# Properties

 Label 390.2.y.b.139.1 Level $390$ Weight $2$ Character 390.139 Analytic conductor $3.114$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$390 = 2 \cdot 3 \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 390.y (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.11416567883$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 139.1 Root $$-0.866025 - 0.500000i$$ of defining polynomial Character $$\chi$$ $$=$$ 390.139 Dual form 390.2.y.b.289.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.23205 + 1.86603i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(-0.633975 + 0.366025i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(-0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.23205 + 1.86603i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(-0.633975 + 0.366025i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.133975 - 2.23205i) q^{10} +(1.36603 - 2.36603i) q^{11} +1.00000i q^{12} +(1.59808 + 3.23205i) q^{13} +0.732051 q^{14} +(0.133975 + 2.23205i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.13397 + 1.23205i) q^{17} -1.00000i q^{18} +(2.36603 + 4.09808i) q^{19} +(-1.00000 + 2.00000i) q^{20} -0.732051 q^{21} +(-2.36603 + 1.36603i) q^{22} +(-3.63397 - 2.09808i) q^{23} +(0.500000 - 0.866025i) q^{24} +(-1.96410 + 4.59808i) q^{25} +(0.232051 - 3.59808i) q^{26} +1.00000i q^{27} +(-0.633975 - 0.366025i) q^{28} +(0.232051 - 0.401924i) q^{29} +(1.00000 - 2.00000i) q^{30} +4.00000 q^{31} +(0.866025 - 0.500000i) q^{32} +(2.36603 - 1.36603i) q^{33} +2.46410 q^{34} +(-1.46410 - 0.732051i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(5.13397 + 2.96410i) q^{37} -4.73205i q^{38} +(-0.232051 + 3.59808i) q^{39} +(1.86603 - 1.23205i) q^{40} +(-0.598076 + 1.03590i) q^{41} +(0.633975 + 0.366025i) q^{42} +(5.83013 - 3.36603i) q^{43} +2.73205 q^{44} +(-1.00000 + 2.00000i) q^{45} +(2.09808 + 3.63397i) q^{46} -9.66025i q^{47} +(-0.866025 + 0.500000i) q^{48} +(-3.23205 + 5.59808i) q^{49} +(4.00000 - 3.00000i) q^{50} -2.46410 q^{51} +(-2.00000 + 3.00000i) q^{52} -4.26795i q^{53} +(0.500000 - 0.866025i) q^{54} +(6.09808 - 0.366025i) q^{55} +(0.366025 + 0.633975i) q^{56} +4.73205i q^{57} +(-0.401924 + 0.232051i) q^{58} +(4.19615 + 7.26795i) q^{59} +(-1.86603 + 1.23205i) q^{60} +(-7.06218 - 12.2321i) q^{61} +(-3.46410 - 2.00000i) q^{62} +(-0.633975 - 0.366025i) q^{63} -1.00000 q^{64} +(-4.06218 + 6.96410i) q^{65} -2.73205 q^{66} +(8.36603 + 4.83013i) q^{67} +(-2.13397 - 1.23205i) q^{68} +(-2.09808 - 3.63397i) q^{69} +(0.901924 + 1.36603i) q^{70} +(-2.36603 - 4.09808i) q^{71} +(0.866025 - 0.500000i) q^{72} -12.6603i q^{73} +(-2.96410 - 5.13397i) q^{74} +(-4.00000 + 3.00000i) q^{75} +(-2.36603 + 4.09808i) q^{76} +2.00000i q^{77} +(2.00000 - 3.00000i) q^{78} -12.0000 q^{79} +(-2.23205 + 0.133975i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.03590 - 0.598076i) q^{82} -8.73205i q^{83} +(-0.366025 - 0.633975i) q^{84} +(-4.92820 - 2.46410i) q^{85} -6.73205 q^{86} +(0.401924 - 0.232051i) q^{87} +(-2.36603 - 1.36603i) q^{88} +(4.46410 - 7.73205i) q^{89} +(1.86603 - 1.23205i) q^{90} +(-2.19615 - 1.46410i) q^{91} -4.19615i q^{92} +(3.46410 + 2.00000i) q^{93} +(-4.83013 + 8.36603i) q^{94} +(-4.73205 + 9.46410i) q^{95} +1.00000 q^{96} +(-8.66025 + 5.00000i) q^{97} +(5.59808 - 3.23205i) q^{98} +2.73205 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 2 q^{4} - 2 q^{5} - 2 q^{6} - 6 q^{7} + 2 q^{9} + O(q^{10})$$ $$4 q + 2 q^{4} - 2 q^{5} - 2 q^{6} - 6 q^{7} + 2 q^{9} - 4 q^{10} + 2 q^{11} - 4 q^{13} - 4 q^{14} + 4 q^{15} - 2 q^{16} - 12 q^{17} + 6 q^{19} - 4 q^{20} + 4 q^{21} - 6 q^{22} - 18 q^{23} + 2 q^{24} + 6 q^{25} - 6 q^{26} - 6 q^{28} - 6 q^{29} + 4 q^{30} + 16 q^{31} + 6 q^{33} - 4 q^{34} + 8 q^{35} - 2 q^{36} + 24 q^{37} + 6 q^{39} + 4 q^{40} + 8 q^{41} + 6 q^{42} + 6 q^{43} + 4 q^{44} - 4 q^{45} - 2 q^{46} - 6 q^{49} + 16 q^{50} + 4 q^{51} - 8 q^{52} + 2 q^{54} + 14 q^{55} - 2 q^{56} - 12 q^{58} - 4 q^{59} - 4 q^{60} - 4 q^{61} - 6 q^{63} - 4 q^{64} + 8 q^{65} - 4 q^{66} + 30 q^{67} - 12 q^{68} + 2 q^{69} + 14 q^{70} - 6 q^{71} + 2 q^{74} - 16 q^{75} - 6 q^{76} + 8 q^{78} - 48 q^{79} - 2 q^{80} - 2 q^{81} + 18 q^{82} + 2 q^{84} + 8 q^{85} - 20 q^{86} + 12 q^{87} - 6 q^{88} + 4 q^{89} + 4 q^{90} + 12 q^{91} - 2 q^{94} - 12 q^{95} + 4 q^{96} + 12 q^{98} + 4 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/390\mathbb{Z}\right)^\times$$.

 $$n$$ $$131$$ $$157$$ $$301$$ $$\chi(n)$$ $$1$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.866025 0.500000i −0.612372 0.353553i
$$3$$ 0.866025 + 0.500000i 0.500000 + 0.288675i
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ 1.23205 + 1.86603i 0.550990 + 0.834512i
$$6$$ −0.500000 0.866025i −0.204124 0.353553i
$$7$$ −0.633975 + 0.366025i −0.239620 + 0.138345i −0.615002 0.788526i $$-0.710845\pi$$
0.375382 + 0.926870i $$0.377511\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ 0.500000 + 0.866025i 0.166667 + 0.288675i
$$10$$ −0.133975 2.23205i −0.0423665 0.705836i
$$11$$ 1.36603 2.36603i 0.411872 0.713384i −0.583222 0.812313i $$-0.698208\pi$$
0.995094 + 0.0989291i $$0.0315417\pi$$
$$12$$ 1.00000i 0.288675i
$$13$$ 1.59808 + 3.23205i 0.443227 + 0.896410i
$$14$$ 0.732051 0.195649
$$15$$ 0.133975 + 2.23205i 0.0345921 + 0.576313i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −2.13397 + 1.23205i −0.517565 + 0.298816i −0.735938 0.677049i $$-0.763258\pi$$
0.218373 + 0.975865i $$0.429925\pi$$
$$18$$ 1.00000i 0.235702i
$$19$$ 2.36603 + 4.09808i 0.542803 + 0.940163i 0.998742 + 0.0501517i $$0.0159705\pi$$
−0.455938 + 0.890011i $$0.650696\pi$$
$$20$$ −1.00000 + 2.00000i −0.223607 + 0.447214i
$$21$$ −0.732051 −0.159747
$$22$$ −2.36603 + 1.36603i −0.504438 + 0.291238i
$$23$$ −3.63397 2.09808i −0.757736 0.437479i 0.0707462 0.997494i $$-0.477462\pi$$
−0.828482 + 0.560015i $$0.810795\pi$$
$$24$$ 0.500000 0.866025i 0.102062 0.176777i
$$25$$ −1.96410 + 4.59808i −0.392820 + 0.919615i
$$26$$ 0.232051 3.59808i 0.0455089 0.705641i
$$27$$ 1.00000i 0.192450i
$$28$$ −0.633975 0.366025i −0.119810 0.0691723i
$$29$$ 0.232051 0.401924i 0.0430908 0.0746354i −0.843676 0.536853i $$-0.819613\pi$$
0.886766 + 0.462218i $$0.152946\pi$$
$$30$$ 1.00000 2.00000i 0.182574 0.365148i
$$31$$ 4.00000 0.718421 0.359211 0.933257i $$-0.383046\pi$$
0.359211 + 0.933257i $$0.383046\pi$$
$$32$$ 0.866025 0.500000i 0.153093 0.0883883i
$$33$$ 2.36603 1.36603i 0.411872 0.237795i
$$34$$ 2.46410 0.422590
$$35$$ −1.46410 0.732051i −0.247478 0.123739i
$$36$$ −0.500000 + 0.866025i −0.0833333 + 0.144338i
$$37$$ 5.13397 + 2.96410i 0.844020 + 0.487295i 0.858629 0.512598i $$-0.171317\pi$$
−0.0146085 + 0.999893i $$0.504650\pi$$
$$38$$ 4.73205i 0.767640i
$$39$$ −0.232051 + 3.59808i −0.0371579 + 0.576153i
$$40$$ 1.86603 1.23205i 0.295045 0.194804i
$$41$$ −0.598076 + 1.03590i −0.0934038 + 0.161780i −0.908941 0.416924i $$-0.863108\pi$$
0.815538 + 0.578704i $$0.196441\pi$$
$$42$$ 0.633975 + 0.366025i 0.0978244 + 0.0564789i
$$43$$ 5.83013 3.36603i 0.889086 0.513314i 0.0154426 0.999881i $$-0.495084\pi$$
0.873643 + 0.486567i $$0.161751\pi$$
$$44$$ 2.73205 0.411872
$$45$$ −1.00000 + 2.00000i −0.149071 + 0.298142i
$$46$$ 2.09808 + 3.63397i 0.309344 + 0.535800i
$$47$$ 9.66025i 1.40909i −0.709658 0.704546i $$-0.751150\pi$$
0.709658 0.704546i $$-0.248850\pi$$
$$48$$ −0.866025 + 0.500000i −0.125000 + 0.0721688i
$$49$$ −3.23205 + 5.59808i −0.461722 + 0.799725i
$$50$$ 4.00000 3.00000i 0.565685 0.424264i
$$51$$ −2.46410 −0.345043
$$52$$ −2.00000 + 3.00000i −0.277350 + 0.416025i
$$53$$ 4.26795i 0.586248i −0.956074 0.293124i $$-0.905305\pi$$
0.956074 0.293124i $$-0.0946949\pi$$
$$54$$ 0.500000 0.866025i 0.0680414 0.117851i
$$55$$ 6.09808 0.366025i 0.822264 0.0493549i
$$56$$ 0.366025 + 0.633975i 0.0489122 + 0.0847184i
$$57$$ 4.73205i 0.626775i
$$58$$ −0.401924 + 0.232051i −0.0527752 + 0.0304698i
$$59$$ 4.19615 + 7.26795i 0.546293 + 0.946206i 0.998524 + 0.0543060i $$0.0172946\pi$$
−0.452232 + 0.891900i $$0.649372\pi$$
$$60$$ −1.86603 + 1.23205i −0.240903 + 0.159057i
$$61$$ −7.06218 12.2321i −0.904219 1.56615i −0.821962 0.569542i $$-0.807120\pi$$
−0.0822573 0.996611i $$-0.526213\pi$$
$$62$$ −3.46410 2.00000i −0.439941 0.254000i
$$63$$ −0.633975 0.366025i −0.0798733 0.0461149i
$$64$$ −1.00000 −0.125000
$$65$$ −4.06218 + 6.96410i −0.503851 + 0.863790i
$$66$$ −2.73205 −0.336292
$$67$$ 8.36603 + 4.83013i 1.02207 + 0.590094i 0.914704 0.404125i $$-0.132424\pi$$
0.107369 + 0.994219i $$0.465757\pi$$
$$68$$ −2.13397 1.23205i −0.258782 0.149408i
$$69$$ −2.09808 3.63397i −0.252579 0.437479i
$$70$$ 0.901924 + 1.36603i 0.107801 + 0.163271i
$$71$$ −2.36603 4.09808i −0.280796 0.486352i 0.690785 0.723060i $$-0.257265\pi$$
−0.971581 + 0.236708i $$0.923932\pi$$
$$72$$ 0.866025 0.500000i 0.102062 0.0589256i
$$73$$ 12.6603i 1.48177i −0.671632 0.740885i $$-0.734406\pi$$
0.671632 0.740885i $$-0.265594\pi$$
$$74$$ −2.96410 5.13397i −0.344570 0.596812i
$$75$$ −4.00000 + 3.00000i −0.461880 + 0.346410i
$$76$$ −2.36603 + 4.09808i −0.271402 + 0.470082i
$$77$$ 2.00000i 0.227921i
$$78$$ 2.00000 3.00000i 0.226455 0.339683i
$$79$$ −12.0000 −1.35011 −0.675053 0.737769i $$-0.735879\pi$$
−0.675053 + 0.737769i $$0.735879\pi$$
$$80$$ −2.23205 + 0.133975i −0.249551 + 0.0149788i
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ 1.03590 0.598076i 0.114396 0.0660465i
$$83$$ 8.73205i 0.958467i −0.877687 0.479234i $$-0.840915\pi$$
0.877687 0.479234i $$-0.159085\pi$$
$$84$$ −0.366025 0.633975i −0.0399366 0.0691723i
$$85$$ −4.92820 2.46410i −0.534539 0.267269i
$$86$$ −6.73205 −0.725936
$$87$$ 0.401924 0.232051i 0.0430908 0.0248785i
$$88$$ −2.36603 1.36603i −0.252219 0.145619i
$$89$$ 4.46410 7.73205i 0.473194 0.819596i −0.526335 0.850277i $$-0.676434\pi$$
0.999529 + 0.0306813i $$0.00976769\pi$$
$$90$$ 1.86603 1.23205i 0.196696 0.129870i
$$91$$ −2.19615 1.46410i −0.230219 0.153480i
$$92$$ 4.19615i 0.437479i
$$93$$ 3.46410 + 2.00000i 0.359211 + 0.207390i
$$94$$ −4.83013 + 8.36603i −0.498190 + 0.862890i
$$95$$ −4.73205 + 9.46410i −0.485498 + 0.970996i
$$96$$ 1.00000 0.102062
$$97$$ −8.66025 + 5.00000i −0.879316 + 0.507673i −0.870433 0.492287i $$-0.836161\pi$$
−0.00888289 + 0.999961i $$0.502828\pi$$
$$98$$ 5.59808 3.23205i 0.565491 0.326486i
$$99$$ 2.73205 0.274581
$$100$$ −4.96410 + 0.598076i −0.496410 + 0.0598076i
$$101$$ −0.0358984 + 0.0621778i −0.00357202 + 0.00618692i −0.867806 0.496903i $$-0.834470\pi$$
0.864234 + 0.503090i $$0.167804\pi$$
$$102$$ 2.13397 + 1.23205i 0.211295 + 0.121991i
$$103$$ 12.7321i 1.25453i −0.778807 0.627263i $$-0.784175\pi$$
0.778807 0.627263i $$-0.215825\pi$$
$$104$$ 3.23205 1.59808i 0.316929 0.156704i
$$105$$ −0.901924 1.36603i −0.0880187 0.133310i
$$106$$ −2.13397 + 3.69615i −0.207270 + 0.359002i
$$107$$ −4.09808 2.36603i −0.396176 0.228732i 0.288657 0.957433i $$-0.406791\pi$$
−0.684833 + 0.728700i $$0.740125\pi$$
$$108$$ −0.866025 + 0.500000i −0.0833333 + 0.0481125i
$$109$$ −10.0000 −0.957826 −0.478913 0.877862i $$-0.658969\pi$$
−0.478913 + 0.877862i $$0.658969\pi$$
$$110$$ −5.46410 2.73205i −0.520982 0.260491i
$$111$$ 2.96410 + 5.13397i 0.281340 + 0.487295i
$$112$$ 0.732051i 0.0691723i
$$113$$ −7.79423 + 4.50000i −0.733219 + 0.423324i −0.819599 0.572938i $$-0.805804\pi$$
0.0863794 + 0.996262i $$0.472470\pi$$
$$114$$ 2.36603 4.09808i 0.221599 0.383820i
$$115$$ −0.562178 9.36603i −0.0524234 0.873386i
$$116$$ 0.464102 0.0430908
$$117$$ −2.00000 + 3.00000i −0.184900 + 0.277350i
$$118$$ 8.39230i 0.772574i
$$119$$ 0.901924 1.56218i 0.0826792 0.143205i
$$120$$ 2.23205 0.133975i 0.203757 0.0122302i
$$121$$ 1.76795 + 3.06218i 0.160723 + 0.278380i
$$122$$ 14.1244i 1.27876i
$$123$$ −1.03590 + 0.598076i −0.0934038 + 0.0539267i
$$124$$ 2.00000 + 3.46410i 0.179605 + 0.311086i
$$125$$ −11.0000 + 2.00000i −0.983870 + 0.178885i
$$126$$ 0.366025 + 0.633975i 0.0326081 + 0.0564789i
$$127$$ −3.46410 2.00000i −0.307389 0.177471i 0.338368 0.941014i $$-0.390125\pi$$
−0.645758 + 0.763542i $$0.723458\pi$$
$$128$$ 0.866025 + 0.500000i 0.0765466 + 0.0441942i
$$129$$ 6.73205 0.592724
$$130$$ 7.00000 4.00000i 0.613941 0.350823i
$$131$$ 13.8564 1.21064 0.605320 0.795982i $$-0.293045\pi$$
0.605320 + 0.795982i $$0.293045\pi$$
$$132$$ 2.36603 + 1.36603i 0.205936 + 0.118897i
$$133$$ −3.00000 1.73205i −0.260133 0.150188i
$$134$$ −4.83013 8.36603i −0.417259 0.722715i
$$135$$ −1.86603 + 1.23205i −0.160602 + 0.106038i
$$136$$ 1.23205 + 2.13397i 0.105647 + 0.182987i
$$137$$ 9.99038 5.76795i 0.853536 0.492789i −0.00830645 0.999966i $$-0.502644\pi$$
0.861842 + 0.507176i $$0.169311\pi$$
$$138$$ 4.19615i 0.357200i
$$139$$ −7.46410 12.9282i −0.633097 1.09656i −0.986915 0.161242i $$-0.948450\pi$$
0.353818 0.935314i $$-0.384883\pi$$
$$140$$ −0.0980762 1.63397i −0.00828895 0.138096i
$$141$$ 4.83013 8.36603i 0.406770 0.704546i
$$142$$ 4.73205i 0.397105i
$$143$$ 9.83013 + 0.633975i 0.822037 + 0.0530156i
$$144$$ −1.00000 −0.0833333
$$145$$ 1.03590 0.0621778i 0.0860267 0.00516359i
$$146$$ −6.33013 + 10.9641i −0.523885 + 0.907396i
$$147$$ −5.59808 + 3.23205i −0.461722 + 0.266575i
$$148$$ 5.92820i 0.487295i
$$149$$ 3.03590 + 5.25833i 0.248710 + 0.430779i 0.963168 0.268899i $$-0.0866599\pi$$
−0.714458 + 0.699679i $$0.753327\pi$$
$$150$$ 4.96410 0.598076i 0.405317 0.0488327i
$$151$$ 19.1244 1.55632 0.778159 0.628067i $$-0.216154\pi$$
0.778159 + 0.628067i $$0.216154\pi$$
$$152$$ 4.09808 2.36603i 0.332398 0.191910i
$$153$$ −2.13397 1.23205i −0.172522 0.0996054i
$$154$$ 1.00000 1.73205i 0.0805823 0.139573i
$$155$$ 4.92820 + 7.46410i 0.395843 + 0.599531i
$$156$$ −3.23205 + 1.59808i −0.258771 + 0.127948i
$$157$$ 11.3923i 0.909205i −0.890694 0.454602i $$-0.849781\pi$$
0.890694 0.454602i $$-0.150219\pi$$
$$158$$ 10.3923 + 6.00000i 0.826767 + 0.477334i
$$159$$ 2.13397 3.69615i 0.169235 0.293124i
$$160$$ 2.00000 + 1.00000i 0.158114 + 0.0790569i
$$161$$ 3.07180 0.242092
$$162$$ 0.866025 0.500000i 0.0680414 0.0392837i
$$163$$ 5.66025 3.26795i 0.443345 0.255966i −0.261670 0.965157i $$-0.584273\pi$$
0.705016 + 0.709192i $$0.250940\pi$$
$$164$$ −1.19615 −0.0934038
$$165$$ 5.46410 + 2.73205i 0.425380 + 0.212690i
$$166$$ −4.36603 + 7.56218i −0.338869 + 0.586939i
$$167$$ −12.0000 6.92820i −0.928588 0.536120i −0.0422232 0.999108i $$-0.513444\pi$$
−0.886365 + 0.462988i $$0.846777\pi$$
$$168$$ 0.732051i 0.0564789i
$$169$$ −7.89230 + 10.3301i −0.607100 + 0.794625i
$$170$$ 3.03590 + 4.59808i 0.232843 + 0.352656i
$$171$$ −2.36603 + 4.09808i −0.180934 + 0.313388i
$$172$$ 5.83013 + 3.36603i 0.444543 + 0.256657i
$$173$$ −19.7321 + 11.3923i −1.50020 + 0.866141i −0.500200 + 0.865910i $$0.666740\pi$$
−1.00000 0.000231036i $$0.999926\pi$$
$$174$$ −0.464102 −0.0351835
$$175$$ −0.437822 3.63397i −0.0330962 0.274703i
$$176$$ 1.36603 + 2.36603i 0.102968 + 0.178346i
$$177$$ 8.39230i 0.630804i
$$178$$ −7.73205 + 4.46410i −0.579542 + 0.334599i
$$179$$ 3.90192 6.75833i 0.291643 0.505141i −0.682555 0.730834i $$-0.739131\pi$$
0.974199 + 0.225693i $$0.0724646\pi$$
$$180$$ −2.23205 + 0.133975i −0.166367 + 0.00998588i
$$181$$ 8.12436 0.603879 0.301939 0.953327i $$-0.402366\pi$$
0.301939 + 0.953327i $$0.402366\pi$$
$$182$$ 1.16987 + 2.36603i 0.0867168 + 0.175381i
$$183$$ 14.1244i 1.04410i
$$184$$ −2.09808 + 3.63397i −0.154672 + 0.267900i
$$185$$ 0.794229 + 13.2321i 0.0583929 + 0.972840i
$$186$$ −2.00000 3.46410i −0.146647 0.254000i
$$187$$ 6.73205i 0.492296i
$$188$$ 8.36603 4.83013i 0.610155 0.352273i
$$189$$ −0.366025 0.633975i −0.0266244 0.0461149i
$$190$$ 8.83013 5.83013i 0.640605 0.422962i
$$191$$ 1.26795 + 2.19615i 0.0917456 + 0.158908i 0.908246 0.418437i $$-0.137422\pi$$
−0.816500 + 0.577345i $$0.804089\pi$$
$$192$$ −0.866025 0.500000i −0.0625000 0.0360844i
$$193$$ 5.76795 + 3.33013i 0.415186 + 0.239708i 0.693016 0.720923i $$-0.256282\pi$$
−0.277830 + 0.960630i $$0.589615\pi$$
$$194$$ 10.0000 0.717958
$$195$$ −7.00000 + 4.00000i −0.501280 + 0.286446i
$$196$$ −6.46410 −0.461722
$$197$$ 15.4641 + 8.92820i 1.10177 + 0.636108i 0.936686 0.350171i $$-0.113877\pi$$
0.165086 + 0.986279i $$0.447210\pi$$
$$198$$ −2.36603 1.36603i −0.168146 0.0970792i
$$199$$ 5.02628 + 8.70577i 0.356304 + 0.617136i 0.987340 0.158617i $$-0.0507036\pi$$
−0.631037 + 0.775753i $$0.717370\pi$$
$$200$$ 4.59808 + 1.96410i 0.325133 + 0.138883i
$$201$$ 4.83013 + 8.36603i 0.340691 + 0.590094i
$$202$$ 0.0621778 0.0358984i 0.00437482 0.00252580i
$$203$$ 0.339746i 0.0238455i
$$204$$ −1.23205 2.13397i −0.0862608 0.149408i
$$205$$ −2.66987 + 0.160254i −0.186472 + 0.0111926i
$$206$$ −6.36603 + 11.0263i −0.443542 + 0.768237i
$$207$$ 4.19615i 0.291653i
$$208$$ −3.59808 0.232051i −0.249482 0.0160898i
$$209$$ 12.9282 0.894263
$$210$$ 0.0980762 + 1.63397i 0.00676790 + 0.112755i
$$211$$ 7.26795 12.5885i 0.500346 0.866625i −0.499654 0.866225i $$-0.666539\pi$$
1.00000 0.000399869i $$-0.000127282\pi$$
$$212$$ 3.69615 2.13397i 0.253853 0.146562i
$$213$$ 4.73205i 0.324235i
$$214$$ 2.36603 + 4.09808i 0.161738 + 0.280139i
$$215$$ 13.4641 + 6.73205i 0.918244 + 0.459122i
$$216$$ 1.00000 0.0680414
$$217$$ −2.53590 + 1.46410i −0.172148 + 0.0993897i
$$218$$ 8.66025 + 5.00000i 0.586546 + 0.338643i
$$219$$ 6.33013 10.9641i 0.427750 0.740885i
$$220$$ 3.36603 + 5.09808i 0.226937 + 0.343712i
$$221$$ −7.39230 4.92820i −0.497260 0.331507i
$$222$$ 5.92820i 0.397875i
$$223$$ 17.6603 + 10.1962i 1.18262 + 0.682785i 0.956619 0.291343i $$-0.0941020\pi$$
0.225999 + 0.974127i $$0.427435\pi$$
$$224$$ −0.366025 + 0.633975i −0.0244561 + 0.0423592i
$$225$$ −4.96410 + 0.598076i −0.330940 + 0.0398717i
$$226$$ 9.00000 0.598671
$$227$$ 5.36603 3.09808i 0.356156 0.205627i −0.311237 0.950332i $$-0.600743\pi$$
0.667393 + 0.744706i $$0.267410\pi$$
$$228$$ −4.09808 + 2.36603i −0.271402 + 0.156694i
$$229$$ 12.7846 0.844831 0.422415 0.906402i $$-0.361182\pi$$
0.422415 + 0.906402i $$0.361182\pi$$
$$230$$ −4.19615 + 8.39230i −0.276686 + 0.553372i
$$231$$ −1.00000 + 1.73205i −0.0657952 + 0.113961i
$$232$$ −0.401924 0.232051i −0.0263876 0.0152349i
$$233$$ 8.39230i 0.549798i 0.961473 + 0.274899i $$0.0886444\pi$$
−0.961473 + 0.274899i $$0.911356\pi$$
$$234$$ 3.23205 1.59808i 0.211286 0.104470i
$$235$$ 18.0263 11.9019i 1.17590 0.776396i
$$236$$ −4.19615 + 7.26795i −0.273146 + 0.473103i
$$237$$ −10.3923 6.00000i −0.675053 0.389742i
$$238$$ −1.56218 + 0.901924i −0.101261 + 0.0584630i
$$239$$ −26.5885 −1.71986 −0.859932 0.510408i $$-0.829494\pi$$
−0.859932 + 0.510408i $$0.829494\pi$$
$$240$$ −2.00000 1.00000i −0.129099 0.0645497i
$$241$$ −5.69615 9.86603i −0.366921 0.635527i 0.622161 0.782889i $$-0.286255\pi$$
−0.989083 + 0.147363i $$0.952922\pi$$
$$242$$ 3.53590i 0.227296i
$$243$$ −0.866025 + 0.500000i −0.0555556 + 0.0320750i
$$244$$ 7.06218 12.2321i 0.452110 0.783077i
$$245$$ −14.4282 + 0.866025i −0.921784 + 0.0553283i
$$246$$ 1.19615 0.0762639
$$247$$ −9.46410 + 14.1962i −0.602186 + 0.903280i
$$248$$ 4.00000i 0.254000i
$$249$$ 4.36603 7.56218i 0.276686 0.479234i
$$250$$ 10.5263 + 3.76795i 0.665740 + 0.238306i
$$251$$ 7.26795 + 12.5885i 0.458749 + 0.794576i 0.998895 0.0469948i $$-0.0149644\pi$$
−0.540146 + 0.841571i $$0.681631\pi$$
$$252$$ 0.732051i 0.0461149i
$$253$$ −9.92820 + 5.73205i −0.624181 + 0.360371i
$$254$$ 2.00000 + 3.46410i 0.125491 + 0.217357i
$$255$$ −3.03590 4.59808i −0.190115 0.287943i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 2.59808 + 1.50000i 0.162064 + 0.0935674i 0.578838 0.815442i $$-0.303506\pi$$
−0.416775 + 0.909010i $$0.636840\pi$$
$$258$$ −5.83013 3.36603i −0.362968 0.209560i
$$259$$ −4.33975 −0.269659
$$260$$ −8.06218 0.0358984i −0.499995 0.00222632i
$$261$$ 0.464102 0.0287272
$$262$$ −12.0000 6.92820i −0.741362 0.428026i
$$263$$ 6.16987 + 3.56218i 0.380451 + 0.219653i 0.678014 0.735049i $$-0.262841\pi$$
−0.297564 + 0.954702i $$0.596174\pi$$
$$264$$ −1.36603 2.36603i −0.0840731 0.145619i
$$265$$ 7.96410 5.25833i 0.489231 0.323017i
$$266$$ 1.73205 + 3.00000i 0.106199 + 0.183942i
$$267$$ 7.73205 4.46410i 0.473194 0.273199i
$$268$$ 9.66025i 0.590094i
$$269$$ −8.19615 14.1962i −0.499728 0.865555i 0.500272 0.865868i $$-0.333233\pi$$
−1.00000 0.000313781i $$0.999900\pi$$
$$270$$ 2.23205 0.133975i 0.135838 0.00815343i
$$271$$ 10.9282 18.9282i 0.663841 1.14981i −0.315757 0.948840i $$-0.602258\pi$$
0.979598 0.200966i $$-0.0644082\pi$$
$$272$$ 2.46410i 0.149408i
$$273$$ −1.16987 2.36603i −0.0708039 0.143198i
$$274$$ −11.5359 −0.696909
$$275$$ 8.19615 + 10.9282i 0.494247 + 0.658995i
$$276$$ 2.09808 3.63397i 0.126289 0.218740i
$$277$$ −19.3301 + 11.1603i −1.16143 + 0.670555i −0.951647 0.307192i $$-0.900610\pi$$
−0.209787 + 0.977747i $$0.567277\pi$$
$$278$$ 14.9282i 0.895334i
$$279$$ 2.00000 + 3.46410i 0.119737 + 0.207390i
$$280$$ −0.732051 + 1.46410i −0.0437484 + 0.0874968i
$$281$$ −1.73205 −0.103325 −0.0516627 0.998665i $$-0.516452\pi$$
−0.0516627 + 0.998665i $$0.516452\pi$$
$$282$$ −8.36603 + 4.83013i −0.498190 + 0.287630i
$$283$$ −8.36603 4.83013i −0.497309 0.287121i 0.230293 0.973121i $$-0.426032\pi$$
−0.727601 + 0.686000i $$0.759365\pi$$
$$284$$ 2.36603 4.09808i 0.140398 0.243176i
$$285$$ −8.83013 + 5.83013i −0.523052 + 0.345347i
$$286$$ −8.19615 5.46410i −0.484649 0.323099i
$$287$$ 0.875644i 0.0516877i
$$288$$ 0.866025 + 0.500000i 0.0510310 + 0.0294628i
$$289$$ −5.46410 + 9.46410i −0.321418 + 0.556712i
$$290$$ −0.928203 0.464102i −0.0545060 0.0272530i
$$291$$ −10.0000 −0.586210
$$292$$ 10.9641 6.33013i 0.641626 0.370443i
$$293$$ −8.89230 + 5.13397i −0.519494 + 0.299930i −0.736728 0.676190i $$-0.763630\pi$$
0.217234 + 0.976120i $$0.430297\pi$$
$$294$$ 6.46410 0.376994
$$295$$ −8.39230 + 16.7846i −0.488619 + 0.977238i
$$296$$ 2.96410 5.13397i 0.172285 0.298406i
$$297$$ 2.36603 + 1.36603i 0.137291 + 0.0792648i
$$298$$ 6.07180i 0.351730i
$$299$$ 0.973721 15.0981i 0.0563117 0.873144i
$$300$$ −4.59808 1.96410i −0.265470 0.113397i
$$301$$ −2.46410 + 4.26795i −0.142028 + 0.246001i
$$302$$ −16.5622 9.56218i −0.953046 0.550242i
$$303$$ −0.0621778 + 0.0358984i −0.00357202 + 0.00206231i
$$304$$ −4.73205 −0.271402
$$305$$ 14.1244 28.2487i 0.808758 1.61752i
$$306$$ 1.23205 + 2.13397i 0.0704317 + 0.121991i
$$307$$ 22.7321i 1.29739i −0.761050 0.648693i $$-0.775316\pi$$
0.761050 0.648693i $$-0.224684\pi$$
$$308$$ −1.73205 + 1.00000i −0.0986928 + 0.0569803i
$$309$$ 6.36603 11.0263i 0.362151 0.627263i
$$310$$ −0.535898 8.92820i −0.0304370 0.507088i
$$311$$ −21.1244 −1.19785 −0.598926 0.800804i $$-0.704406\pi$$
−0.598926 + 0.800804i $$0.704406\pi$$
$$312$$ 3.59808 + 0.232051i 0.203701 + 0.0131373i
$$313$$ 14.0000i 0.791327i 0.918396 + 0.395663i $$0.129485\pi$$
−0.918396 + 0.395663i $$0.870515\pi$$
$$314$$ −5.69615 + 9.86603i −0.321452 + 0.556772i
$$315$$ −0.0980762 1.63397i −0.00552597 0.0920640i
$$316$$ −6.00000 10.3923i −0.337526 0.584613i
$$317$$ 26.2679i 1.47536i 0.675153 + 0.737678i $$0.264077\pi$$
−0.675153 + 0.737678i $$0.735923\pi$$
$$318$$ −3.69615 + 2.13397i −0.207270 + 0.119667i
$$319$$ −0.633975 1.09808i −0.0354958 0.0614805i
$$320$$ −1.23205 1.86603i −0.0688737 0.104314i
$$321$$ −2.36603 4.09808i −0.132059 0.228732i
$$322$$ −2.66025 1.53590i −0.148250 0.0855923i
$$323$$ −10.0981 5.83013i −0.561872 0.324397i
$$324$$ −1.00000 −0.0555556
$$325$$ −18.0000 + 1.00000i −0.998460 + 0.0554700i
$$326$$ −6.53590 −0.361990
$$327$$ −8.66025 5.00000i −0.478913 0.276501i
$$328$$ 1.03590 + 0.598076i 0.0571979 + 0.0330232i
$$329$$ 3.53590 + 6.12436i 0.194940 + 0.337647i
$$330$$ −3.36603 5.09808i −0.185294 0.280640i
$$331$$ −6.39230 11.0718i −0.351353 0.608561i 0.635134 0.772402i $$-0.280945\pi$$
−0.986487 + 0.163841i $$0.947612\pi$$
$$332$$ 7.56218 4.36603i 0.415028 0.239617i
$$333$$ 5.92820i 0.324864i
$$334$$ 6.92820 + 12.0000i 0.379094 + 0.656611i
$$335$$ 1.29423 + 21.5622i 0.0707113 + 1.17807i
$$336$$ 0.366025 0.633975i 0.0199683 0.0345861i
$$337$$ 27.0526i 1.47365i −0.676085 0.736823i $$-0.736325\pi$$
0.676085 0.736823i $$-0.263675\pi$$
$$338$$ 12.0000 5.00000i 0.652714 0.271964i
$$339$$ −9.00000 −0.488813
$$340$$ −0.330127 5.50000i −0.0179037 0.298279i
$$341$$ 5.46410 9.46410i 0.295898 0.512510i
$$342$$ 4.09808 2.36603i 0.221599 0.127940i
$$343$$ 9.85641i 0.532196i
$$344$$ −3.36603 5.83013i −0.181484 0.314339i
$$345$$ 4.19615 8.39230i 0.225913 0.451827i
$$346$$ 22.7846 1.22491
$$347$$ 10.0981 5.83013i 0.542093 0.312978i −0.203834 0.979006i $$-0.565340\pi$$
0.745927 + 0.666028i $$0.232007\pi$$
$$348$$ 0.401924 + 0.232051i 0.0215454 + 0.0124392i
$$349$$ −16.4641 + 28.5167i −0.881303 + 1.52646i −0.0314101 + 0.999507i $$0.510000\pi$$
−0.849893 + 0.526955i $$0.823334\pi$$
$$350$$ −1.43782 + 3.36603i −0.0768548 + 0.179922i
$$351$$ −3.23205 + 1.59808i −0.172514 + 0.0852990i
$$352$$ 2.73205i 0.145619i
$$353$$ 20.1340 + 11.6244i 1.07162 + 0.618702i 0.928625 0.371021i $$-0.120992\pi$$
0.142999 + 0.989723i $$0.454325\pi$$
$$354$$ 4.19615 7.26795i 0.223023 0.386287i
$$355$$ 4.73205 9.46410i 0.251151 0.502302i
$$356$$ 8.92820 0.473194
$$357$$ 1.56218 0.901924i 0.0826792 0.0477349i
$$358$$ −6.75833 + 3.90192i −0.357189 + 0.206223i
$$359$$ −33.1244 −1.74824 −0.874118 0.485713i $$-0.838560\pi$$
−0.874118 + 0.485713i $$0.838560\pi$$
$$360$$ 2.00000 + 1.00000i 0.105409 + 0.0527046i
$$361$$ −1.69615 + 2.93782i −0.0892712 + 0.154622i
$$362$$ −7.03590 4.06218i −0.369799 0.213503i
$$363$$ 3.53590i 0.185587i
$$364$$ 0.169873 2.63397i 0.00890376 0.138058i
$$365$$ 23.6244 15.5981i 1.23656 0.816441i
$$366$$ −7.06218 + 12.2321i −0.369146 + 0.639380i
$$367$$ 16.4378 + 9.49038i 0.858047 + 0.495394i 0.863358 0.504592i $$-0.168357\pi$$
−0.00531057 + 0.999986i $$0.501690\pi$$
$$368$$ 3.63397 2.09808i 0.189434 0.109370i
$$369$$ −1.19615 −0.0622692
$$370$$ 5.92820 11.8564i 0.308193 0.616385i
$$371$$ 1.56218 + 2.70577i 0.0811042 + 0.140477i
$$372$$ 4.00000i 0.207390i
$$373$$ −26.3827 + 15.2321i −1.36604 + 0.788686i −0.990420 0.138087i $$-0.955905\pi$$
−0.375624 + 0.926772i $$0.622571\pi$$
$$374$$ 3.36603 5.83013i 0.174053 0.301469i
$$375$$ −10.5263 3.76795i −0.543575 0.194576i
$$376$$ −9.66025 −0.498190
$$377$$ 1.66987 + 0.107695i 0.0860028 + 0.00554658i
$$378$$ 0.732051i 0.0376526i
$$379$$ −11.1244 + 19.2679i −0.571420 + 0.989728i 0.425001 + 0.905193i $$0.360274\pi$$
−0.996421 + 0.0845351i $$0.973060\pi$$
$$380$$ −10.5622 + 0.633975i −0.541828 + 0.0325222i
$$381$$ −2.00000 3.46410i −0.102463 0.177471i
$$382$$ 2.53590i 0.129748i
$$383$$ −11.3205 + 6.53590i −0.578451 + 0.333969i −0.760518 0.649317i $$-0.775055\pi$$
0.182067 + 0.983286i $$0.441721\pi$$
$$384$$ 0.500000 + 0.866025i 0.0255155 + 0.0441942i
$$385$$ −3.73205 + 2.46410i −0.190203 + 0.125582i
$$386$$ −3.33013 5.76795i −0.169499 0.293581i
$$387$$ 5.83013 + 3.36603i 0.296362 + 0.171105i
$$388$$ −8.66025 5.00000i −0.439658 0.253837i
$$389$$ 37.9282 1.92304 0.961518 0.274742i $$-0.0885923\pi$$
0.961518 + 0.274742i $$0.0885923\pi$$
$$390$$ 8.06218 + 0.0358984i 0.408244 + 0.00181779i
$$391$$ 10.3397 0.522903
$$392$$ 5.59808 + 3.23205i 0.282746 + 0.163243i
$$393$$ 12.0000 + 6.92820i 0.605320 + 0.349482i
$$394$$ −8.92820 15.4641i −0.449796 0.779070i
$$395$$ −14.7846 22.3923i −0.743894 1.12668i
$$396$$ 1.36603 + 2.36603i 0.0686454 + 0.118897i
$$397$$ 13.2679 7.66025i 0.665899 0.384457i −0.128622 0.991694i $$-0.541055\pi$$
0.794521 + 0.607237i $$0.207722\pi$$
$$398$$ 10.0526i 0.503889i
$$399$$ −1.73205 3.00000i −0.0867110 0.150188i
$$400$$ −3.00000 4.00000i −0.150000 0.200000i
$$401$$ −14.5263 + 25.1603i −0.725408 + 1.25644i 0.233398 + 0.972381i $$0.425015\pi$$
−0.958806 + 0.284062i $$0.908318\pi$$
$$402$$ 9.66025i 0.481810i
$$403$$ 6.39230 + 12.9282i 0.318423 + 0.644000i
$$404$$ −0.0717968 −0.00357202
$$405$$ −2.23205 + 0.133975i −0.110911 + 0.00665725i
$$406$$ 0.169873 0.294229i 0.00843065 0.0146023i
$$407$$ 14.0263 8.09808i 0.695257 0.401407i
$$408$$ 2.46410i 0.121991i
$$409$$ 14.9641 + 25.9186i 0.739927 + 1.28159i 0.952528 + 0.304452i $$0.0984734\pi$$
−0.212600 + 0.977139i $$0.568193\pi$$
$$410$$ 2.39230 + 1.19615i 0.118148 + 0.0590738i
$$411$$ 11.5359 0.569024
$$412$$ 11.0263 6.36603i 0.543226 0.313632i
$$413$$ −5.32051 3.07180i −0.261805 0.151153i
$$414$$ −2.09808 + 3.63397i −0.103115 + 0.178600i
$$415$$ 16.2942 10.7583i 0.799852 0.528106i
$$416$$ 3.00000 + 2.00000i 0.147087 + 0.0980581i
$$417$$ 14.9282i 0.731037i
$$418$$ −11.1962 6.46410i −0.547622 0.316170i
$$419$$ −6.73205 + 11.6603i −0.328882 + 0.569641i −0.982290 0.187365i $$-0.940005\pi$$
0.653408 + 0.757006i $$0.273339\pi$$
$$420$$ 0.732051 1.46410i 0.0357204 0.0714408i
$$421$$ −21.0526 −1.02604 −0.513019 0.858377i $$-0.671473\pi$$
−0.513019 + 0.858377i $$0.671473\pi$$
$$422$$ −12.5885 + 7.26795i −0.612797 + 0.353798i
$$423$$ 8.36603 4.83013i 0.406770 0.234849i
$$424$$ −4.26795 −0.207270
$$425$$ −1.47372 12.2321i −0.0714859 0.593342i
$$426$$ −2.36603 + 4.09808i −0.114634 + 0.198552i
$$427$$ 8.95448 + 5.16987i 0.433338 + 0.250188i
$$428$$ 4.73205i 0.228732i
$$429$$ 8.19615 + 5.46410i 0.395714 + 0.263809i
$$430$$ −8.29423 12.5622i −0.399983 0.605802i
$$431$$ 9.09808 15.7583i 0.438239 0.759052i −0.559315 0.828955i $$-0.688936\pi$$
0.997554 + 0.0699032i $$0.0222691\pi$$
$$432$$ −0.866025 0.500000i −0.0416667 0.0240563i
$$433$$ 21.8205 12.5981i 1.04863 0.605425i 0.126362 0.991984i $$-0.459670\pi$$
0.922265 + 0.386559i $$0.126337\pi$$
$$434$$ 2.92820 0.140558
$$435$$ 0.928203 + 0.464102i 0.0445039 + 0.0222520i
$$436$$ −5.00000 8.66025i −0.239457 0.414751i
$$437$$ 19.8564i 0.949861i
$$438$$ −10.9641 + 6.33013i −0.523885 + 0.302465i
$$439$$ 10.0981 17.4904i 0.481955 0.834770i −0.517831 0.855483i $$-0.673260\pi$$
0.999785 + 0.0207128i $$0.00659358\pi$$
$$440$$ −0.366025 6.09808i −0.0174496 0.290714i
$$441$$ −6.46410 −0.307814
$$442$$ 3.93782 + 7.96410i 0.187303 + 0.378814i
$$443$$ 34.6410i 1.64584i 0.568154 + 0.822922i $$0.307658\pi$$
−0.568154 + 0.822922i $$0.692342\pi$$
$$444$$ −2.96410 + 5.13397i −0.140670 + 0.243648i
$$445$$ 19.9282 1.19615i 0.944687 0.0567031i
$$446$$ −10.1962 17.6603i −0.482802 0.836237i
$$447$$ 6.07180i 0.287186i
$$448$$ 0.633975 0.366025i 0.0299525 0.0172931i
$$449$$ 9.92820 + 17.1962i 0.468541 + 0.811537i 0.999353 0.0359526i $$-0.0114465\pi$$
−0.530813 + 0.847489i $$0.678113\pi$$
$$450$$ 4.59808 + 1.96410i 0.216755 + 0.0925886i
$$451$$ 1.63397 + 2.83013i 0.0769409 + 0.133265i
$$452$$ −7.79423 4.50000i −0.366610 0.211662i
$$453$$ 16.5622 + 9.56218i 0.778159 + 0.449270i
$$454$$ −6.19615 −0.290800
$$455$$ 0.0262794 5.90192i 0.00123200 0.276686i
$$456$$ 4.73205 0.221599
$$457$$ 16.6244 + 9.59808i 0.777655 + 0.448979i 0.835598 0.549341i $$-0.185121\pi$$
−0.0579439 + 0.998320i $$0.518454\pi$$
$$458$$ −11.0718 6.39230i −0.517351 0.298693i
$$459$$ −1.23205 2.13397i −0.0575072 0.0996054i
$$460$$ 7.83013 5.16987i 0.365082 0.241047i
$$461$$ −19.9641 34.5788i −0.929821 1.61050i −0.783618 0.621242i $$-0.786628\pi$$
−0.146202 0.989255i $$-0.546705\pi$$
$$462$$ 1.73205 1.00000i 0.0805823 0.0465242i
$$463$$ 23.6603i 1.09959i 0.835301 + 0.549793i $$0.185293\pi$$
−0.835301 + 0.549793i $$0.814707\pi$$
$$464$$ 0.232051 + 0.401924i 0.0107727 + 0.0186588i
$$465$$ 0.535898 + 8.92820i 0.0248517 + 0.414036i
$$466$$ 4.19615 7.26795i 0.194383 0.336681i
$$467$$ 16.0526i 0.742824i 0.928468 + 0.371412i $$0.121126\pi$$
−0.928468 + 0.371412i $$0.878874\pi$$
$$468$$ −3.59808 0.232051i −0.166321 0.0107266i
$$469$$ −7.07180 −0.326545
$$470$$ −21.5622 + 1.29423i −0.994589 + 0.0596983i
$$471$$ 5.69615 9.86603i 0.262465 0.454602i
$$472$$ 7.26795 4.19615i 0.334534 0.193144i
$$473$$ 18.3923i 0.845679i
$$474$$ 6.00000 + 10.3923i 0.275589 + 0.477334i
$$475$$ −23.4904 + 2.83013i −1.07781 + 0.129855i
$$476$$ 1.80385 0.0826792
$$477$$ 3.69615 2.13397i 0.169235 0.0977080i
$$478$$ 23.0263 + 13.2942i 1.05320 + 0.608064i
$$479$$ −8.00000 + 13.8564i −0.365529 + 0.633115i −0.988861 0.148842i $$-0.952445\pi$$
0.623332 + 0.781958i $$0.285779\pi$$
$$480$$ 1.23205 + 1.86603i 0.0562352 + 0.0851720i
$$481$$ −1.37564 + 21.3301i −0.0627240 + 0.972570i
$$482$$ 11.3923i 0.518905i
$$483$$ 2.66025 + 1.53590i 0.121046 + 0.0698858i
$$484$$ −1.76795 + 3.06218i −0.0803613 + 0.139190i
$$485$$ −20.0000 10.0000i −0.908153 0.454077i
$$486$$ 1.00000 0.0453609
$$487$$ −17.7058 + 10.2224i −0.802325 + 0.463223i −0.844284 0.535897i $$-0.819974\pi$$
0.0419584 + 0.999119i $$0.486640\pi$$
$$488$$ −12.2321 + 7.06218i −0.553719 + 0.319690i
$$489$$ 6.53590 0.295564
$$490$$ 12.9282 + 6.46410i 0.584037 + 0.292018i
$$491$$ −16.0981 + 27.8827i −0.726496 + 1.25833i 0.231859 + 0.972749i $$0.425519\pi$$
−0.958355 + 0.285579i $$0.907814\pi$$
$$492$$ −1.03590 0.598076i −0.0467019 0.0269634i
$$493$$ 1.14359i 0.0515049i
$$494$$ 15.2942 7.56218i 0.688120 0.340238i
$$495$$ 3.36603 + 5.09808i 0.151292 + 0.229141i
$$496$$ −2.00000 + 3.46410i −0.0898027 + 0.155543i
$$497$$ 3.00000 + 1.73205i 0.134568 + 0.0776931i
$$498$$ −7.56218 + 4.36603i −0.338869 + 0.195646i
$$499$$ −19.6077 −0.877761 −0.438880 0.898545i $$-0.644625\pi$$
−0.438880 + 0.898545i $$0.644625\pi$$
$$500$$ −7.23205 8.52628i −0.323427 0.381307i
$$501$$ −6.92820 12.0000i −0.309529 0.536120i
$$502$$ 14.5359i 0.648769i
$$503$$ −27.8827 + 16.0981i −1.24323 + 0.717778i −0.969750 0.244101i $$-0.921507\pi$$
−0.273478 + 0.961878i $$0.588174\pi$$
$$504$$ −0.366025 + 0.633975i −0.0163041 + 0.0282395i
$$505$$ −0.160254 + 0.00961894i −0.00713121 + 0.000428037i
$$506$$ 11.4641 0.509641
$$507$$ −12.0000 + 5.00000i −0.532939 + 0.222058i
$$508$$ 4.00000i 0.177471i
$$509$$ 12.3564 21.4019i 0.547688 0.948624i −0.450744 0.892653i $$-0.648841\pi$$
0.998432 0.0559705i $$-0.0178253\pi$$
$$510$$ 0.330127 + 5.50000i 0.0146183 + 0.243544i
$$511$$ 4.63397 + 8.02628i 0.204995 + 0.355062i
$$512$$ 1.00000i 0.0441942i
$$513$$ −4.09808 + 2.36603i −0.180934 + 0.104463i
$$514$$ −1.50000 2.59808i −0.0661622 0.114596i
$$515$$ 23.7583 15.6865i 1.04692 0.691231i
$$516$$ 3.36603 + 5.83013i 0.148181 + 0.256657i
$$517$$ −22.8564 13.1962i −1.00522 0.580366i
$$518$$ 3.75833 + 2.16987i 0.165132 + 0.0953387i
$$519$$ −22.7846 −1.00013
$$520$$ 6.96410 + 4.06218i 0.305396 + 0.178138i
$$521$$ 39.4449 1.72811 0.864055 0.503397i $$-0.167917\pi$$
0.864055 + 0.503397i $$0.167917\pi$$
$$522$$ −0.401924 0.232051i −0.0175917 0.0101566i
$$523$$ 19.4378 + 11.2224i 0.849957 + 0.490723i 0.860636 0.509220i $$-0.170066\pi$$
−0.0106796 + 0.999943i $$0.503399\pi$$
$$524$$ 6.92820 + 12.0000i 0.302660 + 0.524222i
$$525$$ 1.43782 3.36603i 0.0627517 0.146905i
$$526$$ −3.56218 6.16987i −0.155318 0.269019i
$$527$$ −8.53590 + 4.92820i −0.371830 + 0.214676i
$$528$$ 2.73205i 0.118897i
$$529$$ −2.69615 4.66987i −0.117224 0.203038i
$$530$$ −9.52628 + 0.571797i −0.413795 + 0.0248373i
$$531$$ −4.19615 + 7.26795i −0.182098 + 0.315402i
$$532$$ 3.46410i 0.150188i
$$533$$ −4.30385 0.277568i −0.186420 0.0120228i
$$534$$ −8.92820 −0.386361
$$535$$ −0.633975 10.5622i −0.0274091 0.456643i
$$536$$ 4.83013 8.36603i 0.208630 0.361357i
$$537$$ 6.75833 3.90192i 0.291643 0.168380i
$$538$$ 16.3923i 0.706722i
$$539$$ 8.83013 + 15.2942i 0.380340 + 0.658769i
$$540$$ −2.00000 1.00000i −0.0860663 0.0430331i
$$541$$ 9.19615 0.395373 0.197687 0.980265i $$-0.436657\pi$$
0.197687 + 0.980265i $$0.436657\pi$$
$$542$$ −18.9282 + 10.9282i −0.813036 + 0.469407i
$$543$$ 7.03590 + 4.06218i 0.301939 + 0.174325i
$$544$$ −1.23205 + 2.13397i −0.0528237 + 0.0914934i
$$545$$ −12.3205 18.6603i −0.527753 0.799317i
$$546$$ −0.169873 + 2.63397i −0.00726989 + 0.112724i
$$547$$ 36.1962i 1.54764i 0.633408 + 0.773818i $$0.281655\pi$$
−0.633408 + 0.773818i $$0.718345\pi$$
$$548$$ 9.99038 + 5.76795i 0.426768 + 0.246395i
$$549$$ 7.06218 12.2321i 0.301406 0.522051i
$$550$$ −1.63397 13.5622i −0.0696729 0.578293i
$$551$$ 2.19615 0.0935592
$$552$$ −3.63397 + 2.09808i −0.154672 + 0.0893001i
$$553$$ 7.60770 4.39230i 0.323512 0.186780i
$$554$$ 22.3205 0.948308
$$555$$ −5.92820 + 11.8564i −0.251638 + 0.503276i
$$556$$ 7.46410 12.9282i 0.316548 0.548278i
$$557$$ −2.30385 1.33013i −0.0976172 0.0563593i 0.450397 0.892829i $$-0.351283\pi$$
−0.548014 + 0.836469i $$0.684616\pi$$
$$558$$ 4.00000i 0.169334i
$$559$$ 20.1962 + 13.4641i 0.854206 + 0.569471i
$$560$$ 1.36603 0.901924i 0.0577251 0.0381132i
$$561$$ −3.36603 + 5.83013i −0.142114 + 0.246148i
$$562$$ 1.50000 + 0.866025i 0.0632737 + 0.0365311i
$$563$$ −6.92820 + 4.00000i −0.291989 + 0.168580i −0.638838 0.769341i $$-0.720585\pi$$
0.346850 + 0.937921i $$0.387251\pi$$
$$564$$ 9.66025 0.406770
$$565$$ −18.0000 9.00000i −0.757266 0.378633i
$$566$$ 4.83013 + 8.36603i 0.203025 + 0.351650i
$$567$$ 0.732051i 0.0307432i
$$568$$ −4.09808 + 2.36603i −0.171951 + 0.0992762i
$$569$$ 22.9282 39.7128i 0.961200 1.66485i 0.241706 0.970350i $$-0.422293\pi$$
0.719494 0.694498i $$-0.244374\pi$$
$$570$$ 10.5622 0.633975i 0.442401 0.0265543i
$$571$$ −8.33975 −0.349008 −0.174504 0.984657i $$-0.555832\pi$$
−0.174504 + 0.984657i $$0.555832\pi$$
$$572$$ 4.36603 + 8.83013i 0.182553 + 0.369206i
$$573$$ 2.53590i 0.105939i
$$574$$ −0.437822 + 0.758330i −0.0182743 + 0.0316521i
$$575$$ 16.7846 12.5885i 0.699967 0.524975i
$$576$$ −0.500000 0.866025i −0.0208333 0.0360844i
$$577$$ 27.9808i 1.16485i −0.812883 0.582427i $$-0.802103\pi$$
0.812883 0.582427i $$-0.197897\pi$$
$$578$$ 9.46410 5.46410i 0.393655 0.227277i
$$579$$ 3.33013 + 5.76795i 0.138395 + 0.239708i
$$580$$ 0.571797 + 0.866025i 0.0237426 + 0.0359597i
$$581$$ 3.19615 + 5.53590i 0.132599 + 0.229668i
$$582$$ 8.66025 + 5.00000i 0.358979 + 0.207257i
$$583$$ −10.0981 5.83013i −0.418220 0.241459i
$$584$$ −12.6603 −0.523885
$$585$$ −8.06218 0.0358984i −0.333330 0.00148422i
$$586$$ 10.2679 0.424165
$$587$$ −32.7846 18.9282i −1.35317 0.781251i −0.364474 0.931214i $$-0.618751\pi$$
−0.988692 + 0.149963i $$0.952085\pi$$
$$588$$ −5.59808 3.23205i −0.230861 0.133288i
$$589$$ 9.46410 + 16.3923i 0.389962 + 0.675433i
$$590$$ 15.6603 10.3397i 0.644722 0.425681i
$$591$$ 8.92820 + 15.4641i 0.367257 + 0.636108i
$$592$$ −5.13397 + 2.96410i −0.211005 + 0.121824i
$$593$$ 1.39230i 0.0571751i 0.999591 + 0.0285876i $$0.00910094\pi$$
−0.999591 + 0.0285876i $$0.990899\pi$$
$$594$$ −1.36603 2.36603i −0.0560487 0.0970792i
$$595$$ 4.02628 0.241670i 0.165061 0.00990749i
$$596$$ −3.03590 + 5.25833i −0.124355 + 0.215390i
$$597$$ 10.0526i 0.411424i
$$598$$ −8.39230 + 12.5885i −0.343187 + 0.514780i
$$599$$ 32.7846 1.33954 0.669771 0.742567i $$-0.266392\pi$$
0.669771 + 0.742567i $$0.266392\pi$$
$$600$$ 3.00000 + 4.00000i 0.122474 + 0.163299i
$$601$$ −8.50000 + 14.7224i −0.346722 + 0.600541i −0.985665 0.168714i $$-0.946039\pi$$
0.638943 + 0.769254i $$0.279372\pi$$
$$602$$ 4.26795 2.46410i 0.173949 0.100429i
$$603$$ 9.66025i 0.393396i
$$604$$ 9.56218 + 16.5622i 0.389079 + 0.673905i
$$605$$ −3.53590 + 7.07180i −0.143755 + 0.287509i
$$606$$ 0.0717968 0.00291654
$$607$$ 23.9090 13.8038i 0.970435 0.560281i 0.0710661 0.997472i $$-0.477360\pi$$
0.899369 + 0.437191i $$0.144027\pi$$
$$608$$ 4.09808 + 2.36603i 0.166199 + 0.0959550i
$$609$$ −0.169873 + 0.294229i −0.00688360 + 0.0119227i
$$610$$ −26.3564 + 17.4019i −1.06714 + 0.704583i
$$611$$ 31.2224 15.4378i 1.26312 0.624547i
$$612$$ 2.46410i 0.0996054i
$$613$$ −17.1340 9.89230i −0.692035 0.399546i 0.112339 0.993670i $$-0.464166\pi$$
−0.804374 + 0.594123i $$0.797499\pi$$
$$614$$ −11.3660 + 19.6865i −0.458695 + 0.794484i
$$615$$ −2.39230 1.19615i −0.0964670 0.0482335i
$$616$$ 2.00000 0.0805823
$$617$$ 19.6699 11.3564i 0.791879 0.457192i −0.0487445 0.998811i $$-0.515522\pi$$
0.840624 + 0.541620i $$0.182189\pi$$
$$618$$ −11.0263 + 6.36603i −0.443542 + 0.256079i
$$619$$ −40.1051 −1.61196 −0.805980 0.591942i $$-0.798361\pi$$
−0.805980 + 0.591942i $$0.798361\pi$$
$$620$$ −4.00000 + 8.00000i −0.160644 + 0.321288i
$$621$$ 2.09808 3.63397i 0.0841929 0.145826i
$$622$$ 18.2942 + 10.5622i 0.733532 + 0.423505i
$$623$$ 6.53590i 0.261855i
$$624$$ −3.00000 2.00000i −0.120096 0.0800641i
$$625$$ −17.2846 18.0622i −0.691384 0.722487i
$$626$$ 7.00000 12.1244i 0.279776 0.484587i
$$627$$ 11.1962 + 6.46410i 0.447131 + 0.258151i
$$628$$ 9.86603 5.69615i 0.393697 0.227301i
$$629$$ −14.6077 −0.582447
$$630$$ −0.732051 + 1.46410i −0.0291656 + 0.0583312i
$$631$$ 8.92820 + 15.4641i 0.355426 + 0.615616i 0.987191 0.159544i $$-0.0510024\pi$$
−0.631765 + 0.775160i $$0.717669\pi$$
$$632$$ 12.0000i 0.477334i
$$633$$ 12.5885 7.26795i 0.500346 0.288875i
$$634$$ 13.1340 22.7487i 0.521617 0.903467i
$$635$$ −0.535898 8.92820i −0.0212665 0.354305i
$$636$$ 4.26795 0.169235
$$637$$ −23.2583 1.50000i −0.921529 0.0594322i
$$638$$ 1.26795i 0.0501986i
$$639$$ 2.36603 4.09808i 0.0935985 0.162117i
$$640$$ 0.133975 + 2.23205i 0.00529581 + 0.0882296i
$$641$$ 14.5263 + 25.1603i 0.573754 + 0.993770i 0.996176 + 0.0873711i $$0.0278466\pi$$
−0.422422 + 0.906399i $$0.638820\pi$$
$$642$$ 4.73205i 0.186759i
$$643$$ −28.3923 + 16.3923i −1.11968 + 0.646449i −0.941320 0.337515i $$-0.890414\pi$$
−0.178363 + 0.983965i $$0.557080\pi$$
$$644$$ 1.53590 + 2.66025i 0.0605229 + 0.104829i
$$645$$ 8.29423 + 12.5622i 0.326585 + 0.494635i
$$646$$ 5.83013 + 10.0981i 0.229383 + 0.397303i
$$647$$ −9.80385 5.66025i −0.385429 0.222528i 0.294749 0.955575i $$-0.404764\pi$$
−0.680178 + 0.733047i $$0.738097\pi$$
$$648$$ 0.866025 + 0.500000i 0.0340207 + 0.0196419i
$$649$$ 22.9282 0.900011
$$650$$ 16.0885 + 8.13397i 0.631041 + 0.319041i
$$651$$ −2.92820 −0.114765
$$652$$ 5.66025 + 3.26795i 0.221673 + 0.127983i
$$653$$ −31.7321 18.3205i −1.24177 0.716937i −0.272317 0.962208i $$-0.587790\pi$$
−0.969455 + 0.245271i $$0.921123\pi$$
$$654$$ 5.00000 + 8.66025i 0.195515 + 0.338643i
$$655$$ 17.0718 + 25.8564i 0.667050 + 1.01029i
$$656$$ −0.598076 1.03590i −0.0233510 0.0404450i
$$657$$ 10.9641 6.33013i 0.427750 0.246962i
$$658$$ 7.07180i 0.275687i
$$659$$ −17.2679 29.9090i −0.672664 1.16509i −0.977146 0.212570i $$-0.931817\pi$$
0.304482 0.952518i $$-0.401517\pi$$
$$660$$ 0.366025 + 6.09808i 0.0142475 + 0.237367i
$$661$$ −3.25833 + 5.64359i −0.126734 + 0.219510i −0.922410 0.386213i $$-0.873783\pi$$
0.795675 + 0.605724i $$0.207116\pi$$
$$662$$ 12.7846i 0.496888i
$$663$$ −3.93782 7.96410i −0.152932 0.309300i
$$664$$ −8.73205 −0.338869
$$665$$ −0.464102 7.73205i −0.0179971 0.299836i
$$666$$ 2.96410 5.13397i 0.114857 0.198937i
$$667$$ −1.68653 + 0.973721i −0.0653028 + 0.0377026i
$$668$$ 13.8564i 0.536120i
$$669$$ 10.1962 + 17.6603i 0.394206 + 0.682785i
$$670$$ 9.66025 19.3205i 0.373208 0.746416i
$$671$$ −38.5885 −1.48969
$$672$$ −0.633975 + 0.366025i −0.0244561 + 0.0141197i
$$673$$ 11.8923 + 6.86603i 0.458415 + 0.264666i 0.711377 0.702810i $$-0.248072\pi$$
−0.252963 + 0.967476i $$0.581405\pi$$
$$674$$ −13.5263 + 23.4282i −0.521013 + 0.902421i
$$675$$ −4.59808 1.96410i −0.176980 0.0755983i
$$676$$ −12.8923 1.66987i −0.495858 0.0642259i
$$677$$ 20.6410i 0.793299i 0.917970 + 0.396649i $$0.129827\pi$$
−0.917970 + 0.396649i $$0.870173\pi$$
$$678$$ 7.79423 + 4.50000i 0.299336 + 0.172821i
$$679$$ 3.66025 6.33975i 0.140468 0.243297i
$$680$$ −2.46410 + 4.92820i −0.0944940 + 0.188988i
$$681$$ 6.19615 0.237437
$$682$$ −9.46410 + 5.46410i −0.362399 + 0.209231i
$$683$$ 11.3205 6.53590i 0.433167 0.250089i −0.267528 0.963550i $$-0.586207\pi$$
0.700695 + 0.713461i $$0.252873\pi$$
$$684$$ −4.73205 −0.180934
$$685$$ 23.0718 + 11.5359i 0.881528 + 0.440764i
$$686$$ −4.92820 + 8.53590i −0.188160 + 0.325902i
$$687$$ 11.0718 + 6.39230i 0.422415 + 0.243882i
$$688$$ 6.73205i 0.256657i
$$689$$ 13.7942 6.82051i 0.525518 0.259841i
$$690$$ −7.83013 + 5.16987i −0.298088 + 0.196814i
$$691$$ −4.70577 + 8.15064i −0.179016 + 0.310065i −0.941544 0.336891i $$-0.890625\pi$$
0.762528 + 0.646955i $$0.223958\pi$$
$$692$$ −19.7321 11.3923i −0.750100 0.433070i
$$693$$ −1.73205 + 1.00000i −0.0657952 + 0.0379869i
$$694$$ −11.6603 −0.442617
$$695$$ 14.9282 29.8564i 0.566259 1.13252i
$$696$$ −0.232051 0.401924i −0.00879586 0.0152349i
$$697$$ 2.94744i 0.111642i
$$698$$ 28.5167 16.4641i 1.07937 0.623175i
$$699$$ −4.19615 + 7.26795i −0.158713 + 0.274899i
$$700$$ 2.92820 2.19615i 0.110676 0.0830068i
$$701$$ −6.53590 −0.246857 −0.123429 0.992353i $$-0.539389\pi$$
−0.123429 + 0.992353i $$0.539389\pi$$
$$702$$ 3.59808 + 0.232051i 0.135801 + 0.00875819i
$$703$$ 28.0526i 1.05802i
$$704$$ −1.36603 + 2.36603i −0.0514840 + 0.0891729i
$$705$$ 21.5622 1.29423i 0.812079 0.0487435i
$$706$$ −11.6244 20.1340i −0.437488 0.757752i
$$707$$ 0.0525589i 0.00197668i
$$708$$ −7.26795 + 4.19615i −0.273146 + 0.157701i
$$709$$ −0.526279 0.911543i −0.0197648 0.0342337i 0.855974 0.517019i $$-0.172958\pi$$
−0.875739 + 0.482785i $$0.839625\pi$$
$$710$$ −8.83013 + 5.83013i −0.331389 + 0.218801i
$$711$$ −6.00000 10.3923i −0.225018 0.389742i
$$712$$ −7.73205 4.46410i −0.289771 0.167299i
$$713$$ −14.5359 8.39230i −0.544374 0.314294i
$$714$$ −1.80385 −0.0675073
$$715$$ 10.9282 + 19.1244i 0.408692 + 0.715210i
$$716$$ 7.80385 0.291643
$$717$$ −23.0263 13.2942i −0.859932 0.496482i
$$718$$ 28.6865 + 16.5622i 1.07057 + 0.618095i
$$719$$ −5.80385 10.0526i −0.216447 0.374897i 0.737272 0.675596i $$-0.236114\pi$$
−0.953719 + 0.300699i $$0.902780\pi$$
$$720$$ −1.23205 1.86603i −0.0459158 0.0695427i
$$721$$ 4.66025 + 8.07180i 0.173557 + 0.300609i
$$722$$ 2.93782 1.69615i 0.109334 0.0631243i
$$723$$ 11.3923i 0.423684i
$$724$$ 4.06218 + 7.03590i 0.150970 + 0.261487i
$$725$$ 1.39230 + 1.85641i 0.0517089 + 0.0689452i
$$726$$ 1.76795 3.06218i 0.0656147 0.113648i
$$727$$ 16.7321i 0.620557i −0.950646 0.310279i $$-0.899578\pi$$
0.950646 0.310279i $$-0.100422\pi$$
$$728$$ −1.46410 + 2.19615i −0.0542632 + 0.0813948i
$$729$$ −1.00000 −0.0370370
$$730$$ −28.2583 + 1.69615i −1.04589 + 0.0627774i
$$731$$ −8.29423 + 14.3660i −0.306773 + 0.531347i
$$732$$ 12.2321 7.06218i 0.452110 0.261026i
$$733$$ 24.6077i 0.908906i −0.890771 0.454453i $$-0.849835\pi$$
0.890771 0.454453i $$-0.150165\pi$$
$$734$$ −9.49038 16.4378i −0.350296 0.606731i
$$735$$ −12.9282 6.46410i −0.476864 0.238432i
$$736$$ −4.19615 −0.154672
$$737$$ 22.8564 13.1962i 0.841927 0.486087i
$$738$$ 1.03590 + 0.598076i 0.0381319 + 0.0220155i
$$739$$ 14.9282 25.8564i 0.549143 0.951143i −0.449191 0.893436i $$-0.648288\pi$$
0.998334 0.0577074i $$-0.0183790\pi$$
$$740$$ −11.0622 + 7.30385i −0.406654 + 0.268495i
$$741$$ −15.2942 + 7.56218i −0.561848 + 0.277804i
$$742$$ 3.12436i 0.114699i
$$743$$ −12.5885 7.26795i −0.461826 0.266635i 0.250986 0.967991i $$-0.419245\pi$$
−0.712812 + 0.701356i $$0.752579\pi$$
$$744$$ 2.00000 3.46410i 0.0733236 0.127000i
$$745$$ −6.07180 + 12.1436i −0.222453 + 0.444907i
$$746$$ 30.4641 1.11537
$$747$$ 7.56218 4.36603i 0.276686 0.159745i
$$748$$ −5.83013 + 3.36603i −0.213171 + 0.123074i
$$749$$ 3.46410 0.126576
$$750$$ 7.23205 + 8.52628i 0.264077 + 0.311336i
$$751$$ 1.02628 1.77757i 0.0374495 0.0648644i −0.846693 0.532081i $$-0.821410\pi$$
0.884143 + 0.467217i $$0.154743\pi$$
$$752$$ 8.36603 + 4.83013i 0.305078 + 0.176137i
$$753$$ 14.5359i 0.529718i
$$754$$ −1.39230 0.928203i −0.0507048 0.0338032i
$$755$$ 23.5622 + 35.6865i 0.857515 + 1.29877i
$$756$$ 0.366025 0.633975i 0.0133122 0.0230574i
$$757$$ −31.2679 18.0526i −1.13645 0.656131i −0.190903 0.981609i $$-0.561142\pi$$
−0.945550 + 0.325477i $$0.894475\pi$$
$$758$$ 19.2679 11.1244i 0.699843 0.404055i
$$759$$ −11.4641 −0.416121
$$760$$ 9.46410 + 4.73205i 0.343299 + 0.171650i
$$761$$ −18.4641 31.9808i −0.669323 1.15930i −0.978094 0.208165i $$-0.933251\pi$$
0.308771 0.951137i $$-0.400082\pi$$
$$762$$ 4.00000i 0.144905i
$$763$$ 6.33975 3.66025i 0.229514 0.132510i
$$764$$ −1.26795 + 2.19615i −0.0458728 + 0.0794540i
$$765$$ −0.330127 5.50000i −0.0119358 0.198853i
$$766$$ 13.0718 0.472303
$$767$$ −16.7846 + 25.1769i −0.606057 + 0.909086i
$$768$$ 1.00000i 0.0360844i
$$769$$ 19.2679 33.3731i 0.694820 1.20346i −0.275421 0.961324i $$-0.588817\pi$$
0.970241 0.242140i $$-0.0778493\pi$$
$$770$$ 4.46410 0.267949i 0.160875 0.00965622i
$$771$$ 1.50000 + 2.59808i 0.0540212 + 0.0935674i
$$772$$ 6.66025i 0.239708i
$$773$$ 24.8038 14.3205i 0.892132 0.515073i 0.0174930 0.999847i $$-0.494432\pi$$
0.874639 +