Properties

Label 392.2.i.c.361.1
Level $392$
Weight $2$
Character 392.361
Analytic conductor $3.130$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 392.361
Dual form 392.2.i.c.177.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{5} +(1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(-1.00000 - 1.73205i) q^{5} +(1.50000 + 2.59808i) q^{9} +(2.00000 - 3.46410i) q^{11} +2.00000 q^{13} +(3.00000 - 5.19615i) q^{17} +(-4.00000 - 6.92820i) q^{19} +(0.500000 - 0.866025i) q^{25} +6.00000 q^{29} +(-4.00000 + 6.92820i) q^{31} +(1.00000 + 1.73205i) q^{37} +2.00000 q^{41} -4.00000 q^{43} +(3.00000 - 5.19615i) q^{45} +(4.00000 + 6.92820i) q^{47} +(-3.00000 + 5.19615i) q^{53} -8.00000 q^{55} +(3.00000 + 5.19615i) q^{61} +(-2.00000 - 3.46410i) q^{65} +(2.00000 - 3.46410i) q^{67} -8.00000 q^{71} +(-5.00000 + 8.66025i) q^{73} +(-8.00000 - 13.8564i) q^{79} +(-4.50000 + 7.79423i) q^{81} +8.00000 q^{83} -12.0000 q^{85} +(3.00000 + 5.19615i) q^{89} +(-8.00000 + 13.8564i) q^{95} -6.00000 q^{97} +12.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{5} + 3q^{9} + O(q^{10}) \) \( 2q - 2q^{5} + 3q^{9} + 4q^{11} + 4q^{13} + 6q^{17} - 8q^{19} + q^{25} + 12q^{29} - 8q^{31} + 2q^{37} + 4q^{41} - 8q^{43} + 6q^{45} + 8q^{47} - 6q^{53} - 16q^{55} + 6q^{61} - 4q^{65} + 4q^{67} - 16q^{71} - 10q^{73} - 16q^{79} - 9q^{81} + 16q^{83} - 24q^{85} + 6q^{89} - 16q^{95} - 12q^{97} + 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 0 0
\(5\) −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i \(-0.314250\pi\)
−0.998203 + 0.0599153i \(0.980917\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 2.00000 3.46410i 0.603023 1.04447i −0.389338 0.921095i \(-0.627296\pi\)
0.992361 0.123371i \(-0.0393705\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 5.19615i 0.727607 1.26025i −0.230285 0.973123i \(-0.573966\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) 0 0
\(19\) −4.00000 6.92820i −0.917663 1.58944i −0.802955 0.596040i \(-0.796740\pi\)
−0.114708 0.993399i \(-0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.718421 + 1.24434i 0.243204 + 0.969975i \(0.421802\pi\)
−0.961625 + 0.274367i \(0.911532\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 + 1.73205i 0.164399 + 0.284747i 0.936442 0.350823i \(-0.114098\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 3.00000 5.19615i 0.447214 0.774597i
\(46\) 0 0
\(47\) 4.00000 + 6.92820i 0.583460 + 1.01058i 0.995066 + 0.0992202i \(0.0316348\pi\)
−0.411606 + 0.911362i \(0.635032\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 3.00000 + 5.19615i 0.384111 + 0.665299i 0.991645 0.128994i \(-0.0411748\pi\)
−0.607535 + 0.794293i \(0.707841\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 3.46410i −0.248069 0.429669i
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −5.00000 + 8.66025i −0.585206 + 1.01361i 0.409644 + 0.912245i \(0.365653\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 13.8564i −0.900070 1.55897i −0.827401 0.561611i \(-0.810182\pi\)
−0.0726692 0.997356i \(-0.523152\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) −12.0000 −1.30158
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.00000 + 13.8564i −0.820783 + 1.42164i
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) 12.0000 1.20605
\(100\) 0 0
\(101\) −1.00000 + 1.73205i −0.0995037 + 0.172345i −0.911479 0.411346i \(-0.865059\pi\)
0.811976 + 0.583691i \(0.198392\pi\)
\(102\) 0 0
\(103\) 8.00000 + 13.8564i 0.788263 + 1.36531i 0.927030 + 0.374987i \(0.122353\pi\)
−0.138767 + 0.990325i \(0.544314\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 0 0
\(109\) 5.00000 8.66025i 0.478913 0.829502i −0.520794 0.853682i \(-0.674364\pi\)
0.999708 + 0.0241802i \(0.00769755\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.00000 + 5.19615i 0.277350 + 0.480384i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.00000 6.92820i −0.349482 0.605320i 0.636676 0.771132i \(-0.280309\pi\)
−0.986157 + 0.165812i \(0.946976\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00000 5.19615i 0.256307 0.443937i −0.708942 0.705266i \(-0.750827\pi\)
0.965250 + 0.261329i \(0.0841608\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000 6.92820i 0.334497 0.579365i
\(144\) 0 0
\(145\) −6.00000 10.3923i −0.498273 0.863034i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 0 0
\(153\) 18.0000 1.45521
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −9.00000 + 15.5885i −0.718278 + 1.24409i 0.243403 + 0.969925i \(0.421736\pi\)
−0.961681 + 0.274169i \(0.911597\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.00000 + 10.3923i 0.469956 + 0.813988i 0.999410 0.0343508i \(-0.0109363\pi\)
−0.529454 + 0.848339i \(0.677603\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 12.0000 20.7846i 0.917663 1.58944i
\(172\) 0 0
\(173\) −9.00000 15.5885i −0.684257 1.18517i −0.973670 0.227964i \(-0.926793\pi\)
0.289412 0.957205i \(-0.406540\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.00000 3.46410i 0.149487 0.258919i −0.781551 0.623841i \(-0.785571\pi\)
0.931038 + 0.364922i \(0.118904\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 3.46410i 0.147043 0.254686i
\(186\) 0 0
\(187\) −12.0000 20.7846i −0.877527 1.51992i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 + 13.8564i 0.578860 + 1.00261i 0.995610 + 0.0935936i \(0.0298354\pi\)
−0.416751 + 0.909021i \(0.636831\pi\)
\(192\) 0 0
\(193\) 7.00000 12.1244i 0.503871 0.872730i −0.496119 0.868255i \(-0.665242\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.00000 3.46410i −0.139686 0.241943i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −32.0000 −2.21349
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 + 6.92820i 0.272798 + 0.472500i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) 0 0
\(227\) 4.00000 6.92820i 0.265489 0.459841i −0.702202 0.711977i \(-0.747800\pi\)
0.967692 + 0.252136i \(0.0811332\pi\)
\(228\) 0 0
\(229\) −5.00000 8.66025i −0.330409 0.572286i 0.652183 0.758062i \(-0.273853\pi\)
−0.982592 + 0.185776i \(0.940520\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.0000 + 19.0526i 0.720634 + 1.24817i 0.960746 + 0.277429i \(0.0894825\pi\)
−0.240112 + 0.970745i \(0.577184\pi\)
\(234\) 0 0
\(235\) 8.00000 13.8564i 0.521862 0.903892i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −5.00000 + 8.66025i −0.322078 + 0.557856i −0.980917 0.194429i \(-0.937715\pi\)
0.658838 + 0.752285i \(0.271048\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 13.8564i −0.509028 0.881662i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.00000 1.73205i −0.0623783 0.108042i 0.833150 0.553047i \(-0.186535\pi\)
−0.895528 + 0.445005i \(0.853202\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 9.00000 + 15.5885i 0.557086 + 0.964901i
\(262\) 0 0
\(263\) −12.0000 + 20.7846i −0.739952 + 1.28163i 0.212565 + 0.977147i \(0.431818\pi\)
−0.952517 + 0.304487i \(0.901515\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.00000 12.1244i 0.426798 0.739235i −0.569789 0.821791i \(-0.692975\pi\)
0.996586 + 0.0825561i \(0.0263084\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 3.46410i −0.120605 0.208893i
\(276\) 0 0
\(277\) −11.0000 + 19.0526i −0.660926 + 1.14476i 0.319447 + 0.947604i \(0.396503\pi\)
−0.980373 + 0.197153i \(0.936830\pi\)
\(278\) 0 0
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −8.00000 + 13.8564i −0.475551 + 0.823678i −0.999608 0.0280052i \(-0.991084\pi\)
0.524057 + 0.851683i \(0.324418\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 10.3923i 0.343559 0.595062i
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.00000 + 6.92820i −0.226819 + 0.392862i −0.956864 0.290537i \(-0.906166\pi\)
0.730044 + 0.683400i \(0.239499\pi\)
\(312\) 0 0
\(313\) 7.00000 + 12.1244i 0.395663 + 0.685309i 0.993186 0.116543i \(-0.0371814\pi\)
−0.597522 + 0.801852i \(0.703848\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.0000 25.9808i −0.842484 1.45922i −0.887788 0.460252i \(-0.847759\pi\)
0.0453045 0.998973i \(-0.485574\pi\)
\(318\) 0 0
\(319\) 12.0000 20.7846i 0.671871 1.16371i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −48.0000 −2.67079
\(324\) 0 0
\(325\) 1.00000 1.73205i 0.0554700 0.0960769i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 + 3.46410i 0.109930 + 0.190404i 0.915742 0.401768i \(-0.131604\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(332\) 0 0
\(333\) −3.00000 + 5.19615i −0.164399 + 0.284747i
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000 + 27.7128i 0.866449 + 1.50073i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.00000 12.1244i 0.372572 0.645314i −0.617388 0.786659i \(-0.711809\pi\)
0.989960 + 0.141344i \(0.0451425\pi\)
\(354\) 0 0
\(355\) 8.00000 + 13.8564i 0.424596 + 0.735422i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) −22.5000 + 38.9711i −1.18421 + 2.05111i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 20.0000 1.04685
\(366\) 0 0
\(367\) −8.00000 + 13.8564i −0.417597 + 0.723299i −0.995697 0.0926670i \(-0.970461\pi\)
0.578101 + 0.815966i \(0.303794\pi\)
\(368\) 0 0
\(369\) 3.00000 + 5.19615i 0.156174 + 0.270501i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 13.0000 + 22.5167i 0.673114 + 1.16587i 0.977016 + 0.213165i \(0.0683772\pi\)
−0.303902 + 0.952703i \(0.598289\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000 + 20.7846i 0.613171 + 1.06204i 0.990702 + 0.136047i \(0.0434398\pi\)
−0.377531 + 0.925997i \(0.623227\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.00000 10.3923i −0.304997 0.528271i
\(388\) 0 0
\(389\) 1.00000 1.73205i 0.0507020 0.0878185i −0.839561 0.543266i \(-0.817187\pi\)
0.890263 + 0.455448i \(0.150521\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.0000 + 27.7128i −0.805047 + 1.39438i
\(396\) 0 0
\(397\) 7.00000 + 12.1244i 0.351320 + 0.608504i 0.986481 0.163876i \(-0.0523996\pi\)
−0.635161 + 0.772380i \(0.719066\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) 0 0
\(403\) −8.00000 + 13.8564i −0.398508 + 0.690237i
\(404\) 0 0
\(405\) 18.0000 0.894427
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) 7.00000 12.1244i 0.346128 0.599511i −0.639430 0.768849i \(-0.720830\pi\)
0.985558 + 0.169338i \(0.0541630\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −8.00000 13.8564i −0.392705 0.680184i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 0 0
\(423\) −12.0000 + 20.7846i −0.583460 + 1.01058i
\(424\) 0 0
\(425\) −3.00000 5.19615i −0.145521 0.252050i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.00000 6.92820i 0.192673 0.333720i −0.753462 0.657491i \(-0.771618\pi\)
0.946135 + 0.323772i \(0.104951\pi\)
\(432\) 0 0
\(433\) 10.0000 0.480569 0.240285 0.970702i \(-0.422759\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.0000 31.1769i −0.855206 1.48126i −0.876454 0.481486i \(-0.840097\pi\)
0.0212481 0.999774i \(-0.493236\pi\)
\(444\) 0 0
\(445\) 6.00000 10.3923i 0.284427 0.492642i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) 0 0
\(451\) 4.00000 6.92820i 0.188353 0.326236i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.0000 + 32.9090i 0.888783 + 1.53942i 0.841316 + 0.540544i \(0.181781\pi\)
0.0474665 + 0.998873i \(0.484885\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.00000 + 6.92820i 0.185098 + 0.320599i 0.943610 0.331061i \(-0.107406\pi\)
−0.758512 + 0.651660i \(0.774073\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.00000 + 13.8564i −0.367840 + 0.637118i
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) 0 0
\(477\) −18.0000 −0.824163
\(478\) 0 0
\(479\) 12.0000 20.7846i 0.548294 0.949673i −0.450098 0.892979i \(-0.648611\pi\)
0.998392 0.0566937i \(-0.0180558\pi\)
\(480\) 0 0
\(481\) 2.00000 + 3.46410i 0.0911922 + 0.157949i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.00000 + 10.3923i 0.272446 + 0.471890i
\(486\) 0 0
\(487\) 8.00000 13.8564i 0.362515 0.627894i −0.625859 0.779936i \(-0.715252\pi\)
0.988374 + 0.152042i \(0.0485850\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 18.0000 31.1769i 0.810679 1.40414i
\(494\) 0 0
\(495\) −12.0000 20.7846i −0.539360 0.934199i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i \(-0.138129\pi\)
−0.817781 + 0.575529i \(0.804796\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 40.0000 1.78351 0.891756 0.452517i \(-0.149474\pi\)
0.891756 + 0.452517i \(0.149474\pi\)
\(504\) 0 0
\(505\) 4.00000 0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.0000 29.4449i −0.753512 1.30512i −0.946111 0.323843i \(-0.895025\pi\)
0.192599 0.981278i \(-0.438308\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.0000 27.7128i 0.705044 1.22117i
\(516\) 0 0
\(517\) 32.0000 1.40736
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.00000 + 15.5885i −0.394297 + 0.682943i −0.993011 0.118020i \(-0.962345\pi\)
0.598714 + 0.800963i \(0.295679\pi\)
\(522\) 0 0
\(523\) 16.0000 + 27.7128i 0.699631 + 1.21180i 0.968594 + 0.248646i \(0.0799857\pi\)
−0.268963 + 0.963150i \(0.586681\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 24.0000 + 41.5692i 1.04546 + 1.81078i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.00000 0.173259
\(534\) 0 0
\(535\) 12.0000 20.7846i 0.518805 0.898597i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −7.00000 12.1244i −0.300954 0.521267i 0.675399 0.737453i \(-0.263972\pi\)
−0.976352 + 0.216186i \(0.930638\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −20.0000 −0.856706
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) 0 0
\(549\) −9.00000 + 15.5885i −0.384111 + 0.665299i
\(550\) 0 0
\(551\) −24.0000 41.5692i −1.02243 1.77091i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.00000 + 12.1244i −0.296600 + 0.513725i −0.975356 0.220638i \(-0.929186\pi\)
0.678756 + 0.734364i \(0.262519\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16.0000 + 27.7128i −0.674320 + 1.16796i 0.302348 + 0.953198i \(0.402230\pi\)
−0.976667 + 0.214758i \(0.931104\pi\)
\(564\) 0 0
\(565\) −2.00000 3.46410i −0.0841406 0.145736i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13.0000 22.5167i −0.544988 0.943948i −0.998608 0.0527519i \(-0.983201\pi\)
0.453619 0.891196i \(-0.350133\pi\)
\(570\) 0 0
\(571\) −14.0000 + 24.2487i −0.585882 + 1.01478i 0.408883 + 0.912587i \(0.365918\pi\)
−0.994765 + 0.102190i \(0.967415\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7.00000 12.1244i 0.291414 0.504744i −0.682730 0.730670i \(-0.739208\pi\)
0.974144 + 0.225927i \(0.0725410\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12.0000 + 20.7846i 0.496989 + 0.860811i
\(584\) 0 0
\(585\) 6.00000 10.3923i 0.248069 0.429669i
\(586\) 0 0
\(587\) −24.0000 −0.990586 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(588\) 0 0
\(589\) 64.0000 2.63707
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −17.0000 29.4449i −0.698106 1.20916i −0.969122 0.246581i \(-0.920693\pi\)
0.271016 0.962575i \(-0.412640\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111569i \(0.00355143\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 0 0
\(605\) −5.00000 + 8.66025i −0.203279 + 0.352089i
\(606\) 0 0
\(607\) −16.0000 27.7128i −0.649420 1.12483i −0.983262 0.182199i \(-0.941678\pi\)
0.333842 0.942629i \(-0.391655\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 + 13.8564i 0.323645 + 0.560570i
\(612\) 0 0
\(613\) 9.00000 15.5885i 0.363507 0.629612i −0.625029 0.780602i \(-0.714913\pi\)
0.988535 + 0.150990i \(0.0482461\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −38.0000 −1.52982 −0.764911 0.644136i \(-0.777217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) 16.0000 27.7128i 0.643094 1.11387i −0.341644 0.939829i \(-0.610984\pi\)
0.984738 0.174042i \(-0.0556830\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.00000 + 13.8564i 0.317470 + 0.549875i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −12.0000 20.7846i −0.474713 0.822226i
\(640\) 0 0
\(641\) 15.0000 25.9808i 0.592464 1.02618i −0.401435 0.915888i \(-0.631488\pi\)
0.993899 0.110291i \(-0.0351782\pi\)
\(642\) 0 0
\(643\) 16.0000 0.630978 0.315489 0.948929i \(-0.397831\pi\)
0.315489 + 0.948929i \(0.397831\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.0000 27.7128i 0.629025 1.08950i −0.358723 0.933444i \(-0.616788\pi\)
0.987748 0.156059i \(-0.0498790\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.0000 + 22.5167i 0.508729 + 0.881145i 0.999949 + 0.0101092i \(0.00321793\pi\)
−0.491220 + 0.871036i \(0.663449\pi\)
\(654\) 0 0
\(655\) −8.00000 + 13.8564i −0.312586 + 0.541415i
\(656\) 0 0
\(657\) −30.0000 −1.17041
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −1.00000 + 1.73205i −0.0388955 + 0.0673690i −0.884818 0.465937i \(-0.845717\pi\)
0.845922 + 0.533306i \(0.179051\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.00000 + 5.19615i 0.115299 + 0.199704i 0.917899 0.396813i \(-0.129884\pi\)
−0.802600 + 0.596518i \(0.796551\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18.0000 + 31.1769i −0.688751 + 1.19295i 0.283491 + 0.958975i \(0.408507\pi\)
−0.972242 + 0.233977i \(0.924826\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 0 0
\(691\) 4.00000 + 6.92820i 0.152167 + 0.263561i 0.932024 0.362397i \(-0.118041\pi\)
−0.779857 + 0.625958i \(0.784708\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.00000 + 13.8564i 0.303457 + 0.525603i
\(696\) 0 0
\(697\) 6.00000 10.3923i 0.227266 0.393637i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) 8.00000 13.8564i 0.301726 0.522604i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −15.0000 25.9808i −0.563337 0.975728i −0.997202 0.0747503i \(-0.976184\pi\)
0.433865 0.900978i \(-0.357149\pi\)
\(710\) 0 0
\(711\) 24.0000 41.5692i 0.900070 1.55897i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −16.0000 −0.598366
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.00000 6.92820i −0.149175 0.258378i 0.781748 0.623595i \(-0.214328\pi\)
−0.930923 + 0.365216i \(0.880995\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.00000 5.19615i 0.111417 0.192980i
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −12.0000 + 20.7846i −0.443836 + 0.768747i
\(732\) 0 0
\(733\) −13.0000 22.5167i −0.480166 0.831672i 0.519575 0.854425i \(-0.326090\pi\)
−0.999741 + 0.0227529i \(0.992757\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 13.8564i −0.294684 0.510407i
\(738\) 0 0
\(739\) −26.0000 + 45.0333i −0.956425 + 1.65658i −0.225354 + 0.974277i \(0.572354\pi\)
−0.731072 + 0.682300i \(0.760980\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 0 0
\(745\) −6.00000 + 10.3923i −0.219823 + 0.380745i
\(746\) 0 0
\(747\) 12.0000 + 20.7846i 0.439057 + 0.760469i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.00000 + 6.92820i 0.145962 + 0.252814i 0.929731 0.368238i \(-0.120039\pi\)
−0.783769 + 0.621052i \(0.786706\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.0000 + 25.9808i 0.543750 + 0.941802i 0.998684 + 0.0512772i \(0.0163292\pi\)
−0.454935 + 0.890525i \(0.650337\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −18.0000 31.1769i −0.650791 1.12720i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25.0000 + 43.3013i −0.899188 + 1.55744i −0.0706526 + 0.997501i \(0.522508\pi\)
−0.828535 + 0.559937i \(0.810825\pi\)
\(774\) 0 0
\(775\) 4.00000 + 6.92820i 0.143684 + 0.248868i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.00000 13.8564i −0.286630 0.496457i
\(780\) 0 0
\(781\) −16.0000 + 27.7128i −0.572525 + 0.991642i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 36.0000 1.28490
\(786\) 0 0
\(787\) 20.0000 34.6410i 0.712923 1.23482i −0.250832 0.968031i \(-0.580704\pi\)
0.963755 0.266788i \(-0.0859624\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.00000 + 10.3923i 0.213066 + 0.369042i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) 48.0000 1.69812
\(800\) 0 0
\(801\) −9.00000 + 15.5885i −0.317999 + 0.550791i
\(802\) 0 0
\(803\) 20.0000 + 34.6410i 0.705785 + 1.22245i
\(804\) 0 0
\(805\)