Defining parameters
| Level: | \( N \) | \(=\) | \( 392 = 2^{3} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 392.q (of order \(7\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 49 \) |
| Character field: | \(\Q(\zeta_{7})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(112\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(392, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 360 | 84 | 276 |
| Cusp forms | 312 | 84 | 228 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(392, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 392.2.q.a | $42$ | $3.130$ | None | \(0\) | \(-7\) | \(-2\) | \(1\) | ||
| 392.2.q.b | $42$ | $3.130$ | None | \(0\) | \(5\) | \(4\) | \(-1\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(392, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(392, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)