - 41200 \nu^{7} + 39872 \nu^{6} + 81216 \nu^{5} - 341760 \nu^{4} + 667136 \nu^{3} - 475136 \nu^{2} - 1470464 \nu - 2146304\)\()/802816\)
\(\beta_{14}\)\(=\)\((\)\(-107 \nu^{15} + 111 \nu^{14} + 91 \nu^{13} - 854 \nu^{12} + 1642 \nu^{11} - 1596 \nu^{10} - 5300 \nu^{9} + 14848 \nu^{8} - 24080 \nu^{7} - 7936 \nu^{6} + 122560 \nu^{5} - 222208 \nu^{4} + 241152 \nu^{3} + 196608 \nu^{2} - 1605632 \nu + 425984\)\()/401408\)
\(\beta_{15}\)\(=\)\((\)\(131 \nu^{15} - 11 \nu^{14} - 335 \nu^{13} + 1466 \nu^{12} - 2994 \nu^{11} + 724 \nu^{10} + 7204 \nu^{9} - 24048 \nu^{8} + 15952 \nu^{7} + 30400 \nu^{6} - 176832 \nu^{5} + 333056 \nu^{4} + 5632 \nu^{3} - 919552 \nu^{2} + 3100672 \nu - 1425408\)\()/401408\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} - \beta_{2}\)
\(\nu^{3}\)\(=\)\(\beta_{15} + \beta_{14} + \beta_{12} + \beta_{8} + \beta_{7} + \beta_{4} - 1\)
\(\nu^{4}\)\(=\)\(\beta_{14} - 2 \beta_{11} + \beta_{10} - \beta_{9} - \beta_{6} + 2 \beta_{5} - \beta_{4} - 10 \beta_{2} - 2 \beta_{1} + 10\)
\(\nu^{5}\)\(=\)\(-\beta_{15} - \beta_{10} + 6 \beta_{8} - 7 \beta_{7} - 2 \beta_{5} - \beta_{3} - 4 \beta_{2} + 6 \beta_{1}\)
\(\nu^{6}\)\(=\)\(-\beta_{15} - 11 \beta_{14} - 2 \beta_{12} + 2 \beta_{11} - 5 \beta_{9} - 8 \beta_{8} - 11 \beta_{7} - 15 \beta_{6} - \beta_{4} + 5 \beta_{3} - 14\)
\(\nu^{7}\)\(=\)\(-3 \beta_{14} - 6 \beta_{13} + 6 \beta_{12} + 2 \beta_{11} - \beta_{10} - 9 \beta_{9} + \beta_{6} - 2 \beta_{5} + 23 \beta_{4} + 10 \beta_{2} - 8 \beta_{1} - 10\)
\(\nu^{8}\)\(=\)\(13 \beta_{15} + 6 \beta_{13} + 55 \beta_{10} + 20 \beta_{8} + 23 \beta_{7} + 46 \beta_{5} - 9 \beta_{3} + 22 \beta_{2} + 20 \beta_{1}\)
\(\nu^{9}\)\(=\)\(-31 \beta_{15} - 77 \beta_{14} + 30 \beta_{12} - 26 \beta_{11} - 11 \beta_{9} - 44 \beta_{8} - 77 \beta_{7} + 51 \beta_{6} - 31 \beta_{4} + 11 \beta_{3} - 42\)
\(\nu^{10}\)\(=\)\(-137 \beta_{14} - 46 \beta_{13} + 46 \beta_{12} + 62 \beta_{11} + 225 \beta_{10} + 121 \beta_{9} - 225 \beta_{6} - 62 \beta_{5} - 35 \beta_{4} - 230 \beta_{2} + 132 \beta_{1} + 230\)
\(\nu^{11}\)\(=\)\(-201 \beta_{15} - 22 \beta_{13} - 99 \beta_{10} + 244 \beta_{8} + 197 \beta_{7} - 70 \beta_{5} - 155 \beta_{3} - 1086 \beta_{2} + 244 \beta_{1}\)
\(\nu^{12}\)\(=\)\(75 \beta_{15} + 609 \beta_{14} - 46 \beta_{12} + 402 \beta_{11} - 273 \beta_{9} + 1780 \beta_{8} + 609 \beta_{7} + 777 \beta_{6} + 75 \beta_{4} + 273 \beta_{3} + 842\)
\(\nu^{13}\)\(=\)\(237 \beta_{14} - 554 \beta_{13} + 554 \beta_{12} - 150 \beta_{11} - 1141 \beta_{10} - 1405 \beta_{9} + 1141 \beta_{6} + 150 \beta_{5} - 177 \beta_{4} + 3166 \beta_{2} + 476 \beta_{1} - 3166\)
\(\nu^{14}\)\(=\)\(-291 \beta_{15} - 1986 \beta_{13} + 1167 \beta_{10} - 2676 \beta_{8} - 1065 \beta_{7} - 354 \beta_{5} + 1767 \beta_{3} - 4442 \beta_{2} - 2676 \beta_{1}\)
\(\nu^{15}\)\(=\)\(537 \beta_{15} - 885 \beta_{14} - 282 \beta_{12} + 582 \beta_{11} + 4197 \beta_{9} + 1436 \beta_{8} - 885 \beta_{7} - 1437 \beta_{6} + 537 \beta_{4} - 4197 \beta_{3} - 26514\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(-1\) \(-1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
1.94657 + 0.459219i
1.56937 + 1.23978i
0.944308 1.76303i
0.288997 + 1.97901i
0.109554 1.99700i
−0.575587 + 1.91538i
−1.78423 0.903622i
−1.99898 0.0637211i
1.94657 0.459219i
1.56937 1.23978i
0.944308 + 1.76303i
0.288997 1.97901i
0.109554 + 1.99700i
−0.575587 1.91538i
−1.78423 + 0.903622i
−1.99898 + 0.0637211i
−1.94657 0.459219i 2.61182 4.52380i 3.57824 + 1.78780i −5.42814 + 3.13394i −7.16148 + 7.60647i 0 −6.14428 5.12327i −9.14316 15.8364i 12.0054 3.60771i
67.2 −1.56937 1.23978i −0.0487183 + 0.0843825i 0.925871 + 3.89137i 3.00119 1.73274i 0.181073 0.0720276i 0 3.37142 7.25490i 4.49525 + 7.78601i −6.85820 1.00151i
67.3 −0.944308 + 1.76303i 1.72064 2.98023i −2.21656 3.32969i 4.22869 2.44143i 3.62943 + 5.84780i 0 7.96347 0.763618i −1.42120 2.46158i 0.311142 + 9.76078i
67.4 −0.288997 1.97901i −0.0487183 + 0.0843825i −3.83296 + 1.14386i −3.00119 + 1.73274i 0.181073 + 0.0720276i 0 3.37142 + 7.25490i 4.49525 + 7.78601i 4.29644 + 5.43862i
67.5 −0.109554 + 1.99700i −2.28374 + 3.95555i −3.97600 0.437557i 4.96451 2.86626i −7.64902 4.99396i 0 1.30939 7.89212i −5.93090 10.2726i 5.18003 + 10.2281i
67.6 0.575587 1.91538i 2.61182 4.52380i −3.33740 2.20494i 5.42814 3.13394i −7.16148 7.60647i 0 −6.14428 + 5.12327i −9.14316 15.8364i −2.87833 12.2008i
67.7 1.78423 + 0.903622i −2.28374 + 3.95555i 2.36693 + 3.22453i −4.96451 + 2.86626i −7.64902 + 4.99396i 0 1.30939 + 7.89212i −5.93090 10.2726i −11.4478 + 0.628019i
67.8 1.99898 + 0.0637211i 1.72064 2.98023i 3.99188 + 0.254755i −4.22869 + 2.44143i 3.62943 5.84780i 0 7.96347 + 0.763618i −1.42120 2.46158i −8.60865 + 4.61093i
275.1 −1.94657 + 0.459219i 2.61182 + 4.52380i 3.57824 1.78780i −5.42814 3.13394i −7.16148 7.60647i 0 −6.14428 + 5.12327i −9.14316 + 15.8364i 12.0054 + 3.60771i
275.2 −1.56937 + 1.23978i −0.0487183 0.0843825i 0.925871 3.89137i 3.00119 + 1.73274i 0.181073 + 0.0720276i 0 3.37142 + 7.25490i 4.49525 7.78601i −6.85820 + 1.00151i
275.3 −0.944308 1.76303i 1.72064 + 2.98023i −2.21656 + 3.32969i 4.22869 + 2.44143i 3.62943 5.84780i 0 7.96347 + 0.763618i −1.42120 + 2.46158i 0.311142 9.76078i
275.4 −0.288997 + 1.97901i −0.0487183 0.0843825i −3.83296 1.14386i −3.00119 1.73274i 0.181073 0.0720276i 0 3.37142 7.25490i 4.49525 7.78601i 4.29644 5.43862i
275.5 −0.109554 1.99700i −2.28374 3.95555i −3.97600 + 0.437557i 4.96451 + 2.86626i −7.64902 + 4.99396i 0 1.30939 + 7.89212i −5.93090 + 10.2726i 5.18003 10.2281i
275.6 0.575587 + 1.91538i 2.61182 + 4.52380i −3.33740 + 2.20494i 5.42814 + 3.13394i −7.16148 + 7.60647i 0 −6.14428 5.12327i −9.14316 + 15.8364i −2.87833 + 12.2008i
275.7 1.78423 0.903622i −2.28374 3.95555i 2.36693 3.22453i −4.96451 2.86626i −7.64902 4.99396i 0 1.30939 7.89212i −5.93090 + 10.2726i −11.4478 0.628019i
275.8 1.99898 0.0637211i 1.72064 + 2.98023i 3.99188 0.254755i −4.22869 2.44143i 3.62943 + 5.84780i 0 7.96347 0.763618i −1.42120 + 2.46158i −8.60865 4.61093i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 275.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
8.d odd 2 1 inner
56.k odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 392.3.k.o 16
7.b odd 2 1 392.3.k.n 16
7.c even 3 1 56.3.g.b 8
7.c even 3 1 inner 392.3.k.o 16
7.d odd 6 1 392.3.g.m 8
7.d odd 6 1 392.3.k.n 16
8.d odd 2 1 inner 392.3.k.o 16
21.h odd 6 1 504.3.g.b 8
28.f even 6 1 1568.3.g.m 8
28.g odd 6 1 224.3.g.b 8
56.e even 2 1 392.3.k.n 16
56.j odd 6 1 1568.3.g.m 8
56.k odd 6 1 56.3.g.b 8
56.k odd 6 1 inner 392.3.k.o 16
56.m even 6 1 392.3.g.m 8
56.m even 6 1 392.3.k.n 16
56.p even 6 1 224.3.g.b 8
84.n even 6 1 2016.3.g.b 8
112.u odd 12 2 1792.3.d.j 16
112.w even 12 2 1792.3.d.j 16
168.s odd 6 1 2016.3.g.b 8
168.v even 6 1 504.3.g.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.3.g.b 8 7.c even 3 1
56.3.g.b 8 56.k odd 6 1
224.3.g.b 8 28.g odd 6 1
224.3.g.b 8 56.p even 6 1
392.3.g.m 8 7.d odd 6 1
392.3.g.m 8 56.m even 6 1
392.3.k.n 16 7.b odd 2 1
392.3.k.n 16 7.d odd 6 1
392.3.k.n 16 56.e even 2 1
392.3.k.n 16 56.m even 6 1
392.3.k.o 16 1.a even 1 1 trivial
392.3.k.o 16 7.c even 3 1 inner
392.3.k.o 16 8.d odd 2 1 inner
392.3.k.o 16 56.k odd 6 1 inner
504.3.g.b 8 21.h odd 6 1
504.3.g.b 8 168.v even 6 1
1568.3.g.m 8 28.f even 6 1
1568.3.g.m 8 56.j odd 6 1
1792.3.d.j 16 112.u odd 12 2
1792.3.d.j 16 112.w even 12 2
2016.3.g.b 8 84.n even 6 1
2016.3.g.b 8 168.s odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(392, [\chi])\):

\(T_{3}^{8} - \cdots\)
\(T_{5}^{16} - \cdots\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + 3 T^{2} - 6 T^{3} - 22 T^{4} - 44 T^{5} - 20 T^{6} + 112 T^{7} + 368 T^{8} + 448 T^{9} - 320 T^{10} - 2816 T^{11} - 5632 T^{12} - 6144 T^{13} + 12288 T^{14} + 16384 T^{15} + 65536 T^{16} \)
$3$ \( ( 1 - 4 T + 2 T^{2} - 14 T^{4} + 140 T^{5} + 672 T^{6} - 3140 T^{7} + 3439 T^{8} - 28260 T^{9} + 54432 T^{10} + 102060 T^{11} - 91854 T^{12} + 1062882 T^{14} - 19131876 T^{15} + 43046721 T^{16} )^{2} \)
$5$ \( 1 + 92 T^{2} + 3000 T^{4} + 78776 T^{6} + 4124130 T^{8} + 144056708 T^{10} + 2959272640 T^{12} + 91907152084 T^{14} + 3067686313171 T^{16} + 57441970052500 T^{18} + 1155965875000000 T^{20} + 35170094726562500 T^{22} + 629292297363281250 T^{24} + 7512664794921875000 T^{26} + \)\(17\!\cdots\!00\)\( T^{28} + \)\(34\!\cdots\!00\)\( T^{30} + \)\(23\!\cdots\!25\)\( T^{32} \)
$7$ 1
$11$ \( ( 1 - 16 T - 72 T^{2} + 4640 T^{3} - 20750 T^{4} - 644496 T^{5} + 8328608 T^{6} + 43860880 T^{7} - 1416483549 T^{8} + 5307166480 T^{9} + 121939149728 T^{10} - 1141763978256 T^{11} - 4447946780750 T^{12} + 120349650148640 T^{13} - 225966843123912 T^{14} - 6075997337331856 T^{15} + 45949729863572161 T^{16} )^{2} \)
$13$ \( ( 1 - 444 T^{2} + 142936 T^{4} - 35361044 T^{6} + 6575436334 T^{8} - 1009946777684 T^{10} + 116597286336856 T^{12} - 10344349794381564 T^{14} + 665416609183179841 T^{16} )^{2} \)
$17$ \( ( 1 - 40 T + 292 T^{2} + 10704 T^{3} - 137846 T^{4} - 3266264 T^{5} + 77813520 T^{6} - 47796952 T^{7} - 13592851501 T^{8} - 13813319128 T^{9} + 6499063003920 T^{10} - 78839672672216 T^{11} - 961580260212086 T^{12} + 21579198710406096 T^{13} + 170125693271090212 T^{14} - 6735113062376037160 T^{15} + 48661191875666868481 T^{16} )^{2} \)
$19$ \( ( 1 + 28 T - 926 T^{2} - 14784 T^{3} + 1071538 T^{4} + 10273676 T^{5} - 557016672 T^{6} - 569025380 T^{7} + 272464898159 T^{8} - 205418162180 T^{9} - 72590969711712 T^{10} + 483334138528556 T^{11} + 18198533173827058 T^{12} - 90641683555329984 T^{13} - 2049529615055265086 T^{14} + 22372187201920755388 T^{15} + \)\(28\!\cdots\!81\)\( T^{16} )^{2} \)
$23$ \( 1 + 1744 T^{2} + 1769380 T^{4} + 1394487904 T^{6} + 800412311114 T^{8} + 293154906699184 T^{10} + 41608418133156240 T^{12} - 40513926748661757392 T^{14} - \)\(37\!\cdots\!61\)\( T^{16} - \)\(11\!\cdots\!72\)\( T^{18} + \)\(32\!\cdots\!40\)\( T^{20} + \)\(64\!\cdots\!64\)\( T^{22} + \)\(49\!\cdots\!54\)\( T^{24} + \)\(23\!\cdots\!04\)\( T^{26} + \)\(84\!\cdots\!80\)\( T^{28} + \)\(23\!\cdots\!64\)\( T^{30} + \)\(37\!\cdots\!21\)\( T^{32} \)
$29$ \( ( 1 - 3384 T^{2} + 6555580 T^{4} - 8754768776 T^{6} + 8490907402822 T^{8} - 6192081614658056 T^{10} + 3279405379878872380 T^{12} - \)\(11\!\cdots\!44\)\( T^{14} + \)\(25\!\cdots\!21\)\( T^{16} )^{2} \)
$31$ \( 1 + 3944 T^{2} + 7116516 T^{4} + 8387060656 T^{6} + 8423414263178 T^{8} + 8514445544397720 T^{10} + 8434364772846028816 T^{12} + \)\(79\!\cdots\!12\)\( T^{14} + \)\(74\!\cdots\!23\)\( T^{16} + \)\(73\!\cdots\!52\)\( T^{18} + \)\(71\!\cdots\!56\)\( T^{20} + \)\(67\!\cdots\!20\)\( T^{22} + \)\(61\!\cdots\!18\)\( T^{24} + \)\(56\!\cdots\!56\)\( T^{26} + \)\(44\!\cdots\!36\)\( T^{28} + \)\(22\!\cdots\!04\)\( T^{30} + \)\(52\!\cdots\!61\)\( T^{32} \)
$37$ \( 1 + 3512 T^{2} + 3145476 T^{4} - 4974960880 T^{6} - 8515936106358 T^{8} + 12549151402549448 T^{10} + 35685999046008816016 T^{12} + \)\(80\!\cdots\!88\)\( T^{14} - \)\(37\!\cdots\!25\)\( T^{16} + \)\(15\!\cdots\!68\)\( T^{18} + \)\(12\!\cdots\!36\)\( T^{20} + \)\(82\!\cdots\!88\)\( T^{22} - \)\(10\!\cdots\!78\)\( T^{24} - \)\(11\!\cdots\!80\)\( T^{26} + \)\(13\!\cdots\!36\)\( T^{28} + \)\(28\!\cdots\!52\)\( T^{30} + \)\(15\!\cdots\!81\)\( T^{32} \)
$41$ \( ( 1 - 64 T + 4956 T^{2} - 221760 T^{3} + 11848326 T^{4} - 372778560 T^{5} + 14004471516 T^{6} - 304006671424 T^{7} + 7984925229121 T^{8} )^{4} \)
$43$ \( ( 1 + 4680 T^{2} - 58016 T^{3} + 10251086 T^{4} - 107271584 T^{5} + 15999988680 T^{6} + 11688200277601 T^{8} )^{4} \)
$47$ \( 1 + 8392 T^{2} + 30858916 T^{4} + 77629558512 T^{6} + 181309996781322 T^{8} + 338519134932094776 T^{10} + \)\(32\!\cdots\!52\)\( T^{12} + \)\(46\!\cdots\!92\)\( T^{14} - \)\(14\!\cdots\!37\)\( T^{16} + \)\(22\!\cdots\!52\)\( T^{18} + \)\(77\!\cdots\!72\)\( T^{20} + \)\(39\!\cdots\!16\)\( T^{22} + \)\(10\!\cdots\!62\)\( T^{24} + \)\(21\!\cdots\!12\)\( T^{26} + \)\(41\!\cdots\!96\)\( T^{28} + \)\(55\!\cdots\!12\)\( T^{30} + \)\(32\!\cdots\!41\)\( T^{32} \)
$53$ \( 1 + 18920 T^{2} + 195169572 T^{4} + 1399932528560 T^{6} + 7743546865787466 T^{8} + 34991808675085792280 T^{10} + \)\(13\!\cdots\!12\)\( T^{12} + \)\(44\!\cdots\!80\)\( T^{14} + \)\(13\!\cdots\!79\)\( T^{16} + \)\(35\!\cdots\!80\)\( T^{18} + \)\(83\!\cdots\!32\)\( T^{20} + \)\(17\!\cdots\!80\)\( T^{22} + \)\(30\!\cdots\!86\)\( T^{24} + \)\(42\!\cdots\!60\)\( T^{26} + \)\(47\!\cdots\!32\)\( T^{28} + \)\(36\!\cdots\!20\)\( T^{30} + \)\(15\!\cdots\!41\)\( T^{32} \)
$59$ \( ( 1 + 52 T + 450 T^{2} + 532224 T^{3} + 35666162 T^{4} + 868645540 T^{5} + 179864519968 T^{6} + 10977595733044 T^{7} + 261680209248047 T^{8} + 38213010746726164 T^{9} + 2179483319543964448 T^{10} + 36639932422074611140 T^{11} + \)\(52\!\cdots\!02\)\( T^{12} + \)\(27\!\cdots\!24\)\( T^{13} + \)\(80\!\cdots\!50\)\( T^{14} + \)\(32\!\cdots\!72\)\( T^{15} + \)\(21\!\cdots\!41\)\( T^{16} )^{2} \)
$61$ \( 1 + 16316 T^{2} + 126039736 T^{4} + 653164234872 T^{6} + 2819894062793314 T^{8} + 11641021751267899300 T^{10} + \)\(46\!\cdots\!32\)\( T^{12} + \)\(16\!\cdots\!44\)\( T^{14} + \)\(61\!\cdots\!79\)\( T^{16} + \)\(23\!\cdots\!04\)\( T^{18} + \)\(88\!\cdots\!92\)\( T^{20} + \)\(30\!\cdots\!00\)\( T^{22} + \)\(10\!\cdots\!54\)\( T^{24} + \)\(33\!\cdots\!72\)\( T^{26} + \)\(88\!\cdots\!76\)\( T^{28} + \)\(15\!\cdots\!96\)\( T^{30} + \)\(13\!\cdots\!21\)\( T^{32} \)
$67$ \( ( 1 + 152 T + 880 T^{2} - 696592 T^{3} + 25800514 T^{4} + 6259290472 T^{5} + 135213846720 T^{6} - 1900601864504 T^{7} + 289722470344099 T^{8} - 8531801769758456 T^{9} + 2724710586130173120 T^{10} + \)\(56\!\cdots\!68\)\( T^{11} + \)\(10\!\cdots\!74\)\( T^{12} - \)\(12\!\cdots\!08\)\( T^{13} + \)\(72\!\cdots\!80\)\( T^{14} + \)\(55\!\cdots\!08\)\( T^{15} + \)\(16\!\cdots\!81\)\( T^{16} )^{2} \)
$71$ \( ( 1 - 9864 T^{2} + 51888284 T^{4} - 294531431096 T^{6} + 1789421441990854 T^{8} - 7484538771485032376 T^{10} + \)\(33\!\cdots\!24\)\( T^{12} - \)\(16\!\cdots\!24\)\( T^{14} + \)\(41\!\cdots\!21\)\( T^{16} )^{2} \)
$73$ \( ( 1 - 56 T - 15324 T^{2} + 438256 T^{3} + 161331658 T^{4} - 2027862984 T^{5} - 1181077316848 T^{6} + 5241850793144 T^{7} + 6684367707557907 T^{8} + 27933822876664376 T^{9} - 33540518283482864368 T^{10} - \)\(30\!\cdots\!76\)\( T^{11} + \)\(13\!\cdots\!98\)\( T^{12} + \)\(18\!\cdots\!44\)\( T^{13} - \)\(35\!\cdots\!04\)\( T^{14} - \)\(68\!\cdots\!04\)\( T^{15} + \)\(65\!\cdots\!61\)\( T^{16} )^{2} \)
$79$ \( 1 + 24968 T^{2} + 292531236 T^{4} + 2048900954480 T^{6} + 9731167232364042 T^{8} + 40635655541936341112 T^{10} + \)\(28\!\cdots\!16\)\( T^{12} + \)\(28\!\cdots\!32\)\( T^{14} + \)\(21\!\cdots\!95\)\( T^{16} + \)\(11\!\cdots\!92\)\( T^{18} + \)\(43\!\cdots\!76\)\( T^{20} + \)\(24\!\cdots\!92\)\( T^{22} + \)\(22\!\cdots\!82\)\( T^{24} + \)\(18\!\cdots\!80\)\( T^{26} + \)\(10\!\cdots\!16\)\( T^{28} + \)\(33\!\cdots\!48\)\( T^{30} + \)\(52\!\cdots\!41\)\( T^{32} \)
$83$ \( ( 1 - 36 T + 16478 T^{2} - 177884 T^{3} + 135298114 T^{4} - 1225442876 T^{5} + 782018213438 T^{6} - 11769853441284 T^{7} + 2252292232139041 T^{8} )^{4} \)
$89$ \( ( 1 - 256 T + 17284 T^{2} + 187392 T^{3} + 84842826 T^{4} - 25389871104 T^{5} + 1853625901584 T^{6} - 111590371439872 T^{7} + 11164291531924819 T^{8} - 883907332175226112 T^{9} + \)\(11\!\cdots\!44\)\( T^{10} - \)\(12\!\cdots\!44\)\( T^{11} + \)\(33\!\cdots\!06\)\( T^{12} + \)\(58\!\cdots\!92\)\( T^{13} + \)\(42\!\cdots\!64\)\( T^{14} - \)\(50\!\cdots\!96\)\( T^{15} + \)\(15\!\cdots\!61\)\( T^{16} )^{2} \)
$97$ \( ( 1 - 32 T + 19484 T^{2} - 1437536 T^{3} + 199130566 T^{4} - 13525776224 T^{5} + 1724904511004 T^{6} - 26655104157728 T^{7} + 7837433594376961 T^{8} )^{4} \)
show more
show less