Newspace parameters
Level: | \( N \) | \(=\) | \( 392 = 2^{3} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 392.p (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.13013575923\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
165.1 | −1.27930 | − | 0.602812i | −0.456937 | − | 0.263813i | 1.27324 | + | 1.54236i | −1.30721 | + | 0.754717i | 0.425532 | + | 0.612943i | 0 | −0.699104 | − | 2.74067i | −1.36081 | − | 2.35698i | 2.12727 | − | 0.177512i | ||
165.2 | −1.27930 | − | 0.602812i | 0.456937 | + | 0.263813i | 1.27324 | + | 1.54236i | 1.30721 | − | 0.754717i | −0.425532 | − | 0.612943i | 0 | −0.699104 | − | 2.74067i | −1.36081 | − | 2.35698i | −2.12727 | + | 0.177512i | ||
165.3 | −1.03225 | + | 0.966672i | −2.48442 | − | 1.43438i | 0.131089 | − | 1.99570i | 2.76990 | − | 1.59920i | 3.95113 | − | 0.920979i | 0 | 1.79387 | + | 2.18678i | 2.61491 | + | 4.52915i | −1.31333 | + | 4.32837i | ||
165.4 | −1.03225 | + | 0.966672i | 2.48442 | + | 1.43438i | 0.131089 | − | 1.99570i | −2.76990 | + | 1.59920i | −3.95113 | + | 0.920979i | 0 | 1.79387 | + | 2.18678i | 2.61491 | + | 4.52915i | 1.31333 | − | 4.32837i | ||
165.5 | 0.117602 | − | 1.40932i | −0.456937 | − | 0.263813i | −1.97234 | − | 0.331475i | −1.30721 | + | 0.754717i | −0.425532 | + | 0.612943i | 0 | −0.699104 | + | 2.74067i | −1.36081 | − | 2.35698i | 0.909904 | + | 1.93102i | ||
165.6 | 0.117602 | − | 1.40932i | 0.456937 | + | 0.263813i | −1.97234 | − | 0.331475i | 1.30721 | − | 0.754717i | 0.425532 | − | 0.612943i | 0 | −0.699104 | + | 2.74067i | −1.36081 | − | 2.35698i | −0.909904 | − | 1.93102i | ||
165.7 | 0.280509 | + | 1.38611i | −1.61829 | − | 0.934317i | −1.84263 | + | 0.777636i | −2.02949 | + | 1.17173i | 0.841128 | − | 2.50521i | 0 | −1.59477 | − | 2.33596i | 0.245898 | + | 0.425908i | −2.19344 | − | 2.48443i | ||
165.8 | 0.280509 | + | 1.38611i | 1.61829 | + | 0.934317i | −1.84263 | + | 0.777636i | 2.02949 | − | 1.17173i | −0.841128 | + | 2.50521i | 0 | −1.59477 | − | 2.33596i | 0.245898 | + | 0.425908i | 2.19344 | + | 2.48443i | ||
165.9 | 1.06016 | + | 0.935986i | −1.61829 | − | 0.934317i | 0.247862 | + | 1.98458i | −2.02949 | + | 1.17173i | −0.841128 | − | 2.50521i | 0 | −1.59477 | + | 2.33596i | 0.245898 | + | 0.425908i | −3.24830 | − | 0.657361i | ||
165.10 | 1.06016 | + | 0.935986i | 1.61829 | + | 0.934317i | 0.247862 | + | 1.98458i | 2.02949 | − | 1.17173i | 0.841128 | + | 2.50521i | 0 | −1.59477 | + | 2.33596i | 0.245898 | + | 0.425908i | 3.24830 | + | 0.657361i | ||
165.11 | 1.35329 | − | 0.410620i | −2.48442 | − | 1.43438i | 1.66278 | − | 1.11138i | 2.76990 | − | 1.59920i | −3.95113 | − | 0.920979i | 0 | 1.79387 | − | 2.18678i | 2.61491 | + | 4.52915i | 3.09181 | − | 3.30156i | ||
165.12 | 1.35329 | − | 0.410620i | 2.48442 | + | 1.43438i | 1.66278 | − | 1.11138i | −2.76990 | + | 1.59920i | 3.95113 | + | 0.920979i | 0 | 1.79387 | − | 2.18678i | 2.61491 | + | 4.52915i | −3.09181 | + | 3.30156i | ||
373.1 | −1.27930 | + | 0.602812i | −0.456937 | + | 0.263813i | 1.27324 | − | 1.54236i | −1.30721 | − | 0.754717i | 0.425532 | − | 0.612943i | 0 | −0.699104 | + | 2.74067i | −1.36081 | + | 2.35698i | 2.12727 | + | 0.177512i | ||
373.2 | −1.27930 | + | 0.602812i | 0.456937 | − | 0.263813i | 1.27324 | − | 1.54236i | 1.30721 | + | 0.754717i | −0.425532 | + | 0.612943i | 0 | −0.699104 | + | 2.74067i | −1.36081 | + | 2.35698i | −2.12727 | − | 0.177512i | ||
373.3 | −1.03225 | − | 0.966672i | −2.48442 | + | 1.43438i | 0.131089 | + | 1.99570i | 2.76990 | + | 1.59920i | 3.95113 | + | 0.920979i | 0 | 1.79387 | − | 2.18678i | 2.61491 | − | 4.52915i | −1.31333 | − | 4.32837i | ||
373.4 | −1.03225 | − | 0.966672i | 2.48442 | − | 1.43438i | 0.131089 | + | 1.99570i | −2.76990 | − | 1.59920i | −3.95113 | − | 0.920979i | 0 | 1.79387 | − | 2.18678i | 2.61491 | − | 4.52915i | 1.31333 | + | 4.32837i | ||
373.5 | 0.117602 | + | 1.40932i | −0.456937 | + | 0.263813i | −1.97234 | + | 0.331475i | −1.30721 | − | 0.754717i | −0.425532 | − | 0.612943i | 0 | −0.699104 | − | 2.74067i | −1.36081 | + | 2.35698i | 0.909904 | − | 1.93102i | ||
373.6 | 0.117602 | + | 1.40932i | 0.456937 | − | 0.263813i | −1.97234 | + | 0.331475i | 1.30721 | + | 0.754717i | 0.425532 | + | 0.612943i | 0 | −0.699104 | − | 2.74067i | −1.36081 | + | 2.35698i | −0.909904 | + | 1.93102i | ||
373.7 | 0.280509 | − | 1.38611i | −1.61829 | + | 0.934317i | −1.84263 | − | 0.777636i | −2.02949 | − | 1.17173i | 0.841128 | + | 2.50521i | 0 | −1.59477 | + | 2.33596i | 0.245898 | − | 0.425908i | −2.19344 | + | 2.48443i | ||
373.8 | 0.280509 | − | 1.38611i | 1.61829 | − | 0.934317i | −1.84263 | − | 0.777636i | 2.02949 | + | 1.17173i | −0.841128 | − | 2.50521i | 0 | −1.59477 | + | 2.33596i | 0.245898 | − | 0.425908i | 2.19344 | − | 2.48443i | ||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
7.d | odd | 6 | 1 | inner |
8.b | even | 2 | 1 | inner |
56.h | odd | 2 | 1 | inner |
56.j | odd | 6 | 1 | inner |
56.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 392.2.p.h | 24 | |
4.b | odd | 2 | 1 | 1568.2.t.h | 24 | ||
7.b | odd | 2 | 1 | inner | 392.2.p.h | 24 | |
7.c | even | 3 | 1 | 392.2.b.g | ✓ | 12 | |
7.c | even | 3 | 1 | inner | 392.2.p.h | 24 | |
7.d | odd | 6 | 1 | 392.2.b.g | ✓ | 12 | |
7.d | odd | 6 | 1 | inner | 392.2.p.h | 24 | |
8.b | even | 2 | 1 | inner | 392.2.p.h | 24 | |
8.d | odd | 2 | 1 | 1568.2.t.h | 24 | ||
28.d | even | 2 | 1 | 1568.2.t.h | 24 | ||
28.f | even | 6 | 1 | 1568.2.b.g | 12 | ||
28.f | even | 6 | 1 | 1568.2.t.h | 24 | ||
28.g | odd | 6 | 1 | 1568.2.b.g | 12 | ||
28.g | odd | 6 | 1 | 1568.2.t.h | 24 | ||
56.e | even | 2 | 1 | 1568.2.t.h | 24 | ||
56.h | odd | 2 | 1 | inner | 392.2.p.h | 24 | |
56.j | odd | 6 | 1 | 392.2.b.g | ✓ | 12 | |
56.j | odd | 6 | 1 | inner | 392.2.p.h | 24 | |
56.k | odd | 6 | 1 | 1568.2.b.g | 12 | ||
56.k | odd | 6 | 1 | 1568.2.t.h | 24 | ||
56.m | even | 6 | 1 | 1568.2.b.g | 12 | ||
56.m | even | 6 | 1 | 1568.2.t.h | 24 | ||
56.p | even | 6 | 1 | 392.2.b.g | ✓ | 12 | |
56.p | even | 6 | 1 | inner | 392.2.p.h | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
392.2.b.g | ✓ | 12 | 7.c | even | 3 | 1 | |
392.2.b.g | ✓ | 12 | 7.d | odd | 6 | 1 | |
392.2.b.g | ✓ | 12 | 56.j | odd | 6 | 1 | |
392.2.b.g | ✓ | 12 | 56.p | even | 6 | 1 | |
392.2.p.h | 24 | 1.a | even | 1 | 1 | trivial | |
392.2.p.h | 24 | 7.b | odd | 2 | 1 | inner | |
392.2.p.h | 24 | 7.c | even | 3 | 1 | inner | |
392.2.p.h | 24 | 7.d | odd | 6 | 1 | inner | |
392.2.p.h | 24 | 8.b | even | 2 | 1 | inner | |
392.2.p.h | 24 | 56.h | odd | 2 | 1 | inner | |
392.2.p.h | 24 | 56.j | odd | 6 | 1 | inner | |
392.2.p.h | 24 | 56.p | even | 6 | 1 | inner | |
1568.2.b.g | 12 | 28.f | even | 6 | 1 | ||
1568.2.b.g | 12 | 28.g | odd | 6 | 1 | ||
1568.2.b.g | 12 | 56.k | odd | 6 | 1 | ||
1568.2.b.g | 12 | 56.m | even | 6 | 1 | ||
1568.2.t.h | 24 | 4.b | odd | 2 | 1 | ||
1568.2.t.h | 24 | 8.d | odd | 2 | 1 | ||
1568.2.t.h | 24 | 28.d | even | 2 | 1 | ||
1568.2.t.h | 24 | 28.f | even | 6 | 1 | ||
1568.2.t.h | 24 | 28.g | odd | 6 | 1 | ||
1568.2.t.h | 24 | 56.e | even | 2 | 1 | ||
1568.2.t.h | 24 | 56.k | odd | 6 | 1 | ||
1568.2.t.h | 24 | 56.m | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(392, [\chi])\):
\( T_{3}^{12} - 12T_{3}^{10} + 112T_{3}^{8} - 368T_{3}^{6} + 928T_{3}^{4} - 256T_{3}^{2} + 64 \)
|
\( T_{17}^{12} + 86T_{17}^{10} + 5336T_{17}^{8} + 155256T_{17}^{6} + 3301728T_{17}^{4} + 22561120T_{17}^{2} + 119946304 \)
|