Properties

Label 390.2.y.b.139.2
Level $390$
Weight $2$
Character 390.139
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.y (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 139.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 390.139
Dual form 390.2.y.b.289.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-2.23205 - 0.133975i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(-2.36603 + 1.36603i) q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-2.23205 - 0.133975i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(-2.36603 + 1.36603i) q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(-1.86603 - 1.23205i) q^{10} +(-0.366025 + 0.633975i) q^{11} -1.00000i q^{12} +(-3.59808 + 0.232051i) q^{13} -2.73205 q^{14} +(1.86603 + 1.23205i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-3.86603 + 2.23205i) q^{17} +1.00000i q^{18} +(0.633975 + 1.09808i) q^{19} +(-1.00000 - 2.00000i) q^{20} +2.73205 q^{21} +(-0.633975 + 0.366025i) q^{22} +(-5.36603 - 3.09808i) q^{23} +(0.500000 - 0.866025i) q^{24} +(4.96410 + 0.598076i) q^{25} +(-3.23205 - 1.59808i) q^{26} -1.00000i q^{27} +(-2.36603 - 1.36603i) q^{28} +(-3.23205 + 5.59808i) q^{29} +(1.00000 + 2.00000i) q^{30} +4.00000 q^{31} +(-0.866025 + 0.500000i) q^{32} +(0.633975 - 0.366025i) q^{33} -4.46410 q^{34} +(5.46410 - 2.73205i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(6.86603 + 3.96410i) q^{37} +1.26795i q^{38} +(3.23205 + 1.59808i) q^{39} +(0.133975 - 2.23205i) q^{40} +(4.59808 - 7.96410i) q^{41} +(2.36603 + 1.36603i) q^{42} +(-2.83013 + 1.63397i) q^{43} -0.732051 q^{44} +(-1.00000 - 2.00000i) q^{45} +(-3.09808 - 5.36603i) q^{46} -7.66025i q^{47} +(0.866025 - 0.500000i) q^{48} +(0.232051 - 0.401924i) q^{49} +(4.00000 + 3.00000i) q^{50} +4.46410 q^{51} +(-2.00000 - 3.00000i) q^{52} +7.73205i q^{53} +(0.500000 - 0.866025i) q^{54} +(0.901924 - 1.36603i) q^{55} +(-1.36603 - 2.36603i) q^{56} -1.26795i q^{57} +(-5.59808 + 3.23205i) q^{58} +(-6.19615 - 10.7321i) q^{59} +(-0.133975 + 2.23205i) q^{60} +(5.06218 + 8.76795i) q^{61} +(3.46410 + 2.00000i) q^{62} +(-2.36603 - 1.36603i) q^{63} -1.00000 q^{64} +(8.06218 - 0.0358984i) q^{65} +0.732051 q^{66} +(6.63397 + 3.83013i) q^{67} +(-3.86603 - 2.23205i) q^{68} +(3.09808 + 5.36603i) q^{69} +(6.09808 + 0.366025i) q^{70} +(-0.633975 - 1.09808i) q^{71} +(-0.866025 + 0.500000i) q^{72} -4.66025i q^{73} +(3.96410 + 6.86603i) q^{74} +(-4.00000 - 3.00000i) q^{75} +(-0.633975 + 1.09808i) q^{76} -2.00000i q^{77} +(2.00000 + 3.00000i) q^{78} -12.0000 q^{79} +(1.23205 - 1.86603i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(7.96410 - 4.59808i) q^{82} +5.26795i q^{83} +(1.36603 + 2.36603i) q^{84} +(8.92820 - 4.46410i) q^{85} -3.26795 q^{86} +(5.59808 - 3.23205i) q^{87} +(-0.633975 - 0.366025i) q^{88} +(-2.46410 + 4.26795i) q^{89} +(0.133975 - 2.23205i) q^{90} +(8.19615 - 5.46410i) q^{91} -6.19615i q^{92} +(-3.46410 - 2.00000i) q^{93} +(3.83013 - 6.63397i) q^{94} +(-1.26795 - 2.53590i) q^{95} +1.00000 q^{96} +(8.66025 - 5.00000i) q^{97} +(0.401924 - 0.232051i) q^{98} -0.732051 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} - 2q^{5} - 2q^{6} - 6q^{7} + 2q^{9} + O(q^{10}) \) \( 4q + 2q^{4} - 2q^{5} - 2q^{6} - 6q^{7} + 2q^{9} - 4q^{10} + 2q^{11} - 4q^{13} - 4q^{14} + 4q^{15} - 2q^{16} - 12q^{17} + 6q^{19} - 4q^{20} + 4q^{21} - 6q^{22} - 18q^{23} + 2q^{24} + 6q^{25} - 6q^{26} - 6q^{28} - 6q^{29} + 4q^{30} + 16q^{31} + 6q^{33} - 4q^{34} + 8q^{35} - 2q^{36} + 24q^{37} + 6q^{39} + 4q^{40} + 8q^{41} + 6q^{42} + 6q^{43} + 4q^{44} - 4q^{45} - 2q^{46} - 6q^{49} + 16q^{50} + 4q^{51} - 8q^{52} + 2q^{54} + 14q^{55} - 2q^{56} - 12q^{58} - 4q^{59} - 4q^{60} - 4q^{61} - 6q^{63} - 4q^{64} + 8q^{65} - 4q^{66} + 30q^{67} - 12q^{68} + 2q^{69} + 14q^{70} - 6q^{71} + 2q^{74} - 16q^{75} - 6q^{76} + 8q^{78} - 48q^{79} - 2q^{80} - 2q^{81} + 18q^{82} + 2q^{84} + 8q^{85} - 20q^{86} + 12q^{87} - 6q^{88} + 4q^{89} + 4q^{90} + 12q^{91} - 2q^{94} - 12q^{95} + 4q^{96} + 12q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.23205 0.133975i −0.998203 0.0599153i
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) −2.36603 + 1.36603i −0.894274 + 0.516309i −0.875338 0.483512i \(-0.839361\pi\)
−0.0189356 + 0.999821i \(0.506028\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −1.86603 1.23205i −0.590089 0.389609i
\(11\) −0.366025 + 0.633975i −0.110361 + 0.191151i −0.915916 0.401371i \(-0.868534\pi\)
0.805555 + 0.592521i \(0.201867\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −3.59808 + 0.232051i −0.997927 + 0.0643593i
\(14\) −2.73205 −0.730171
\(15\) 1.86603 + 1.23205i 0.481806 + 0.318114i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.86603 + 2.23205i −0.937649 + 0.541352i −0.889223 0.457475i \(-0.848754\pi\)
−0.0484264 + 0.998827i \(0.515421\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 0.633975 + 1.09808i 0.145444 + 0.251916i 0.929538 0.368725i \(-0.120206\pi\)
−0.784095 + 0.620641i \(0.786872\pi\)
\(20\) −1.00000 2.00000i −0.223607 0.447214i
\(21\) 2.73205 0.596182
\(22\) −0.633975 + 0.366025i −0.135164 + 0.0780369i
\(23\) −5.36603 3.09808i −1.11889 0.645994i −0.177775 0.984071i \(-0.556890\pi\)
−0.941118 + 0.338078i \(0.890223\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 4.96410 + 0.598076i 0.992820 + 0.119615i
\(26\) −3.23205 1.59808i −0.633857 0.313409i
\(27\) 1.00000i 0.192450i
\(28\) −2.36603 1.36603i −0.447137 0.258155i
\(29\) −3.23205 + 5.59808i −0.600177 + 1.03954i 0.392617 + 0.919702i \(0.371570\pi\)
−0.992794 + 0.119835i \(0.961764\pi\)
\(30\) 1.00000 + 2.00000i 0.182574 + 0.365148i
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0.633975 0.366025i 0.110361 0.0637168i
\(34\) −4.46410 −0.765587
\(35\) 5.46410 2.73205i 0.923602 0.461801i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 6.86603 + 3.96410i 1.12877 + 0.651694i 0.943625 0.331017i \(-0.107392\pi\)
0.185143 + 0.982712i \(0.440725\pi\)
\(38\) 1.26795i 0.205689i
\(39\) 3.23205 + 1.59808i 0.517542 + 0.255897i
\(40\) 0.133975 2.23205i 0.0211832 0.352918i
\(41\) 4.59808 7.96410i 0.718099 1.24378i −0.243653 0.969862i \(-0.578346\pi\)
0.961752 0.273921i \(-0.0883208\pi\)
\(42\) 2.36603 + 1.36603i 0.365086 + 0.210782i
\(43\) −2.83013 + 1.63397i −0.431590 + 0.249179i −0.700024 0.714119i \(-0.746827\pi\)
0.268434 + 0.963298i \(0.413494\pi\)
\(44\) −0.732051 −0.110361
\(45\) −1.00000 2.00000i −0.149071 0.298142i
\(46\) −3.09808 5.36603i −0.456786 0.791177i
\(47\) 7.66025i 1.11736i −0.829382 0.558681i \(-0.811307\pi\)
0.829382 0.558681i \(-0.188693\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) 0.232051 0.401924i 0.0331501 0.0574177i
\(50\) 4.00000 + 3.00000i 0.565685 + 0.424264i
\(51\) 4.46410 0.625099
\(52\) −2.00000 3.00000i −0.277350 0.416025i
\(53\) 7.73205i 1.06208i 0.847347 + 0.531039i \(0.178198\pi\)
−0.847347 + 0.531039i \(0.821802\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) 0.901924 1.36603i 0.121615 0.184195i
\(56\) −1.36603 2.36603i −0.182543 0.316173i
\(57\) 1.26795i 0.167944i
\(58\) −5.59808 + 3.23205i −0.735063 + 0.424389i
\(59\) −6.19615 10.7321i −0.806670 1.39719i −0.915158 0.403096i \(-0.867934\pi\)
0.108487 0.994098i \(-0.465399\pi\)
\(60\) −0.133975 + 2.23205i −0.0172960 + 0.288157i
\(61\) 5.06218 + 8.76795i 0.648145 + 1.12262i 0.983565 + 0.180552i \(0.0577885\pi\)
−0.335420 + 0.942069i \(0.608878\pi\)
\(62\) 3.46410 + 2.00000i 0.439941 + 0.254000i
\(63\) −2.36603 1.36603i −0.298091 0.172103i
\(64\) −1.00000 −0.125000
\(65\) 8.06218 0.0358984i 0.999990 0.00445265i
\(66\) 0.732051 0.0901092
\(67\) 6.63397 + 3.83013i 0.810469 + 0.467924i 0.847119 0.531404i \(-0.178335\pi\)
−0.0366497 + 0.999328i \(0.511669\pi\)
\(68\) −3.86603 2.23205i −0.468824 0.270676i
\(69\) 3.09808 + 5.36603i 0.372965 + 0.645994i
\(70\) 6.09808 + 0.366025i 0.728860 + 0.0437484i
\(71\) −0.633975 1.09808i −0.0752389 0.130318i 0.825951 0.563742i \(-0.190639\pi\)
−0.901190 + 0.433424i \(0.857305\pi\)
\(72\) −0.866025 + 0.500000i −0.102062 + 0.0589256i
\(73\) 4.66025i 0.545441i −0.962093 0.272721i \(-0.912076\pi\)
0.962093 0.272721i \(-0.0879235\pi\)
\(74\) 3.96410 + 6.86603i 0.460817 + 0.798159i
\(75\) −4.00000 3.00000i −0.461880 0.346410i
\(76\) −0.633975 + 1.09808i −0.0727219 + 0.125958i
\(77\) 2.00000i 0.227921i
\(78\) 2.00000 + 3.00000i 0.226455 + 0.339683i
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 1.23205 1.86603i 0.137747 0.208628i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 7.96410 4.59808i 0.879488 0.507773i
\(83\) 5.26795i 0.578233i 0.957294 + 0.289116i \(0.0933614\pi\)
−0.957294 + 0.289116i \(0.906639\pi\)
\(84\) 1.36603 + 2.36603i 0.149046 + 0.258155i
\(85\) 8.92820 4.46410i 0.968400 0.484200i
\(86\) −3.26795 −0.352392
\(87\) 5.59808 3.23205i 0.600177 0.346512i
\(88\) −0.633975 0.366025i −0.0675819 0.0390184i
\(89\) −2.46410 + 4.26795i −0.261194 + 0.452402i −0.966560 0.256442i \(-0.917450\pi\)
0.705365 + 0.708844i \(0.250783\pi\)
\(90\) 0.133975 2.23205i 0.0141222 0.235279i
\(91\) 8.19615 5.46410i 0.859190 0.572793i
\(92\) 6.19615i 0.645994i
\(93\) −3.46410 2.00000i −0.359211 0.207390i
\(94\) 3.83013 6.63397i 0.395047 0.684242i
\(95\) −1.26795 2.53590i −0.130089 0.260178i
\(96\) 1.00000 0.102062
\(97\) 8.66025 5.00000i 0.879316 0.507673i 0.00888289 0.999961i \(-0.497172\pi\)
0.870433 + 0.492287i \(0.163839\pi\)
\(98\) 0.401924 0.232051i 0.0406004 0.0234407i
\(99\) −0.732051 −0.0735739
\(100\) 1.96410 + 4.59808i 0.196410 + 0.459808i
\(101\) −6.96410 + 12.0622i −0.692954 + 1.20023i 0.277912 + 0.960607i \(0.410358\pi\)
−0.970866 + 0.239625i \(0.922976\pi\)
\(102\) 3.86603 + 2.23205i 0.382794 + 0.221006i
\(103\) 9.26795i 0.913198i 0.889673 + 0.456599i \(0.150933\pi\)
−0.889673 + 0.456599i \(0.849067\pi\)
\(104\) −0.232051 3.59808i −0.0227545 0.352820i
\(105\) −6.09808 0.366025i −0.595111 0.0357204i
\(106\) −3.86603 + 6.69615i −0.375502 + 0.650388i
\(107\) 1.09808 + 0.633975i 0.106155 + 0.0612886i 0.552138 0.833753i \(-0.313812\pi\)
−0.445983 + 0.895042i \(0.647146\pi\)
\(108\) 0.866025 0.500000i 0.0833333 0.0481125i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 1.46410 0.732051i 0.139597 0.0697983i
\(111\) −3.96410 6.86603i −0.376256 0.651694i
\(112\) 2.73205i 0.258155i
\(113\) 7.79423 4.50000i 0.733219 0.423324i −0.0863794 0.996262i \(-0.527530\pi\)
0.819599 + 0.572938i \(0.194196\pi\)
\(114\) 0.633975 1.09808i 0.0593772 0.102844i
\(115\) 11.5622 + 7.63397i 1.07818 + 0.711872i
\(116\) −6.46410 −0.600177
\(117\) −2.00000 3.00000i −0.184900 0.277350i
\(118\) 12.3923i 1.14080i
\(119\) 6.09808 10.5622i 0.559010 0.968233i
\(120\) −1.23205 + 1.86603i −0.112470 + 0.170344i
\(121\) 5.23205 + 9.06218i 0.475641 + 0.823834i
\(122\) 10.1244i 0.916616i
\(123\) −7.96410 + 4.59808i −0.718099 + 0.414595i
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) −1.36603 2.36603i −0.121695 0.210782i
\(127\) 3.46410 + 2.00000i 0.307389 + 0.177471i 0.645758 0.763542i \(-0.276542\pi\)
−0.338368 + 0.941014i \(0.609875\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 3.26795 0.287727
\(130\) 7.00000 + 4.00000i 0.613941 + 0.350823i
\(131\) −13.8564 −1.21064 −0.605320 0.795982i \(-0.706955\pi\)
−0.605320 + 0.795982i \(0.706955\pi\)
\(132\) 0.633975 + 0.366025i 0.0551804 + 0.0318584i
\(133\) −3.00000 1.73205i −0.260133 0.150188i
\(134\) 3.83013 + 6.63397i 0.330873 + 0.573088i
\(135\) −0.133975 + 2.23205i −0.0115307 + 0.192104i
\(136\) −2.23205 3.86603i −0.191397 0.331509i
\(137\) −15.9904 + 9.23205i −1.36615 + 0.788747i −0.990434 0.137987i \(-0.955937\pi\)
−0.375716 + 0.926735i \(0.622603\pi\)
\(138\) 6.19615i 0.527452i
\(139\) −0.535898 0.928203i −0.0454543 0.0787292i 0.842403 0.538848i \(-0.181140\pi\)
−0.887857 + 0.460119i \(0.847807\pi\)
\(140\) 5.09808 + 3.36603i 0.430866 + 0.284481i
\(141\) −3.83013 + 6.63397i −0.322555 + 0.558681i
\(142\) 1.26795i 0.106404i
\(143\) 1.16987 2.36603i 0.0978297 0.197857i
\(144\) −1.00000 −0.0833333
\(145\) 7.96410 12.0622i 0.661383 1.00171i
\(146\) 2.33013 4.03590i 0.192843 0.334013i
\(147\) −0.401924 + 0.232051i −0.0331501 + 0.0191392i
\(148\) 7.92820i 0.651694i
\(149\) 9.96410 + 17.2583i 0.816291 + 1.41386i 0.908397 + 0.418108i \(0.137307\pi\)
−0.0921062 + 0.995749i \(0.529360\pi\)
\(150\) −1.96410 4.59808i −0.160368 0.375431i
\(151\) −5.12436 −0.417014 −0.208507 0.978021i \(-0.566860\pi\)
−0.208507 + 0.978021i \(0.566860\pi\)
\(152\) −1.09808 + 0.633975i −0.0890657 + 0.0514221i
\(153\) −3.86603 2.23205i −0.312550 0.180451i
\(154\) 1.00000 1.73205i 0.0805823 0.139573i
\(155\) −8.92820 0.535898i −0.717131 0.0430444i
\(156\) 0.232051 + 3.59808i 0.0185789 + 0.288077i
\(157\) 9.39230i 0.749588i −0.927108 0.374794i \(-0.877714\pi\)
0.927108 0.374794i \(-0.122286\pi\)
\(158\) −10.3923 6.00000i −0.826767 0.477334i
\(159\) 3.86603 6.69615i 0.306596 0.531039i
\(160\) 2.00000 1.00000i 0.158114 0.0790569i
\(161\) 16.9282 1.33413
\(162\) −0.866025 + 0.500000i −0.0680414 + 0.0392837i
\(163\) −11.6603 + 6.73205i −0.913302 + 0.527295i −0.881492 0.472199i \(-0.843460\pi\)
−0.0318096 + 0.999494i \(0.510127\pi\)
\(164\) 9.19615 0.718099
\(165\) −1.46410 + 0.732051i −0.113980 + 0.0569901i
\(166\) −2.63397 + 4.56218i −0.204436 + 0.354094i
\(167\) −12.0000 6.92820i −0.928588 0.536120i −0.0422232 0.999108i \(-0.513444\pi\)
−0.886365 + 0.462988i \(0.846777\pi\)
\(168\) 2.73205i 0.210782i
\(169\) 12.8923 1.66987i 0.991716 0.128452i
\(170\) 9.96410 + 0.598076i 0.764212 + 0.0458704i
\(171\) −0.633975 + 1.09808i −0.0484812 + 0.0839720i
\(172\) −2.83013 1.63397i −0.215795 0.124589i
\(173\) −16.2679 + 9.39230i −1.23683 + 0.714084i −0.968445 0.249228i \(-0.919823\pi\)
−0.268384 + 0.963312i \(0.586490\pi\)
\(174\) 6.46410 0.490042
\(175\) −12.5622 + 5.36603i −0.949611 + 0.405633i
\(176\) −0.366025 0.633975i −0.0275902 0.0477876i
\(177\) 12.3923i 0.931463i
\(178\) −4.26795 + 2.46410i −0.319896 + 0.184692i
\(179\) 9.09808 15.7583i 0.680022 1.17783i −0.294951 0.955512i \(-0.595303\pi\)
0.974974 0.222321i \(-0.0713632\pi\)
\(180\) 1.23205 1.86603i 0.0918316 0.139085i
\(181\) −16.1244 −1.19851 −0.599257 0.800557i \(-0.704537\pi\)
−0.599257 + 0.800557i \(0.704537\pi\)
\(182\) 9.83013 0.633975i 0.728657 0.0469933i
\(183\) 10.1244i 0.748414i
\(184\) 3.09808 5.36603i 0.228393 0.395589i
\(185\) −14.7942 9.76795i −1.08769 0.718154i
\(186\) −2.00000 3.46410i −0.146647 0.254000i
\(187\) 3.26795i 0.238976i
\(188\) 6.63397 3.83013i 0.483832 0.279341i
\(189\) 1.36603 + 2.36603i 0.0993637 + 0.172103i
\(190\) 0.169873 2.83013i 0.0123239 0.205319i
\(191\) 4.73205 + 8.19615i 0.342399 + 0.593053i 0.984878 0.173251i \(-0.0554272\pi\)
−0.642479 + 0.766304i \(0.722094\pi\)
\(192\) 0.866025 + 0.500000i 0.0625000 + 0.0360844i
\(193\) 9.23205 + 5.33013i 0.664538 + 0.383671i 0.794004 0.607913i \(-0.207993\pi\)
−0.129466 + 0.991584i \(0.541326\pi\)
\(194\) 10.0000 0.717958
\(195\) −7.00000 4.00000i −0.501280 0.286446i
\(196\) 0.464102 0.0331501
\(197\) 8.53590 + 4.92820i 0.608158 + 0.351120i 0.772244 0.635326i \(-0.219134\pi\)
−0.164086 + 0.986446i \(0.552468\pi\)
\(198\) −0.633975 0.366025i −0.0450546 0.0260123i
\(199\) −14.0263 24.2942i −0.994297 1.72217i −0.589510 0.807761i \(-0.700679\pi\)
−0.404786 0.914411i \(-0.632654\pi\)
\(200\) −0.598076 + 4.96410i −0.0422904 + 0.351015i
\(201\) −3.83013 6.63397i −0.270156 0.467924i
\(202\) −12.0622 + 6.96410i −0.848692 + 0.489992i
\(203\) 17.6603i 1.23951i
\(204\) 2.23205 + 3.86603i 0.156275 + 0.270676i
\(205\) −11.3301 + 17.1603i −0.791330 + 1.19852i
\(206\) −4.63397 + 8.02628i −0.322864 + 0.559217i
\(207\) 6.19615i 0.430662i
\(208\) 1.59808 3.23205i 0.110807 0.224102i
\(209\) −0.928203 −0.0642052
\(210\) −5.09808 3.36603i −0.351801 0.232278i
\(211\) 10.7321 18.5885i 0.738825 1.27968i −0.214200 0.976790i \(-0.568714\pi\)
0.953025 0.302892i \(-0.0979523\pi\)
\(212\) −6.69615 + 3.86603i −0.459894 + 0.265520i
\(213\) 1.26795i 0.0868784i
\(214\) 0.633975 + 1.09808i 0.0433376 + 0.0750629i
\(215\) 6.53590 3.26795i 0.445745 0.222872i
\(216\) 1.00000 0.0680414
\(217\) −9.46410 + 5.46410i −0.642465 + 0.370927i
\(218\) −8.66025 5.00000i −0.586546 0.338643i
\(219\) −2.33013 + 4.03590i −0.157455 + 0.272721i
\(220\) 1.63397 + 0.0980762i 0.110163 + 0.00661230i
\(221\) 13.3923 8.92820i 0.900864 0.600576i
\(222\) 7.92820i 0.532106i
\(223\) 0.339746 + 0.196152i 0.0227511 + 0.0131353i 0.511332 0.859383i \(-0.329152\pi\)
−0.488581 + 0.872518i \(0.662485\pi\)
\(224\) 1.36603 2.36603i 0.0912714 0.158087i
\(225\) 1.96410 + 4.59808i 0.130940 + 0.306538i
\(226\) 9.00000 0.598671
\(227\) 3.63397 2.09808i 0.241195 0.139254i −0.374531 0.927215i \(-0.622196\pi\)
0.615726 + 0.787960i \(0.288863\pi\)
\(228\) 1.09808 0.633975i 0.0727219 0.0419860i
\(229\) −28.7846 −1.90214 −0.951070 0.308975i \(-0.900014\pi\)
−0.951070 + 0.308975i \(0.900014\pi\)
\(230\) 6.19615 + 12.3923i 0.408562 + 0.817124i
\(231\) −1.00000 + 1.73205i −0.0657952 + 0.113961i
\(232\) −5.59808 3.23205i −0.367532 0.212195i
\(233\) 12.3923i 0.811847i 0.913907 + 0.405923i \(0.133050\pi\)
−0.913907 + 0.405923i \(0.866950\pi\)
\(234\) −0.232051 3.59808i −0.0151696 0.235214i
\(235\) −1.02628 + 17.0981i −0.0669471 + 1.11536i
\(236\) 6.19615 10.7321i 0.403335 0.698597i
\(237\) 10.3923 + 6.00000i 0.675053 + 0.389742i
\(238\) 10.5622 6.09808i 0.684644 0.395280i
\(239\) 4.58846 0.296803 0.148401 0.988927i \(-0.452587\pi\)
0.148401 + 0.988927i \(0.452587\pi\)
\(240\) −2.00000 + 1.00000i −0.129099 + 0.0645497i
\(241\) 4.69615 + 8.13397i 0.302506 + 0.523955i 0.976703 0.214596i \(-0.0688435\pi\)
−0.674197 + 0.738551i \(0.735510\pi\)
\(242\) 10.4641i 0.672658i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) −5.06218 + 8.76795i −0.324073 + 0.561310i
\(245\) −0.571797 + 0.866025i −0.0365308 + 0.0553283i
\(246\) −9.19615 −0.586325
\(247\) −2.53590 3.80385i −0.161355 0.242033i
\(248\) 4.00000i 0.254000i
\(249\) 2.63397 4.56218i 0.166921 0.289116i
\(250\) −8.52628 7.23205i −0.539249 0.457395i
\(251\) 10.7321 + 18.5885i 0.677401 + 1.17329i 0.975761 + 0.218840i \(0.0702271\pi\)
−0.298360 + 0.954453i \(0.596440\pi\)
\(252\) 2.73205i 0.172103i
\(253\) 3.92820 2.26795i 0.246964 0.142585i
\(254\) 2.00000 + 3.46410i 0.125491 + 0.217357i
\(255\) −9.96410 0.598076i −0.623976 0.0374530i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.59808 1.50000i −0.162064 0.0935674i 0.416775 0.909010i \(-0.363160\pi\)
−0.578838 + 0.815442i \(0.696494\pi\)
\(258\) 2.83013 + 1.63397i 0.176196 + 0.101727i
\(259\) −21.6603 −1.34590
\(260\) 4.06218 + 6.96410i 0.251926 + 0.431895i
\(261\) −6.46410 −0.400118
\(262\) −12.0000 6.92820i −0.741362 0.428026i
\(263\) 14.8301 + 8.56218i 0.914465 + 0.527967i 0.881865 0.471502i \(-0.156288\pi\)
0.0325998 + 0.999468i \(0.489621\pi\)
\(264\) 0.366025 + 0.633975i 0.0225273 + 0.0390184i
\(265\) 1.03590 17.2583i 0.0636347 1.06017i
\(266\) −1.73205 3.00000i −0.106199 0.183942i
\(267\) 4.26795 2.46410i 0.261194 0.150801i
\(268\) 7.66025i 0.467924i
\(269\) 2.19615 + 3.80385i 0.133902 + 0.231925i 0.925177 0.379535i \(-0.123916\pi\)
−0.791276 + 0.611460i \(0.790583\pi\)
\(270\) −1.23205 + 1.86603i −0.0749802 + 0.113563i
\(271\) −2.92820 + 5.07180i −0.177876 + 0.308090i −0.941153 0.337982i \(-0.890256\pi\)
0.763277 + 0.646071i \(0.223589\pi\)
\(272\) 4.46410i 0.270676i
\(273\) −9.83013 + 0.633975i −0.594946 + 0.0383699i
\(274\) −18.4641 −1.11546
\(275\) −2.19615 + 2.92820i −0.132433 + 0.176577i
\(276\) −3.09808 + 5.36603i −0.186482 + 0.322997i
\(277\) −10.6699 + 6.16025i −0.641091 + 0.370134i −0.785034 0.619452i \(-0.787355\pi\)
0.143944 + 0.989586i \(0.454021\pi\)
\(278\) 1.07180i 0.0642821i
\(279\) 2.00000 + 3.46410i 0.119737 + 0.207390i
\(280\) 2.73205 + 5.46410i 0.163271 + 0.326543i
\(281\) 1.73205 0.103325 0.0516627 0.998665i \(-0.483548\pi\)
0.0516627 + 0.998665i \(0.483548\pi\)
\(282\) −6.63397 + 3.83013i −0.395047 + 0.228081i
\(283\) −6.63397 3.83013i −0.394349 0.227677i 0.289694 0.957119i \(-0.406447\pi\)
−0.684043 + 0.729442i \(0.739780\pi\)
\(284\) 0.633975 1.09808i 0.0376195 0.0651588i
\(285\) −0.169873 + 2.83013i −0.0100624 + 0.167642i
\(286\) 2.19615 1.46410i 0.129861 0.0865741i
\(287\) 25.1244i 1.48304i
\(288\) −0.866025 0.500000i −0.0510310 0.0294628i
\(289\) 1.46410 2.53590i 0.0861236 0.149170i
\(290\) 12.9282 6.46410i 0.759170 0.379585i
\(291\) −10.0000 −0.586210
\(292\) 4.03590 2.33013i 0.236183 0.136360i
\(293\) 11.8923 6.86603i 0.694756 0.401117i −0.110635 0.993861i \(-0.535289\pi\)
0.805391 + 0.592744i \(0.201955\pi\)
\(294\) −0.464102 −0.0270670
\(295\) 12.3923 + 24.7846i 0.721508 + 1.44302i
\(296\) −3.96410 + 6.86603i −0.230409 + 0.399080i
\(297\) 0.633975 + 0.366025i 0.0367869 + 0.0212389i
\(298\) 19.9282i 1.15441i
\(299\) 20.0263 + 9.90192i 1.15815 + 0.572643i
\(300\) 0.598076 4.96410i 0.0345299 0.286603i
\(301\) 4.46410 7.73205i 0.257307 0.445668i
\(302\) −4.43782 2.56218i −0.255368 0.147437i
\(303\) 12.0622 6.96410i 0.692954 0.400077i
\(304\) −1.26795 −0.0727219
\(305\) −10.1244 20.2487i −0.579719 1.15944i
\(306\) −2.23205 3.86603i −0.127598 0.221006i
\(307\) 19.2679i 1.09968i 0.835270 + 0.549840i \(0.185311\pi\)
−0.835270 + 0.549840i \(0.814689\pi\)
\(308\) 1.73205 1.00000i 0.0986928 0.0569803i
\(309\) 4.63397 8.02628i 0.263618 0.456599i
\(310\) −7.46410 4.92820i −0.423932 0.279903i
\(311\) 3.12436 0.177166 0.0885830 0.996069i \(-0.471766\pi\)
0.0885830 + 0.996069i \(0.471766\pi\)
\(312\) −1.59808 + 3.23205i −0.0904732 + 0.182979i
\(313\) 14.0000i 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) 4.69615 8.13397i 0.265019 0.459027i
\(315\) 5.09808 + 3.36603i 0.287244 + 0.189654i
\(316\) −6.00000 10.3923i −0.337526 0.584613i
\(317\) 29.7321i 1.66992i −0.550312 0.834959i \(-0.685491\pi\)
0.550312 0.834959i \(-0.314509\pi\)
\(318\) 6.69615 3.86603i 0.375502 0.216796i
\(319\) −2.36603 4.09808i −0.132472 0.229448i
\(320\) 2.23205 + 0.133975i 0.124775 + 0.00748941i
\(321\) −0.633975 1.09808i −0.0353850 0.0612886i
\(322\) 14.6603 + 8.46410i 0.816984 + 0.471686i
\(323\) −4.90192 2.83013i −0.272750 0.157472i
\(324\) −1.00000 −0.0555556
\(325\) −18.0000 1.00000i −0.998460 0.0554700i
\(326\) −13.4641 −0.745708
\(327\) 8.66025 + 5.00000i 0.478913 + 0.276501i
\(328\) 7.96410 + 4.59808i 0.439744 + 0.253886i
\(329\) 10.4641 + 18.1244i 0.576905 + 0.999228i
\(330\) −1.63397 0.0980762i −0.0899473 0.00539892i
\(331\) 14.3923 + 24.9282i 0.791073 + 1.37018i 0.925303 + 0.379228i \(0.123810\pi\)
−0.134231 + 0.990950i \(0.542856\pi\)
\(332\) −4.56218 + 2.63397i −0.250382 + 0.144558i
\(333\) 7.92820i 0.434463i
\(334\) −6.92820 12.0000i −0.379094 0.656611i
\(335\) −14.2942 9.43782i −0.780977 0.515643i
\(336\) −1.36603 + 2.36603i −0.0745228 + 0.129077i
\(337\) 11.0526i 0.602071i −0.953613 0.301036i \(-0.902668\pi\)
0.953613 0.301036i \(-0.0973323\pi\)
\(338\) 12.0000 + 5.00000i 0.652714 + 0.271964i
\(339\) −9.00000 −0.488813
\(340\) 8.33013 + 5.50000i 0.451765 + 0.298279i
\(341\) −1.46410 + 2.53590i −0.0792855 + 0.137327i
\(342\) −1.09808 + 0.633975i −0.0593772 + 0.0342814i
\(343\) 17.8564i 0.964155i
\(344\) −1.63397 2.83013i −0.0880980 0.152590i
\(345\) −6.19615 12.3923i −0.333590 0.667179i
\(346\) −18.7846 −1.00987
\(347\) 4.90192 2.83013i 0.263149 0.151929i −0.362621 0.931937i \(-0.618118\pi\)
0.625770 + 0.780007i \(0.284785\pi\)
\(348\) 5.59808 + 3.23205i 0.300088 + 0.173256i
\(349\) −9.53590 + 16.5167i −0.510445 + 0.884117i 0.489482 + 0.872014i \(0.337186\pi\)
−0.999927 + 0.0121031i \(0.996147\pi\)
\(350\) −13.5622 1.63397i −0.724929 0.0873396i
\(351\) 0.232051 + 3.59808i 0.0123860 + 0.192051i
\(352\) 0.732051i 0.0390184i
\(353\) 21.8660 + 12.6244i 1.16381 + 0.671927i 0.952214 0.305430i \(-0.0988003\pi\)
0.211597 + 0.977357i \(0.432134\pi\)
\(354\) −6.19615 + 10.7321i −0.329322 + 0.570402i
\(355\) 1.26795 + 2.53590i 0.0672958 + 0.134592i
\(356\) −4.92820 −0.261194
\(357\) −10.5622 + 6.09808i −0.559010 + 0.322744i
\(358\) 15.7583 9.09808i 0.832854 0.480848i
\(359\) −8.87564 −0.468439 −0.234219 0.972184i \(-0.575253\pi\)
−0.234219 + 0.972184i \(0.575253\pi\)
\(360\) 2.00000 1.00000i 0.105409 0.0527046i
\(361\) 8.69615 15.0622i 0.457692 0.792746i
\(362\) −13.9641 8.06218i −0.733937 0.423739i
\(363\) 10.4641i 0.549223i
\(364\) 8.83013 + 4.36603i 0.462824 + 0.228842i
\(365\) −0.624356 + 10.4019i −0.0326803 + 0.544462i
\(366\) 5.06218 8.76795i 0.264604 0.458308i
\(367\) 28.5622 + 16.4904i 1.49093 + 0.860791i 0.999946 0.0103758i \(-0.00330278\pi\)
0.490987 + 0.871167i \(0.336636\pi\)
\(368\) 5.36603 3.09808i 0.279723 0.161498i
\(369\) 9.19615 0.478733
\(370\) −7.92820 15.8564i −0.412168 0.824335i
\(371\) −10.5622 18.2942i −0.548361 0.949789i
\(372\) 4.00000i 0.207390i
\(373\) 20.3827 11.7679i 1.05538 0.609321i 0.131226 0.991352i \(-0.458109\pi\)
0.924149 + 0.382031i \(0.124775\pi\)
\(374\) 1.63397 2.83013i 0.0844908 0.146342i
\(375\) 8.52628 + 7.23205i 0.440295 + 0.373461i
\(376\) 7.66025 0.395047
\(377\) 10.3301 20.8923i 0.532029 1.07601i
\(378\) 2.73205i 0.140522i
\(379\) 13.1244 22.7321i 0.674153 1.16767i −0.302563 0.953129i \(-0.597842\pi\)
0.976716 0.214538i \(-0.0688244\pi\)
\(380\) 1.56218 2.36603i 0.0801380 0.121375i
\(381\) −2.00000 3.46410i −0.102463 0.177471i
\(382\) 9.46410i 0.484226i
\(383\) 23.3205 13.4641i 1.19162 0.687983i 0.232948 0.972489i \(-0.425163\pi\)
0.958674 + 0.284506i \(0.0918295\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) −0.267949 + 4.46410i −0.0136560 + 0.227512i
\(386\) 5.33013 + 9.23205i 0.271296 + 0.469899i
\(387\) −2.83013 1.63397i −0.143863 0.0830596i
\(388\) 8.66025 + 5.00000i 0.439658 + 0.253837i
\(389\) 24.0718 1.22049 0.610244 0.792213i \(-0.291071\pi\)
0.610244 + 0.792213i \(0.291071\pi\)
\(390\) −4.06218 6.96410i −0.205696 0.352641i
\(391\) 27.6603 1.39884
\(392\) 0.401924 + 0.232051i 0.0203002 + 0.0117203i
\(393\) 12.0000 + 6.92820i 0.605320 + 0.349482i
\(394\) 4.92820 + 8.53590i 0.248279 + 0.430032i
\(395\) 26.7846 + 1.60770i 1.34768 + 0.0808919i
\(396\) −0.366025 0.633975i −0.0183935 0.0318584i
\(397\) 16.7321 9.66025i 0.839758 0.484834i −0.0174242 0.999848i \(-0.505547\pi\)
0.857182 + 0.515014i \(0.172213\pi\)
\(398\) 28.0526i 1.40615i
\(399\) 1.73205 + 3.00000i 0.0867110 + 0.150188i
\(400\) −3.00000 + 4.00000i −0.150000 + 0.200000i
\(401\) 4.52628 7.83975i 0.226032 0.391498i −0.730597 0.682809i \(-0.760758\pi\)
0.956628 + 0.291311i \(0.0940914\pi\)
\(402\) 7.66025i 0.382059i
\(403\) −14.3923 + 0.928203i −0.716932 + 0.0462371i
\(404\) −13.9282 −0.692954
\(405\) 1.23205 1.86603i 0.0612211 0.0927235i
\(406\) 8.83013 15.2942i 0.438232 0.759040i
\(407\) −5.02628 + 2.90192i −0.249143 + 0.143843i
\(408\) 4.46410i 0.221006i
\(409\) 8.03590 + 13.9186i 0.397350 + 0.688230i 0.993398 0.114719i \(-0.0365967\pi\)
−0.596048 + 0.802949i \(0.703263\pi\)
\(410\) −18.3923 + 9.19615i −0.908331 + 0.454166i
\(411\) 18.4641 0.910767
\(412\) −8.02628 + 4.63397i −0.395426 + 0.228300i
\(413\) 29.3205 + 16.9282i 1.44277 + 0.832982i
\(414\) 3.09808 5.36603i 0.152262 0.263726i
\(415\) 0.705771 11.7583i 0.0346450 0.577194i
\(416\) 3.00000 2.00000i 0.147087 0.0980581i
\(417\) 1.07180i 0.0524861i
\(418\) −0.803848 0.464102i −0.0393175 0.0227000i
\(419\) −3.26795 + 5.66025i −0.159650 + 0.276522i −0.934742 0.355326i \(-0.884370\pi\)
0.775093 + 0.631848i \(0.217703\pi\)
\(420\) −2.73205 5.46410i −0.133310 0.266621i
\(421\) 17.0526 0.831091 0.415545 0.909572i \(-0.363591\pi\)
0.415545 + 0.909572i \(0.363591\pi\)
\(422\) 18.5885 10.7321i 0.904872 0.522428i
\(423\) 6.63397 3.83013i 0.322555 0.186227i
\(424\) −7.73205 −0.375502
\(425\) −20.5263 + 8.76795i −0.995671 + 0.425308i
\(426\) −0.633975 + 1.09808i −0.0307162 + 0.0532020i
\(427\) −23.9545 13.8301i −1.15924 0.669287i
\(428\) 1.26795i 0.0612886i
\(429\) −2.19615 + 1.46410i −0.106031 + 0.0706875i
\(430\) 7.29423 + 0.437822i 0.351759 + 0.0211137i
\(431\) 3.90192 6.75833i 0.187949 0.325537i −0.756617 0.653858i \(-0.773149\pi\)
0.944566 + 0.328321i \(0.106483\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) −12.8205 + 7.40192i −0.616114 + 0.355714i −0.775355 0.631526i \(-0.782429\pi\)
0.159240 + 0.987240i \(0.449096\pi\)
\(434\) −10.9282 −0.524571
\(435\) −12.9282 + 6.46410i −0.619860 + 0.309930i
\(436\) −5.00000 8.66025i −0.239457 0.414751i
\(437\) 7.85641i 0.375823i
\(438\) −4.03590 + 2.33013i −0.192843 + 0.111338i
\(439\) 4.90192 8.49038i 0.233956 0.405224i −0.725013 0.688735i \(-0.758166\pi\)
0.958969 + 0.283512i \(0.0914995\pi\)
\(440\) 1.36603 + 0.901924i 0.0651227 + 0.0429975i
\(441\) 0.464102 0.0221001
\(442\) 16.0622 1.03590i 0.764000 0.0492727i
\(443\) 34.6410i 1.64584i 0.568154 + 0.822922i \(0.307658\pi\)
−0.568154 + 0.822922i \(0.692342\pi\)
\(444\) 3.96410 6.86603i 0.188128 0.325847i
\(445\) 6.07180 9.19615i 0.287831 0.435939i
\(446\) 0.196152 + 0.339746i 0.00928809 + 0.0160874i
\(447\) 19.9282i 0.942572i
\(448\) 2.36603 1.36603i 0.111784 0.0645386i
\(449\) −3.92820 6.80385i −0.185383 0.321093i 0.758322 0.651880i \(-0.226019\pi\)
−0.943706 + 0.330786i \(0.892686\pi\)
\(450\) −0.598076 + 4.96410i −0.0281936 + 0.234010i
\(451\) 3.36603 + 5.83013i 0.158500 + 0.274530i
\(452\) 7.79423 + 4.50000i 0.366610 + 0.211662i
\(453\) 4.43782 + 2.56218i 0.208507 + 0.120382i
\(454\) 4.19615 0.196935
\(455\) −19.0263 + 11.0981i −0.891966 + 0.520286i
\(456\) 1.26795 0.0593772
\(457\) −7.62436 4.40192i −0.356652 0.205913i 0.310959 0.950423i \(-0.399350\pi\)
−0.667611 + 0.744510i \(0.732683\pi\)
\(458\) −24.9282 14.3923i −1.16482 0.672508i
\(459\) 2.23205 + 3.86603i 0.104183 + 0.180451i
\(460\) −0.830127 + 13.8301i −0.0387049 + 0.644833i
\(461\) −13.0359 22.5788i −0.607142 1.05160i −0.991709 0.128504i \(-0.958982\pi\)
0.384567 0.923097i \(-0.374351\pi\)
\(462\) −1.73205 + 1.00000i −0.0805823 + 0.0465242i
\(463\) 6.33975i 0.294633i −0.989089 0.147316i \(-0.952936\pi\)
0.989089 0.147316i \(-0.0470636\pi\)
\(464\) −3.23205 5.59808i −0.150044 0.259884i
\(465\) 7.46410 + 4.92820i 0.346139 + 0.228540i
\(466\) −6.19615 + 10.7321i −0.287031 + 0.497153i
\(467\) 22.0526i 1.02047i 0.860035 + 0.510235i \(0.170442\pi\)
−0.860035 + 0.510235i \(0.829558\pi\)
\(468\) 1.59808 3.23205i 0.0738711 0.149402i
\(469\) −20.9282 −0.966375
\(470\) −9.43782 + 14.2942i −0.435334 + 0.659344i
\(471\) −4.69615 + 8.13397i −0.216387 + 0.374794i
\(472\) 10.7321 6.19615i 0.493983 0.285201i
\(473\) 2.39230i 0.109998i
\(474\) 6.00000 + 10.3923i 0.275589 + 0.477334i
\(475\) 2.49038 + 5.83013i 0.114267 + 0.267505i
\(476\) 12.1962 0.559010
\(477\) −6.69615 + 3.86603i −0.306596 + 0.177013i
\(478\) 3.97372 + 2.29423i 0.181754 + 0.104936i
\(479\) −8.00000 + 13.8564i −0.365529 + 0.633115i −0.988861 0.148842i \(-0.952445\pi\)
0.623332 + 0.781958i \(0.285779\pi\)
\(480\) −2.23205 0.133975i −0.101879 0.00611508i
\(481\) −25.6244 12.6699i −1.16837 0.577696i
\(482\) 9.39230i 0.427808i
\(483\) −14.6603 8.46410i −0.667065 0.385130i
\(484\) −5.23205 + 9.06218i −0.237820 + 0.411917i
\(485\) −20.0000 + 10.0000i −0.908153 + 0.454077i
\(486\) 1.00000 0.0453609
\(487\) −33.2942 + 19.2224i −1.50871 + 0.871052i −0.508757 + 0.860910i \(0.669895\pi\)
−0.999949 + 0.0101413i \(0.996772\pi\)
\(488\) −8.76795 + 5.06218i −0.396906 + 0.229154i
\(489\) 13.4641 0.608868
\(490\) −0.928203 + 0.464102i −0.0419319 + 0.0209660i
\(491\) −10.9019 + 18.8827i −0.491997 + 0.852164i −0.999958 0.00921662i \(-0.997066\pi\)
0.507961 + 0.861380i \(0.330400\pi\)
\(492\) −7.96410 4.59808i −0.359049 0.207297i
\(493\) 28.8564i 1.29963i
\(494\) −0.294229 4.56218i −0.0132380 0.205262i
\(495\) 1.63397 + 0.0980762i 0.0734417 + 0.00440820i
\(496\) −2.00000 + 3.46410i −0.0898027 + 0.155543i
\(497\) 3.00000 + 1.73205i 0.134568 + 0.0776931i
\(498\) 4.56218 2.63397i 0.204436 0.118031i
\(499\) −40.3923 −1.80821 −0.904104 0.427313i \(-0.859460\pi\)
−0.904104 + 0.427313i \(0.859460\pi\)
\(500\) −3.76795 10.5263i −0.168508 0.470750i
\(501\) 6.92820 + 12.0000i 0.309529 + 0.536120i
\(502\) 21.4641i 0.957990i
\(503\) 18.8827 10.9019i 0.841937 0.486093i −0.0159849 0.999872i \(-0.505088\pi\)
0.857922 + 0.513779i \(0.171755\pi\)
\(504\) 1.36603 2.36603i 0.0608476 0.105391i
\(505\) 17.1603 25.9904i 0.763621 1.15656i
\(506\) 4.53590 0.201645
\(507\) −12.0000 5.00000i −0.532939 0.222058i
\(508\) 4.00000i 0.177471i
\(509\) −15.3564 + 26.5981i −0.680661 + 1.17894i 0.294119 + 0.955769i \(0.404974\pi\)
−0.974780 + 0.223170i \(0.928359\pi\)
\(510\) −8.33013 5.50000i −0.368864 0.243544i
\(511\) 6.36603 + 11.0263i 0.281616 + 0.487774i
\(512\) 1.00000i 0.0441942i
\(513\) 1.09808 0.633975i 0.0484812 0.0279907i
\(514\) −1.50000 2.59808i −0.0661622 0.114596i
\(515\) 1.24167 20.6865i 0.0547145 0.911558i
\(516\) 1.63397 + 2.83013i 0.0719317 + 0.124589i
\(517\) 4.85641 + 2.80385i 0.213585 + 0.123313i
\(518\) −18.7583 10.8301i −0.824194 0.475848i
\(519\) 18.7846 0.824553
\(520\) 0.0358984 + 8.06218i 0.00157425 + 0.353550i
\(521\) −19.4449 −0.851895 −0.425947 0.904748i \(-0.640059\pi\)
−0.425947 + 0.904748i \(0.640059\pi\)
\(522\) −5.59808 3.23205i −0.245021 0.141463i
\(523\) 31.5622 + 18.2224i 1.38012 + 0.796811i 0.992173 0.124871i \(-0.0398518\pi\)
0.387945 + 0.921683i \(0.373185\pi\)
\(524\) −6.92820 12.0000i −0.302660 0.524222i
\(525\) 13.5622 + 1.63397i 0.591902 + 0.0713125i
\(526\) 8.56218 + 14.8301i 0.373329 + 0.646624i
\(527\) −15.4641 + 8.92820i −0.673627 + 0.388919i
\(528\) 0.732051i 0.0318584i
\(529\) 7.69615 + 13.3301i 0.334615 + 0.579571i
\(530\) 9.52628 14.4282i 0.413795 0.626721i
\(531\) 6.19615 10.7321i 0.268890 0.465731i
\(532\) 3.46410i 0.150188i
\(533\) −14.6962 + 29.7224i −0.636561 + 1.28742i
\(534\) 4.92820 0.213264
\(535\) −2.36603 1.56218i −0.102292 0.0675388i
\(536\) −3.83013 + 6.63397i −0.165436 + 0.286544i
\(537\) −15.7583 + 9.09808i −0.680022 + 0.392611i
\(538\) 4.39230i 0.189366i
\(539\) 0.169873 + 0.294229i 0.00731695 + 0.0126733i
\(540\) −2.00000 + 1.00000i −0.0860663 + 0.0430331i
\(541\) −1.19615 −0.0514266 −0.0257133 0.999669i \(-0.508186\pi\)
−0.0257133 + 0.999669i \(0.508186\pi\)
\(542\) −5.07180 + 2.92820i −0.217852 + 0.125777i
\(543\) 13.9641 + 8.06218i 0.599257 + 0.345981i
\(544\) 2.23205 3.86603i 0.0956984 0.165754i
\(545\) 22.3205 + 1.33975i 0.956106 + 0.0573884i
\(546\) −8.83013 4.36603i −0.377895 0.186849i
\(547\) 25.8038i 1.10329i −0.834078 0.551646i \(-0.814000\pi\)
0.834078 0.551646i \(-0.186000\pi\)
\(548\) −15.9904 9.23205i −0.683075 0.394374i
\(549\) −5.06218 + 8.76795i −0.216048 + 0.374207i
\(550\) −3.36603 + 1.43782i −0.143528 + 0.0613089i
\(551\) −8.19615 −0.349168
\(552\) −5.36603 + 3.09808i −0.228393 + 0.131863i
\(553\) 28.3923 16.3923i 1.20736 0.697072i
\(554\) −12.3205 −0.523448
\(555\) 7.92820 + 15.8564i 0.336533 + 0.673067i
\(556\) 0.535898 0.928203i 0.0227272 0.0393646i
\(557\) −12.6962 7.33013i −0.537953 0.310587i 0.206296 0.978490i \(-0.433859\pi\)
−0.744249 + 0.667902i \(0.767192\pi\)
\(558\) 4.00000i 0.169334i
\(559\) 9.80385 6.53590i 0.414659 0.276439i
\(560\) −0.366025 + 6.09808i −0.0154674 + 0.257691i
\(561\) −1.63397 + 2.83013i −0.0689865 + 0.119488i
\(562\) 1.50000 + 0.866025i 0.0632737 + 0.0365311i
\(563\) 6.92820 4.00000i 0.291989 0.168580i −0.346850 0.937921i \(-0.612749\pi\)
0.638838 + 0.769341i \(0.279415\pi\)
\(564\) −7.66025 −0.322555
\(565\) −18.0000 + 9.00000i −0.757266 + 0.378633i
\(566\) −3.83013 6.63397i −0.160992 0.278847i
\(567\) 2.73205i 0.114735i
\(568\) 1.09808 0.633975i 0.0460743 0.0266010i
\(569\) 9.07180 15.7128i 0.380310 0.658715i −0.610797 0.791787i \(-0.709151\pi\)
0.991106 + 0.133072i \(0.0424841\pi\)
\(570\) −1.56218 + 2.36603i −0.0654324 + 0.0991019i
\(571\) −25.6603 −1.07385 −0.536924 0.843631i \(-0.680414\pi\)
−0.536924 + 0.843631i \(0.680414\pi\)
\(572\) 2.63397 0.169873i 0.110132 0.00710275i
\(573\) 9.46410i 0.395369i
\(574\) −12.5622 + 21.7583i −0.524335 + 0.908175i
\(575\) −24.7846 18.5885i −1.03359 0.775192i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 23.9808i 0.998332i −0.866506 0.499166i \(-0.833640\pi\)
0.866506 0.499166i \(-0.166360\pi\)
\(578\) 2.53590 1.46410i 0.105479 0.0608986i
\(579\) −5.33013 9.23205i −0.221513 0.383671i
\(580\) 14.4282 + 0.866025i 0.599099 + 0.0359597i
\(581\) −7.19615 12.4641i −0.298547 0.517098i
\(582\) −8.66025 5.00000i −0.358979 0.207257i
\(583\) −4.90192 2.83013i −0.203017 0.117212i
\(584\) 4.66025 0.192843
\(585\) 4.06218 + 6.96410i 0.167950 + 0.287930i
\(586\) 13.7321 0.567266
\(587\) 8.78461 + 5.07180i 0.362580 + 0.209335i 0.670212 0.742170i \(-0.266203\pi\)
−0.307632 + 0.951505i \(0.599537\pi\)
\(588\) −0.401924 0.232051i −0.0165751 0.00956961i
\(589\) 2.53590 + 4.39230i 0.104490 + 0.180982i
\(590\) −1.66025 + 27.6603i −0.0683516 + 1.13875i
\(591\) −4.92820 8.53590i −0.202719 0.351120i
\(592\) −6.86603 + 3.96410i −0.282192 + 0.162924i
\(593\) 19.3923i 0.796347i 0.917310 + 0.398173i \(0.130356\pi\)
−0.917310 + 0.398173i \(0.869644\pi\)
\(594\) 0.366025 + 0.633975i 0.0150182 + 0.0260123i
\(595\) −15.0263 + 22.7583i −0.616017 + 0.933001i
\(596\) −9.96410 + 17.2583i −0.408146 + 0.706929i
\(597\) 28.0526i 1.14811i
\(598\) 12.3923 + 18.5885i 0.506759 + 0.760139i
\(599\) −8.78461 −0.358929 −0.179465 0.983764i \(-0.557437\pi\)
−0.179465 + 0.983764i \(0.557437\pi\)
\(600\) 3.00000 4.00000i 0.122474 0.163299i
\(601\) −8.50000 + 14.7224i −0.346722 + 0.600541i −0.985665 0.168714i \(-0.946039\pi\)
0.638943 + 0.769254i \(0.279372\pi\)
\(602\) 7.73205 4.46410i 0.315135 0.181943i
\(603\) 7.66025i 0.311950i
\(604\) −2.56218 4.43782i −0.104254 0.180572i
\(605\) −10.4641 20.9282i −0.425426 0.850852i
\(606\) 13.9282 0.565795
\(607\) −41.9090 + 24.1962i −1.70103 + 0.982092i −0.756314 + 0.654209i \(0.773002\pi\)
−0.944718 + 0.327883i \(0.893665\pi\)
\(608\) −1.09808 0.633975i −0.0445329 0.0257111i
\(609\) −8.83013 + 15.2942i −0.357815 + 0.619753i
\(610\) 1.35641 22.5981i 0.0549193 0.914969i
\(611\) 1.77757 + 27.5622i 0.0719127 + 1.11505i
\(612\) 4.46410i 0.180451i
\(613\) −18.8660 10.8923i −0.761992 0.439936i 0.0680188 0.997684i \(-0.478332\pi\)
−0.830010 + 0.557748i \(0.811666\pi\)
\(614\) −9.63397 + 16.6865i −0.388796 + 0.673414i
\(615\) 18.3923 9.19615i 0.741649 0.370825i
\(616\) 2.00000 0.0805823
\(617\) 28.3301 16.3564i 1.14053 0.658484i 0.193967 0.981008i \(-0.437865\pi\)
0.946561 + 0.322524i \(0.104531\pi\)
\(618\) 8.02628 4.63397i 0.322864 0.186406i
\(619\) 36.1051 1.45119 0.725594 0.688123i \(-0.241565\pi\)
0.725594 + 0.688123i \(0.241565\pi\)
\(620\) −4.00000 8.00000i −0.160644 0.321288i
\(621\) −3.09808 + 5.36603i −0.124322 + 0.215331i
\(622\) 2.70577 + 1.56218i 0.108492 + 0.0626376i
\(623\) 13.4641i 0.539428i
\(624\) −3.00000 + 2.00000i −0.120096 + 0.0800641i
\(625\) 24.2846 + 5.93782i 0.971384 + 0.237513i
\(626\) 7.00000 12.1244i 0.279776 0.484587i
\(627\) 0.803848 + 0.464102i 0.0321026 + 0.0185344i
\(628\) 8.13397 4.69615i 0.324581 0.187397i
\(629\) −35.3923 −1.41118
\(630\) 2.73205 + 5.46410i 0.108848 + 0.217695i
\(631\) −4.92820 8.53590i −0.196189 0.339809i 0.751101 0.660187i \(-0.229523\pi\)
−0.947290 + 0.320379i \(0.896190\pi\)
\(632\) 12.0000i 0.477334i
\(633\) −18.5885 + 10.7321i −0.738825 + 0.426561i
\(634\) 14.8660 25.7487i 0.590405 1.02261i
\(635\) −7.46410 4.92820i −0.296204 0.195570i
\(636\) 7.73205 0.306596
\(637\) −0.741670 + 1.50000i −0.0293860 + 0.0594322i
\(638\) 4.73205i 0.187344i
\(639\) 0.633975 1.09808i 0.0250796 0.0434392i
\(640\) 1.86603 + 1.23205i 0.0737611 + 0.0487011i
\(641\) −4.52628 7.83975i −0.178777 0.309651i 0.762685 0.646770i \(-0.223881\pi\)
−0.941462 + 0.337119i \(0.890547\pi\)
\(642\) 1.26795i 0.0500420i
\(643\) −7.60770 + 4.39230i −0.300018 + 0.173216i −0.642451 0.766327i \(-0.722082\pi\)
0.342433 + 0.939542i \(0.388749\pi\)
\(644\) 8.46410 + 14.6603i 0.333532 + 0.577695i
\(645\) −7.29423 0.437822i −0.287210 0.0172392i
\(646\) −2.83013 4.90192i −0.111350 0.192864i
\(647\) −20.1962 11.6603i −0.793993 0.458412i 0.0473736 0.998877i \(-0.484915\pi\)
−0.841366 + 0.540465i \(0.818248\pi\)
\(648\) −0.866025 0.500000i −0.0340207 0.0196419i
\(649\) 9.07180 0.356099
\(650\) −15.0885 9.86603i −0.591818 0.386977i
\(651\) 10.9282 0.428310
\(652\) −11.6603 6.73205i −0.456651 0.263647i
\(653\) −28.2679 16.3205i −1.10621 0.638671i −0.168365 0.985725i \(-0.553849\pi\)
−0.937845 + 0.347054i \(0.887182\pi\)
\(654\) 5.00000 + 8.66025i 0.195515 + 0.338643i
\(655\) 30.9282 + 1.85641i 1.20846 + 0.0725358i
\(656\) 4.59808 + 7.96410i 0.179525 + 0.310946i
\(657\) 4.03590 2.33013i 0.157455 0.0909069i
\(658\) 20.9282i 0.815866i
\(659\) −20.7321 35.9090i −0.807606 1.39881i −0.914518 0.404546i \(-0.867430\pi\)
0.106912 0.994269i \(-0.465904\pi\)
\(660\) −1.36603 0.901924i −0.0531725 0.0351073i
\(661\) 19.2583 33.3564i 0.749062 1.29741i −0.199210 0.979957i \(-0.563838\pi\)
0.948273 0.317457i \(-0.102829\pi\)
\(662\) 28.7846i 1.11875i
\(663\) −16.0622 + 1.03590i −0.623803 + 0.0402310i
\(664\) −5.26795 −0.204436
\(665\) 6.46410 + 4.26795i 0.250667 + 0.165504i
\(666\) −3.96410 + 6.86603i −0.153606 + 0.266053i
\(667\) 34.6865 20.0263i 1.34307 0.775421i
\(668\) 13.8564i 0.536120i
\(669\) −0.196152 0.339746i −0.00758369 0.0131353i
\(670\) −7.66025 15.3205i −0.295941 0.591883i
\(671\) −7.41154 −0.286119
\(672\) −2.36603 + 1.36603i −0.0912714 + 0.0526956i
\(673\) −8.89230 5.13397i −0.342773 0.197900i 0.318725 0.947847i \(-0.396746\pi\)
−0.661498 + 0.749947i \(0.730079\pi\)
\(674\) 5.52628 9.57180i 0.212864 0.368692i
\(675\) 0.598076 4.96410i 0.0230200 0.191068i
\(676\) 7.89230 + 10.3301i 0.303550 + 0.397313i
\(677\) 48.6410i 1.86943i 0.355403 + 0.934713i \(0.384344\pi\)
−0.355403 + 0.934713i \(0.615656\pi\)
\(678\) −7.79423 4.50000i −0.299336 0.172821i
\(679\) −13.6603 + 23.6603i −0.524232 + 0.907997i
\(680\) 4.46410 + 8.92820i 0.171190 + 0.342381i
\(681\) −4.19615 −0.160797
\(682\) −2.53590 + 1.46410i −0.0971046 + 0.0560633i
\(683\) −23.3205 + 13.4641i −0.892334 + 0.515190i −0.874705 0.484655i \(-0.838945\pi\)
−0.0176291 + 0.999845i \(0.505612\pi\)
\(684\) −1.26795 −0.0484812
\(685\) 36.9282 18.4641i 1.41095 0.705477i
\(686\) 8.92820 15.4641i 0.340880 0.590422i
\(687\) 24.9282 + 14.3923i 0.951070 + 0.549101i
\(688\) 3.26795i 0.124589i
\(689\) −1.79423 27.8205i −0.0683547 1.05988i
\(690\) 0.830127 13.8301i 0.0316024 0.526504i
\(691\) −20.2942 + 35.1506i −0.772029 + 1.33719i 0.164420 + 0.986390i \(0.447425\pi\)
−0.936449 + 0.350803i \(0.885909\pi\)
\(692\) −16.2679 9.39230i −0.618415 0.357042i
\(693\) 1.73205 1.00000i 0.0657952 0.0379869i
\(694\) 5.66025 0.214860
\(695\) 1.07180 + 2.14359i 0.0406556 + 0.0813111i
\(696\) 3.23205 + 5.59808i 0.122511 + 0.212195i
\(697\) 41.0526i 1.55498i
\(698\) −16.5167 + 9.53590i −0.625165 + 0.360939i
\(699\) 6.19615 10.7321i 0.234360 0.405923i
\(700\) −10.9282 8.19615i −0.413047 0.309785i
\(701\) −13.4641 −0.508532 −0.254266 0.967134i \(-0.581834\pi\)
−0.254266 + 0.967134i \(0.581834\pi\)
\(702\) −1.59808 + 3.23205i −0.0603155 + 0.121986i
\(703\) 10.0526i 0.379139i
\(704\) 0.366025 0.633975i 0.0137951 0.0238938i
\(705\) 9.43782 14.2942i 0.355449 0.538352i
\(706\) 12.6244 + 21.8660i 0.475124 + 0.822939i
\(707\) 38.0526i 1.43111i
\(708\) −10.7321 + 6.19615i −0.403335 + 0.232866i
\(709\) 18.5263 + 32.0885i 0.695769 + 1.20511i 0.969921 + 0.243421i \(0.0782696\pi\)
−0.274152 + 0.961686i \(0.588397\pi\)
\(710\) −0.169873 + 2.83013i −0.00637522 + 0.106213i
\(711\) −6.00000 10.3923i −0.225018 0.389742i
\(712\) −4.26795 2.46410i −0.159948 0.0923461i
\(713\) −21.4641 12.3923i −0.803837 0.464095i
\(714\) −12.1962 −0.456430
\(715\) −2.92820 + 5.12436i −0.109509 + 0.191640i
\(716\) 18.1962 0.680022
\(717\) −3.97372 2.29423i −0.148401 0.0856795i
\(718\) −7.68653 4.43782i −0.286859 0.165618i
\(719\) −16.1962 28.0526i −0.604015 1.04618i −0.992206 0.124605i \(-0.960234\pi\)
0.388192 0.921579i \(-0.373100\pi\)
\(720\) 2.23205 + 0.133975i 0.0831836 + 0.00499294i
\(721\) −12.6603 21.9282i −0.471492 0.816649i
\(722\) 15.0622 8.69615i 0.560556 0.323637i
\(723\) 9.39230i 0.349304i
\(724\) −8.06218 13.9641i −0.299628 0.518972i
\(725\) −19.3923 + 25.8564i −0.720212 + 0.960283i
\(726\) 5.23205 9.06218i 0.194180 0.336329i
\(727\) 13.2679i 0.492081i 0.969260 + 0.246040i \(0.0791296\pi\)
−0.969260 + 0.246040i \(0.920870\pi\)
\(728\) 5.46410 + 8.19615i 0.202513 + 0.303770i
\(729\) −1.00000 −0.0370370
\(730\) −5.74167 + 8.69615i −0.212509 + 0.321859i
\(731\) 7.29423 12.6340i 0.269787 0.467284i
\(732\) 8.76795 5.06218i 0.324073 0.187103i
\(733\) 45.3923i 1.67660i 0.545207 + 0.838302i \(0.316451\pi\)
−0.545207 + 0.838302i \(0.683549\pi\)
\(734\) 16.4904 + 28.5622i 0.608671 + 1.05425i
\(735\) 0.928203 0.464102i 0.0342373 0.0171186i
\(736\) 6.19615 0.228393
\(737\) −4.85641 + 2.80385i −0.178888 + 0.103281i
\(738\) 7.96410 + 4.59808i 0.293163 + 0.169258i
\(739\) 1.07180 1.85641i 0.0394267 0.0682890i −0.845639 0.533756i \(-0.820780\pi\)
0.885065 + 0.465467i \(0.154114\pi\)
\(740\) 1.06218 17.6962i 0.0390464 0.650524i
\(741\) 0.294229 + 4.56218i 0.0108088 + 0.167596i
\(742\) 21.1244i 0.775499i
\(743\) 18.5885 + 10.7321i 0.681944 + 0.393721i 0.800587 0.599216i \(-0.204521\pi\)
−0.118643 + 0.992937i \(0.537854\pi\)
\(744\) 2.00000 3.46410i 0.0733236 0.127000i
\(745\) −19.9282 39.8564i −0.730113 1.46023i
\(746\) 23.5359 0.861710
\(747\) −4.56218 + 2.63397i −0.166921 + 0.0963721i
\(748\) 2.83013 1.63397i 0.103480 0.0597440i
\(749\) −3.46410 −0.126576
\(750\) 3.76795 + 10.5263i 0.137586 + 0.384365i
\(751\) −18.0263 + 31.2224i −0.657788 + 1.13932i 0.323399 + 0.946263i \(0.395175\pi\)
−0.981187 + 0.193060i \(0.938159\pi\)
\(752\) 6.63397 + 3.83013i 0.241916 + 0.139670i
\(753\) 21.4641i 0.782195i
\(754\) 19.3923 12.9282i 0.706226 0.470817i
\(755\) 11.4378 + 0.686533i 0.416265 + 0.0249855i
\(756\) −1.36603 + 2.36603i −0.0496819 + 0.0860515i
\(757\) −34.7321 20.0526i −1.26236 0.728823i −0.288828 0.957381i \(-0.593265\pi\)
−0.973530 + 0.228558i \(0.926599\pi\)
\(758\) 22.7321 13.1244i 0.825665 0.476698i
\(759\) −4.53590 −0.164643
\(760\) 2.53590 1.26795i 0.0919867 0.0459934i
\(761\) −11.5359 19.9808i −0.418176 0.724302i 0.577580 0.816334i \(-0.303997\pi\)
−0.995756 + 0.0920320i \(0.970664\pi\)
\(762\) 4.00000i 0.144905i
\(763\) 23.6603 13.6603i 0.856559 0.494534i
\(764\) −4.73205 + 8.19615i −0.171200 + 0.296526i
\(765\) 8.33013 + 5.50000i 0.301176 + 0.198853i
\(766\) 26.9282 0.972956
\(767\) 24.7846 + 37.1769i 0.894920 + 1.34238i
\(768\) 1.00000i 0.0360844i
\(769\) 22.7321 39.3731i 0.819739 1.41983i −0.0861360 0.996283i \(-0.527452\pi\)
0.905875 0.423546i \(-0.139215\pi\)
\(770\) −2.46410 + 3.73205i −0.0888001 + 0.134494i
\(771\) 1.50000 + 2.59808i 0.0540212 + 0.0935674i
\(772\) 10.6603i 0.383671i
\(773\) 35.1962 20.3205i 1.26592 0.730878i 0.291705 0.956508i \(-0.405778\pi\)
0.974213 + 0.225631i