Properties

Label 392.2.q
Level $392$
Weight $2$
Character orbit 392.q
Rep. character $\chi_{392}(57,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $84$
Newform subspaces $2$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.q (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Newform subspaces: \( 2 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(392, [\chi])\).

Total New Old
Modular forms 360 84 276
Cusp forms 312 84 228
Eisenstein series 48 0 48

Trace form

\( 84 q - 2 q^{3} + 2 q^{5} - 24 q^{9} + 4 q^{11} - 2 q^{13} - 10 q^{15} + 8 q^{17} + 36 q^{19} - 2 q^{21} - 12 q^{23} - 26 q^{25} + 4 q^{27} + 34 q^{29} - 12 q^{31} - 8 q^{35} + 18 q^{37} + 22 q^{39} - 8 q^{43}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(392, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
392.2.q.a 392.q 49.e $42$ $3.130$ None 392.2.q.a \(0\) \(-7\) \(-2\) \(1\) $\mathrm{SU}(2)[C_{7}]$
392.2.q.b 392.q 49.e $42$ $3.130$ None 392.2.q.b \(0\) \(5\) \(4\) \(-1\) $\mathrm{SU}(2)[C_{7}]$

Decomposition of \(S_{2}^{\mathrm{old}}(392, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(392, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)