Properties

Label 392.2.i
Level $392$
Weight $2$
Character orbit 392.i
Rep. character $\chi_{392}(177,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $20$
Newform subspaces $8$
Sturm bound $112$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(112\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(392, [\chi])\).

Total New Old
Modular forms 144 20 124
Cusp forms 80 20 60
Eisenstein series 64 0 64

Trace form

\( 20 q + 2 q^{3} - 2 q^{5} - 8 q^{9} + 2 q^{11} + 8 q^{13} + 12 q^{15} - 2 q^{17} + 6 q^{19} - 14 q^{23} - 24 q^{25} - 28 q^{27} + 8 q^{29} - 6 q^{31} - 6 q^{33} - 6 q^{37} + 20 q^{39} + 24 q^{41} + 24 q^{43}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(392, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
392.2.i.a 392.i 7.c $2$ $3.130$ \(\Q(\sqrt{-3}) \) None 56.2.a.b \(0\) \(-2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{3}+4\zeta_{6}q^{5}-\zeta_{6}q^{9}+\cdots\)
392.2.i.b 392.i 7.c $2$ $3.130$ \(\Q(\sqrt{-3}) \) None 56.2.i.b \(0\) \(-1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{5}+2\zeta_{6}q^{9}+\cdots\)
392.2.i.c 392.i 7.c $2$ $3.130$ \(\Q(\sqrt{-3}) \) None 56.2.a.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-2\zeta_{6}q^{5}+3\zeta_{6}q^{9}+(4-4\zeta_{6})q^{11}+\cdots\)
392.2.i.d 392.i 7.c $2$ $3.130$ \(\Q(\sqrt{-3}) \) None 56.2.a.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{5}+3\zeta_{6}q^{9}+(4-4\zeta_{6})q^{11}+\cdots\)
392.2.i.e 392.i 7.c $2$ $3.130$ \(\Q(\sqrt{-3}) \) None 56.2.a.b \(0\) \(2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{3}-4\zeta_{6}q^{5}-\zeta_{6}q^{9}-8q^{15}+\cdots\)
392.2.i.f 392.i 7.c $2$ $3.130$ \(\Q(\sqrt{-3}) \) None 56.2.i.a \(0\) \(3\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(3-3\zeta_{6})q^{3}-\zeta_{6}q^{5}-6\zeta_{6}q^{9}+(1+\cdots)q^{11}+\cdots\)
392.2.i.g 392.i 7.c $4$ $3.130$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 392.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}+(-\beta _{1}-\beta _{3})q^{5}+5\beta _{2}q^{9}+\cdots\)
392.2.i.h 392.i 7.c $4$ $3.130$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 392.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}+(-2\beta _{1}-2\beta _{3})q^{5}-\beta _{2}q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(392, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(392, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)