Properties

Label 392.2.z.a.109.14
Level $392$
Weight $2$
Character 392.109
Analytic conductor $3.130$
Analytic rank $0$
Dimension $648$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,2,Mod(37,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([0, 21, 32]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.z (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(648\)
Relative dimension: \(54\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 109.14
Character \(\chi\) \(=\) 392.109
Dual form 392.2.z.a.205.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11505 - 0.869863i) q^{2} +(0.264046 + 1.75183i) q^{3} +(0.486677 + 1.93988i) q^{4} +(3.38580 + 1.32883i) q^{5} +(1.22943 - 2.18307i) q^{6} +(-0.357778 + 2.62145i) q^{7} +(1.14476 - 2.58641i) q^{8} +(-0.132482 + 0.0408653i) q^{9} +O(q^{10})\) \(q+(-1.11505 - 0.869863i) q^{2} +(0.264046 + 1.75183i) q^{3} +(0.486677 + 1.93988i) q^{4} +(3.38580 + 1.32883i) q^{5} +(1.22943 - 2.18307i) q^{6} +(-0.357778 + 2.62145i) q^{7} +(1.14476 - 2.58641i) q^{8} +(-0.132482 + 0.0408653i) q^{9} +(-2.61944 - 4.42689i) q^{10} +(0.946542 - 3.06861i) q^{11} +(-3.26985 + 1.36480i) q^{12} +(4.21081 - 0.961090i) q^{13} +(2.67924 - 2.61183i) q^{14} +(-1.43388 + 6.28223i) q^{15} +(-3.52629 + 1.88819i) q^{16} +(-3.19299 + 2.17694i) q^{17} +(0.183271 + 0.0696742i) q^{18} +(-2.19780 + 1.26890i) q^{19} +(-0.929978 + 7.21476i) q^{20} +(-4.68681 + 0.0654163i) q^{21} +(-3.72472 + 2.59830i) q^{22} +(-6.54375 - 4.46145i) q^{23} +(4.83323 + 1.32250i) q^{24} +(6.03258 + 5.59742i) q^{25} +(-5.53129 - 2.59116i) q^{26} +(2.19946 + 4.56723i) q^{27} +(-5.25943 + 0.581752i) q^{28} +(3.71732 - 7.71910i) q^{29} +(7.06352 - 5.75773i) q^{30} +(1.03774 - 1.79741i) q^{31} +(5.57446 + 0.961955i) q^{32} +(5.62563 + 0.847928i) q^{33} +(5.45399 + 0.350060i) q^{34} +(-4.69482 + 8.40027i) q^{35} +(-0.143750 - 0.237111i) q^{36} +(-9.23936 + 0.692394i) q^{37} +(3.55442 + 0.496895i) q^{38} +(2.79552 + 7.12287i) q^{39} +(7.31282 - 7.23587i) q^{40} +(5.03910 + 6.31884i) q^{41} +(5.28294 + 4.00394i) q^{42} +(0.212516 + 0.169476i) q^{43} +(6.41341 + 0.342755i) q^{44} +(-0.502860 - 0.0376841i) q^{45} +(3.41576 + 10.6669i) q^{46} +(2.62394 - 2.43466i) q^{47} +(-4.23891 - 5.67890i) q^{48} +(-6.74399 - 1.87579i) q^{49} +(-1.85765 - 11.4889i) q^{50} +(-4.65674 - 5.01878i) q^{51} +(3.91371 + 7.70074i) q^{52} +(2.67165 + 0.200213i) q^{53} +(1.52035 - 7.00593i) q^{54} +(7.28246 - 9.13191i) q^{55} +(6.37057 + 3.92630i) q^{56} +(-2.80322 - 3.51513i) q^{57} +(-10.8596 + 5.37363i) q^{58} +(-1.20757 + 0.473937i) q^{59} +(-12.8846 + 0.275865i) q^{60} +(-3.05785 + 0.229154i) q^{61} +(-2.72063 + 1.10152i) q^{62} +(-0.0597270 - 0.361915i) q^{63} +(-5.37904 - 5.92165i) q^{64} +(15.5341 + 2.34138i) q^{65} +(-5.53529 - 5.83901i) q^{66} +(-4.44977 - 2.56908i) q^{67} +(-5.77697 - 5.13456i) q^{68} +(6.08787 - 12.6416i) q^{69} +(12.5420 - 5.28288i) q^{70} +(-3.15445 + 1.51910i) q^{71} +(-0.0459659 + 0.389434i) q^{72} +(-4.56009 - 4.23114i) q^{73} +(10.9046 + 7.26492i) q^{74} +(-8.21286 + 12.0461i) q^{75} +(-3.53113 - 3.64592i) q^{76} +(7.70556 + 3.57920i) q^{77} +(3.07877 - 10.3741i) q^{78} +(-5.58625 - 9.67567i) q^{79} +(-14.4484 + 1.70721i) q^{80} +(-7.76392 + 5.29335i) q^{81} +(-0.122337 - 11.4292i) q^{82} +(8.47811 + 1.93507i) q^{83} +(-2.40787 - 9.06003i) q^{84} +(-13.7036 + 3.12776i) q^{85} +(-0.0895455 - 0.373834i) q^{86} +(14.5041 + 4.47393i) q^{87} +(-6.85313 - 5.96098i) q^{88} +(-3.08481 + 0.951537i) q^{89} +(0.527934 + 0.479439i) q^{90} +(1.01291 + 11.3823i) q^{91} +(5.47000 - 14.8654i) q^{92} +(3.42278 + 1.34334i) q^{93} +(-5.04364 + 0.432302i) q^{94} +(-9.12744 + 1.37574i) q^{95} +(-0.213268 + 10.0195i) q^{96} -7.26359 q^{97} +(5.88821 + 7.95795i) q^{98} +0.445217i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 648 q - 13 q^{2} - 13 q^{4} - 6 q^{6} - 24 q^{7} - 16 q^{8} - 76 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 648 q - 13 q^{2} - 13 q^{4} - 6 q^{6} - 24 q^{7} - 16 q^{8} - 76 q^{9} - 6 q^{10} - 47 q^{12} - 33 q^{14} - 8 q^{15} - 17 q^{16} - 26 q^{17} - 8 q^{18} - 22 q^{20} - 18 q^{22} - 26 q^{23} - 74 q^{24} - 72 q^{25} - 12 q^{26} + 2 q^{28} - 11 q^{30} + 60 q^{31} - 13 q^{32} - 14 q^{33} - 18 q^{34} + 8 q^{36} - 46 q^{38} - 32 q^{39} + 32 q^{40} - 20 q^{41} - 36 q^{42} + 38 q^{44} - 22 q^{46} - 58 q^{47} + 28 q^{48} - 16 q^{49} - 132 q^{50} + 18 q^{52} - 37 q^{54} - 32 q^{55} + 96 q^{56} - 66 q^{57} + 100 q^{60} + 28 q^{62} - 72 q^{63} - 28 q^{64} - 36 q^{65} - 4 q^{66} - 11 q^{68} - 36 q^{70} + 60 q^{71} - 130 q^{72} - 18 q^{73} - 12 q^{74} + 11 q^{76} - 132 q^{78} - 12 q^{79} - 64 q^{80} - 58 q^{81} + 152 q^{82} - 224 q^{84} + 55 q^{86} - 8 q^{87} - 169 q^{88} - 18 q^{89} + 144 q^{90} - 54 q^{92} + 154 q^{94} - 64 q^{95} - 142 q^{96} - 96 q^{97} + 151 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{20}{21}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.11505 0.869863i −0.788460 0.615086i
\(3\) 0.264046 + 1.75183i 0.152447 + 1.01142i 0.925955 + 0.377634i \(0.123262\pi\)
−0.773507 + 0.633787i \(0.781500\pi\)
\(4\) 0.486677 + 1.93988i 0.243339 + 0.969941i
\(5\) 3.38580 + 1.32883i 1.51417 + 0.594270i 0.969655 0.244478i \(-0.0786167\pi\)
0.544520 + 0.838748i \(0.316712\pi\)
\(6\) 1.22943 2.18307i 0.501913 0.891234i
\(7\) −0.357778 + 2.62145i −0.135227 + 0.990815i
\(8\) 1.14476 2.58641i 0.404734 0.914434i
\(9\) −0.132482 + 0.0408653i −0.0441606 + 0.0136218i
\(10\) −2.61944 4.42689i −0.828339 1.39991i
\(11\) 0.946542 3.06861i 0.285393 0.925222i −0.693432 0.720522i \(-0.743902\pi\)
0.978825 0.204700i \(-0.0656218\pi\)
\(12\) −3.26985 + 1.36480i −0.943923 + 0.393983i
\(13\) 4.21081 0.961090i 1.16787 0.266558i 0.405743 0.913987i \(-0.367013\pi\)
0.762126 + 0.647429i \(0.224156\pi\)
\(14\) 2.67924 2.61183i 0.716058 0.698041i
\(15\) −1.43388 + 6.28223i −0.370225 + 1.62206i
\(16\) −3.52629 + 1.88819i −0.881573 + 0.472049i
\(17\) −3.19299 + 2.17694i −0.774414 + 0.527987i −0.884838 0.465898i \(-0.845731\pi\)
0.110424 + 0.993885i \(0.464779\pi\)
\(18\) 0.183271 + 0.0696742i 0.0431974 + 0.0164224i
\(19\) −2.19780 + 1.26890i −0.504209 + 0.291105i −0.730450 0.682966i \(-0.760690\pi\)
0.226241 + 0.974071i \(0.427356\pi\)
\(20\) −0.929978 + 7.21476i −0.207949 + 1.61327i
\(21\) −4.68681 + 0.0654163i −1.02275 + 0.0142750i
\(22\) −3.72472 + 2.59830i −0.794112 + 0.553959i
\(23\) −6.54375 4.46145i −1.36447 0.930277i −0.364466 0.931217i \(-0.618748\pi\)
−1.00000 0.000940129i \(0.999701\pi\)
\(24\) 4.83323 + 1.32250i 0.986579 + 0.269954i
\(25\) 6.03258 + 5.59742i 1.20652 + 1.11948i
\(26\) −5.53129 2.59116i −1.08477 0.508169i
\(27\) 2.19946 + 4.56723i 0.423287 + 0.878964i
\(28\) −5.25943 + 0.581752i −0.993938 + 0.109941i
\(29\) 3.71732 7.71910i 0.690289 1.43340i −0.200828 0.979627i \(-0.564363\pi\)
0.891117 0.453774i \(-0.149923\pi\)
\(30\) 7.06352 5.75773i 1.28962 1.05121i
\(31\) 1.03774 1.79741i 0.186383 0.322825i −0.757659 0.652651i \(-0.773657\pi\)
0.944042 + 0.329826i \(0.106990\pi\)
\(32\) 5.57446 + 0.961955i 0.985435 + 0.170051i
\(33\) 5.62563 + 0.847928i 0.979297 + 0.147605i
\(34\) 5.45399 + 0.350060i 0.935352 + 0.0600348i
\(35\) −4.69482 + 8.40027i −0.793569 + 1.41990i
\(36\) −0.143750 0.237111i −0.0239583 0.0395185i
\(37\) −9.23936 + 0.692394i −1.51894 + 0.113829i −0.807899 0.589320i \(-0.799396\pi\)
−0.711042 + 0.703149i \(0.751777\pi\)
\(38\) 3.55442 + 0.496895i 0.576604 + 0.0806070i
\(39\) 2.79552 + 7.12287i 0.447641 + 1.14057i
\(40\) 7.31282 7.23587i 1.15626 1.14409i
\(41\) 5.03910 + 6.31884i 0.786976 + 0.986837i 0.999952 + 0.00977915i \(0.00311285\pi\)
−0.212976 + 0.977057i \(0.568316\pi\)
\(42\) 5.28294 + 4.00394i 0.815175 + 0.617822i
\(43\) 0.212516 + 0.169476i 0.0324084 + 0.0258448i 0.639560 0.768741i \(-0.279117\pi\)
−0.607152 + 0.794586i \(0.707688\pi\)
\(44\) 6.41341 + 0.342755i 0.966858 + 0.0516723i
\(45\) −0.502860 0.0376841i −0.0749619 0.00561762i
\(46\) 3.41576 + 10.6669i 0.503626 + 1.57275i
\(47\) 2.62394 2.43466i 0.382740 0.355131i −0.465216 0.885197i \(-0.654023\pi\)
0.847956 + 0.530066i \(0.177833\pi\)
\(48\) −4.23891 5.67890i −0.611834 0.819679i
\(49\) −6.74399 1.87579i −0.963427 0.267971i
\(50\) −1.85765 11.4889i −0.262711 1.62478i
\(51\) −4.65674 5.01878i −0.652074 0.702769i
\(52\) 3.91371 + 7.70074i 0.542734 + 1.06790i
\(53\) 2.67165 + 0.200213i 0.366980 + 0.0275013i 0.256944 0.966426i \(-0.417284\pi\)
0.110036 + 0.993928i \(0.464903\pi\)
\(54\) 1.52035 7.00593i 0.206894 0.953386i
\(55\) 7.28246 9.13191i 0.981967 1.23135i
\(56\) 6.37057 + 3.92630i 0.851304 + 0.524673i
\(57\) −2.80322 3.51513i −0.371295 0.465590i
\(58\) −10.8596 + 5.37363i −1.42593 + 0.705592i
\(59\) −1.20757 + 0.473937i −0.157212 + 0.0617014i −0.442642 0.896698i \(-0.645959\pi\)
0.285430 + 0.958400i \(0.407864\pi\)
\(60\) −12.8846 + 0.275865i −1.66340 + 0.0356140i
\(61\) −3.05785 + 0.229154i −0.391518 + 0.0293402i −0.269035 0.963130i \(-0.586705\pi\)
−0.122483 + 0.992471i \(0.539086\pi\)
\(62\) −2.72063 + 1.10152i −0.345521 + 0.139893i
\(63\) −0.0597270 0.361915i −0.00752490 0.0455970i
\(64\) −5.37904 5.92165i −0.672380 0.740206i
\(65\) 15.5341 + 2.34138i 1.92676 + 0.290413i
\(66\) −5.53529 5.83901i −0.681347 0.718733i
\(67\) −4.44977 2.56908i −0.543626 0.313863i 0.202921 0.979195i \(-0.434956\pi\)
−0.746547 + 0.665332i \(0.768290\pi\)
\(68\) −5.77697 5.13456i −0.700561 0.622657i
\(69\) 6.08787 12.6416i 0.732893 1.52187i
\(70\) 12.5420 5.28288i 1.49906 0.631425i
\(71\) −3.15445 + 1.51910i −0.374364 + 0.180284i −0.611599 0.791168i \(-0.709473\pi\)
0.237234 + 0.971452i \(0.423759\pi\)
\(72\) −0.0459659 + 0.389434i −0.00541713 + 0.0458952i
\(73\) −4.56009 4.23114i −0.533718 0.495218i 0.366643 0.930362i \(-0.380507\pi\)
−0.900361 + 0.435144i \(0.856698\pi\)
\(74\) 10.9046 + 7.26492i 1.26764 + 0.844530i
\(75\) −8.21286 + 12.0461i −0.948340 + 1.39096i
\(76\) −3.53113 3.64592i −0.405049 0.418216i
\(77\) 7.70556 + 3.57920i 0.878130 + 0.407887i
\(78\) 3.07877 10.3741i 0.348602 1.17463i
\(79\) −5.58625 9.67567i −0.628503 1.08860i −0.987852 0.155395i \(-0.950335\pi\)
0.359350 0.933203i \(-0.382999\pi\)
\(80\) −14.4484 + 1.70721i −1.61538 + 0.190872i
\(81\) −7.76392 + 5.29335i −0.862658 + 0.588150i
\(82\) −0.122337 11.4292i −0.0135099 1.26214i
\(83\) 8.47811 + 1.93507i 0.930594 + 0.212402i 0.660840 0.750527i \(-0.270200\pi\)
0.269754 + 0.962929i \(0.413057\pi\)
\(84\) −2.40787 9.06003i −0.262720 0.988530i
\(85\) −13.7036 + 3.12776i −1.48636 + 0.339253i
\(86\) −0.0895455 0.373834i −0.00965594 0.0403116i
\(87\) 14.5041 + 4.47393i 1.55500 + 0.479655i
\(88\) −6.85313 5.96098i −0.730546 0.635442i
\(89\) −3.08481 + 0.951537i −0.326989 + 0.100863i −0.453903 0.891051i \(-0.649969\pi\)
0.126914 + 0.991914i \(0.459493\pi\)
\(90\) 0.527934 + 0.479439i 0.0556492 + 0.0505373i
\(91\) 1.01291 + 11.3823i 0.106182 + 1.19319i
\(92\) 5.47000 14.8654i 0.570287 1.54982i
\(93\) 3.42278 + 1.34334i 0.354926 + 0.139298i
\(94\) −5.04364 + 0.432302i −0.520212 + 0.0445886i
\(95\) −9.12744 + 1.37574i −0.936456 + 0.141148i
\(96\) −0.213268 + 10.0195i −0.0217666 + 1.02261i
\(97\) −7.26359 −0.737505 −0.368753 0.929528i \(-0.620215\pi\)
−0.368753 + 0.929528i \(0.620215\pi\)
\(98\) 5.88821 + 7.95795i 0.594799 + 0.803875i
\(99\) 0.445217i 0.0447459i
\(100\) −7.92241 + 14.4266i −0.792241 + 1.44266i
\(101\) −1.37385 9.11491i −0.136703 0.906967i −0.947066 0.321039i \(-0.895968\pi\)
0.810363 0.585929i \(-0.199270\pi\)
\(102\) 0.826860 + 9.64692i 0.0818713 + 0.955187i
\(103\) −5.24420 + 13.3620i −0.516726 + 1.31660i 0.399793 + 0.916606i \(0.369082\pi\)
−0.916519 + 0.399991i \(0.869013\pi\)
\(104\) 2.33460 11.9911i 0.228926 1.17582i
\(105\) −15.9555 6.00648i −1.55710 0.586172i
\(106\) −2.80487 2.54722i −0.272433 0.247408i
\(107\) 3.22057 + 10.4408i 0.311344 + 1.00935i 0.967104 + 0.254383i \(0.0818723\pi\)
−0.655760 + 0.754970i \(0.727652\pi\)
\(108\) −7.78946 + 6.48947i −0.749541 + 0.624449i
\(109\) 5.91292 19.1692i 0.566355 1.83608i 0.0179919 0.999838i \(-0.494273\pi\)
0.548363 0.836240i \(-0.315251\pi\)
\(110\) −16.0638 + 3.84781i −1.53163 + 0.366874i
\(111\) −3.65258 16.0030i −0.346688 1.51894i
\(112\) −3.68818 9.91954i −0.348500 0.937309i
\(113\) −0.591655 + 2.59221i −0.0556582 + 0.243854i −0.995103 0.0988466i \(-0.968485\pi\)
0.939444 + 0.342701i \(0.111342\pi\)
\(114\) 0.0680554 + 6.35796i 0.00637397 + 0.595478i
\(115\) −16.2273 23.8011i −1.51320 2.21946i
\(116\) 16.7833 + 3.45446i 1.55829 + 0.320738i
\(117\) −0.518581 + 0.299403i −0.0479428 + 0.0276798i
\(118\) 1.75876 + 0.521958i 0.161907 + 0.0480501i
\(119\) −4.56437 9.14913i −0.418415 0.838699i
\(120\) 14.6070 + 10.9002i 1.33343 + 0.995052i
\(121\) 0.568174 + 0.387375i 0.0516522 + 0.0352159i
\(122\) 3.60899 + 2.40439i 0.326743 + 0.217683i
\(123\) −9.73899 + 10.4961i −0.878135 + 0.946405i
\(124\) 3.99181 + 1.13833i 0.358476 + 0.102225i
\(125\) 5.09643 + 10.5828i 0.455838 + 0.946558i
\(126\) −0.248218 + 0.455508i −0.0221130 + 0.0405799i
\(127\) 19.8102 + 9.54011i 1.75788 + 0.846548i 0.974301 + 0.225250i \(0.0723200\pi\)
0.783575 + 0.621298i \(0.213394\pi\)
\(128\) 0.846886 + 11.2820i 0.0748548 + 0.997194i
\(129\) −0.240780 + 0.417042i −0.0211995 + 0.0367185i
\(130\) −15.2846 16.1233i −1.34055 1.41410i
\(131\) 1.05153 6.97646i 0.0918728 0.609536i −0.894756 0.446555i \(-0.852651\pi\)
0.986629 0.162982i \(-0.0521111\pi\)
\(132\) 1.09299 + 11.3257i 0.0951324 + 0.985779i
\(133\) −2.54003 6.21540i −0.220248 0.538943i
\(134\) 2.72698 + 6.73534i 0.235575 + 0.581845i
\(135\) 1.37787 + 18.3864i 0.118588 + 1.58245i
\(136\) 1.97526 + 10.7505i 0.169377 + 0.921845i
\(137\) −1.70991 4.35678i −0.146087 0.372225i 0.839035 0.544077i \(-0.183120\pi\)
−0.985123 + 0.171852i \(0.945025\pi\)
\(138\) −17.7847 + 8.80040i −1.51394 + 0.749140i
\(139\) 12.0799 9.63339i 1.02460 0.817093i 0.0413137 0.999146i \(-0.486846\pi\)
0.983289 + 0.182053i \(0.0582743\pi\)
\(140\) −18.5804 5.01917i −1.57033 0.424198i
\(141\) 4.95795 + 3.95384i 0.417535 + 0.332973i
\(142\) 4.83878 + 1.05006i 0.406062 + 0.0881192i
\(143\) 1.03650 13.8311i 0.0866761 1.15661i
\(144\) 0.390008 0.394254i 0.0325007 0.0328545i
\(145\) 22.8434 21.1956i 1.89704 1.76020i
\(146\) 1.40422 + 8.68459i 0.116214 + 0.718742i
\(147\) 1.50535 12.3096i 0.124160 1.01528i
\(148\) −5.83975 17.5863i −0.480025 1.44559i
\(149\) 6.17324 + 6.65317i 0.505731 + 0.545049i 0.933377 0.358898i \(-0.116847\pi\)
−0.427646 + 0.903946i \(0.640657\pi\)
\(150\) 19.6362 6.28790i 1.60329 0.513405i
\(151\) −0.552154 + 7.36799i −0.0449337 + 0.599598i 0.928604 + 0.371072i \(0.121010\pi\)
−0.973538 + 0.228526i \(0.926609\pi\)
\(152\) 0.765940 + 7.13699i 0.0621259 + 0.578886i
\(153\) 0.334052 0.418888i 0.0270065 0.0338651i
\(154\) −5.47869 10.6938i −0.441485 0.861728i
\(155\) 5.90202 4.70670i 0.474062 0.378052i
\(156\) −12.4570 + 8.88952i −0.997359 + 0.711731i
\(157\) 6.85651 2.69098i 0.547209 0.214764i −0.0755991 0.997138i \(-0.524087\pi\)
0.622808 + 0.782375i \(0.285992\pi\)
\(158\) −2.18755 + 15.6481i −0.174032 + 1.24490i
\(159\) 0.354701 + 4.73316i 0.0281296 + 0.375364i
\(160\) 17.5957 + 10.6645i 1.39106 + 0.843102i
\(161\) 14.0367 15.5579i 1.10624 1.22613i
\(162\) 13.2617 + 0.851189i 1.04193 + 0.0668757i
\(163\) 0.0341261 0.226412i 0.00267296 0.0177339i −0.987455 0.157903i \(-0.949527\pi\)
0.990128 + 0.140169i \(0.0447647\pi\)
\(164\) −9.80538 + 12.8505i −0.765672 + 1.00346i
\(165\) 17.9205 + 10.3464i 1.39511 + 0.805467i
\(166\) −7.77028 9.53250i −0.603091 0.739866i
\(167\) −3.66835 1.76659i −0.283866 0.136703i 0.286533 0.958070i \(-0.407497\pi\)
−0.570399 + 0.821368i \(0.693211\pi\)
\(168\) −5.19609 + 12.1969i −0.400887 + 0.941012i
\(169\) 5.09464 2.45345i 0.391895 0.188727i
\(170\) 18.0009 + 8.43265i 1.38061 + 0.646754i
\(171\) 0.239314 0.257920i 0.0183008 0.0197236i
\(172\) −0.225337 + 0.494737i −0.0171818 + 0.0377233i
\(173\) 13.9151 20.4096i 1.05794 1.55172i 0.244867 0.969557i \(-0.421256\pi\)
0.813075 0.582159i \(-0.197792\pi\)
\(174\) −12.2811 17.6053i −0.931030 1.33465i
\(175\) −16.8317 + 13.8115i −1.27235 + 1.04405i
\(176\) 2.45636 + 12.6081i 0.185155 + 0.950370i
\(177\) −1.14911 1.99032i −0.0863727 0.149602i
\(178\) 4.26743 + 1.62235i 0.319857 + 0.121600i
\(179\) 1.42467 + 2.08961i 0.106485 + 0.156184i 0.875782 0.482706i \(-0.160346\pi\)
−0.769298 + 0.638891i \(0.779394\pi\)
\(180\) −0.171628 0.993829i −0.0127924 0.0740756i
\(181\) −17.9397 4.09462i −1.33345 0.304351i −0.504372 0.863486i \(-0.668276\pi\)
−0.829077 + 0.559135i \(0.811133\pi\)
\(182\) 8.77158 13.5729i 0.650192 1.00609i
\(183\) −1.20885 5.29634i −0.0893611 0.391517i
\(184\) −19.0302 + 11.8175i −1.40292 + 0.871199i
\(185\) −32.2027 9.93321i −2.36759 0.730304i
\(186\) −2.64805 4.47524i −0.194164 0.328141i
\(187\) 3.65790 + 11.8586i 0.267492 + 0.867189i
\(188\) 5.99996 + 3.90523i 0.437592 + 0.284819i
\(189\) −12.7597 + 4.13172i −0.928130 + 0.300539i
\(190\) 11.3743 + 6.40560i 0.825176 + 0.464711i
\(191\) 9.66035 24.6142i 0.698998 1.78102i 0.0783541 0.996926i \(-0.475034\pi\)
0.620644 0.784092i \(-0.286871\pi\)
\(192\) 8.95342 10.9868i 0.646158 0.792902i
\(193\) −3.83394 + 0.577874i −0.275973 + 0.0415963i −0.285571 0.958358i \(-0.592183\pi\)
0.00959736 + 0.999954i \(0.496945\pi\)
\(194\) 8.09927 + 6.31832i 0.581494 + 0.453629i
\(195\) 27.8313i 1.99304i
\(196\) 0.356674 13.9955i 0.0254767 0.999675i
\(197\) 0.804222i 0.0572984i 0.999590 + 0.0286492i \(0.00912058\pi\)
−0.999590 + 0.0286492i \(0.990879\pi\)
\(198\) 0.387277 0.496439i 0.0275226 0.0352804i
\(199\) −2.18022 + 0.328616i −0.154552 + 0.0232949i −0.225862 0.974159i \(-0.572520\pi\)
0.0713105 + 0.997454i \(0.477282\pi\)
\(200\) 21.3831 9.19502i 1.51201 0.650186i
\(201\) 3.32565 8.47361i 0.234573 0.597682i
\(202\) −6.39680 + 11.3586i −0.450078 + 0.799192i
\(203\) 18.9052 + 12.5065i 1.32689 + 0.877784i
\(204\) 7.46950 11.4761i 0.522970 0.803485i
\(205\) 8.66474 + 28.0904i 0.605172 + 1.96192i
\(206\) 17.4707 10.3376i 1.21724 0.720253i
\(207\) 1.04925 + 0.323650i 0.0729277 + 0.0224952i
\(208\) −13.0338 + 11.3399i −0.903732 + 0.786281i
\(209\) 1.81345 + 7.94526i 0.125439 + 0.549585i
\(210\) 12.5664 + 20.5766i 0.867165 + 1.41992i
\(211\) −2.42509 0.553511i −0.166950 0.0381053i 0.138229 0.990400i \(-0.455859\pi\)
−0.305179 + 0.952295i \(0.598716\pi\)
\(212\) 0.911844 + 5.28013i 0.0626257 + 0.362641i
\(213\) −3.49414 5.12496i −0.239414 0.351156i
\(214\) 5.49099 14.4435i 0.375356 0.987338i
\(215\) 0.494332 + 0.856209i 0.0337132 + 0.0583929i
\(216\) 14.3306 0.460323i 0.975073 0.0313210i
\(217\) 4.34055 + 3.36345i 0.294656 + 0.228326i
\(218\) −23.2678 + 16.2312i −1.57589 + 1.09932i
\(219\) 6.20819 9.10574i 0.419510 0.615309i
\(220\) 21.2591 + 9.68282i 1.43329 + 0.652816i
\(221\) −11.3528 + 12.2355i −0.763675 + 0.823046i
\(222\) −9.84760 + 21.0214i −0.660928 + 1.41086i
\(223\) −1.01766 + 0.490079i −0.0681476 + 0.0328181i −0.467647 0.883915i \(-0.654898\pi\)
0.399500 + 0.916733i \(0.369184\pi\)
\(224\) −4.51614 + 14.2690i −0.301747 + 0.953388i
\(225\) −1.02795 0.495033i −0.0685298 0.0330022i
\(226\) 2.91459 2.37579i 0.193876 0.158035i
\(227\) 9.08788 + 5.24689i 0.603184 + 0.348248i 0.770293 0.637690i \(-0.220110\pi\)
−0.167109 + 0.985938i \(0.553443\pi\)
\(228\) 5.45467 7.14865i 0.361244 0.473431i
\(229\) −3.09602 + 20.5407i −0.204591 + 1.35737i 0.616852 + 0.787079i \(0.288408\pi\)
−0.821443 + 0.570291i \(0.806831\pi\)
\(230\) −2.60940 + 40.6549i −0.172059 + 2.68071i
\(231\) −4.23553 + 14.4439i −0.278677 + 0.950341i
\(232\) −15.7093 18.4510i −1.03137 1.21137i
\(233\) 0.335166 + 4.47248i 0.0219575 + 0.293002i 0.997362 + 0.0725817i \(0.0231238\pi\)
−0.975405 + 0.220420i \(0.929257\pi\)
\(234\) 0.838684 + 0.117245i 0.0548265 + 0.00766453i
\(235\) 12.1194 4.75649i 0.790579 0.310280i
\(236\) −1.50708 2.11189i −0.0981026 0.137473i
\(237\) 15.4751 12.3410i 1.00522 0.801635i
\(238\) −2.86898 + 14.1721i −0.185969 + 0.918642i
\(239\) 11.0455 13.8506i 0.714472 0.895919i −0.283539 0.958961i \(-0.591509\pi\)
0.998011 + 0.0630416i \(0.0200801\pi\)
\(240\) −6.80580 24.8604i −0.439312 1.60473i
\(241\) 0.412255 5.50115i 0.0265556 0.354361i −0.968059 0.250721i \(-0.919332\pi\)
0.994615 0.103639i \(-0.0330487\pi\)
\(242\) −0.296581 0.926176i −0.0190649 0.0595369i
\(243\) −0.979222 1.05535i −0.0628171 0.0677008i
\(244\) −1.93272 5.82035i −0.123730 0.372610i
\(245\) −20.3412 15.3127i −1.29955 0.978290i
\(246\) 19.9897 3.23214i 1.27450 0.206074i
\(247\) −8.03498 + 7.45537i −0.511254 + 0.474374i
\(248\) −3.46089 4.74162i −0.219767 0.301093i
\(249\) −1.15131 + 15.3632i −0.0729615 + 0.973603i
\(250\) 3.52284 16.2336i 0.222804 1.02670i
\(251\) −9.01330 7.18787i −0.568915 0.453694i 0.296301 0.955095i \(-0.404247\pi\)
−0.865215 + 0.501400i \(0.832818\pi\)
\(252\) 0.673005 0.291999i 0.0423954 0.0183942i
\(253\) −19.8844 + 15.8573i −1.25012 + 0.996939i
\(254\) −13.7908 27.8699i −0.865315 1.74871i
\(255\) −9.09770 23.1806i −0.569720 1.45162i
\(256\) 8.86944 13.3166i 0.554340 0.832290i
\(257\) 0.783099 + 10.4497i 0.0488484 + 0.651836i 0.966864 + 0.255292i \(0.0821716\pi\)
−0.918016 + 0.396544i \(0.870209\pi\)
\(258\) 0.631251 0.255578i 0.0393000 0.0159116i
\(259\) 1.49057 24.4682i 0.0926193 1.52038i
\(260\) 3.01807 + 31.2738i 0.187173 + 1.93952i
\(261\) −0.177035 + 1.17455i −0.0109582 + 0.0727028i
\(262\) −7.24108 + 6.86442i −0.447355 + 0.424085i
\(263\) 7.11895 12.3304i 0.438973 0.760324i −0.558637 0.829412i \(-0.688676\pi\)
0.997611 + 0.0690878i \(0.0220089\pi\)
\(264\) 8.63310 13.5795i 0.531330 0.835762i
\(265\) 8.77963 + 4.22805i 0.539328 + 0.259727i
\(266\) −2.57428 + 9.13996i −0.157839 + 0.560407i
\(267\) −2.48147 5.15282i −0.151863 0.315348i
\(268\) 2.81810 9.88234i 0.172143 0.603660i
\(269\) −8.69857 + 9.37482i −0.530361 + 0.571593i −0.940225 0.340553i \(-0.889386\pi\)
0.409864 + 0.912147i \(0.365576\pi\)
\(270\) 14.4573 21.7004i 0.879841 1.32064i
\(271\) −7.66853 5.22831i −0.465830 0.317597i 0.307559 0.951529i \(-0.400488\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(272\) 7.14892 13.7055i 0.433467 0.831020i
\(273\) −19.6724 + 4.77990i −1.19063 + 0.289293i
\(274\) −1.88316 + 6.34542i −0.113766 + 0.383341i
\(275\) 22.8864 13.2135i 1.38010 0.796802i
\(276\) 27.4860 + 5.65737i 1.65446 + 0.340534i
\(277\) 13.9795 + 20.5042i 0.839949 + 1.23198i 0.970636 + 0.240555i \(0.0773293\pi\)
−0.130687 + 0.991424i \(0.541718\pi\)
\(278\) −21.8494 + 0.233875i −1.31044 + 0.0140269i
\(279\) −0.0640296 + 0.280532i −0.00383335 + 0.0167950i
\(280\) 16.3521 + 21.7590i 0.977225 + 1.30035i
\(281\) 6.80717 + 29.8242i 0.406082 + 1.77916i 0.601954 + 0.798531i \(0.294389\pi\)
−0.195872 + 0.980629i \(0.562754\pi\)
\(282\) −2.08908 8.72147i −0.124403 0.519356i
\(283\) 1.14499 3.71197i 0.0680627 0.220654i −0.915151 0.403111i \(-0.867929\pi\)
0.983214 + 0.182457i \(0.0584051\pi\)
\(284\) −4.48208 5.37995i −0.265963 0.319241i
\(285\) −4.82014 15.6265i −0.285520 0.925634i
\(286\) −13.1869 + 14.5207i −0.779756 + 0.858629i
\(287\) −18.3674 + 10.9490i −1.08419 + 0.646300i
\(288\) −0.777826 + 0.100360i −0.0458338 + 0.00591378i
\(289\) −0.754691 + 1.92292i −0.0443936 + 0.113113i
\(290\) −43.9089 + 3.76353i −2.57842 + 0.221002i
\(291\) −1.91792 12.7246i −0.112431 0.745929i
\(292\) 5.98863 10.9052i 0.350458 0.638181i
\(293\) 9.27503i 0.541853i −0.962600 0.270927i \(-0.912670\pi\)
0.962600 0.270927i \(-0.0873301\pi\)
\(294\) −12.3862 + 12.4164i −0.722381 + 0.724141i
\(295\) −4.71837 −0.274714
\(296\) −8.78605 + 24.6894i −0.510679 + 1.43504i
\(297\) 16.0970 2.42623i 0.934040 0.140784i
\(298\) −1.09613 12.7885i −0.0634972 0.740817i
\(299\) −31.8423 12.4972i −1.84149 0.722731i
\(300\) −27.3649 10.0694i −1.57992 0.581360i
\(301\) −0.520306 + 0.496465i −0.0299900 + 0.0286158i
\(302\) 7.02482 7.73538i 0.404233 0.445121i
\(303\) 15.6050 4.81352i 0.896486 0.276529i
\(304\) 5.35414 8.62437i 0.307081 0.494642i
\(305\) −10.6578 3.28749i −0.610262 0.188241i
\(306\) −0.736860 + 0.176502i −0.0421235 + 0.0100900i
\(307\) −15.4065 + 3.51644i −0.879297 + 0.200694i −0.638259 0.769822i \(-0.720345\pi\)
−0.241038 + 0.970516i \(0.577488\pi\)
\(308\) −3.19310 + 16.6898i −0.181943 + 0.950990i
\(309\) −24.7927 5.65877i −1.41041 0.321916i
\(310\) −10.6752 + 0.114267i −0.606313 + 0.00648995i
\(311\) −15.9366 + 10.8654i −0.903683 + 0.616121i −0.923465 0.383684i \(-0.874655\pi\)
0.0197815 + 0.999804i \(0.493703\pi\)
\(312\) 21.6229 + 0.923623i 1.22415 + 0.0522899i
\(313\) 13.0037 + 22.5230i 0.735010 + 1.27307i 0.954719 + 0.297509i \(0.0961559\pi\)
−0.219709 + 0.975565i \(0.570511\pi\)
\(314\) −9.98614 2.96364i −0.563551 0.167248i
\(315\) 0.278699 1.30474i 0.0157029 0.0735137i
\(316\) 16.0510 15.5456i 0.902938 0.874509i
\(317\) −5.69598 + 8.35446i −0.319918 + 0.469233i −0.952187 0.305515i \(-0.901171\pi\)
0.632269 + 0.774749i \(0.282124\pi\)
\(318\) 3.72169 5.58625i 0.208702 0.313261i
\(319\) −20.1683 18.7135i −1.12921 1.04775i
\(320\) −10.3435 27.1973i −0.578219 1.52038i
\(321\) −17.4402 + 8.39876i −0.973417 + 0.468773i
\(322\) −29.1848 + 5.13786i −1.62641 + 0.286321i
\(323\) 4.25522 8.83606i 0.236767 0.491652i
\(324\) −14.0470 12.4849i −0.780389 0.693608i
\(325\) 30.7817 + 17.7718i 1.70746 + 0.985803i
\(326\) −0.234999 + 0.222776i −0.0130154 + 0.0123384i
\(327\) 35.1426 + 5.29689i 1.94339 + 0.292919i
\(328\) 22.1117 5.79963i 1.22091 0.320231i
\(329\) 5.44354 + 7.74958i 0.300112 + 0.427248i
\(330\) −10.9823 27.1251i −0.604557 1.49319i
\(331\) 11.2263 0.841292i 0.617051 0.0462416i 0.237462 0.971397i \(-0.423684\pi\)
0.379589 + 0.925155i \(0.376065\pi\)
\(332\) 0.372290 + 17.3883i 0.0204321 + 0.954307i
\(333\) 1.19575 0.469299i 0.0655269 0.0257174i
\(334\) 2.55371 + 5.16080i 0.139733 + 0.282386i
\(335\) −11.6522 14.6113i −0.636626 0.798303i
\(336\) 16.4035 9.08029i 0.894887 0.495370i
\(337\) −14.7941 + 18.5513i −0.805888 + 1.01055i 0.193677 + 0.981065i \(0.437959\pi\)
−0.999565 + 0.0294867i \(0.990613\pi\)
\(338\) −7.81494 1.69592i −0.425077 0.0922457i
\(339\) −4.69734 0.352017i −0.255125 0.0191189i
\(340\) −12.7367 25.0612i −0.690746 1.35913i
\(341\) −4.53331 4.88574i −0.245492 0.264578i
\(342\) −0.491202 + 0.0794228i −0.0265612 + 0.00429469i
\(343\) 7.33015 17.0079i 0.395791 0.918341i
\(344\) 0.681615 0.355644i 0.0367502 0.0191751i
\(345\) 37.4108 34.7121i 2.01413 1.86884i
\(346\) −33.2696 + 10.6536i −1.78858 + 0.572741i
\(347\) −18.9892 1.42304i −1.01939 0.0763928i −0.445465 0.895300i \(-0.646961\pi\)
−0.573927 + 0.818907i \(0.694581\pi\)
\(348\) −1.62007 + 30.3137i −0.0868448 + 1.62498i
\(349\) −11.0108 8.78080i −0.589393 0.470025i 0.282805 0.959177i \(-0.408735\pi\)
−0.872199 + 0.489152i \(0.837306\pi\)
\(350\) 30.7823 0.759249i 1.64538 0.0405836i
\(351\) 13.6510 + 17.1179i 0.728639 + 0.913684i
\(352\) 8.22833 16.1953i 0.438572 0.863215i
\(353\) −7.23273 18.4287i −0.384959 0.980860i −0.983684 0.179905i \(-0.942421\pi\)
0.598725 0.800955i \(-0.295674\pi\)
\(354\) −0.449988 + 3.21888i −0.0239166 + 0.171082i
\(355\) −12.6990 + 0.951655i −0.673991 + 0.0505086i
\(356\) −3.34718 5.52107i −0.177400 0.292616i
\(357\) 14.8225 10.4118i 0.784492 0.551051i
\(358\) 0.229092 3.56928i 0.0121079 0.188642i
\(359\) −2.03721 0.307060i −0.107520 0.0162060i 0.0950619 0.995471i \(-0.469695\pi\)
−0.202582 + 0.979265i \(0.564933\pi\)
\(360\) −0.673121 + 1.25746i −0.0354766 + 0.0662741i
\(361\) −6.27979 + 10.8769i −0.330515 + 0.572470i
\(362\) 16.4419 + 20.1708i 0.864169 + 1.06015i
\(363\) −0.528592 + 1.09763i −0.0277439 + 0.0576107i
\(364\) −21.5873 + 7.50443i −1.13148 + 0.393339i
\(365\) −9.81708 20.3854i −0.513849 1.06702i
\(366\) −3.25915 + 6.95722i −0.170359 + 0.363660i
\(367\) 14.9895 + 13.9082i 0.782444 + 0.726002i 0.966431 0.256927i \(-0.0827100\pi\)
−0.183987 + 0.982929i \(0.558900\pi\)
\(368\) 31.4992 + 3.37650i 1.64201 + 0.176012i
\(369\) −0.925811 0.631207i −0.0481958 0.0328593i
\(370\) 27.2671 + 39.0879i 1.41755 + 2.03209i
\(371\) −1.48071 + 6.93197i −0.0768745 + 0.359890i
\(372\) −0.940136 + 7.29357i −0.0487438 + 0.378154i
\(373\) −26.2561 + 15.1590i −1.35949 + 0.784901i −0.989555 0.144157i \(-0.953953\pi\)
−0.369934 + 0.929058i \(0.620620\pi\)
\(374\) 6.23663 16.4049i 0.322489 0.848275i
\(375\) −17.1937 + 11.7225i −0.887878 + 0.605345i
\(376\) −3.29324 9.57368i −0.169836 0.493725i
\(377\) 8.23419 36.0763i 0.424082 1.85803i
\(378\) 17.8217 + 6.49209i 0.916651 + 0.333917i
\(379\) 17.1804 3.92132i 0.882500 0.201425i 0.242825 0.970070i \(-0.421926\pi\)
0.639675 + 0.768645i \(0.279069\pi\)
\(380\) −7.11089 17.0366i −0.364781 0.873960i
\(381\) −11.4819 + 37.2233i −0.588234 + 1.90701i
\(382\) −32.1827 + 19.0429i −1.64661 + 0.974318i
\(383\) 3.15728 0.973892i 0.161329 0.0497635i −0.213038 0.977044i \(-0.568336\pi\)
0.374368 + 0.927280i \(0.377860\pi\)
\(384\) −19.5405 + 4.46257i −0.997173 + 0.227729i
\(385\) 21.3333 + 22.3578i 1.08725 + 1.13946i
\(386\) 4.77771 + 2.69065i 0.243179 + 0.136950i
\(387\) −0.0350802 0.0137680i −0.00178323 0.000699865i
\(388\) −3.53502 14.0905i −0.179464 0.715337i
\(389\) 0.606130 + 4.02141i 0.0307320 + 0.203894i 0.998928 0.0463013i \(-0.0147434\pi\)
−0.968196 + 0.250195i \(0.919505\pi\)
\(390\) 24.2095 31.0334i 1.22589 1.57144i
\(391\) 30.6065 1.54783
\(392\) −12.5718 + 15.2954i −0.634974 + 0.772534i
\(393\) 12.4993 0.630504
\(394\) 0.699563 0.896748i 0.0352435 0.0451775i
\(395\) −6.05662 40.1830i −0.304742 2.02183i
\(396\) −0.863668 + 0.216677i −0.0434009 + 0.0108884i
\(397\) 29.0058 + 11.3839i 1.45576 + 0.571343i 0.955620 0.294603i \(-0.0951874\pi\)
0.500138 + 0.865946i \(0.333283\pi\)
\(398\) 2.71691 + 1.53007i 0.136186 + 0.0766955i
\(399\) 10.2177 6.09086i 0.511522 0.304924i
\(400\) −31.8416 8.34743i −1.59208 0.417371i
\(401\) −9.07807 + 2.80021i −0.453337 + 0.139836i −0.513011 0.858382i \(-0.671470\pi\)
0.0596741 + 0.998218i \(0.480994\pi\)
\(402\) −11.0791 + 6.55565i −0.552578 + 0.326966i
\(403\) 2.64224 8.56593i 0.131619 0.426699i
\(404\) 17.0132 7.10113i 0.846440 0.353294i
\(405\) −33.3210 + 7.60530i −1.65573 + 0.377911i
\(406\) −10.2014 30.3903i −0.506286 1.50825i
\(407\) −6.62075 + 29.0074i −0.328179 + 1.43784i
\(408\) −18.3115 + 6.29895i −0.906553 + 0.311844i
\(409\) 13.3207 9.08193i 0.658668 0.449073i −0.187302 0.982302i \(-0.559974\pi\)
0.845970 + 0.533230i \(0.179022\pi\)
\(410\) 14.7732 38.8594i 0.729595 1.91913i
\(411\) 7.18085 4.14587i 0.354205 0.204501i
\(412\) −28.4729 3.67014i −1.40276 0.180815i
\(413\) −0.810359 3.33515i −0.0398752 0.164112i
\(414\) −0.888432 1.27359i −0.0436641 0.0625933i
\(415\) 26.1338 + 17.8177i 1.28286 + 0.874637i
\(416\) 24.3975 1.30695i 1.19619 0.0640785i
\(417\) 20.0657 + 18.6183i 0.982623 + 0.911741i
\(418\) 4.88919 10.4368i 0.239138 0.510482i
\(419\) 9.98104 + 20.7259i 0.487606 + 1.01252i 0.989084 + 0.147354i \(0.0470756\pi\)
−0.501478 + 0.865170i \(0.667210\pi\)
\(420\) 3.88667 33.8751i 0.189650 1.65293i
\(421\) −4.99559 + 10.3734i −0.243470 + 0.505571i −0.986515 0.163671i \(-0.947667\pi\)
0.743045 + 0.669242i \(0.233381\pi\)
\(422\) 2.22262 + 2.72669i 0.108195 + 0.132733i
\(423\) −0.248131 + 0.429776i −0.0120645 + 0.0208964i
\(424\) 3.57624 6.68080i 0.173677 0.324448i
\(425\) −31.4472 4.73991i −1.52542 0.229919i
\(426\) −0.561869 + 8.75401i −0.0272226 + 0.424133i
\(427\) 0.493316 8.09798i 0.0238732 0.391889i
\(428\) −18.6866 + 11.3288i −0.903251 + 0.547600i
\(429\) 24.5034 1.83628i 1.18304 0.0886563i
\(430\) 0.193578 1.38472i 0.00933517 0.0667770i
\(431\) 5.58039 + 14.2186i 0.268798 + 0.684886i 0.999996 + 0.00272110i \(0.000866155\pi\)
−0.731198 + 0.682165i \(0.761039\pi\)
\(432\) −16.3798 11.9524i −0.788072 0.575059i
\(433\) −18.9161 23.7201i −0.909052 1.13991i −0.989698 0.143172i \(-0.954270\pi\)
0.0806460 0.996743i \(-0.474302\pi\)
\(434\) −1.91419 7.52610i −0.0918841 0.361264i
\(435\) 43.1629 + 34.4213i 2.06950 + 1.65037i
\(436\) 40.0637 + 2.14115i 1.91870 + 0.102542i
\(437\) 20.0429 + 1.50201i 0.958784 + 0.0718509i
\(438\) −14.8432 + 4.75309i −0.709235 + 0.227111i
\(439\) 18.0529 16.7506i 0.861618 0.799465i −0.119508 0.992833i \(-0.538132\pi\)
0.981126 + 0.193368i \(0.0619413\pi\)
\(440\) −15.2822 29.2893i −0.728550 1.39631i
\(441\) 0.970111 0.0270860i 0.0461958 0.00128981i
\(442\) 23.3022 3.76774i 1.10837 0.179213i
\(443\) 0.764006 + 0.823402i 0.0362990 + 0.0391210i 0.750940 0.660370i \(-0.229601\pi\)
−0.714641 + 0.699491i \(0.753410\pi\)
\(444\) 29.2663 14.8739i 1.38892 0.705883i
\(445\) −11.7090 0.877466i −0.555058 0.0415959i
\(446\) 1.56105 + 0.338761i 0.0739176 + 0.0160408i
\(447\) −10.0252 + 12.5712i −0.474177 + 0.594599i
\(448\) 17.4478 11.9822i 0.824331 0.566108i
\(449\) −5.57504 6.99088i −0.263103 0.329920i 0.632679 0.774414i \(-0.281955\pi\)
−0.895782 + 0.444494i \(0.853384\pi\)
\(450\) 0.715603 + 1.44616i 0.0337338 + 0.0681727i
\(451\) 24.1598 9.48202i 1.13764 0.446491i
\(452\) −5.31653 + 0.113829i −0.250068 + 0.00535406i
\(453\) −13.0533 + 0.978208i −0.613297 + 0.0459602i
\(454\) −5.56938 13.7558i −0.261384 0.645590i
\(455\) −11.6956 + 39.8841i −0.548297 + 1.86979i
\(456\) −12.3006 + 3.22630i −0.576027 + 0.151085i
\(457\) −29.3335 4.42132i −1.37216 0.206821i −0.578751 0.815504i \(-0.696460\pi\)
−0.793413 + 0.608684i \(0.791698\pi\)
\(458\) 21.3198 20.2109i 0.996210 0.944391i
\(459\) −16.9655 9.79502i −0.791880 0.457192i
\(460\) 38.2738 43.0625i 1.78453 2.00780i
\(461\) 2.98132 6.19078i 0.138854 0.288333i −0.819933 0.572460i \(-0.805989\pi\)
0.958787 + 0.284126i \(0.0917036\pi\)
\(462\) 17.2871 12.4214i 0.804268 0.577896i
\(463\) −9.94250 + 4.78806i −0.462067 + 0.222520i −0.650410 0.759584i \(-0.725403\pi\)
0.188343 + 0.982103i \(0.439688\pi\)
\(464\) 1.46680 + 34.2388i 0.0680947 + 1.58950i
\(465\) 9.80377 + 9.09657i 0.454639 + 0.421843i
\(466\) 3.51672 5.27859i 0.162909 0.244526i
\(467\) −9.30649 + 13.6501i −0.430653 + 0.631652i −0.978821 0.204716i \(-0.934373\pi\)
0.548168 + 0.836368i \(0.315325\pi\)
\(468\) −0.833188 0.860274i −0.0385141 0.0397662i
\(469\) 8.32673 10.7457i 0.384493 0.496190i
\(470\) −17.6512 5.23844i −0.814189 0.241631i
\(471\) 6.52459 + 11.3009i 0.300637 + 0.520719i
\(472\) −0.156586 + 3.66582i −0.00720745 + 0.168733i
\(473\) 0.721212 0.491714i 0.0331614 0.0226090i
\(474\) −27.9906 + 0.299610i −1.28565 + 0.0137615i
\(475\) −20.3609 4.64725i −0.934224 0.213231i
\(476\) 15.5269 13.3070i 0.711672 0.609926i
\(477\) −0.362127 + 0.0826532i −0.0165807 + 0.00378443i
\(478\) −24.3643 + 5.83606i −1.11440 + 0.266935i
\(479\) −34.4069 10.6131i −1.57209 0.484926i −0.618438 0.785834i \(-0.712234\pi\)
−0.953653 + 0.300908i \(0.902710\pi\)
\(480\) −14.0363 + 33.6407i −0.640667 + 1.53548i
\(481\) −38.2397 + 11.7954i −1.74358 + 0.537824i
\(482\) −5.24493 + 5.77546i −0.238900 + 0.263065i
\(483\) 30.9612 + 20.4819i 1.40878 + 0.931959i
\(484\) −0.474944 + 1.29072i −0.0215884 + 0.0586690i
\(485\) −24.5930 9.65205i −1.11671 0.438277i
\(486\) 0.173873 + 2.02856i 0.00788702 + 0.0920173i
\(487\) −7.09683 + 1.06968i −0.321588 + 0.0484716i −0.307853 0.951434i \(-0.599610\pi\)
−0.0137355 + 0.999906i \(0.504372\pi\)
\(488\) −2.90782 + 8.17118i −0.131631 + 0.369892i
\(489\) 0.405646 0.0183440
\(490\) 9.36153 + 34.7684i 0.422911 + 1.57068i
\(491\) 19.5368i 0.881685i −0.897585 0.440842i \(-0.854680\pi\)
0.897585 0.440842i \(-0.145320\pi\)
\(492\) −25.1010 13.7843i −1.13164 0.621443i
\(493\) 4.93467 + 32.7394i 0.222246 + 1.47451i
\(494\) 15.4446 1.32379i 0.694884 0.0595601i
\(495\) −0.591616 + 1.50741i −0.0265912 + 0.0677532i
\(496\) −0.265496 + 8.29765i −0.0119211 + 0.372575i
\(497\) −2.85366 8.81273i −0.128004 0.395305i
\(498\) 14.6476 16.1293i 0.656377 0.722770i
\(499\) −1.98915 6.44867i −0.0890466 0.288682i 0.900085 0.435714i \(-0.143504\pi\)
−0.989132 + 0.147032i \(0.953028\pi\)
\(500\) −18.0492 + 15.0369i −0.807183 + 0.672471i
\(501\) 2.12615 6.89280i 0.0949893 0.307948i
\(502\) 3.79783 + 15.8552i 0.169506 + 0.707651i
\(503\) 5.00664 + 21.9355i 0.223235 + 0.978056i 0.955025 + 0.296526i \(0.0958281\pi\)
−0.731790 + 0.681530i \(0.761315\pi\)
\(504\) −1.00443 0.259828i −0.0447411 0.0115737i
\(505\) 7.46056 32.6868i 0.331990 1.45455i
\(506\) 35.9658 0.384976i 1.59887 0.0171143i
\(507\) 5.64325 + 8.27713i 0.250626 + 0.367600i
\(508\) −8.86550 + 43.0725i −0.393343 + 1.91103i
\(509\) 16.8230 9.71275i 0.745665 0.430510i −0.0784602 0.996917i \(-0.525000\pi\)
0.824126 + 0.566407i \(0.191667\pi\)
\(510\) −10.0195 + 33.7613i −0.443671 + 1.49497i
\(511\) 12.7232 10.4402i 0.562843 0.461849i
\(512\) −21.4735 + 7.13354i −0.949005 + 0.315261i
\(513\) −10.6293 7.24695i −0.469296 0.319961i
\(514\) 8.21664 12.3332i 0.362420 0.543993i
\(515\) −35.5116 + 38.2724i −1.56483 + 1.68648i
\(516\) −0.926195 0.264119i −0.0407735 0.0116272i
\(517\) −4.98736 10.3564i −0.219344 0.455472i
\(518\) −22.9461 + 25.9867i −1.00819 + 1.14179i
\(519\) 39.4285 + 18.9878i 1.73072 + 0.833470i
\(520\) 23.8386 37.4972i 1.04539 1.64436i
\(521\) −18.5252 + 32.0867i −0.811606 + 1.40574i 0.100134 + 0.994974i \(0.468073\pi\)
−0.911740 + 0.410768i \(0.865260\pi\)
\(522\) 1.21910 1.15569i 0.0533586 0.0505831i
\(523\) −3.38859 + 22.4818i −0.148173 + 0.983060i 0.783926 + 0.620855i \(0.213214\pi\)
−0.932098 + 0.362206i \(0.882024\pi\)
\(524\) 14.0453 1.35544i 0.613571 0.0592126i
\(525\) −28.6397 25.8394i −1.24994 1.12772i
\(526\) −18.6637 + 7.55650i −0.813778 + 0.329479i
\(527\) 0.599384 + 7.99822i 0.0261096 + 0.348408i
\(528\) −21.4387 + 7.63225i −0.932998 + 0.332151i
\(529\) 14.5132 + 36.9791i 0.631010 + 1.60779i
\(530\) −6.11191 12.3516i −0.265484 0.536517i
\(531\) 0.140614 0.112136i 0.00610212 0.00486628i
\(532\) 10.8210 7.95225i 0.469148 0.344774i
\(533\) 27.2917 + 21.7644i 1.18213 + 0.942721i
\(534\) −1.71528 + 7.90419i −0.0742276 + 0.342048i
\(535\) −2.96986 + 39.6301i −0.128398 + 1.71336i
\(536\) −11.7386 + 8.56795i −0.507031 + 0.370079i
\(537\) −3.28446 + 3.04754i −0.141735 + 0.131511i
\(538\) 17.8542 2.88685i 0.769747 0.124461i
\(539\) −12.1396 + 18.9192i −0.522888 + 0.814907i
\(540\) −34.9969 + 11.6212i −1.50603 + 0.500095i
\(541\) 2.02749 + 2.18512i 0.0871687 + 0.0939455i 0.775130 0.631802i \(-0.217684\pi\)
−0.687961 + 0.725748i \(0.741494\pi\)
\(542\) 4.00288 + 12.5004i 0.171939 + 0.536938i
\(543\) 2.43618 32.5086i 0.104547 1.39508i
\(544\) −19.8933 + 9.06378i −0.852920 + 0.388607i
\(545\) 45.4925 57.0458i 1.94869 2.44358i
\(546\) 26.0936 + 11.7825i 1.11670 + 0.504243i
\(547\) −7.50860 + 5.98791i −0.321045 + 0.256025i −0.770729 0.637163i \(-0.780108\pi\)
0.449685 + 0.893187i \(0.351536\pi\)
\(548\) 7.61946 5.43737i 0.325487 0.232273i
\(549\) 0.395745 0.155319i 0.0168900 0.00662884i
\(550\) −37.0134 5.17434i −1.57826 0.220634i
\(551\) 1.62483 + 21.6819i 0.0692203 + 0.923680i
\(552\) −25.7272 30.2173i −1.09502 1.28613i
\(553\) 27.3629 11.1823i 1.16359 0.475521i
\(554\) 2.24796 35.0235i 0.0955065 1.48801i
\(555\) 8.89833 59.0366i 0.377713 2.50596i
\(556\) 24.5666 + 18.7452i 1.04186 + 0.794974i
\(557\) −22.1461 12.7860i −0.938359 0.541762i −0.0489136 0.998803i \(-0.515576\pi\)
−0.889446 + 0.457041i \(0.848909\pi\)
\(558\) 0.315421 0.257111i 0.0133528 0.0108844i
\(559\) 1.05775 + 0.509384i 0.0447379 + 0.0215447i
\(560\) 0.693948 38.4865i 0.0293247 1.62635i
\(561\) −19.8085 + 9.53927i −0.836315 + 0.402748i
\(562\) 18.3526 39.1768i 0.774157 1.65257i
\(563\) −17.2352 + 18.5752i −0.726378 + 0.782849i −0.982989 0.183665i \(-0.941204\pi\)
0.256611 + 0.966515i \(0.417394\pi\)
\(564\) −5.25705 + 11.5421i −0.221362 + 0.486010i
\(565\) −5.44782 + 7.99049i −0.229192 + 0.336162i
\(566\) −4.50563 + 3.14305i −0.189386 + 0.132112i
\(567\) −11.0985 22.2466i −0.466093 0.934268i
\(568\) 0.317932 + 9.89772i 0.0133401 + 0.415299i
\(569\) −3.52360 6.10305i −0.147717 0.255853i 0.782666 0.622441i \(-0.213859\pi\)
−0.930383 + 0.366588i \(0.880526\pi\)
\(570\) −8.21821 + 21.6172i −0.344223 + 0.905445i
\(571\) −18.6910 27.4147i −0.782196 1.14727i −0.985752 0.168207i \(-0.946202\pi\)
0.203556 0.979063i \(-0.434750\pi\)
\(572\) 27.3351 4.72059i 1.14294 0.197378i
\(573\) 45.6707 + 10.4240i 1.90792 + 0.435470i
\(574\) 30.0047 + 3.76840i 1.25237 + 0.157290i
\(575\) −14.5031 63.5421i −0.604820 2.64989i
\(576\) 0.954615 + 0.564695i 0.0397756 + 0.0235290i
\(577\) 9.97830 + 3.07790i 0.415402 + 0.128135i 0.495409 0.868660i \(-0.335018\pi\)
−0.0800072 + 0.996794i \(0.525494\pi\)
\(578\) 2.51420 1.48768i 0.104577 0.0618792i
\(579\) −2.02468 6.56384i −0.0841427 0.272784i
\(580\) 52.2344 + 33.9982i 2.16892 + 1.41170i
\(581\) −8.10598 + 21.5326i −0.336293 + 0.893323i
\(582\) −8.93007 + 15.8569i −0.370163 + 0.657290i
\(583\) 3.14321 8.00876i 0.130178 0.331689i
\(584\) −16.1637 + 6.95061i −0.668858 + 0.287618i
\(585\) −2.15367 + 0.324613i −0.0890431 + 0.0134211i
\(586\) −8.06800 + 10.3421i −0.333286 + 0.427230i
\(587\) 13.9435i 0.575509i −0.957704 0.287755i \(-0.907091\pi\)
0.957704 0.287755i \(-0.0929088\pi\)
\(588\) 24.6119 3.07062i 1.01498 0.126630i
\(589\) 5.26713i 0.217028i
\(590\) 5.26123 + 4.10434i 0.216601 + 0.168973i
\(591\) −1.40886 + 0.212352i −0.0579529 + 0.00873499i
\(592\) 31.2733 19.8873i 1.28532 0.817363i
\(593\) 1.35191 3.44461i 0.0555162 0.141453i −0.900425 0.435012i \(-0.856744\pi\)
0.955941 + 0.293558i \(0.0948395\pi\)
\(594\) −20.0594 11.2968i −0.823047 0.463512i
\(595\) −3.29641 37.0423i −0.135140 1.51859i
\(596\) −9.90199 + 15.2133i −0.405601 + 0.623161i
\(597\) −1.15136 3.73262i −0.0471220 0.152766i
\(598\) 24.6350 + 41.6335i 1.00740 + 1.70252i
\(599\) 23.9626 + 7.39149i 0.979086 + 0.302008i 0.742680 0.669646i \(-0.233554\pi\)
0.236406 + 0.971654i \(0.424030\pi\)
\(600\) 21.7543 + 35.0317i 0.888115 + 1.43016i
\(601\) 2.93278 + 12.8493i 0.119630 + 0.524135i 0.998860 + 0.0477368i \(0.0152009\pi\)
−0.879229 + 0.476398i \(0.841942\pi\)
\(602\) 1.01202 0.100989i 0.0412471 0.00411601i
\(603\) 0.694500 + 0.158515i 0.0282822 + 0.00645523i
\(604\) −14.5618 + 2.51472i −0.592509 + 0.102322i
\(605\) 1.40897 + 2.06658i 0.0572827 + 0.0840184i
\(606\) −21.5875 8.20693i −0.876933 0.333384i
\(607\) −22.7705 39.4397i −0.924227 1.60081i −0.792800 0.609482i \(-0.791377\pi\)
−0.131428 0.991326i \(-0.541956\pi\)
\(608\) −13.4722 + 4.95925i −0.546368 + 0.201124i
\(609\) −16.9174 + 36.4211i −0.685529 + 1.47586i
\(610\) 9.02429 + 12.9365i 0.365383 + 0.523784i
\(611\) 8.70897 12.7737i 0.352327 0.516769i
\(612\) 0.975170 + 0.444159i 0.0394189 + 0.0179540i
\(613\) 0.219006 0.236032i 0.00884557 0.00953325i −0.728614 0.684925i \(-0.759835\pi\)
0.737459 + 0.675392i \(0.236025\pi\)
\(614\) 20.2379 + 9.48055i 0.816734 + 0.382604i
\(615\) −46.9218 + 22.5964i −1.89207 + 0.911173i
\(616\) 18.0783 15.8324i 0.728396 0.637907i
\(617\) −8.44595 4.06736i −0.340021 0.163746i 0.256078 0.966656i \(-0.417569\pi\)
−0.596100 + 0.802910i \(0.703284\pi\)
\(618\) 22.7228 + 27.8761i 0.914044 + 1.12134i
\(619\) 13.1127 + 7.57063i 0.527044 + 0.304289i 0.739812 0.672814i \(-0.234914\pi\)
−0.212768 + 0.977103i \(0.568248\pi\)
\(620\) 12.0028 + 9.15858i 0.482045 + 0.367817i
\(621\) 5.98375 39.6996i 0.240120 1.59309i
\(622\) 27.2216 + 1.74719i 1.09149 + 0.0700561i
\(623\) −1.39073 8.42711i −0.0557184 0.337625i
\(624\) −23.3072 19.8388i −0.933034 0.794188i
\(625\) 0.117780 + 1.57167i 0.00471122 + 0.0628668i
\(626\) 5.09217 36.4257i 0.203524 1.45586i
\(627\) −13.4399 + 5.27478i −0.536739 + 0.210655i
\(628\) 8.55710 + 11.9912i 0.341465 + 0.478500i
\(629\) 27.9939 22.3244i 1.11619 0.890132i
\(630\) −1.44571 + 1.21242i −0.0575984 + 0.0483040i
\(631\) −12.1818 + 15.2755i −0.484950 + 0.608108i −0.962761 0.270355i \(-0.912859\pi\)
0.477811 + 0.878463i \(0.341430\pi\)
\(632\) −31.4202 + 3.37201i −1.24983 + 0.134131i
\(633\) 0.329323 4.39451i 0.0130894 0.174666i
\(634\) 13.6185 4.36094i 0.540861 0.173195i
\(635\) 54.3963 + 58.6253i 2.15865 + 2.32647i
\(636\) −9.00914 + 2.99160i −0.357236 + 0.118625i
\(637\) −30.2005 1.41704i −1.19659 0.0561450i
\(638\) 6.21056 + 38.4102i 0.245878 + 1.52067i
\(639\) 0.355829 0.330161i 0.0140764 0.0130610i
\(640\) −12.1244 + 39.3238i −0.479259 + 1.55441i
\(641\) 2.79878 37.3472i 0.110545 1.47513i −0.615858 0.787857i \(-0.711191\pi\)
0.726404 0.687268i \(-0.241190\pi\)
\(642\) 26.7525 + 5.80554i 1.05584 + 0.229126i
\(643\) 22.1551 + 17.6681i 0.873712 + 0.696762i 0.953935 0.300015i \(-0.0969916\pi\)
−0.0802224 + 0.996777i \(0.525563\pi\)
\(644\) 37.0118 + 19.6578i 1.45847 + 0.774627i
\(645\) −1.36941 + 1.09207i −0.0539204 + 0.0430001i
\(646\) −12.4310 + 6.15120i −0.489089 + 0.242016i
\(647\) 3.96344 + 10.0987i 0.155819 + 0.397020i 0.987371 0.158427i \(-0.0506423\pi\)
−0.831552 + 0.555447i \(0.812547\pi\)
\(648\) 4.80294 + 26.1403i 0.188677 + 1.02689i
\(649\) 0.311312 + 4.15417i 0.0122201 + 0.163066i
\(650\) −18.8641 46.5923i −0.739911 1.82750i
\(651\) −4.74610 + 8.49202i −0.186014 + 0.332829i
\(652\) 0.455821 0.0439889i 0.0178513 0.00172274i
\(653\) 1.01603 6.74091i 0.0397603 0.263792i −0.960115 0.279606i \(-0.909796\pi\)
0.999875 + 0.0158144i \(0.00503410\pi\)
\(654\) −34.5782 36.4755i −1.35211 1.42631i
\(655\) 12.8308 22.2236i 0.501341 0.868347i
\(656\) −29.7005 12.7672i −1.15961 0.498477i
\(657\) 0.777036 + 0.374201i 0.0303151 + 0.0145990i
\(658\) 0.671246 13.3763i 0.0261679 0.521463i
\(659\) 6.50370 + 13.5051i 0.253348 + 0.526083i 0.988390 0.151939i \(-0.0485517\pi\)
−0.735042 + 0.678022i \(0.762837\pi\)
\(660\) −11.3493 + 39.7990i −0.441771 + 1.54918i
\(661\) 5.17611 5.57852i 0.201327 0.216979i −0.624316 0.781172i \(-0.714622\pi\)
0.825643 + 0.564193i \(0.190813\pi\)
\(662\) −13.2497 8.82722i −0.514963 0.343080i
\(663\) −24.4322 16.6576i −0.948866 0.646926i
\(664\) 14.7103 19.7127i 0.570871 0.765001i
\(665\) −0.340833 24.4193i −0.0132169 0.946941i
\(666\) −1.74155 0.516849i −0.0674837 0.0200275i
\(667\) −58.7636 + 33.9272i −2.27533 + 1.31367i
\(668\) 1.64166 7.97593i 0.0635179 0.308598i
\(669\) −1.12725 1.65337i −0.0435819 0.0639229i
\(670\) 0.282886 + 26.4282i 0.0109289 + 1.02101i
\(671\) −2.19120 + 9.60027i −0.0845903 + 0.370614i
\(672\) −26.1894 4.14384i −1.01028 0.159852i
\(673\) 4.95154 + 21.6941i 0.190868 + 0.836247i 0.976148 + 0.217107i \(0.0696619\pi\)
−0.785280 + 0.619141i \(0.787481\pi\)
\(674\) 32.6333 7.81674i 1.25699 0.301089i
\(675\) −12.2963 + 39.8635i −0.473283 + 1.53435i
\(676\) 7.23885 + 8.68896i 0.278417 + 0.334191i
\(677\) −0.615403 1.99509i −0.0236519 0.0766774i 0.942977 0.332857i \(-0.108012\pi\)
−0.966629 + 0.256179i \(0.917536\pi\)
\(678\) 4.93157 + 4.47856i 0.189396 + 0.171998i
\(679\) 2.59875 19.0411i 0.0997310 0.730731i
\(680\) −7.59769 + 39.0237i −0.291358 + 1.49649i
\(681\) −6.79206 + 17.3059i −0.260272 + 0.663163i
\(682\) 0.804942 + 9.39121i 0.0308228 + 0.359608i
\(683\) −5.81808 38.6004i −0.222623 1.47700i −0.768883 0.639389i \(-0.779187\pi\)
0.546260 0.837615i \(-0.316051\pi\)
\(684\) 0.616803 + 0.338718i 0.0235840 + 0.0129512i
\(685\) 17.0233i 0.650428i
\(686\) −22.9680 + 12.5885i −0.876924 + 0.480629i
\(687\) −36.8014 −1.40406
\(688\) −1.06940 0.196350i −0.0407704 0.00748576i
\(689\) 11.4422 1.72464i 0.435915 0.0657036i
\(690\) −71.9097 + 6.16355i −2.73755 + 0.234642i
\(691\) −3.20443 1.25765i −0.121902 0.0478431i 0.303606 0.952798i \(-0.401809\pi\)
−0.425508 + 0.904955i \(0.639905\pi\)
\(692\) 46.3644 + 17.0607i 1.76251 + 0.648549i
\(693\) −1.16711 0.159289i −0.0443349 0.00605088i
\(694\) 19.9360 + 18.1047i 0.756761 + 0.687246i
\(695\) 53.7011 16.5646i 2.03700 0.628331i
\(696\) 28.1752 32.3920i 1.06798 1.22782i
\(697\) −29.8456 9.20614i −1.13048 0.348707i
\(698\) 4.63948 + 19.3689i 0.175607 + 0.733124i
\(699\) −7.74654 + 1.76810i −0.293001 + 0.0668756i
\(700\) −34.9842 25.9297i −1.32228 0.980052i
\(701\) −12.3550 2.81996i −0.466643 0.106508i −0.0172671 0.999851i \(-0.505497\pi\)
−0.449376 + 0.893343i \(0.648354\pi\)
\(702\) −0.331414 30.9618i −0.0125084 1.16858i
\(703\) 19.4277 13.2456i 0.732728 0.499565i
\(704\) −23.2627 + 10.9011i −0.876748 + 0.410851i
\(705\) 11.5327 + 19.9752i 0.434345 + 0.752308i
\(706\) −7.96557 + 26.8404i −0.299788 + 1.01015i
\(707\) 24.3858 0.340365i 0.917122 0.0128008i
\(708\) 3.30175 3.19779i 0.124087 0.120180i
\(709\) 8.97420 13.1627i 0.337033 0.494337i −0.619886 0.784692i \(-0.712821\pi\)
0.956919 + 0.290355i \(0.0937734\pi\)
\(710\) 14.9878 + 9.98521i 0.562482 + 0.374738i
\(711\) 1.13548 + 1.05357i 0.0425837 + 0.0395119i
\(712\) −1.07030 + 9.06787i −0.0401113 + 0.339833i
\(713\) −14.8098 + 7.13200i −0.554630 + 0.267096i
\(714\) −25.5847 1.28389i −0.957485 0.0480482i
\(715\) 21.8885 45.4519i 0.818582 1.69980i
\(716\) −3.36024 + 3.78065i −0.125578 + 0.141290i
\(717\) 27.1804 + 15.6926i 1.01507 + 0.586052i
\(718\) 2.00449 + 2.11448i 0.0748070 + 0.0789117i
\(719\) 38.2978 + 5.77247i 1.42827 + 0.215277i 0.817224 0.576320i \(-0.195512\pi\)
0.611043 + 0.791597i \(0.290750\pi\)
\(720\) 1.84438 0.816612i 0.0687361 0.0304333i
\(721\) −33.1515 18.5280i −1.23463 0.690020i
\(722\) 16.4637 6.66576i 0.612716 0.248074i
\(723\) 9.74596 0.730359i 0.362456 0.0271623i
\(724\) −0.787768 36.7937i −0.0292772 1.36743i
\(725\) 65.6320 25.7587i 2.43751 0.956653i
\(726\) 1.54420 0.764113i 0.0573105 0.0283589i
\(727\) −14.4073 18.0661i −0.534336 0.670036i 0.439248 0.898366i \(-0.355245\pi\)
−0.973584 + 0.228330i \(0.926673\pi\)
\(728\) 30.5988 + 10.4102i 1.13407 + 0.385827i
\(729\) −15.9860 + 20.0458i −0.592074 + 0.742438i
\(730\) −6.78593 + 31.2702i −0.251159 + 1.15736i
\(731\) −1.04750 0.0784994i −0.0387433 0.00290341i
\(732\) 9.68595 4.92264i 0.358003 0.181946i
\(733\) 14.6003 + 15.7354i 0.539276 + 0.581202i 0.942629 0.333843i \(-0.108346\pi\)
−0.403352 + 0.915045i \(0.632155\pi\)
\(734\) −4.61580 28.5471i −0.170372 1.05369i
\(735\) 21.4542 39.6776i 0.791351 1.46353i
\(736\) −32.1862 31.1650i −1.18640 1.14876i
\(737\) −12.0954 + 11.2229i −0.445540 + 0.413400i
\(738\) 0.483263 + 1.50916i 0.0177891 + 0.0555528i
\(739\) −7.00618 0.525040i −0.257726 0.0193139i −0.0547597 0.998500i \(-0.517439\pi\)
−0.202967 + 0.979186i \(0.565058\pi\)
\(740\) 3.59694 67.3037i 0.132226 2.47413i
\(741\) −15.1822 12.1074i −0.557731 0.444776i
\(742\) 7.68093 6.44149i 0.281976 0.236474i
\(743\) −27.4238 34.3884i −1.00608 1.26159i −0.964950 0.262435i \(-0.915474\pi\)
−0.0411337 0.999154i \(-0.513097\pi\)
\(744\) 7.39270 7.31491i 0.271030 0.268178i
\(745\) 12.0604 + 30.7294i 0.441859 + 1.12584i
\(746\) 42.4631 + 5.93618i 1.55468 + 0.217339i
\(747\) −1.20227 + 0.0900980i −0.0439889 + 0.00329651i
\(748\) −21.2241 + 12.8672i −0.776031 + 0.470473i
\(749\) −28.5223 + 4.70705i −1.04218 + 0.171992i
\(750\) 29.3688 + 1.88501i 1.07240 + 0.0688309i
\(751\) −31.2795 4.71462i −1.14140 0.172039i −0.448989 0.893538i \(-0.648216\pi\)
−0.692416 + 0.721498i \(0.743454\pi\)
\(752\) −4.65565 + 13.5398i −0.169774 + 0.493746i
\(753\) 10.2120 17.6877i 0.372147 0.644577i
\(754\) −40.5630 + 33.0643i −1.47722 + 1.20413i
\(755\) −11.6603 + 24.2128i −0.424361 + 0.881194i
\(756\) −14.2249 22.7415i −0.517355 0.827099i
\(757\) 18.9545 + 39.3594i 0.688913 + 1.43054i 0.892299 + 0.451445i \(0.149091\pi\)
−0.203386 + 0.979099i \(0.565195\pi\)
\(758\) −22.5681 10.5721i −0.819710 0.383998i
\(759\) −33.0297 30.6471i −1.19890 1.11242i
\(760\) −6.89051 + 25.1822i −0.249945 + 0.913455i
\(761\) 41.9503 + 28.6012i 1.52070 + 1.03679i 0.980790 + 0.195067i \(0.0624925\pi\)
0.539906 + 0.841725i \(0.318460\pi\)
\(762\) 45.1820 31.5182i 1.63677 1.14178i
\(763\) 48.1356 + 22.3588i 1.74263 + 0.809441i
\(764\) 52.4501 + 6.76078i 1.89758 + 0.244596i
\(765\) 1.68766 0.974373i 0.0610176 0.0352285i
\(766\) −4.36768 1.66046i −0.157811 0.0599949i
\(767\) −4.62936 + 3.15624i −0.167157 + 0.113965i