# Properties

 Label 392.3.g.m Level 392 Weight 3 Character orbit 392.g Analytic conductor 10.681 Analytic rank 0 Dimension 8 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$392 = 2^{3} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 392.g (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$10.6812263629$$ Analytic rank: $$0$$ Dimension: $$8$$ Coefficient field: 8.0.292213762624.3 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2^{7}$$ Twist minimal: no (minimal twist has level 56) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{7}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{3} q^{2} + ( 1 - \beta_{2} - \beta_{3} ) q^{3} + ( 1 + \beta_{4} ) q^{4} + ( -1 - \beta_{1} - \beta_{3} - \beta_{4} ) q^{5} + ( 3 + \beta_{1} + \beta_{2} - \beta_{6} ) q^{6} + ( 1 - \beta_{1} - \beta_{3} - \beta_{5} + \beta_{6} ) q^{8} + ( 6 - \beta_{2} + \beta_{3} - \beta_{4} - \beta_{6} - \beta_{7} ) q^{9} +O(q^{10})$$ $$q -\beta_{3} q^{2} + ( 1 - \beta_{2} - \beta_{3} ) q^{3} + ( 1 + \beta_{4} ) q^{4} + ( -1 - \beta_{1} - \beta_{3} - \beta_{4} ) q^{5} + ( 3 + \beta_{1} + \beta_{2} - \beta_{6} ) q^{6} + ( 1 - \beta_{1} - \beta_{3} - \beta_{5} + \beta_{6} ) q^{8} + ( 6 - \beta_{2} + \beta_{3} - \beta_{4} - \beta_{6} - \beta_{7} ) q^{9} + ( -2 - \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} ) q^{10} + ( -4 - 2 \beta_{3} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{11} + ( -3 - \beta_{2} - 3 \beta_{3} + \beta_{4} - \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{12} + ( -1 - \beta_{1} - \beta_{3} + \beta_{4} - 2 \beta_{6} + 2 \beta_{7} ) q^{13} + ( -1 + \beta_{2} + 3 \beta_{3} - \beta_{4} + 2 \beta_{5} - 3 \beta_{6} + 3 \beta_{7} ) q^{15} + ( -10 - \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{4} - \beta_{6} + 2 \beta_{7} ) q^{16} + ( 10 + 4 \beta_{2} + 4 \beta_{3} ) q^{17} + ( -3 + 2 \beta_{1} - 3 \beta_{2} - 6 \beta_{3} - \beta_{4} - \beta_{5} - 2 \beta_{7} ) q^{18} + ( -7 - \beta_{2} - \beta_{3} ) q^{19} + ( 13 - 2 \beta_{1} - 3 \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} - 2 \beta_{7} ) q^{20} + ( 11 - 5 \beta_{2} + 3 \beta_{3} + 3 \beta_{4} - \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{22} + ( 1 + 2 \beta_{1} + \beta_{2} - 3 \beta_{3} + 3 \beta_{4} - 2 \beta_{5} - \beta_{6} + \beta_{7} ) q^{23} + ( 4 \beta_{1} + 2 \beta_{2} + 6 \beta_{3} + 4 \beta_{4} - 2 \beta_{5} + 4 \beta_{7} ) q^{24} + ( -2 + \beta_{2} - \beta_{3} + \beta_{4} + \beta_{6} + \beta_{7} ) q^{25} + ( -6 - 7 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} - 4 \beta_{7} ) q^{26} + ( 4 - 4 \beta_{2} - 8 \beta_{3} + 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{27} + ( -2 + 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} - 6 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} ) q^{29} + ( 9 - 6 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} - 5 \beta_{4} + 3 \beta_{5} - 6 \beta_{7} ) q^{30} + ( 6 \beta_{1} + 6 \beta_{2} - 6 \beta_{4} ) q^{31} + ( -4 - 7 \beta_{1} - \beta_{2} + 6 \beta_{3} + \beta_{4} + \beta_{6} - 2 \beta_{7} ) q^{32} + ( -4 - 8 \beta_{3} + 4 \beta_{5} - 4 \beta_{6} - 4 \beta_{7} ) q^{33} + ( -12 - 4 \beta_{1} - 4 \beta_{2} - 14 \beta_{3} + 4 \beta_{6} ) q^{34} + ( 3 + 10 \beta_{1} + 4 \beta_{2} + 10 \beta_{3} + 5 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} ) q^{36} + ( -2 - 10 \beta_{1} - 8 \beta_{2} - 6 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 6 \beta_{6} - 6 \beta_{7} ) q^{37} + ( 3 + \beta_{1} + \beta_{2} + 8 \beta_{3} - \beta_{6} ) q^{38} + ( -7 - 4 \beta_{1} + 3 \beta_{2} - 11 \beta_{3} - 11 \beta_{4} - 2 \beta_{5} + 3 \beta_{6} - 3 \beta_{7} ) q^{39} + ( -12 + 2 \beta_{1} - 4 \beta_{2} - 14 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} ) q^{40} + ( -16 + 2 \beta_{2} + 14 \beta_{3} - 2 \beta_{4} - 4 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} ) q^{41} + ( 4 \beta_{2} - 6 \beta_{3} + 4 \beta_{4} + \beta_{5} + 3 \beta_{6} + 3 \beta_{7} ) q^{43} + ( 4 + 6 \beta_{1} + 6 \beta_{2} - 4 \beta_{3} - 6 \beta_{4} - 4 \beta_{5} - 2 \beta_{6} + 4 \beta_{7} ) q^{44} + ( -7 - 7 \beta_{1} + \beta_{3} - 13 \beta_{4} + 4 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{45} + ( -19 - 2 \beta_{1} + 5 \beta_{2} + \beta_{3} + 3 \beta_{4} - 5 \beta_{5} + 4 \beta_{6} - 2 \beta_{7} ) q^{46} + ( -6 - 2 \beta_{1} + 4 \beta_{2} - 14 \beta_{3} - 4 \beta_{4} - 4 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} ) q^{47} + ( -22 - 2 \beta_{1} + 16 \beta_{2} + 6 \beta_{3} - 8 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} ) q^{48} + ( 3 - 2 \beta_{1} + 3 \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{7} ) q^{50} + ( -46 - 10 \beta_{2} - 18 \beta_{3} + 4 \beta_{4} + 4 \beta_{6} + 4 \beta_{7} ) q^{51} + ( -17 - 6 \beta_{1} - 17 \beta_{2} - 5 \beta_{3} + 5 \beta_{4} - 3 \beta_{5} + 2 \beta_{7} ) q^{52} + ( -4 - 4 \beta_{1} - 4 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} ) q^{53} + ( 34 + 4 \beta_{1} - 6 \beta_{2} - 2 \beta_{3} + 6 \beta_{4} - 2 \beta_{5} - 4 \beta_{7} ) q^{54} + ( 4 - 6 \beta_{1} - 10 \beta_{2} + 12 \beta_{3} + 6 \beta_{4} + 4 \beta_{5} + 4 \beta_{6} - 4 \beta_{7} ) q^{55} + ( 7 + 7 \beta_{2} + 9 \beta_{3} - \beta_{4} - \beta_{6} - \beta_{7} ) q^{57} + ( 6 + 2 \beta_{1} - 2 \beta_{2} + 8 \beta_{5} - 2 \beta_{6} - 4 \beta_{7} ) q^{58} + ( -13 + 13 \beta_{2} - 7 \beta_{3} + 8 \beta_{4} + 2 \beta_{5} + 6 \beta_{6} + 6 \beta_{7} ) q^{59} + ( 28 + 2 \beta_{1} - 24 \beta_{2} - 18 \beta_{3} + 6 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} ) q^{60} + ( -3 - 11 \beta_{1} - 8 \beta_{2} - 3 \beta_{3} - 3 \beta_{4} + 8 \beta_{6} - 8 \beta_{7} ) q^{61} + ( -6 + 12 \beta_{1} + 6 \beta_{2} + 6 \beta_{3} + 6 \beta_{4} + 6 \beta_{5} ) q^{62} + ( -14 - 11 \beta_{1} - 15 \beta_{2} - 8 \beta_{3} - 5 \beta_{4} - 2 \beta_{5} + \beta_{6} + 2 \beta_{7} ) q^{64} + ( -9 + 11 \beta_{2} + 21 \beta_{3} - 5 \beta_{4} - 5 \beta_{6} - 5 \beta_{7} ) q^{65} + ( 44 - 20 \beta_{2} + 12 \beta_{4} - 4 \beta_{5} + 8 \beta_{6} - 8 \beta_{7} ) q^{66} + ( 38 + 6 \beta_{2} + 16 \beta_{3} - 4 \beta_{4} - \beta_{5} - 3 \beta_{6} - 3 \beta_{7} ) q^{67} + ( 26 + 4 \beta_{2} + 12 \beta_{3} + 10 \beta_{4} + 4 \beta_{5} - 8 \beta_{6} + 8 \beta_{7} ) q^{68} + ( 4 + 12 \beta_{1} + 8 \beta_{2} - 20 \beta_{3} + 2 \beta_{4} - 12 \beta_{5} + 6 \beta_{6} - 6 \beta_{7} ) q^{69} + ( 6 + 10 \beta_{1} + 4 \beta_{2} + 6 \beta_{3} - 8 \beta_{4} + 10 \beta_{6} - 10 \beta_{7} ) q^{71} + ( -23 + 9 \beta_{1} + 14 \beta_{2} + 11 \beta_{3} - 6 \beta_{4} - 9 \beta_{5} + 11 \beta_{6} - 4 \beta_{7} ) q^{72} + ( 14 - 8 \beta_{3} + 4 \beta_{5} - 4 \beta_{6} - 4 \beta_{7} ) q^{73} + ( -2 - 2 \beta_{1} - 10 \beta_{2} - 4 \beta_{3} + 4 \beta_{4} - 4 \beta_{5} - 6 \beta_{6} + 12 \beta_{7} ) q^{74} + ( -9 + 9 \beta_{2} + 13 \beta_{3} - 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} ) q^{75} + ( -11 - \beta_{2} - 3 \beta_{3} - 7 \beta_{4} - \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{76} + ( -29 + 6 \beta_{1} - 9 \beta_{2} - \beta_{3} + 17 \beta_{4} + 9 \beta_{5} - 8 \beta_{6} + 6 \beta_{7} ) q^{78} + ( 14 + 10 \beta_{1} - 4 \beta_{2} + 22 \beta_{3} + 16 \beta_{4} + 4 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} ) q^{79} + ( -6 + 8 \beta_{1} + 6 \beta_{2} + 18 \beta_{3} + 10 \beta_{4} - 2 \beta_{5} - 4 \beta_{6} - 4 \beta_{7} ) q^{80} + ( 6 - 3 \beta_{2} - 29 \beta_{3} + 5 \beta_{4} + 8 \beta_{5} - 3 \beta_{6} - 3 \beta_{7} ) q^{81} + ( -62 + 10 \beta_{2} + 16 \beta_{3} - 14 \beta_{4} + 2 \beta_{5} - 4 \beta_{6} + 4 \beta_{7} ) q^{82} + ( -9 + \beta_{2} - 27 \beta_{3} + 8 \beta_{4} + 6 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} ) q^{83} + ( -10 - 14 \beta_{1} - 4 \beta_{2} - 26 \beta_{3} - 10 \beta_{4} - 8 \beta_{5} + 12 \beta_{6} - 12 \beta_{7} ) q^{85} + ( 23 - 8 \beta_{1} + 7 \beta_{2} - \beta_{3} + 7 \beta_{4} + 3 \beta_{5} + 2 \beta_{6} + 6 \beta_{7} ) q^{86} + ( -14 - 8 \beta_{1} + 6 \beta_{2} + 2 \beta_{3} - 18 \beta_{4} + 8 \beta_{5} - 10 \beta_{6} + 10 \beta_{7} ) q^{87} + ( -56 + 6 \beta_{1} + 14 \beta_{2} + 6 \beta_{4} + 4 \beta_{5} - 2 \beta_{6} - 4 \beta_{7} ) q^{88} + ( 64 - 6 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 4 \beta_{5} + 6 \beta_{6} + 6 \beta_{7} ) q^{89} + ( 26 + 3 \beta_{1} - 18 \beta_{2} - 5 \beta_{3} + \beta_{4} + 17 \beta_{5} - 13 \beta_{6} + 4 \beta_{7} ) q^{90} + ( -60 - 6 \beta_{1} + 14 \beta_{3} + 6 \beta_{4} - 6 \beta_{5} + 6 \beta_{6} + 8 \beta_{7} ) q^{92} + ( 12 \beta_{1} + 12 \beta_{2} - 12 \beta_{6} + 12 \beta_{7} ) q^{93} + ( -56 - 8 \beta_{1} - 4 \beta_{2} - 4 \beta_{3} + 16 \beta_{4} - 4 \beta_{7} ) q^{94} + ( 7 + 8 \beta_{1} + \beta_{2} + 11 \beta_{3} + 7 \beta_{4} + 2 \beta_{5} - 3 \beta_{6} + 3 \beta_{7} ) q^{95} + ( -68 - 10 \beta_{1} - 14 \beta_{2} + 4 \beta_{3} + 10 \beta_{4} + 8 \beta_{5} + 6 \beta_{6} + 4 \beta_{7} ) q^{96} + ( -8 - 6 \beta_{2} + 30 \beta_{3} - 10 \beta_{4} - 8 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{97} + ( 32 - 12 \beta_{2} - 26 \beta_{3} + 7 \beta_{5} - 7 \beta_{6} - 7 \beta_{7} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + q^{2} + 8q^{3} + 5q^{4} + 22q^{6} + 13q^{8} + 48q^{9} + O(q^{10})$$ $$8q + q^{2} + 8q^{3} + 5q^{4} + 22q^{6} + 13q^{8} + 48q^{9} - 16q^{10} - 32q^{11} - 30q^{12} - 71q^{16} + 80q^{17} - 29q^{18} - 56q^{19} + 108q^{20} + 66q^{22} - 22q^{24} - 16q^{25} - 24q^{26} + 32q^{27} + 96q^{30} - 19q^{32} - 32q^{33} - 74q^{34} - 33q^{36} + 14q^{38} - 84q^{40} - 128q^{41} + 50q^{44} - 152q^{46} - 134q^{48} + 33q^{50} - 368q^{51} - 132q^{52} + 228q^{54} + 56q^{57} + 24q^{58} - 104q^{59} + 192q^{60} - 120q^{62} - 55q^{64} - 72q^{65} + 276q^{66} + 304q^{67} + 190q^{68} - 209q^{72} + 112q^{73} + 8q^{74} - 72q^{75} - 70q^{76} - 304q^{78} - 124q^{80} + 48q^{81} - 450q^{82} - 72q^{83} + 210q^{86} - 486q^{88} + 512q^{89} + 184q^{90} - 472q^{92} - 472q^{94} - 558q^{96} - 64q^{97} + 256q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{8} - x^{7} - 2 x^{6} - 2 x^{5} + 24 x^{4} - 8 x^{3} - 32 x^{2} - 64 x + 256$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$\nu^{6} + \nu^{5} - 2 \nu^{3} + 4 \nu^{2} + 16 \nu$$$$)/16$$ $$\beta_{2}$$ $$=$$ $$($$$$-\nu^{7} - 3 \nu^{6} + 6 \nu^{5} + 10 \nu^{4} - 16 \nu^{3} - 24 \nu^{2} + 128$$$$)/64$$ $$\beta_{3}$$ $$=$$ $$($$$$\nu^{7} - \nu^{6} - 2 \nu^{5} - 2 \nu^{4} + 24 \nu^{3} - 8 \nu^{2} - 32 \nu - 64$$$$)/64$$ $$\beta_{4}$$ $$=$$ $$($$$$-\nu^{7} - 3 \nu^{6} + 6 \nu^{5} + 10 \nu^{4} - 16 \nu^{3} - 88 \nu^{2} + 64 \nu + 128$$$$)/64$$ $$\beta_{5}$$ $$=$$ $$($$$$\nu^{7} - \nu^{6} - 2 \nu^{5} - 2 \nu^{4} + 24 \nu^{3} + 56 \nu^{2} + 160 \nu - 128$$$$)/64$$ $$\beta_{6}$$ $$=$$ $$($$$$-\nu^{7} + \nu^{6} - 6 \nu^{5} + 26 \nu^{4} + 8 \nu^{3} + 24 \nu^{2} - 64 \nu + 192$$$$)/64$$ $$\beta_{7}$$ $$=$$ $$($$$$-\nu^{7} + \nu^{6} - 2 \nu^{5} - 2 \nu^{4} + 8 \nu^{3} + 16 \nu^{2} - 16 \nu - 32$$$$)/32$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} + 1$$$$)/4$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{5} - 3 \beta_{4} - \beta_{3} + 3 \beta_{2} + 1$$$$)/4$$ $$\nu^{3}$$ $$=$$ $$($$$$4 \beta_{7} + \beta_{5} + \beta_{4} + 11 \beta_{3} + 3 \beta_{2} + 4 \beta_{1} + 9$$$$)/4$$ $$\nu^{4}$$ $$=$$ $$($$$$-4 \beta_{7} + 8 \beta_{6} + \beta_{5} + \beta_{4} + 3 \beta_{3} + 3 \beta_{2} + 4 \beta_{1} - 31$$$$)/4$$ $$\nu^{5}$$ $$=$$ $$($$$$4 \beta_{7} - 8 \beta_{6} - 3 \beta_{5} - 11 \beta_{4} + 31 \beta_{3} + 39 \beta_{2} + 28 \beta_{1} - 3$$$$)/4$$ $$\nu^{6}$$ $$=$$ $$($$$$4 \beta_{7} + 8 \beta_{6} - 15 \beta_{5} + 9 \beta_{4} + 11 \beta_{3} - 29 \beta_{2} + 44 \beta_{1} + 1$$$$)/4$$ $$\nu^{7}$$ $$=$$ $$($$$$-92 \beta_{7} + 8 \beta_{6} - 3 \beta_{5} - 27 \beta_{4} + 31 \beta_{3} - 25 \beta_{2} + 12 \beta_{1} + 13$$$$)/4$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/392\mathbb{Z}\right)^\times$$.

 $$n$$ $$197$$ $$295$$ $$297$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
99.1
 −1.67467 + 1.09337i −1.67467 − 1.09337i −1.05468 + 1.69931i −1.05468 − 1.69931i 1.37098 + 1.45617i 1.37098 − 1.45617i 1.85837 + 0.739226i 1.85837 − 0.739226i
−1.67467 1.09337i −4.56747 1.60906 + 3.66209i 5.73252i 7.64902 + 4.99396i 0 1.30939 7.89212i 11.8618 −6.26779 + 9.60010i
99.2 −1.67467 + 1.09337i −4.56747 1.60906 3.66209i 5.73252i 7.64902 4.99396i 0 1.30939 + 7.89212i 11.8618 −6.26779 9.60010i
99.3 −1.05468 1.69931i 3.44128 −1.77532 + 3.58445i 4.88287i −3.62943 5.84780i 0 7.96347 0.763618i 2.84239 −8.29751 + 5.14984i
99.4 −1.05468 + 1.69931i 3.44128 −1.77532 3.58445i 4.88287i −3.62943 + 5.84780i 0 7.96347 + 0.763618i 2.84239 −8.29751 5.14984i
99.5 1.37098 1.45617i 5.22363 −0.240837 3.99274i 6.26788i 7.16148 7.60647i 0 −6.14428 5.12327i 18.2863 9.12707 + 8.59313i
99.6 1.37098 + 1.45617i 5.22363 −0.240837 + 3.99274i 6.26788i 7.16148 + 7.60647i 0 −6.14428 + 5.12327i 18.2863 9.12707 8.59313i
99.7 1.85837 0.739226i −0.0974366 2.90709 2.74751i 3.46547i −0.181073 + 0.0720276i 0 3.37142 7.25490i −8.99051 −2.56177 6.44013i
99.8 1.85837 + 0.739226i −0.0974366 2.90709 + 2.74751i 3.46547i −0.181073 0.0720276i 0 3.37142 + 7.25490i −8.99051 −2.56177 + 6.44013i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 99.8 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 392.3.g.m 8
4.b odd 2 1 1568.3.g.m 8
7.b odd 2 1 56.3.g.b 8
7.c even 3 2 392.3.k.n 16
7.d odd 6 2 392.3.k.o 16
8.b even 2 1 1568.3.g.m 8
8.d odd 2 1 inner 392.3.g.m 8
21.c even 2 1 504.3.g.b 8
28.d even 2 1 224.3.g.b 8
56.e even 2 1 56.3.g.b 8
56.h odd 2 1 224.3.g.b 8
56.k odd 6 2 392.3.k.n 16
56.m even 6 2 392.3.k.o 16
84.h odd 2 1 2016.3.g.b 8
112.j even 4 2 1792.3.d.j 16
112.l odd 4 2 1792.3.d.j 16
168.e odd 2 1 504.3.g.b 8
168.i even 2 1 2016.3.g.b 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.3.g.b 8 7.b odd 2 1
56.3.g.b 8 56.e even 2 1
224.3.g.b 8 28.d even 2 1
224.3.g.b 8 56.h odd 2 1
392.3.g.m 8 1.a even 1 1 trivial
392.3.g.m 8 8.d odd 2 1 inner
392.3.k.n 16 7.c even 3 2
392.3.k.n 16 56.k odd 6 2
392.3.k.o 16 7.d odd 6 2
392.3.k.o 16 56.m even 6 2
504.3.g.b 8 21.c even 2 1
504.3.g.b 8 168.e odd 2 1
1568.3.g.m 8 4.b odd 2 1
1568.3.g.m 8 8.b even 2 1
1792.3.d.j 16 112.j even 4 2
1792.3.d.j 16 112.l odd 4 2
2016.3.g.b 8 84.h odd 2 1
2016.3.g.b 8 168.i even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{4} - 4 T_{3}^{3} - 22 T_{3}^{2} + 80 T_{3} + 8$$ acting on $$S_{3}^{\mathrm{new}}(392, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - T - 2 T^{2} - 2 T^{3} + 24 T^{4} - 8 T^{5} - 32 T^{6} - 64 T^{7} + 256 T^{8}$$
$3$ $$( 1 - 4 T + 14 T^{2} - 28 T^{3} + 98 T^{4} - 252 T^{5} + 1134 T^{6} - 2916 T^{7} + 6561 T^{8} )^{2}$$
$5$ $$1 - 92 T^{2} + 5464 T^{4} - 211956 T^{6} + 6231214 T^{8} - 132472500 T^{10} + 2134375000 T^{12} - 22460937500 T^{14} + 152587890625 T^{16}$$
$7$ 1
$11$ $$( 1 + 16 T + 328 T^{2} + 4944 T^{3} + 49230 T^{4} + 598224 T^{5} + 4802248 T^{6} + 28344976 T^{7} + 214358881 T^{8} )^{2}$$
$13$ $$1 - 444 T^{2} + 142936 T^{4} - 35361044 T^{6} + 6575436334 T^{8} - 1009946777684 T^{10} + 116597286336856 T^{12} - 10344349794381564 T^{14} + 665416609183179841 T^{16}$$
$17$ $$( 1 - 40 T + 1308 T^{2} - 31512 T^{3} + 588230 T^{4} - 9106968 T^{5} + 109245468 T^{6} - 965502760 T^{7} + 6975757441 T^{8} )^{2}$$
$19$ $$( 1 + 28 T + 1710 T^{2} + 31332 T^{3} + 975266 T^{4} + 11310852 T^{5} + 222848910 T^{6} + 1317284668 T^{7} + 16983563041 T^{8} )^{2}$$
$23$ $$1 - 1744 T^{2} + 1272156 T^{4} - 412076080 T^{6} + 99307893702 T^{8} - 115315782303280 T^{10} + 99623789791135836 T^{12} - 38219105009443439824 T^{14} +$$$$61\!\cdots\!61$$$$T^{16}$$
$29$ $$1 - 3384 T^{2} + 6555580 T^{4} - 8754768776 T^{6} + 8490907402822 T^{8} - 6192081614658056 T^{10} + 3279405379878872380 T^{12} -$$$$11\!\cdots\!44$$$$T^{14} +$$$$25\!\cdots\!21$$$$T^{16}$$
$31$ $$1 - 3944 T^{2} + 8438620 T^{4} - 12447428312 T^{6} + 13694235978694 T^{8} - 11495461442126552 T^{10} + 7197223366370371420 T^{12} -$$$$31\!\cdots\!84$$$$T^{14} +$$$$72\!\cdots\!81$$$$T^{16}$$
$37$ $$1 - 3512 T^{2} + 9188668 T^{4} - 18622781448 T^{6} + 27544347275206 T^{8} - 34902090701365128 T^{10} + 32275007558901367228 T^{12} -$$$$23\!\cdots\!72$$$$T^{14} +$$$$12\!\cdots\!41$$$$T^{16}$$
$41$ $$( 1 + 64 T + 4956 T^{2} + 221760 T^{3} + 11848326 T^{4} + 372778560 T^{5} + 14004471516 T^{6} + 304006671424 T^{7} + 7984925229121 T^{8} )^{2}$$
$43$ $$( 1 + 4680 T^{2} - 58016 T^{3} + 10251086 T^{4} - 107271584 T^{5} + 15999988680 T^{6} + 11688200277601 T^{8} )^{2}$$
$47$ $$1 - 8392 T^{2} + 39566748 T^{4} - 127207295352 T^{6} + 316693927920198 T^{8} - 620731022190542712 T^{10} +$$$$94\!\cdots\!28$$$$T^{12} -$$$$97\!\cdots\!72$$$$T^{14} +$$$$56\!\cdots\!21$$$$T^{16}$$
$53$ $$1 - 18920 T^{2} + 162796828 T^{4} - 840091728600 T^{6} + 2864724835962118 T^{8} - 6628727822775456600 T^{10} +$$$$10\!\cdots\!08$$$$T^{12} -$$$$92\!\cdots\!20$$$$T^{14} +$$$$38\!\cdots\!21$$$$T^{16}$$
$59$ $$( 1 + 52 T + 2254 T^{2} - 207508 T^{3} - 19795230 T^{4} - 722335348 T^{5} + 27312531694 T^{6} + 2193387749332 T^{7} + 146830437604321 T^{8} )^{2}$$
$61$ $$1 - 16316 T^{2} + 140172120 T^{4} - 816942037524 T^{6} + 3499102878259502 T^{8} - 11311249557773337684 T^{10} +$$$$26\!\cdots\!20$$$$T^{12} -$$$$43\!\cdots\!36$$$$T^{14} +$$$$36\!\cdots\!61$$$$T^{16}$$
$67$ $$( 1 - 152 T + 22224 T^{2} - 2037320 T^{3} + 158433022 T^{4} - 9145529480 T^{5} + 447838513104 T^{6} - 13749674089688 T^{7} + 406067677556641 T^{8} )^{2}$$
$71$ $$1 - 9864 T^{2} + 51888284 T^{4} - 294531431096 T^{6} + 1789421441990854 T^{8} - 7484538771485032376 T^{10} +$$$$33\!\cdots\!24$$$$T^{12} -$$$$16\!\cdots\!24$$$$T^{14} +$$$$41\!\cdots\!21$$$$T^{16}$$
$73$ $$( 1 - 56 T + 18460 T^{2} - 736008 T^{3} + 138223494 T^{4} - 3922186632 T^{5} + 524231528860 T^{6} - 8474716672184 T^{7} + 806460091894081 T^{8} )^{2}$$
$79$ $$1 - 24968 T^{2} + 330869788 T^{4} - 3106127956152 T^{6} + 22189846569597766 T^{8} -$$$$12\!\cdots\!12$$$$T^{10} +$$$$50\!\cdots\!68$$$$T^{12} -$$$$14\!\cdots\!88$$$$T^{14} +$$$$23\!\cdots\!21$$$$T^{16}$$
$83$ $$( 1 + 36 T + 16478 T^{2} + 177884 T^{3} + 135298114 T^{4} + 1225442876 T^{5} + 782018213438 T^{6} + 11769853441284 T^{7} + 2252292232139041 T^{8} )^{2}$$
$89$ $$( 1 - 256 T + 48252 T^{2} - 6269952 T^{3} + 638304966 T^{4} - 49664289792 T^{5} + 3027438612732 T^{6} - 127227210486016 T^{7} + 3936588805702081 T^{8} )^{2}$$
$97$ $$( 1 + 32 T + 19484 T^{2} + 1437536 T^{3} + 199130566 T^{4} + 13525776224 T^{5} + 1724904511004 T^{6} + 26655104157728 T^{7} + 7837433594376961 T^{8} )^{2}$$