# Properties

 Label 392.2.i.c Level $392$ Weight $2$ Character orbit 392.i Analytic conductor $3.130$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$392 = 2^{3} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 392.i (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.13013575923$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{9}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 56) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -2 \zeta_{6} q^{5} + 3 \zeta_{6} q^{9} +O(q^{10})$$ $$q -2 \zeta_{6} q^{5} + 3 \zeta_{6} q^{9} + ( 4 - 4 \zeta_{6} ) q^{11} + 2 q^{13} + ( 6 - 6 \zeta_{6} ) q^{17} -8 \zeta_{6} q^{19} + ( 1 - \zeta_{6} ) q^{25} + 6 q^{29} + ( -8 + 8 \zeta_{6} ) q^{31} + 2 \zeta_{6} q^{37} + 2 q^{41} -4 q^{43} + ( 6 - 6 \zeta_{6} ) q^{45} + 8 \zeta_{6} q^{47} + ( -6 + 6 \zeta_{6} ) q^{53} -8 q^{55} + 6 \zeta_{6} q^{61} -4 \zeta_{6} q^{65} + ( 4 - 4 \zeta_{6} ) q^{67} -8 q^{71} + ( -10 + 10 \zeta_{6} ) q^{73} -16 \zeta_{6} q^{79} + ( -9 + 9 \zeta_{6} ) q^{81} + 8 q^{83} -12 q^{85} + 6 \zeta_{6} q^{89} + ( -16 + 16 \zeta_{6} ) q^{95} -6 q^{97} + 12 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{5} + 3q^{9} + O(q^{10})$$ $$2q - 2q^{5} + 3q^{9} + 4q^{11} + 4q^{13} + 6q^{17} - 8q^{19} + q^{25} + 12q^{29} - 8q^{31} + 2q^{37} + 4q^{41} - 8q^{43} + 6q^{45} + 8q^{47} - 6q^{53} - 16q^{55} + 6q^{61} - 4q^{65} + 4q^{67} - 16q^{71} - 10q^{73} - 16q^{79} - 9q^{81} + 16q^{83} - 24q^{85} + 6q^{89} - 16q^{95} - 12q^{97} + 24q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/392\mathbb{Z}\right)^\times$$.

 $$n$$ $$197$$ $$295$$ $$297$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
177.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0 0 −1.00000 + 1.73205i 0 0 0 1.50000 2.59808i 0
361.1 0 0 0 −1.00000 1.73205i 0 0 0 1.50000 + 2.59808i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 392.2.i.c 2
3.b odd 2 1 3528.2.s.t 2
4.b odd 2 1 784.2.i.e 2
7.b odd 2 1 392.2.i.d 2
7.c even 3 1 56.2.a.a 1
7.c even 3 1 inner 392.2.i.c 2
7.d odd 6 1 392.2.a.d 1
7.d odd 6 1 392.2.i.d 2
21.c even 2 1 3528.2.s.e 2
21.g even 6 1 3528.2.a.x 1
21.g even 6 1 3528.2.s.e 2
21.h odd 6 1 504.2.a.c 1
21.h odd 6 1 3528.2.s.t 2
28.d even 2 1 784.2.i.g 2
28.f even 6 1 784.2.a.e 1
28.f even 6 1 784.2.i.g 2
28.g odd 6 1 112.2.a.b 1
28.g odd 6 1 784.2.i.e 2
35.i odd 6 1 9800.2.a.u 1
35.j even 6 1 1400.2.a.g 1
35.l odd 12 2 1400.2.g.g 2
56.j odd 6 1 3136.2.a.q 1
56.k odd 6 1 448.2.a.e 1
56.m even 6 1 3136.2.a.p 1
56.p even 6 1 448.2.a.d 1
77.h odd 6 1 6776.2.a.g 1
84.j odd 6 1 7056.2.a.bo 1
84.n even 6 1 1008.2.a.d 1
91.r even 6 1 9464.2.a.c 1
112.u odd 12 2 1792.2.b.d 2
112.w even 12 2 1792.2.b.i 2
140.p odd 6 1 2800.2.a.p 1
140.w even 12 2 2800.2.g.p 2
168.s odd 6 1 4032.2.a.bb 1
168.v even 6 1 4032.2.a.bk 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.2.a.a 1 7.c even 3 1
112.2.a.b 1 28.g odd 6 1
392.2.a.d 1 7.d odd 6 1
392.2.i.c 2 1.a even 1 1 trivial
392.2.i.c 2 7.c even 3 1 inner
392.2.i.d 2 7.b odd 2 1
392.2.i.d 2 7.d odd 6 1
448.2.a.d 1 56.p even 6 1
448.2.a.e 1 56.k odd 6 1
504.2.a.c 1 21.h odd 6 1
784.2.a.e 1 28.f even 6 1
784.2.i.e 2 4.b odd 2 1
784.2.i.e 2 28.g odd 6 1
784.2.i.g 2 28.d even 2 1
784.2.i.g 2 28.f even 6 1
1008.2.a.d 1 84.n even 6 1
1400.2.a.g 1 35.j even 6 1
1400.2.g.g 2 35.l odd 12 2
1792.2.b.d 2 112.u odd 12 2
1792.2.b.i 2 112.w even 12 2
2800.2.a.p 1 140.p odd 6 1
2800.2.g.p 2 140.w even 12 2
3136.2.a.p 1 56.m even 6 1
3136.2.a.q 1 56.j odd 6 1
3528.2.a.x 1 21.g even 6 1
3528.2.s.e 2 21.c even 2 1
3528.2.s.e 2 21.g even 6 1
3528.2.s.t 2 3.b odd 2 1
3528.2.s.t 2 21.h odd 6 1
4032.2.a.bb 1 168.s odd 6 1
4032.2.a.bk 1 168.v even 6 1
6776.2.a.g 1 77.h odd 6 1
7056.2.a.bo 1 84.j odd 6 1
9464.2.a.c 1 91.r even 6 1
9800.2.a.u 1 35.i odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(392, [\chi])$$:

 $$T_{3}$$ $$T_{5}^{2} + 2 T_{5} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$4 + 2 T + T^{2}$$
$7$ $$T^{2}$$
$11$ $$16 - 4 T + T^{2}$$
$13$ $$( -2 + T )^{2}$$
$17$ $$36 - 6 T + T^{2}$$
$19$ $$64 + 8 T + T^{2}$$
$23$ $$T^{2}$$
$29$ $$( -6 + T )^{2}$$
$31$ $$64 + 8 T + T^{2}$$
$37$ $$4 - 2 T + T^{2}$$
$41$ $$( -2 + T )^{2}$$
$43$ $$( 4 + T )^{2}$$
$47$ $$64 - 8 T + T^{2}$$
$53$ $$36 + 6 T + T^{2}$$
$59$ $$T^{2}$$
$61$ $$36 - 6 T + T^{2}$$
$67$ $$16 - 4 T + T^{2}$$
$71$ $$( 8 + T )^{2}$$
$73$ $$100 + 10 T + T^{2}$$
$79$ $$256 + 16 T + T^{2}$$
$83$ $$( -8 + T )^{2}$$
$89$ $$36 - 6 T + T^{2}$$
$97$ $$( 6 + T )^{2}$$