Properties

Label 392.10.a.d
Level $392$
Weight $10$
Character orbit 392.a
Self dual yes
Analytic conductor $201.894$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,10,Mod(1,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 392.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,92] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(201.894047776\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 823x - 4578 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 31) q^{3} + (\beta_{2} - \beta_1 - 92) q^{5} + (31 \beta_{2} + 90 \beta_1 + 17310) q^{9} + (\beta_{2} + 86 \beta_1 - 15093) q^{11} + (57 \beta_{2} - 427 \beta_1 + 3558) q^{13} + ( - 29 \beta_{2} + 404 \beta_1 - 31717) q^{15}+ \cdots + ( - 307731 \beta_{2} + 1867662 \beta_1 + 56969343) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 92 q^{3} - 274 q^{5} + 51871 q^{9} - 45364 q^{11} + 11158 q^{13} - 95584 q^{15} + 55866 q^{17} - 488772 q^{19} - 253888 q^{23} - 3872619 q^{25} + 10157192 q^{27} - 765318 q^{29} + 8189680 q^{31} + 7926240 q^{33}+ \cdots + 168732636 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 823x - 4578 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{2} + 12\nu - 1099 ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -8\nu^{2} + 192\nu + 4391 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 4\beta _1 + 1 ) / 48 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 16\beta _1 + 4395 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.79960
−25.3451
31.1447
0 −189.265 0 729.944 0 0 0 16138.2 0
1.2 0 7.32110 0 −1191.17 0 0 0 −19629.4 0
1.3 0 273.944 0 187.226 0 0 0 55362.2 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 392.10.a.d 3
7.b odd 2 1 56.10.a.a 3
28.d even 2 1 112.10.a.i 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.10.a.a 3 7.b odd 2 1
112.10.a.i 3 28.d even 2 1
392.10.a.d 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 92T_{3}^{2} - 51228T_{3} + 379584 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(392))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 92 T^{2} + \cdots + 379584 \) Copy content Toggle raw display
$5$ \( T^{3} + 274 T^{2} + \cdots + 162790400 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 3858186796800 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 467510359287776 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 23\!\cdots\!32 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 36\!\cdots\!88 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 83\!\cdots\!52 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 28\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 35\!\cdots\!40 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 33\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 99\!\cdots\!68 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 45\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 24\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 17\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 98\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 17\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 82\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 54\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 11\!\cdots\!60 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 15\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 27\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 18\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 92\!\cdots\!28 \) Copy content Toggle raw display
show more
show less