Defining parameters
| Level: | \( N \) | \(=\) | \( 392 = 2^{3} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 392.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(112\) | ||
| Trace bound: | \(9\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(392))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 72 | 10 | 62 |
| Cusp forms | 41 | 10 | 31 |
| Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(16\) | \(1\) | \(15\) | \(9\) | \(1\) | \(8\) | \(7\) | \(0\) | \(7\) | |||
| \(+\) | \(-\) | \(-\) | \(20\) | \(4\) | \(16\) | \(12\) | \(4\) | \(8\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(-\) | \(20\) | \(3\) | \(17\) | \(12\) | \(3\) | \(9\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(-\) | \(+\) | \(16\) | \(2\) | \(14\) | \(8\) | \(2\) | \(6\) | \(8\) | \(0\) | \(8\) | |||
| Plus space | \(+\) | \(32\) | \(3\) | \(29\) | \(17\) | \(3\) | \(14\) | \(15\) | \(0\) | \(15\) | ||||
| Minus space | \(-\) | \(40\) | \(7\) | \(33\) | \(24\) | \(7\) | \(17\) | \(16\) | \(0\) | \(16\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(392))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(392))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(392)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 2}\)