Properties

Label 390.2.y.b.289.2
Level $390$
Weight $2$
Character 390.289
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.y (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 390.289
Dual form 390.2.y.b.139.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.23205 + 0.133975i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(-2.36603 - 1.36603i) q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.23205 + 0.133975i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(-2.36603 - 1.36603i) q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.86603 + 1.23205i) q^{10} +(-0.366025 - 0.633975i) q^{11} +1.00000i q^{12} +(-3.59808 - 0.232051i) q^{13} -2.73205 q^{14} +(1.86603 - 1.23205i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-3.86603 - 2.23205i) q^{17} -1.00000i q^{18} +(0.633975 - 1.09808i) q^{19} +(-1.00000 + 2.00000i) q^{20} +2.73205 q^{21} +(-0.633975 - 0.366025i) q^{22} +(-5.36603 + 3.09808i) q^{23} +(0.500000 + 0.866025i) q^{24} +(4.96410 - 0.598076i) q^{25} +(-3.23205 + 1.59808i) q^{26} +1.00000i q^{27} +(-2.36603 + 1.36603i) q^{28} +(-3.23205 - 5.59808i) q^{29} +(1.00000 - 2.00000i) q^{30} +4.00000 q^{31} +(-0.866025 - 0.500000i) q^{32} +(0.633975 + 0.366025i) q^{33} -4.46410 q^{34} +(5.46410 + 2.73205i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(6.86603 - 3.96410i) q^{37} -1.26795i q^{38} +(3.23205 - 1.59808i) q^{39} +(0.133975 + 2.23205i) q^{40} +(4.59808 + 7.96410i) q^{41} +(2.36603 - 1.36603i) q^{42} +(-2.83013 - 1.63397i) q^{43} -0.732051 q^{44} +(-1.00000 + 2.00000i) q^{45} +(-3.09808 + 5.36603i) q^{46} +7.66025i q^{47} +(0.866025 + 0.500000i) q^{48} +(0.232051 + 0.401924i) q^{49} +(4.00000 - 3.00000i) q^{50} +4.46410 q^{51} +(-2.00000 + 3.00000i) q^{52} -7.73205i q^{53} +(0.500000 + 0.866025i) q^{54} +(0.901924 + 1.36603i) q^{55} +(-1.36603 + 2.36603i) q^{56} +1.26795i q^{57} +(-5.59808 - 3.23205i) q^{58} +(-6.19615 + 10.7321i) q^{59} +(-0.133975 - 2.23205i) q^{60} +(5.06218 - 8.76795i) q^{61} +(3.46410 - 2.00000i) q^{62} +(-2.36603 + 1.36603i) q^{63} -1.00000 q^{64} +(8.06218 + 0.0358984i) q^{65} +0.732051 q^{66} +(6.63397 - 3.83013i) q^{67} +(-3.86603 + 2.23205i) q^{68} +(3.09808 - 5.36603i) q^{69} +(6.09808 - 0.366025i) q^{70} +(-0.633975 + 1.09808i) q^{71} +(-0.866025 - 0.500000i) q^{72} +4.66025i q^{73} +(3.96410 - 6.86603i) q^{74} +(-4.00000 + 3.00000i) q^{75} +(-0.633975 - 1.09808i) q^{76} +2.00000i q^{77} +(2.00000 - 3.00000i) q^{78} -12.0000 q^{79} +(1.23205 + 1.86603i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(7.96410 + 4.59808i) q^{82} -5.26795i q^{83} +(1.36603 - 2.36603i) q^{84} +(8.92820 + 4.46410i) q^{85} -3.26795 q^{86} +(5.59808 + 3.23205i) q^{87} +(-0.633975 + 0.366025i) q^{88} +(-2.46410 - 4.26795i) q^{89} +(0.133975 + 2.23205i) q^{90} +(8.19615 + 5.46410i) q^{91} +6.19615i q^{92} +(-3.46410 + 2.00000i) q^{93} +(3.83013 + 6.63397i) q^{94} +(-1.26795 + 2.53590i) q^{95} +1.00000 q^{96} +(8.66025 + 5.00000i) q^{97} +(0.401924 + 0.232051i) q^{98} -0.732051 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{5} - 2 q^{6} - 6 q^{7} + 2 q^{9} + O(q^{10}) \) \( 4 q + 2 q^{4} - 2 q^{5} - 2 q^{6} - 6 q^{7} + 2 q^{9} - 4 q^{10} + 2 q^{11} - 4 q^{13} - 4 q^{14} + 4 q^{15} - 2 q^{16} - 12 q^{17} + 6 q^{19} - 4 q^{20} + 4 q^{21} - 6 q^{22} - 18 q^{23} + 2 q^{24} + 6 q^{25} - 6 q^{26} - 6 q^{28} - 6 q^{29} + 4 q^{30} + 16 q^{31} + 6 q^{33} - 4 q^{34} + 8 q^{35} - 2 q^{36} + 24 q^{37} + 6 q^{39} + 4 q^{40} + 8 q^{41} + 6 q^{42} + 6 q^{43} + 4 q^{44} - 4 q^{45} - 2 q^{46} - 6 q^{49} + 16 q^{50} + 4 q^{51} - 8 q^{52} + 2 q^{54} + 14 q^{55} - 2 q^{56} - 12 q^{58} - 4 q^{59} - 4 q^{60} - 4 q^{61} - 6 q^{63} - 4 q^{64} + 8 q^{65} - 4 q^{66} + 30 q^{67} - 12 q^{68} + 2 q^{69} + 14 q^{70} - 6 q^{71} + 2 q^{74} - 16 q^{75} - 6 q^{76} + 8 q^{78} - 48 q^{79} - 2 q^{80} - 2 q^{81} + 18 q^{82} + 2 q^{84} + 8 q^{85} - 20 q^{86} + 12 q^{87} - 6 q^{88} + 4 q^{89} + 4 q^{90} + 12 q^{91} - 2 q^{94} - 12 q^{95} + 4 q^{96} + 12 q^{98} + 4 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.23205 + 0.133975i −0.998203 + 0.0599153i
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) −2.36603 1.36603i −0.894274 0.516309i −0.0189356 0.999821i \(-0.506028\pi\)
−0.875338 + 0.483512i \(0.839361\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.86603 + 1.23205i −0.590089 + 0.389609i
\(11\) −0.366025 0.633975i −0.110361 0.191151i 0.805555 0.592521i \(-0.201867\pi\)
−0.915916 + 0.401371i \(0.868534\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −3.59808 0.232051i −0.997927 0.0643593i
\(14\) −2.73205 −0.730171
\(15\) 1.86603 1.23205i 0.481806 0.318114i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.86603 2.23205i −0.937649 0.541352i −0.0484264 0.998827i \(-0.515421\pi\)
−0.889223 + 0.457475i \(0.848754\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 0.633975 1.09808i 0.145444 0.251916i −0.784095 0.620641i \(-0.786872\pi\)
0.929538 + 0.368725i \(0.120206\pi\)
\(20\) −1.00000 + 2.00000i −0.223607 + 0.447214i
\(21\) 2.73205 0.596182
\(22\) −0.633975 0.366025i −0.135164 0.0780369i
\(23\) −5.36603 + 3.09808i −1.11889 + 0.645994i −0.941118 0.338078i \(-0.890223\pi\)
−0.177775 + 0.984071i \(0.556890\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 4.96410 0.598076i 0.992820 0.119615i
\(26\) −3.23205 + 1.59808i −0.633857 + 0.313409i
\(27\) 1.00000i 0.192450i
\(28\) −2.36603 + 1.36603i −0.447137 + 0.258155i
\(29\) −3.23205 5.59808i −0.600177 1.03954i −0.992794 0.119835i \(-0.961764\pi\)
0.392617 0.919702i \(-0.371570\pi\)
\(30\) 1.00000 2.00000i 0.182574 0.365148i
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0.633975 + 0.366025i 0.110361 + 0.0637168i
\(34\) −4.46410 −0.765587
\(35\) 5.46410 + 2.73205i 0.923602 + 0.461801i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 6.86603 3.96410i 1.12877 0.651694i 0.185143 0.982712i \(-0.440725\pi\)
0.943625 + 0.331017i \(0.107392\pi\)
\(38\) 1.26795i 0.205689i
\(39\) 3.23205 1.59808i 0.517542 0.255897i
\(40\) 0.133975 + 2.23205i 0.0211832 + 0.352918i
\(41\) 4.59808 + 7.96410i 0.718099 + 1.24378i 0.961752 + 0.273921i \(0.0883208\pi\)
−0.243653 + 0.969862i \(0.578346\pi\)
\(42\) 2.36603 1.36603i 0.365086 0.210782i
\(43\) −2.83013 1.63397i −0.431590 0.249179i 0.268434 0.963298i \(-0.413494\pi\)
−0.700024 + 0.714119i \(0.746827\pi\)
\(44\) −0.732051 −0.110361
\(45\) −1.00000 + 2.00000i −0.149071 + 0.298142i
\(46\) −3.09808 + 5.36603i −0.456786 + 0.791177i
\(47\) 7.66025i 1.11736i 0.829382 + 0.558681i \(0.188693\pi\)
−0.829382 + 0.558681i \(0.811307\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) 0.232051 + 0.401924i 0.0331501 + 0.0574177i
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) 4.46410 0.625099
\(52\) −2.00000 + 3.00000i −0.277350 + 0.416025i
\(53\) 7.73205i 1.06208i −0.847347 0.531039i \(-0.821802\pi\)
0.847347 0.531039i \(-0.178198\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) 0.901924 + 1.36603i 0.121615 + 0.184195i
\(56\) −1.36603 + 2.36603i −0.182543 + 0.316173i
\(57\) 1.26795i 0.167944i
\(58\) −5.59808 3.23205i −0.735063 0.424389i
\(59\) −6.19615 + 10.7321i −0.806670 + 1.39719i 0.108487 + 0.994098i \(0.465399\pi\)
−0.915158 + 0.403096i \(0.867934\pi\)
\(60\) −0.133975 2.23205i −0.0172960 0.288157i
\(61\) 5.06218 8.76795i 0.648145 1.12262i −0.335420 0.942069i \(-0.608878\pi\)
0.983565 0.180552i \(-0.0577885\pi\)
\(62\) 3.46410 2.00000i 0.439941 0.254000i
\(63\) −2.36603 + 1.36603i −0.298091 + 0.172103i
\(64\) −1.00000 −0.125000
\(65\) 8.06218 + 0.0358984i 0.999990 + 0.00445265i
\(66\) 0.732051 0.0901092
\(67\) 6.63397 3.83013i 0.810469 0.467924i −0.0366497 0.999328i \(-0.511669\pi\)
0.847119 + 0.531404i \(0.178335\pi\)
\(68\) −3.86603 + 2.23205i −0.468824 + 0.270676i
\(69\) 3.09808 5.36603i 0.372965 0.645994i
\(70\) 6.09808 0.366025i 0.728860 0.0437484i
\(71\) −0.633975 + 1.09808i −0.0752389 + 0.130318i −0.901190 0.433424i \(-0.857305\pi\)
0.825951 + 0.563742i \(0.190639\pi\)
\(72\) −0.866025 0.500000i −0.102062 0.0589256i
\(73\) 4.66025i 0.545441i 0.962093 + 0.272721i \(0.0879235\pi\)
−0.962093 + 0.272721i \(0.912076\pi\)
\(74\) 3.96410 6.86603i 0.460817 0.798159i
\(75\) −4.00000 + 3.00000i −0.461880 + 0.346410i
\(76\) −0.633975 1.09808i −0.0727219 0.125958i
\(77\) 2.00000i 0.227921i
\(78\) 2.00000 3.00000i 0.226455 0.339683i
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 1.23205 + 1.86603i 0.137747 + 0.208628i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 7.96410 + 4.59808i 0.879488 + 0.507773i
\(83\) 5.26795i 0.578233i −0.957294 0.289116i \(-0.906639\pi\)
0.957294 0.289116i \(-0.0933614\pi\)
\(84\) 1.36603 2.36603i 0.149046 0.258155i
\(85\) 8.92820 + 4.46410i 0.968400 + 0.484200i
\(86\) −3.26795 −0.352392
\(87\) 5.59808 + 3.23205i 0.600177 + 0.346512i
\(88\) −0.633975 + 0.366025i −0.0675819 + 0.0390184i
\(89\) −2.46410 4.26795i −0.261194 0.452402i 0.705365 0.708844i \(-0.250783\pi\)
−0.966560 + 0.256442i \(0.917450\pi\)
\(90\) 0.133975 + 2.23205i 0.0141222 + 0.235279i
\(91\) 8.19615 + 5.46410i 0.859190 + 0.572793i
\(92\) 6.19615i 0.645994i
\(93\) −3.46410 + 2.00000i −0.359211 + 0.207390i
\(94\) 3.83013 + 6.63397i 0.395047 + 0.684242i
\(95\) −1.26795 + 2.53590i −0.130089 + 0.260178i
\(96\) 1.00000 0.102062
\(97\) 8.66025 + 5.00000i 0.879316 + 0.507673i 0.870433 0.492287i \(-0.163839\pi\)
0.00888289 + 0.999961i \(0.497172\pi\)
\(98\) 0.401924 + 0.232051i 0.0406004 + 0.0234407i
\(99\) −0.732051 −0.0735739
\(100\) 1.96410 4.59808i 0.196410 0.459808i
\(101\) −6.96410 12.0622i −0.692954 1.20023i −0.970866 0.239625i \(-0.922976\pi\)
0.277912 0.960607i \(-0.410358\pi\)
\(102\) 3.86603 2.23205i 0.382794 0.221006i
\(103\) 9.26795i 0.913198i −0.889673 0.456599i \(-0.849067\pi\)
0.889673 0.456599i \(-0.150933\pi\)
\(104\) −0.232051 + 3.59808i −0.0227545 + 0.352820i
\(105\) −6.09808 + 0.366025i −0.595111 + 0.0357204i
\(106\) −3.86603 6.69615i −0.375502 0.650388i
\(107\) 1.09808 0.633975i 0.106155 0.0612886i −0.445983 0.895042i \(-0.647146\pi\)
0.552138 + 0.833753i \(0.313812\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 1.46410 + 0.732051i 0.139597 + 0.0697983i
\(111\) −3.96410 + 6.86603i −0.376256 + 0.651694i
\(112\) 2.73205i 0.258155i
\(113\) 7.79423 + 4.50000i 0.733219 + 0.423324i 0.819599 0.572938i \(-0.194196\pi\)
−0.0863794 + 0.996262i \(0.527530\pi\)
\(114\) 0.633975 + 1.09808i 0.0593772 + 0.102844i
\(115\) 11.5622 7.63397i 1.07818 0.711872i
\(116\) −6.46410 −0.600177
\(117\) −2.00000 + 3.00000i −0.184900 + 0.277350i
\(118\) 12.3923i 1.14080i
\(119\) 6.09808 + 10.5622i 0.559010 + 0.968233i
\(120\) −1.23205 1.86603i −0.112470 0.170344i
\(121\) 5.23205 9.06218i 0.475641 0.823834i
\(122\) 10.1244i 0.916616i
\(123\) −7.96410 4.59808i −0.718099 0.414595i
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) −1.36603 + 2.36603i −0.121695 + 0.210782i
\(127\) 3.46410 2.00000i 0.307389 0.177471i −0.338368 0.941014i \(-0.609875\pi\)
0.645758 + 0.763542i \(0.276542\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 3.26795 0.287727
\(130\) 7.00000 4.00000i 0.613941 0.350823i
\(131\) −13.8564 −1.21064 −0.605320 0.795982i \(-0.706955\pi\)
−0.605320 + 0.795982i \(0.706955\pi\)
\(132\) 0.633975 0.366025i 0.0551804 0.0318584i
\(133\) −3.00000 + 1.73205i −0.260133 + 0.150188i
\(134\) 3.83013 6.63397i 0.330873 0.573088i
\(135\) −0.133975 2.23205i −0.0115307 0.192104i
\(136\) −2.23205 + 3.86603i −0.191397 + 0.331509i
\(137\) −15.9904 9.23205i −1.36615 0.788747i −0.375716 0.926735i \(-0.622603\pi\)
−0.990434 + 0.137987i \(0.955937\pi\)
\(138\) 6.19615i 0.527452i
\(139\) −0.535898 + 0.928203i −0.0454543 + 0.0787292i −0.887857 0.460119i \(-0.847807\pi\)
0.842403 + 0.538848i \(0.181140\pi\)
\(140\) 5.09808 3.36603i 0.430866 0.284481i
\(141\) −3.83013 6.63397i −0.322555 0.558681i
\(142\) 1.26795i 0.106404i
\(143\) 1.16987 + 2.36603i 0.0978297 + 0.197857i
\(144\) −1.00000 −0.0833333
\(145\) 7.96410 + 12.0622i 0.661383 + 1.00171i
\(146\) 2.33013 + 4.03590i 0.192843 + 0.334013i
\(147\) −0.401924 0.232051i −0.0331501 0.0191392i
\(148\) 7.92820i 0.651694i
\(149\) 9.96410 17.2583i 0.816291 1.41386i −0.0921062 0.995749i \(-0.529360\pi\)
0.908397 0.418108i \(-0.137307\pi\)
\(150\) −1.96410 + 4.59808i −0.160368 + 0.375431i
\(151\) −5.12436 −0.417014 −0.208507 0.978021i \(-0.566860\pi\)
−0.208507 + 0.978021i \(0.566860\pi\)
\(152\) −1.09808 0.633975i −0.0890657 0.0514221i
\(153\) −3.86603 + 2.23205i −0.312550 + 0.180451i
\(154\) 1.00000 + 1.73205i 0.0805823 + 0.139573i
\(155\) −8.92820 + 0.535898i −0.717131 + 0.0430444i
\(156\) 0.232051 3.59808i 0.0185789 0.288077i
\(157\) 9.39230i 0.749588i 0.927108 + 0.374794i \(0.122286\pi\)
−0.927108 + 0.374794i \(0.877714\pi\)
\(158\) −10.3923 + 6.00000i −0.826767 + 0.477334i
\(159\) 3.86603 + 6.69615i 0.306596 + 0.531039i
\(160\) 2.00000 + 1.00000i 0.158114 + 0.0790569i
\(161\) 16.9282 1.33413
\(162\) −0.866025 0.500000i −0.0680414 0.0392837i
\(163\) −11.6603 6.73205i −0.913302 0.527295i −0.0318096 0.999494i \(-0.510127\pi\)
−0.881492 + 0.472199i \(0.843460\pi\)
\(164\) 9.19615 0.718099
\(165\) −1.46410 0.732051i −0.113980 0.0569901i
\(166\) −2.63397 4.56218i −0.204436 0.354094i
\(167\) −12.0000 + 6.92820i −0.928588 + 0.536120i −0.886365 0.462988i \(-0.846777\pi\)
−0.0422232 + 0.999108i \(0.513444\pi\)
\(168\) 2.73205i 0.210782i
\(169\) 12.8923 + 1.66987i 0.991716 + 0.128452i
\(170\) 9.96410 0.598076i 0.764212 0.0458704i
\(171\) −0.633975 1.09808i −0.0484812 0.0839720i
\(172\) −2.83013 + 1.63397i −0.215795 + 0.124589i
\(173\) −16.2679 9.39230i −1.23683 0.714084i −0.268384 0.963312i \(-0.586490\pi\)
−0.968445 + 0.249228i \(0.919823\pi\)
\(174\) 6.46410 0.490042
\(175\) −12.5622 5.36603i −0.949611 0.405633i
\(176\) −0.366025 + 0.633975i −0.0275902 + 0.0477876i
\(177\) 12.3923i 0.931463i
\(178\) −4.26795 2.46410i −0.319896 0.184692i
\(179\) 9.09808 + 15.7583i 0.680022 + 1.17783i 0.974974 + 0.222321i \(0.0713632\pi\)
−0.294951 + 0.955512i \(0.595303\pi\)
\(180\) 1.23205 + 1.86603i 0.0918316 + 0.139085i
\(181\) −16.1244 −1.19851 −0.599257 0.800557i \(-0.704537\pi\)
−0.599257 + 0.800557i \(0.704537\pi\)
\(182\) 9.83013 + 0.633975i 0.728657 + 0.0469933i
\(183\) 10.1244i 0.748414i
\(184\) 3.09808 + 5.36603i 0.228393 + 0.395589i
\(185\) −14.7942 + 9.76795i −1.08769 + 0.718154i
\(186\) −2.00000 + 3.46410i −0.146647 + 0.254000i
\(187\) 3.26795i 0.238976i
\(188\) 6.63397 + 3.83013i 0.483832 + 0.279341i
\(189\) 1.36603 2.36603i 0.0993637 0.172103i
\(190\) 0.169873 + 2.83013i 0.0123239 + 0.205319i
\(191\) 4.73205 8.19615i 0.342399 0.593053i −0.642479 0.766304i \(-0.722094\pi\)
0.984878 + 0.173251i \(0.0554272\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) 9.23205 5.33013i 0.664538 0.383671i −0.129466 0.991584i \(-0.541326\pi\)
0.794004 + 0.607913i \(0.207993\pi\)
\(194\) 10.0000 0.717958
\(195\) −7.00000 + 4.00000i −0.501280 + 0.286446i
\(196\) 0.464102 0.0331501
\(197\) 8.53590 4.92820i 0.608158 0.351120i −0.164086 0.986446i \(-0.552468\pi\)
0.772244 + 0.635326i \(0.219134\pi\)
\(198\) −0.633975 + 0.366025i −0.0450546 + 0.0260123i
\(199\) −14.0263 + 24.2942i −0.994297 + 1.72217i −0.404786 + 0.914411i \(0.632654\pi\)
−0.589510 + 0.807761i \(0.700679\pi\)
\(200\) −0.598076 4.96410i −0.0422904 0.351015i
\(201\) −3.83013 + 6.63397i −0.270156 + 0.467924i
\(202\) −12.0622 6.96410i −0.848692 0.489992i
\(203\) 17.6603i 1.23951i
\(204\) 2.23205 3.86603i 0.156275 0.270676i
\(205\) −11.3301 17.1603i −0.791330 1.19852i
\(206\) −4.63397 8.02628i −0.322864 0.559217i
\(207\) 6.19615i 0.430662i
\(208\) 1.59808 + 3.23205i 0.110807 + 0.224102i
\(209\) −0.928203 −0.0642052
\(210\) −5.09808 + 3.36603i −0.351801 + 0.232278i
\(211\) 10.7321 + 18.5885i 0.738825 + 1.27968i 0.953025 + 0.302892i \(0.0979523\pi\)
−0.214200 + 0.976790i \(0.568714\pi\)
\(212\) −6.69615 3.86603i −0.459894 0.265520i
\(213\) 1.26795i 0.0868784i
\(214\) 0.633975 1.09808i 0.0433376 0.0750629i
\(215\) 6.53590 + 3.26795i 0.445745 + 0.222872i
\(216\) 1.00000 0.0680414
\(217\) −9.46410 5.46410i −0.642465 0.370927i
\(218\) −8.66025 + 5.00000i −0.586546 + 0.338643i
\(219\) −2.33013 4.03590i −0.157455 0.272721i
\(220\) 1.63397 0.0980762i 0.110163 0.00661230i
\(221\) 13.3923 + 8.92820i 0.900864 + 0.600576i
\(222\) 7.92820i 0.532106i
\(223\) 0.339746 0.196152i 0.0227511 0.0131353i −0.488581 0.872518i \(-0.662485\pi\)
0.511332 + 0.859383i \(0.329152\pi\)
\(224\) 1.36603 + 2.36603i 0.0912714 + 0.158087i
\(225\) 1.96410 4.59808i 0.130940 0.306538i
\(226\) 9.00000 0.598671
\(227\) 3.63397 + 2.09808i 0.241195 + 0.139254i 0.615726 0.787960i \(-0.288863\pi\)
−0.374531 + 0.927215i \(0.622196\pi\)
\(228\) 1.09808 + 0.633975i 0.0727219 + 0.0419860i
\(229\) −28.7846 −1.90214 −0.951070 0.308975i \(-0.900014\pi\)
−0.951070 + 0.308975i \(0.900014\pi\)
\(230\) 6.19615 12.3923i 0.408562 0.817124i
\(231\) −1.00000 1.73205i −0.0657952 0.113961i
\(232\) −5.59808 + 3.23205i −0.367532 + 0.212195i
\(233\) 12.3923i 0.811847i −0.913907 0.405923i \(-0.866950\pi\)
0.913907 0.405923i \(-0.133050\pi\)
\(234\) −0.232051 + 3.59808i −0.0151696 + 0.235214i
\(235\) −1.02628 17.0981i −0.0669471 1.11536i
\(236\) 6.19615 + 10.7321i 0.403335 + 0.698597i
\(237\) 10.3923 6.00000i 0.675053 0.389742i
\(238\) 10.5622 + 6.09808i 0.684644 + 0.395280i
\(239\) 4.58846 0.296803 0.148401 0.988927i \(-0.452587\pi\)
0.148401 + 0.988927i \(0.452587\pi\)
\(240\) −2.00000 1.00000i −0.129099 0.0645497i
\(241\) 4.69615 8.13397i 0.302506 0.523955i −0.674197 0.738551i \(-0.735510\pi\)
0.976703 + 0.214596i \(0.0688435\pi\)
\(242\) 10.4641i 0.672658i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) −5.06218 8.76795i −0.324073 0.561310i
\(245\) −0.571797 0.866025i −0.0365308 0.0553283i
\(246\) −9.19615 −0.586325
\(247\) −2.53590 + 3.80385i −0.161355 + 0.242033i
\(248\) 4.00000i 0.254000i
\(249\) 2.63397 + 4.56218i 0.166921 + 0.289116i
\(250\) −8.52628 + 7.23205i −0.539249 + 0.457395i
\(251\) 10.7321 18.5885i 0.677401 1.17329i −0.298360 0.954453i \(-0.596440\pi\)
0.975761 0.218840i \(-0.0702271\pi\)
\(252\) 2.73205i 0.172103i
\(253\) 3.92820 + 2.26795i 0.246964 + 0.142585i
\(254\) 2.00000 3.46410i 0.125491 0.217357i
\(255\) −9.96410 + 0.598076i −0.623976 + 0.0374530i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −2.59808 + 1.50000i −0.162064 + 0.0935674i −0.578838 0.815442i \(-0.696494\pi\)
0.416775 + 0.909010i \(0.363160\pi\)
\(258\) 2.83013 1.63397i 0.176196 0.101727i
\(259\) −21.6603 −1.34590
\(260\) 4.06218 6.96410i 0.251926 0.431895i
\(261\) −6.46410 −0.400118
\(262\) −12.0000 + 6.92820i −0.741362 + 0.428026i
\(263\) 14.8301 8.56218i 0.914465 0.527967i 0.0325998 0.999468i \(-0.489621\pi\)
0.881865 + 0.471502i \(0.156288\pi\)
\(264\) 0.366025 0.633975i 0.0225273 0.0390184i
\(265\) 1.03590 + 17.2583i 0.0636347 + 1.06017i
\(266\) −1.73205 + 3.00000i −0.106199 + 0.183942i
\(267\) 4.26795 + 2.46410i 0.261194 + 0.150801i
\(268\) 7.66025i 0.467924i
\(269\) 2.19615 3.80385i 0.133902 0.231925i −0.791276 0.611460i \(-0.790583\pi\)
0.925177 + 0.379535i \(0.123916\pi\)
\(270\) −1.23205 1.86603i −0.0749802 0.113563i
\(271\) −2.92820 5.07180i −0.177876 0.308090i 0.763277 0.646071i \(-0.223589\pi\)
−0.941153 + 0.337982i \(0.890256\pi\)
\(272\) 4.46410i 0.270676i
\(273\) −9.83013 0.633975i −0.594946 0.0383699i
\(274\) −18.4641 −1.11546
\(275\) −2.19615 2.92820i −0.132433 0.176577i
\(276\) −3.09808 5.36603i −0.186482 0.322997i
\(277\) −10.6699 6.16025i −0.641091 0.370134i 0.143944 0.989586i \(-0.454021\pi\)
−0.785034 + 0.619452i \(0.787355\pi\)
\(278\) 1.07180i 0.0642821i
\(279\) 2.00000 3.46410i 0.119737 0.207390i
\(280\) 2.73205 5.46410i 0.163271 0.326543i
\(281\) 1.73205 0.103325 0.0516627 0.998665i \(-0.483548\pi\)
0.0516627 + 0.998665i \(0.483548\pi\)
\(282\) −6.63397 3.83013i −0.395047 0.228081i
\(283\) −6.63397 + 3.83013i −0.394349 + 0.227677i −0.684043 0.729442i \(-0.739780\pi\)
0.289694 + 0.957119i \(0.406447\pi\)
\(284\) 0.633975 + 1.09808i 0.0376195 + 0.0651588i
\(285\) −0.169873 2.83013i −0.0100624 0.167642i
\(286\) 2.19615 + 1.46410i 0.129861 + 0.0865741i
\(287\) 25.1244i 1.48304i
\(288\) −0.866025 + 0.500000i −0.0510310 + 0.0294628i
\(289\) 1.46410 + 2.53590i 0.0861236 + 0.149170i
\(290\) 12.9282 + 6.46410i 0.759170 + 0.379585i
\(291\) −10.0000 −0.586210
\(292\) 4.03590 + 2.33013i 0.236183 + 0.136360i
\(293\) 11.8923 + 6.86603i 0.694756 + 0.401117i 0.805391 0.592744i \(-0.201955\pi\)
−0.110635 + 0.993861i \(0.535289\pi\)
\(294\) −0.464102 −0.0270670
\(295\) 12.3923 24.7846i 0.721508 1.44302i
\(296\) −3.96410 6.86603i −0.230409 0.399080i
\(297\) 0.633975 0.366025i 0.0367869 0.0212389i
\(298\) 19.9282i 1.15441i
\(299\) 20.0263 9.90192i 1.15815 0.572643i
\(300\) 0.598076 + 4.96410i 0.0345299 + 0.286603i
\(301\) 4.46410 + 7.73205i 0.257307 + 0.445668i
\(302\) −4.43782 + 2.56218i −0.255368 + 0.147437i
\(303\) 12.0622 + 6.96410i 0.692954 + 0.400077i
\(304\) −1.26795 −0.0727219
\(305\) −10.1244 + 20.2487i −0.579719 + 1.15944i
\(306\) −2.23205 + 3.86603i −0.127598 + 0.221006i
\(307\) 19.2679i 1.09968i −0.835270 0.549840i \(-0.814689\pi\)
0.835270 0.549840i \(-0.185311\pi\)
\(308\) 1.73205 + 1.00000i 0.0986928 + 0.0569803i
\(309\) 4.63397 + 8.02628i 0.263618 + 0.456599i
\(310\) −7.46410 + 4.92820i −0.423932 + 0.279903i
\(311\) 3.12436 0.177166 0.0885830 0.996069i \(-0.471766\pi\)
0.0885830 + 0.996069i \(0.471766\pi\)
\(312\) −1.59808 3.23205i −0.0904732 0.182979i
\(313\) 14.0000i 0.791327i 0.918396 + 0.395663i \(0.129485\pi\)
−0.918396 + 0.395663i \(0.870515\pi\)
\(314\) 4.69615 + 8.13397i 0.265019 + 0.459027i
\(315\) 5.09808 3.36603i 0.287244 0.189654i
\(316\) −6.00000 + 10.3923i −0.337526 + 0.584613i
\(317\) 29.7321i 1.66992i 0.550312 + 0.834959i \(0.314509\pi\)
−0.550312 + 0.834959i \(0.685491\pi\)
\(318\) 6.69615 + 3.86603i 0.375502 + 0.216796i
\(319\) −2.36603 + 4.09808i −0.132472 + 0.229448i
\(320\) 2.23205 0.133975i 0.124775 0.00748941i
\(321\) −0.633975 + 1.09808i −0.0353850 + 0.0612886i
\(322\) 14.6603 8.46410i 0.816984 0.471686i
\(323\) −4.90192 + 2.83013i −0.272750 + 0.157472i
\(324\) −1.00000 −0.0555556
\(325\) −18.0000 + 1.00000i −0.998460 + 0.0554700i
\(326\) −13.4641 −0.745708
\(327\) 8.66025 5.00000i 0.478913 0.276501i
\(328\) 7.96410 4.59808i 0.439744 0.253886i
\(329\) 10.4641 18.1244i 0.576905 0.999228i
\(330\) −1.63397 + 0.0980762i −0.0899473 + 0.00539892i
\(331\) 14.3923 24.9282i 0.791073 1.37018i −0.134231 0.990950i \(-0.542856\pi\)
0.925303 0.379228i \(-0.123810\pi\)
\(332\) −4.56218 2.63397i −0.250382 0.144558i
\(333\) 7.92820i 0.434463i
\(334\) −6.92820 + 12.0000i −0.379094 + 0.656611i
\(335\) −14.2942 + 9.43782i −0.780977 + 0.515643i
\(336\) −1.36603 2.36603i −0.0745228 0.129077i
\(337\) 11.0526i 0.602071i 0.953613 + 0.301036i \(0.0973323\pi\)
−0.953613 + 0.301036i \(0.902668\pi\)
\(338\) 12.0000 5.00000i 0.652714 0.271964i
\(339\) −9.00000 −0.488813
\(340\) 8.33013 5.50000i 0.451765 0.298279i
\(341\) −1.46410 2.53590i −0.0792855 0.137327i
\(342\) −1.09808 0.633975i −0.0593772 0.0342814i
\(343\) 17.8564i 0.964155i
\(344\) −1.63397 + 2.83013i −0.0880980 + 0.152590i
\(345\) −6.19615 + 12.3923i −0.333590 + 0.667179i
\(346\) −18.7846 −1.00987
\(347\) 4.90192 + 2.83013i 0.263149 + 0.151929i 0.625770 0.780007i \(-0.284785\pi\)
−0.362621 + 0.931937i \(0.618118\pi\)
\(348\) 5.59808 3.23205i 0.300088 0.173256i
\(349\) −9.53590 16.5167i −0.510445 0.884117i −0.999927 0.0121031i \(-0.996147\pi\)
0.489482 0.872014i \(-0.337186\pi\)
\(350\) −13.5622 + 1.63397i −0.724929 + 0.0873396i
\(351\) 0.232051 3.59808i 0.0123860 0.192051i
\(352\) 0.732051i 0.0390184i
\(353\) 21.8660 12.6244i 1.16381 0.671927i 0.211597 0.977357i \(-0.432134\pi\)
0.952214 + 0.305430i \(0.0988003\pi\)
\(354\) −6.19615 10.7321i −0.329322 0.570402i
\(355\) 1.26795 2.53590i 0.0672958 0.134592i
\(356\) −4.92820 −0.261194
\(357\) −10.5622 6.09808i −0.559010 0.322744i
\(358\) 15.7583 + 9.09808i 0.832854 + 0.480848i
\(359\) −8.87564 −0.468439 −0.234219 0.972184i \(-0.575253\pi\)
−0.234219 + 0.972184i \(0.575253\pi\)
\(360\) 2.00000 + 1.00000i 0.105409 + 0.0527046i
\(361\) 8.69615 + 15.0622i 0.457692 + 0.792746i
\(362\) −13.9641 + 8.06218i −0.733937 + 0.423739i
\(363\) 10.4641i 0.549223i
\(364\) 8.83013 4.36603i 0.462824 0.228842i
\(365\) −0.624356 10.4019i −0.0326803 0.544462i
\(366\) 5.06218 + 8.76795i 0.264604 + 0.458308i
\(367\) 28.5622 16.4904i 1.49093 0.860791i 0.490987 0.871167i \(-0.336636\pi\)
0.999946 + 0.0103758i \(0.00330278\pi\)
\(368\) 5.36603 + 3.09808i 0.279723 + 0.161498i
\(369\) 9.19615 0.478733
\(370\) −7.92820 + 15.8564i −0.412168 + 0.824335i
\(371\) −10.5622 + 18.2942i −0.548361 + 0.949789i
\(372\) 4.00000i 0.207390i
\(373\) 20.3827 + 11.7679i 1.05538 + 0.609321i 0.924149 0.382031i \(-0.124775\pi\)
0.131226 + 0.991352i \(0.458109\pi\)
\(374\) 1.63397 + 2.83013i 0.0844908 + 0.146342i
\(375\) 8.52628 7.23205i 0.440295 0.373461i
\(376\) 7.66025 0.395047
\(377\) 10.3301 + 20.8923i 0.532029 + 1.07601i
\(378\) 2.73205i 0.140522i
\(379\) 13.1244 + 22.7321i 0.674153 + 1.16767i 0.976716 + 0.214538i \(0.0688244\pi\)
−0.302563 + 0.953129i \(0.597842\pi\)
\(380\) 1.56218 + 2.36603i 0.0801380 + 0.121375i
\(381\) −2.00000 + 3.46410i −0.102463 + 0.177471i
\(382\) 9.46410i 0.484226i
\(383\) 23.3205 + 13.4641i 1.19162 + 0.687983i 0.958674 0.284506i \(-0.0918295\pi\)
0.232948 + 0.972489i \(0.425163\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) −0.267949 4.46410i −0.0136560 0.227512i
\(386\) 5.33013 9.23205i 0.271296 0.469899i
\(387\) −2.83013 + 1.63397i −0.143863 + 0.0830596i
\(388\) 8.66025 5.00000i 0.439658 0.253837i
\(389\) 24.0718 1.22049 0.610244 0.792213i \(-0.291071\pi\)
0.610244 + 0.792213i \(0.291071\pi\)
\(390\) −4.06218 + 6.96410i −0.205696 + 0.352641i
\(391\) 27.6603 1.39884
\(392\) 0.401924 0.232051i 0.0203002 0.0117203i
\(393\) 12.0000 6.92820i 0.605320 0.349482i
\(394\) 4.92820 8.53590i 0.248279 0.430032i
\(395\) 26.7846 1.60770i 1.34768 0.0808919i
\(396\) −0.366025 + 0.633975i −0.0183935 + 0.0318584i
\(397\) 16.7321 + 9.66025i 0.839758 + 0.484834i 0.857182 0.515014i \(-0.172213\pi\)
−0.0174242 + 0.999848i \(0.505547\pi\)
\(398\) 28.0526i 1.40615i
\(399\) 1.73205 3.00000i 0.0867110 0.150188i
\(400\) −3.00000 4.00000i −0.150000 0.200000i
\(401\) 4.52628 + 7.83975i 0.226032 + 0.391498i 0.956628 0.291311i \(-0.0940914\pi\)
−0.730597 + 0.682809i \(0.760758\pi\)
\(402\) 7.66025i 0.382059i
\(403\) −14.3923 0.928203i −0.716932 0.0462371i
\(404\) −13.9282 −0.692954
\(405\) 1.23205 + 1.86603i 0.0612211 + 0.0927235i
\(406\) 8.83013 + 15.2942i 0.438232 + 0.759040i
\(407\) −5.02628 2.90192i −0.249143 0.143843i
\(408\) 4.46410i 0.221006i
\(409\) 8.03590 13.9186i 0.397350 0.688230i −0.596048 0.802949i \(-0.703263\pi\)
0.993398 + 0.114719i \(0.0365967\pi\)
\(410\) −18.3923 9.19615i −0.908331 0.454166i
\(411\) 18.4641 0.910767
\(412\) −8.02628 4.63397i −0.395426 0.228300i
\(413\) 29.3205 16.9282i 1.44277 0.832982i
\(414\) 3.09808 + 5.36603i 0.152262 + 0.263726i
\(415\) 0.705771 + 11.7583i 0.0346450 + 0.577194i
\(416\) 3.00000 + 2.00000i 0.147087 + 0.0980581i
\(417\) 1.07180i 0.0524861i
\(418\) −0.803848 + 0.464102i −0.0393175 + 0.0227000i
\(419\) −3.26795 5.66025i −0.159650 0.276522i 0.775093 0.631848i \(-0.217703\pi\)
−0.934742 + 0.355326i \(0.884370\pi\)
\(420\) −2.73205 + 5.46410i −0.133310 + 0.266621i
\(421\) 17.0526 0.831091 0.415545 0.909572i \(-0.363591\pi\)
0.415545 + 0.909572i \(0.363591\pi\)
\(422\) 18.5885 + 10.7321i 0.904872 + 0.522428i
\(423\) 6.63397 + 3.83013i 0.322555 + 0.186227i
\(424\) −7.73205 −0.375502
\(425\) −20.5263 8.76795i −0.995671 0.425308i
\(426\) −0.633975 1.09808i −0.0307162 0.0532020i
\(427\) −23.9545 + 13.8301i −1.15924 + 0.669287i
\(428\) 1.26795i 0.0612886i
\(429\) −2.19615 1.46410i −0.106031 0.0706875i
\(430\) 7.29423 0.437822i 0.351759 0.0211137i
\(431\) 3.90192 + 6.75833i 0.187949 + 0.325537i 0.944566 0.328321i \(-0.106483\pi\)
−0.756617 + 0.653858i \(0.773149\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) −12.8205 7.40192i −0.616114 0.355714i 0.159240 0.987240i \(-0.449096\pi\)
−0.775355 + 0.631526i \(0.782429\pi\)
\(434\) −10.9282 −0.524571
\(435\) −12.9282 6.46410i −0.619860 0.309930i
\(436\) −5.00000 + 8.66025i −0.239457 + 0.414751i
\(437\) 7.85641i 0.375823i
\(438\) −4.03590 2.33013i −0.192843 0.111338i
\(439\) 4.90192 + 8.49038i 0.233956 + 0.405224i 0.958969 0.283512i \(-0.0914995\pi\)
−0.725013 + 0.688735i \(0.758166\pi\)
\(440\) 1.36603 0.901924i 0.0651227 0.0429975i
\(441\) 0.464102 0.0221001
\(442\) 16.0622 + 1.03590i 0.764000 + 0.0492727i
\(443\) 34.6410i 1.64584i −0.568154 0.822922i \(-0.692342\pi\)
0.568154 0.822922i \(-0.307658\pi\)
\(444\) 3.96410 + 6.86603i 0.188128 + 0.325847i
\(445\) 6.07180 + 9.19615i 0.287831 + 0.435939i
\(446\) 0.196152 0.339746i 0.00928809 0.0160874i
\(447\) 19.9282i 0.942572i
\(448\) 2.36603 + 1.36603i 0.111784 + 0.0645386i
\(449\) −3.92820 + 6.80385i −0.185383 + 0.321093i −0.943706 0.330786i \(-0.892686\pi\)
0.758322 + 0.651880i \(0.226019\pi\)
\(450\) −0.598076 4.96410i −0.0281936 0.234010i
\(451\) 3.36603 5.83013i 0.158500 0.274530i
\(452\) 7.79423 4.50000i 0.366610 0.211662i
\(453\) 4.43782 2.56218i 0.208507 0.120382i
\(454\) 4.19615 0.196935
\(455\) −19.0263 11.0981i −0.891966 0.520286i
\(456\) 1.26795 0.0593772
\(457\) −7.62436 + 4.40192i −0.356652 + 0.205913i −0.667611 0.744510i \(-0.732683\pi\)
0.310959 + 0.950423i \(0.399350\pi\)
\(458\) −24.9282 + 14.3923i −1.16482 + 0.672508i
\(459\) 2.23205 3.86603i 0.104183 0.180451i
\(460\) −0.830127 13.8301i −0.0387049 0.644833i
\(461\) −13.0359 + 22.5788i −0.607142 + 1.05160i 0.384567 + 0.923097i \(0.374351\pi\)
−0.991709 + 0.128504i \(0.958982\pi\)
\(462\) −1.73205 1.00000i −0.0805823 0.0465242i
\(463\) 6.33975i 0.294633i 0.989089 + 0.147316i \(0.0470636\pi\)
−0.989089 + 0.147316i \(0.952936\pi\)
\(464\) −3.23205 + 5.59808i −0.150044 + 0.259884i
\(465\) 7.46410 4.92820i 0.346139 0.228540i
\(466\) −6.19615 10.7321i −0.287031 0.497153i
\(467\) 22.0526i 1.02047i −0.860035 0.510235i \(-0.829558\pi\)
0.860035 0.510235i \(-0.170442\pi\)
\(468\) 1.59808 + 3.23205i 0.0738711 + 0.149402i
\(469\) −20.9282 −0.966375
\(470\) −9.43782 14.2942i −0.435334 0.659344i
\(471\) −4.69615 8.13397i −0.216387 0.374794i
\(472\) 10.7321 + 6.19615i 0.493983 + 0.285201i
\(473\) 2.39230i 0.109998i
\(474\) 6.00000 10.3923i 0.275589 0.477334i
\(475\) 2.49038 5.83013i 0.114267 0.267505i
\(476\) 12.1962 0.559010
\(477\) −6.69615 3.86603i −0.306596 0.177013i
\(478\) 3.97372 2.29423i 0.181754 0.104936i
\(479\) −8.00000 13.8564i −0.365529 0.633115i 0.623332 0.781958i \(-0.285779\pi\)
−0.988861 + 0.148842i \(0.952445\pi\)
\(480\) −2.23205 + 0.133975i −0.101879 + 0.00611508i
\(481\) −25.6244 + 12.6699i −1.16837 + 0.577696i
\(482\) 9.39230i 0.427808i
\(483\) −14.6603 + 8.46410i −0.667065 + 0.385130i
\(484\) −5.23205 9.06218i −0.237820 0.411917i
\(485\) −20.0000 10.0000i −0.908153 0.454077i
\(486\) 1.00000 0.0453609
\(487\) −33.2942 19.2224i −1.50871 0.871052i −0.999949 0.0101413i \(-0.996772\pi\)
−0.508757 0.860910i \(-0.669895\pi\)
\(488\) −8.76795 5.06218i −0.396906 0.229154i
\(489\) 13.4641 0.608868
\(490\) −0.928203 0.464102i −0.0419319 0.0209660i
\(491\) −10.9019 18.8827i −0.491997 0.852164i 0.507961 0.861380i \(-0.330400\pi\)
−0.999958 + 0.00921662i \(0.997066\pi\)
\(492\) −7.96410 + 4.59808i −0.359049 + 0.207297i
\(493\) 28.8564i 1.29963i
\(494\) −0.294229 + 4.56218i −0.0132380 + 0.205262i
\(495\) 1.63397 0.0980762i 0.0734417 0.00440820i
\(496\) −2.00000 3.46410i −0.0898027 0.155543i
\(497\) 3.00000 1.73205i 0.134568 0.0776931i
\(498\) 4.56218 + 2.63397i 0.204436 + 0.118031i
\(499\) −40.3923 −1.80821 −0.904104 0.427313i \(-0.859460\pi\)
−0.904104 + 0.427313i \(0.859460\pi\)
\(500\) −3.76795 + 10.5263i −0.168508 + 0.470750i
\(501\) 6.92820 12.0000i 0.309529 0.536120i
\(502\) 21.4641i 0.957990i
\(503\) 18.8827 + 10.9019i 0.841937 + 0.486093i 0.857922 0.513779i \(-0.171755\pi\)
−0.0159849 + 0.999872i \(0.505088\pi\)
\(504\) 1.36603 + 2.36603i 0.0608476 + 0.105391i
\(505\) 17.1603 + 25.9904i 0.763621 + 1.15656i
\(506\) 4.53590 0.201645
\(507\) −12.0000 + 5.00000i −0.532939 + 0.222058i
\(508\) 4.00000i 0.177471i
\(509\) −15.3564 26.5981i −0.680661 1.17894i −0.974780 0.223170i \(-0.928359\pi\)
0.294119 0.955769i \(-0.404974\pi\)
\(510\) −8.33013 + 5.50000i −0.368864 + 0.243544i
\(511\) 6.36603 11.0263i 0.281616 0.487774i
\(512\) 1.00000i 0.0441942i
\(513\) 1.09808 + 0.633975i 0.0484812 + 0.0279907i
\(514\) −1.50000 + 2.59808i −0.0661622 + 0.114596i
\(515\) 1.24167 + 20.6865i 0.0547145 + 0.911558i
\(516\) 1.63397 2.83013i 0.0719317 0.124589i
\(517\) 4.85641 2.80385i 0.213585 0.123313i
\(518\) −18.7583 + 10.8301i −0.824194 + 0.475848i
\(519\) 18.7846 0.824553
\(520\) 0.0358984 8.06218i 0.00157425 0.353550i
\(521\) −19.4449 −0.851895 −0.425947 0.904748i \(-0.640059\pi\)
−0.425947 + 0.904748i \(0.640059\pi\)
\(522\) −5.59808 + 3.23205i −0.245021 + 0.141463i
\(523\) 31.5622 18.2224i 1.38012 0.796811i 0.387945 0.921683i \(-0.373185\pi\)
0.992173 + 0.124871i \(0.0398518\pi\)
\(524\) −6.92820 + 12.0000i −0.302660 + 0.524222i
\(525\) 13.5622 1.63397i 0.591902 0.0713125i
\(526\) 8.56218 14.8301i 0.373329 0.646624i
\(527\) −15.4641 8.92820i −0.673627 0.388919i
\(528\) 0.732051i 0.0318584i
\(529\) 7.69615 13.3301i 0.334615 0.579571i
\(530\) 9.52628 + 14.4282i 0.413795 + 0.626721i
\(531\) 6.19615 + 10.7321i 0.268890 + 0.465731i
\(532\) 3.46410i 0.150188i
\(533\) −14.6962 29.7224i −0.636561 1.28742i
\(534\) 4.92820 0.213264
\(535\) −2.36603 + 1.56218i −0.102292 + 0.0675388i
\(536\) −3.83013 6.63397i −0.165436 0.286544i
\(537\) −15.7583 9.09808i −0.680022 0.392611i
\(538\) 4.39230i 0.189366i
\(539\) 0.169873 0.294229i 0.00731695 0.0126733i
\(540\) −2.00000 1.00000i −0.0860663 0.0430331i
\(541\) −1.19615 −0.0514266 −0.0257133 0.999669i \(-0.508186\pi\)
−0.0257133 + 0.999669i \(0.508186\pi\)
\(542\) −5.07180 2.92820i −0.217852 0.125777i
\(543\) 13.9641 8.06218i 0.599257 0.345981i
\(544\) 2.23205 + 3.86603i 0.0956984 + 0.165754i
\(545\) 22.3205 1.33975i 0.956106 0.0573884i
\(546\) −8.83013 + 4.36603i −0.377895 + 0.186849i
\(547\) 25.8038i 1.10329i 0.834078 + 0.551646i \(0.186000\pi\)
−0.834078 + 0.551646i \(0.814000\pi\)
\(548\) −15.9904 + 9.23205i −0.683075 + 0.394374i
\(549\) −5.06218 8.76795i −0.216048 0.374207i
\(550\) −3.36603 1.43782i −0.143528 0.0613089i
\(551\) −8.19615 −0.349168
\(552\) −5.36603 3.09808i −0.228393 0.131863i
\(553\) 28.3923 + 16.3923i 1.20736 + 0.697072i
\(554\) −12.3205 −0.523448
\(555\) 7.92820 15.8564i 0.336533 0.673067i
\(556\) 0.535898 + 0.928203i 0.0227272 + 0.0393646i
\(557\) −12.6962 + 7.33013i −0.537953 + 0.310587i −0.744249 0.667902i \(-0.767192\pi\)
0.206296 + 0.978490i \(0.433859\pi\)
\(558\) 4.00000i 0.169334i
\(559\) 9.80385 + 6.53590i 0.414659 + 0.276439i
\(560\) −0.366025 6.09808i −0.0154674 0.257691i
\(561\) −1.63397 2.83013i −0.0689865 0.119488i
\(562\) 1.50000 0.866025i 0.0632737 0.0365311i
\(563\) 6.92820 + 4.00000i 0.291989 + 0.168580i 0.638838 0.769341i \(-0.279415\pi\)
−0.346850 + 0.937921i \(0.612749\pi\)
\(564\) −7.66025 −0.322555
\(565\) −18.0000 9.00000i −0.757266 0.378633i
\(566\) −3.83013 + 6.63397i −0.160992 + 0.278847i
\(567\) 2.73205i 0.114735i
\(568\) 1.09808 + 0.633975i 0.0460743 + 0.0266010i
\(569\) 9.07180 + 15.7128i 0.380310 + 0.658715i 0.991106 0.133072i \(-0.0424841\pi\)
−0.610797 + 0.791787i \(0.709151\pi\)
\(570\) −1.56218 2.36603i −0.0654324 0.0991019i
\(571\) −25.6603 −1.07385 −0.536924 0.843631i \(-0.680414\pi\)
−0.536924 + 0.843631i \(0.680414\pi\)
\(572\) 2.63397 + 0.169873i 0.110132 + 0.00710275i
\(573\) 9.46410i 0.395369i
\(574\) −12.5622 21.7583i −0.524335 0.908175i
\(575\) −24.7846 + 18.5885i −1.03359 + 0.775192i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 23.9808i 0.998332i 0.866506 + 0.499166i \(0.166360\pi\)
−0.866506 + 0.499166i \(0.833640\pi\)
\(578\) 2.53590 + 1.46410i 0.105479 + 0.0608986i
\(579\) −5.33013 + 9.23205i −0.221513 + 0.383671i
\(580\) 14.4282 0.866025i 0.599099 0.0359597i
\(581\) −7.19615 + 12.4641i −0.298547 + 0.517098i
\(582\) −8.66025 + 5.00000i −0.358979 + 0.207257i
\(583\) −4.90192 + 2.83013i −0.203017 + 0.117212i
\(584\) 4.66025 0.192843
\(585\) 4.06218 6.96410i 0.167950 0.287930i
\(586\) 13.7321 0.567266
\(587\) 8.78461 5.07180i 0.362580 0.209335i −0.307632 0.951505i \(-0.599537\pi\)
0.670212 + 0.742170i \(0.266203\pi\)
\(588\) −0.401924 + 0.232051i −0.0165751 + 0.00956961i
\(589\) 2.53590 4.39230i 0.104490 0.180982i
\(590\) −1.66025 27.6603i −0.0683516 1.13875i
\(591\) −4.92820 + 8.53590i −0.202719 + 0.351120i
\(592\) −6.86603 3.96410i −0.282192 0.162924i
\(593\) 19.3923i 0.796347i −0.917310 0.398173i \(-0.869644\pi\)
0.917310 0.398173i \(-0.130356\pi\)
\(594\) 0.366025 0.633975i 0.0150182 0.0260123i
\(595\) −15.0263 22.7583i −0.616017 0.933001i
\(596\) −9.96410 17.2583i −0.408146 0.706929i
\(597\) 28.0526i 1.14811i
\(598\) 12.3923 18.5885i 0.506759 0.760139i
\(599\) −8.78461 −0.358929 −0.179465 0.983764i \(-0.557437\pi\)
−0.179465 + 0.983764i \(0.557437\pi\)
\(600\) 3.00000 + 4.00000i 0.122474 + 0.163299i
\(601\) −8.50000 14.7224i −0.346722 0.600541i 0.638943 0.769254i \(-0.279372\pi\)
−0.985665 + 0.168714i \(0.946039\pi\)
\(602\) 7.73205 + 4.46410i 0.315135 + 0.181943i
\(603\) 7.66025i 0.311950i
\(604\) −2.56218 + 4.43782i −0.104254 + 0.180572i
\(605\) −10.4641 + 20.9282i −0.425426 + 0.850852i
\(606\) 13.9282 0.565795
\(607\) −41.9090 24.1962i −1.70103 0.982092i −0.944718 0.327883i \(-0.893665\pi\)
−0.756314 0.654209i \(-0.773002\pi\)
\(608\) −1.09808 + 0.633975i −0.0445329 + 0.0257111i
\(609\) −8.83013 15.2942i −0.357815 0.619753i
\(610\) 1.35641 + 22.5981i 0.0549193 + 0.914969i
\(611\) 1.77757 27.5622i 0.0719127 1.11505i
\(612\) 4.46410i 0.180451i
\(613\) −18.8660 + 10.8923i −0.761992 + 0.439936i −0.830010 0.557748i \(-0.811666\pi\)
0.0680188 + 0.997684i \(0.478332\pi\)
\(614\) −9.63397 16.6865i −0.388796 0.673414i
\(615\) 18.3923 + 9.19615i 0.741649 + 0.370825i
\(616\) 2.00000 0.0805823
\(617\) 28.3301 + 16.3564i 1.14053 + 0.658484i 0.946561 0.322524i \(-0.104531\pi\)
0.193967 + 0.981008i \(0.437865\pi\)
\(618\) 8.02628 + 4.63397i 0.322864 + 0.186406i
\(619\) 36.1051 1.45119 0.725594 0.688123i \(-0.241565\pi\)
0.725594 + 0.688123i \(0.241565\pi\)
\(620\) −4.00000 + 8.00000i −0.160644 + 0.321288i
\(621\) −3.09808 5.36603i −0.124322 0.215331i
\(622\) 2.70577 1.56218i 0.108492 0.0626376i
\(623\) 13.4641i 0.539428i
\(624\) −3.00000 2.00000i −0.120096 0.0800641i
\(625\) 24.2846 5.93782i 0.971384 0.237513i
\(626\) 7.00000 + 12.1244i 0.279776 + 0.484587i
\(627\) 0.803848 0.464102i 0.0321026 0.0185344i
\(628\) 8.13397 + 4.69615i 0.324581 + 0.187397i
\(629\) −35.3923 −1.41118
\(630\) 2.73205 5.46410i 0.108848 0.217695i
\(631\) −4.92820 + 8.53590i −0.196189 + 0.339809i −0.947290 0.320379i \(-0.896190\pi\)
0.751101 + 0.660187i \(0.229523\pi\)
\(632\) 12.0000i 0.477334i
\(633\) −18.5885 10.7321i −0.738825 0.426561i
\(634\) 14.8660 + 25.7487i 0.590405 + 1.02261i
\(635\) −7.46410 + 4.92820i −0.296204 + 0.195570i
\(636\) 7.73205 0.306596
\(637\) −0.741670 1.50000i −0.0293860 0.0594322i
\(638\) 4.73205i 0.187344i
\(639\) 0.633975 + 1.09808i 0.0250796 + 0.0434392i
\(640\) 1.86603 1.23205i 0.0737611 0.0487011i
\(641\) −4.52628 + 7.83975i −0.178777 + 0.309651i −0.941462 0.337119i \(-0.890547\pi\)
0.762685 + 0.646770i \(0.223881\pi\)
\(642\) 1.26795i 0.0500420i
\(643\) −7.60770 4.39230i −0.300018 0.173216i 0.342433 0.939542i \(-0.388749\pi\)
−0.642451 + 0.766327i \(0.722082\pi\)
\(644\) 8.46410 14.6603i 0.333532 0.577695i
\(645\) −7.29423 + 0.437822i −0.287210 + 0.0172392i
\(646\) −2.83013 + 4.90192i −0.111350 + 0.192864i
\(647\) −20.1962 + 11.6603i −0.793993 + 0.458412i −0.841366 0.540465i \(-0.818248\pi\)
0.0473736 + 0.998877i \(0.484915\pi\)
\(648\) −0.866025 + 0.500000i −0.0340207 + 0.0196419i
\(649\) 9.07180 0.356099
\(650\) −15.0885 + 9.86603i −0.591818 + 0.386977i
\(651\) 10.9282 0.428310
\(652\) −11.6603 + 6.73205i −0.456651 + 0.263647i
\(653\) −28.2679 + 16.3205i −1.10621 + 0.638671i −0.937845 0.347054i \(-0.887182\pi\)
−0.168365 + 0.985725i \(0.553849\pi\)
\(654\) 5.00000 8.66025i 0.195515 0.338643i
\(655\) 30.9282 1.85641i 1.20846 0.0725358i
\(656\) 4.59808 7.96410i 0.179525 0.310946i
\(657\) 4.03590 + 2.33013i 0.157455 + 0.0909069i
\(658\) 20.9282i 0.815866i
\(659\) −20.7321 + 35.9090i −0.807606 + 1.39881i 0.106912 + 0.994269i \(0.465904\pi\)
−0.914518 + 0.404546i \(0.867430\pi\)
\(660\) −1.36603 + 0.901924i −0.0531725 + 0.0351073i
\(661\) 19.2583 + 33.3564i 0.749062 + 1.29741i 0.948273 + 0.317457i \(0.102829\pi\)
−0.199210 + 0.979957i \(0.563838\pi\)
\(662\) 28.7846i 1.11875i
\(663\) −16.0622 1.03590i −0.623803 0.0402310i
\(664\) −5.26795 −0.204436
\(665\) 6.46410 4.26795i 0.250667 0.165504i
\(666\) −3.96410 6.86603i −0.153606 0.266053i
\(667\) 34.6865 + 20.0263i 1.34307 + 0.775421i
\(668\) 13.8564i 0.536120i
\(669\) −0.196152 + 0.339746i −0.00758369 + 0.0131353i
\(670\) −7.66025 + 15.3205i −0.295941 + 0.591883i
\(671\) −7.41154 −0.286119
\(672\) −2.36603 1.36603i −0.0912714 0.0526956i
\(673\) −8.89230 + 5.13397i −0.342773 + 0.197900i −0.661498 0.749947i \(-0.730079\pi\)
0.318725 + 0.947847i \(0.396746\pi\)
\(674\) 5.52628 + 9.57180i 0.212864 + 0.368692i
\(675\) 0.598076 + 4.96410i 0.0230200 + 0.191068i
\(676\) 7.89230 10.3301i 0.303550 0.397313i
\(677\) 48.6410i 1.86943i −0.355403 0.934713i \(-0.615656\pi\)
0.355403 0.934713i \(-0.384344\pi\)
\(678\) −7.79423 + 4.50000i −0.299336 + 0.172821i
\(679\) −13.6603 23.6603i −0.524232 0.907997i
\(680\) 4.46410 8.92820i 0.171190 0.342381i
\(681\) −4.19615 −0.160797
\(682\) −2.53590 1.46410i −0.0971046 0.0560633i
\(683\) −23.3205 13.4641i −0.892334 0.515190i −0.0176291 0.999845i \(-0.505612\pi\)
−0.874705 + 0.484655i \(0.838945\pi\)
\(684\) −1.26795 −0.0484812
\(685\) 36.9282 + 18.4641i 1.41095 + 0.705477i
\(686\) 8.92820 + 15.4641i 0.340880 + 0.590422i
\(687\) 24.9282 14.3923i 0.951070 0.549101i
\(688\) 3.26795i 0.124589i
\(689\) −1.79423 + 27.8205i −0.0683547 + 1.05988i
\(690\) 0.830127 + 13.8301i 0.0316024 + 0.526504i
\(691\) −20.2942 35.1506i −0.772029 1.33719i −0.936449 0.350803i \(-0.885909\pi\)
0.164420 0.986390i \(-0.447425\pi\)
\(692\) −16.2679 + 9.39230i −0.618415 + 0.357042i
\(693\) 1.73205 + 1.00000i 0.0657952 + 0.0379869i
\(694\) 5.66025 0.214860
\(695\) 1.07180 2.14359i 0.0406556 0.0813111i
\(696\) 3.23205 5.59808i 0.122511 0.212195i
\(697\) 41.0526i 1.55498i
\(698\) −16.5167 9.53590i −0.625165 0.360939i
\(699\) 6.19615 + 10.7321i 0.234360 + 0.405923i
\(700\) −10.9282 + 8.19615i −0.413047 + 0.309785i
\(701\) −13.4641 −0.508532 −0.254266 0.967134i \(-0.581834\pi\)
−0.254266 + 0.967134i \(0.581834\pi\)
\(702\) −1.59808 3.23205i −0.0603155 0.121986i
\(703\) 10.0526i 0.379139i
\(704\) 0.366025 + 0.633975i 0.0137951 + 0.0238938i
\(705\) 9.43782 + 14.2942i 0.355449 + 0.538352i
\(706\) 12.6244 21.8660i 0.475124 0.822939i
\(707\) 38.0526i 1.43111i
\(708\) −10.7321 6.19615i −0.403335 0.232866i
\(709\) 18.5263 32.0885i 0.695769 1.20511i −0.274152 0.961686i \(-0.588397\pi\)
0.969921 0.243421i \(-0.0782696\pi\)
\(710\) −0.169873 2.83013i −0.00637522 0.106213i
\(711\) −6.00000 + 10.3923i −0.225018 + 0.389742i
\(712\) −4.26795 + 2.46410i −0.159948 + 0.0923461i
\(713\) −21.4641 + 12.3923i −0.803837 + 0.464095i
\(714\) −12.1962 −0.456430
\(715\) −2.92820 5.12436i −0.109509 0.191640i
\(716\) 18.1962 0.680022
\(717\) −3.97372 + 2.29423i −0.148401 + 0.0856795i
\(718\) −7.68653 + 4.43782i −0.286859 + 0.165618i
\(719\) −16.1962 + 28.0526i −0.604015 + 1.04618i 0.388192 + 0.921579i \(0.373100\pi\)
−0.992206 + 0.124605i \(0.960234\pi\)
\(720\) 2.23205 0.133975i 0.0831836 0.00499294i
\(721\) −12.6603 + 21.9282i −0.471492 + 0.816649i
\(722\) 15.0622 + 8.69615i 0.560556 + 0.323637i
\(723\) 9.39230i 0.349304i
\(724\) −8.06218 + 13.9641i −0.299628 + 0.518972i
\(725\) −19.3923 25.8564i −0.720212 0.960283i
\(726\) 5.23205 + 9.06218i 0.194180 + 0.336329i
\(727\) 13.2679i 0.492081i −0.969260 0.246040i \(-0.920870\pi\)
0.969260 0.246040i \(-0.0791296\pi\)
\(728\) 5.46410 8.19615i 0.202513 0.303770i
\(729\) −1.00000 −0.0370370
\(730\) −5.74167 8.69615i −0.212509 0.321859i
\(731\) 7.29423 + 12.6340i 0.269787 + 0.467284i
\(732\) 8.76795 + 5.06218i 0.324073 + 0.187103i
\(733\) 45.3923i 1.67660i −0.545207 0.838302i \(-0.683549\pi\)
0.545207 0.838302i \(-0.316451\pi\)
\(734\) 16.4904 28.5622i 0.608671 1.05425i
\(735\) 0.928203 + 0.464102i 0.0342373 + 0.0171186i
\(736\) 6.19615 0.228393
\(737\) −4.85641 2.80385i −0.178888 0.103281i
\(738\) 7.96410 4.59808i 0.293163 0.169258i
\(739\) 1.07180 + 1.85641i 0.0394267 + 0.0682890i 0.885065 0.465467i \(-0.154114\pi\)
−0.845639 + 0.533756i \(0.820780\pi\)
\(740\) 1.06218 + 17.6962i 0.0390464 + 0.650524i
\(741\) 0.294229 4.56218i 0.0108088 0.167596i
\(742\) 21.1244i 0.775499i
\(743\) 18.5885 10.7321i 0.681944 0.393721i −0.118643 0.992937i \(-0.537854\pi\)
0.800587 + 0.599216i \(0.204521\pi\)
\(744\) 2.00000 + 3.46410i 0.0733236 + 0.127000i
\(745\) −19.9282 + 39.8564i −0.730113 + 1.46023i
\(746\) 23.5359 0.861710
\(747\) −4.56218 2.63397i −0.166921 0.0963721i
\(748\) 2.83013 + 1.63397i 0.103480 + 0.0597440i
\(749\) −3.46410 −0.126576
\(750\) 3.76795 10.5263i 0.137586 0.384365i
\(751\) −18.0263 31.2224i −0.657788 1.13932i −0.981187 0.193060i \(-0.938159\pi\)
0.323399 0.946263i \(-0.395175\pi\)
\(752\) 6.63397 3.83013i 0.241916 0.139670i
\(753\) 21.4641i 0.782195i
\(754\) 19.3923 + 12.9282i 0.706226 + 0.470817i
\(755\) 11.4378 0.686533i 0.416265 0.0249855i
\(756\) −1.36603 2.36603i −0.0496819 0.0860515i
\(757\) −34.7321 + 20.0526i −1.26236 + 0.728823i −0.973530 0.228558i \(-0.926599\pi\)
−0.288828 + 0.957381i \(0.593265\pi\)
\(758\) 22.7321 + 13.1244i 0.825665 + 0.476698i
\(759\) −4.53590 −0.164643
\(760\) 2.53590 + 1.26795i 0.0919867 + 0.0459934i
\(761\) −11.5359 + 19.9808i −0.418176 + 0.724302i −0.995756 0.0920320i \(-0.970664\pi\)
0.577580 + 0.816334i \(0.303997\pi\)
\(762\) 4.00000i 0.144905i
\(763\) 23.6603 + 13.6603i 0.856559 + 0.494534i
\(764\) −4.73205 8.19615i −0.171200 0.296526i
\(765\) 8.33013 5.50000i 0.301176 0.198853i
\(766\) 26.9282 0.972956
\(767\) 24.7846 37.1769i 0.894920 1.34238i
\(768\) 1.00000i 0.0360844i
\(769\) 22.7321 + 39.3731i 0.819739 + 1.41983i 0.905875 + 0.423546i \(0.139215\pi\)
−0.0861360 + 0.996283i \(0.527452\pi\)
\(770\) −2.46410 3.73205i −0.0888001 0.134494i
\(771\) 1.50000 2.59808i 0.0540212 0.0935674i
\(772\) 10.6603i 0.383671i
\(773\) 35.1962 + 20.3205i 1.26592 + 0.730878i 0.974213 0.225631i \(-0.0724442\pi\)
0.291705