Properties

Label 390.2.x.b.199.2
Level $390$
Weight $2$
Character 390.199
Analytic conductor $3.114$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + 190 x^{3} - 1196 x^{2} - 338 x + 2197\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.2
Root \(-1.44229 - 0.433312i\) of defining polynomial
Character \(\chi\) \(=\) 390.199
Dual form 390.2.x.b.49.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.230377 - 2.22417i) q^{5} +(-0.866025 + 0.500000i) q^{6} +(-0.432713 - 0.749482i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.230377 - 2.22417i) q^{5} +(-0.866025 + 0.500000i) q^{6} +(-0.432713 - 0.749482i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-1.81100 - 1.31160i) q^{10} +(0.151430 + 0.0874279i) q^{11} +1.00000i q^{12} +(-1.35486 - 3.34131i) q^{13} -0.865427 q^{14} +(-1.31160 + 1.81100i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-7.08339 + 4.08960i) q^{17} +1.00000 q^{18} +(5.20843 - 3.00709i) q^{19} +(-2.04138 + 0.912572i) q^{20} +0.865427i q^{21} +(0.151430 - 0.0874279i) q^{22} +(-2.52211 - 1.45614i) q^{23} +(0.866025 + 0.500000i) q^{24} +(-4.89385 - 1.02479i) q^{25} +(-3.57109 - 0.497314i) q^{26} -1.00000i q^{27} +(-0.432713 + 0.749482i) q^{28} +(3.24491 - 5.62035i) q^{29} +(0.912572 + 2.04138i) q^{30} +6.95057i q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.0874279 - 0.151430i) q^{33} +8.17919i q^{34} +(-1.76666 + 0.789764i) q^{35} +(0.500000 - 0.866025i) q^{36} +(0.879573 - 1.52347i) q^{37} -6.01418i q^{38} +(-0.497314 + 3.57109i) q^{39} +(-0.230377 + 2.22417i) q^{40} +(-7.08339 - 4.08960i) q^{41} +(0.749482 + 0.432713i) q^{42} +(7.94476 - 4.58691i) q^{43} -0.174856i q^{44} +(2.04138 - 0.912572i) q^{45} +(-2.52211 + 1.45614i) q^{46} +11.9021 q^{47} +(0.866025 - 0.500000i) q^{48} +(3.12552 - 5.41356i) q^{49} +(-3.33442 + 3.72580i) q^{50} +8.17919 q^{51} +(-2.21623 + 2.84400i) q^{52} -2.48735i q^{53} +(-0.866025 - 0.500000i) q^{54} +(0.229340 - 0.316664i) q^{55} +(0.432713 + 0.749482i) q^{56} -6.01418 q^{57} +(-3.24491 - 5.62035i) q^{58} +(-6.09393 + 3.51833i) q^{59} +(2.22417 + 0.230377i) q^{60} +(3.98695 + 6.90559i) q^{61} +(6.01937 + 3.47529i) q^{62} +(0.432713 - 0.749482i) q^{63} +1.00000 q^{64} +(-7.74377 + 2.24367i) q^{65} -0.174856 q^{66} +(-1.36766 + 2.36886i) q^{67} +(7.08339 + 4.08960i) q^{68} +(1.45614 + 2.52211i) q^{69} +(-0.199374 + 1.92486i) q^{70} +(12.2677 - 7.08275i) q^{71} +(-0.500000 - 0.866025i) q^{72} +12.8706 q^{73} +(-0.879573 - 1.52347i) q^{74} +(3.72580 + 3.33442i) q^{75} +(-5.20843 - 3.00709i) q^{76} -0.151325i q^{77} +(2.84400 + 2.21623i) q^{78} +9.48961 q^{79} +(1.81100 + 1.31160i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-7.08339 + 4.08960i) q^{82} -0.139544 q^{83} +(0.749482 - 0.432713i) q^{84} +(7.46410 + 16.6968i) q^{85} -9.17382i q^{86} +(-5.62035 + 3.24491i) q^{87} +(-0.151430 - 0.0874279i) q^{88} +(-11.3790 - 6.56966i) q^{89} +(0.230377 - 2.22417i) q^{90} +(-1.91799 + 2.46127i) q^{91} +2.91228i q^{92} +(3.47529 - 6.01937i) q^{93} +(5.95105 - 10.3075i) q^{94} +(-5.48837 - 12.2772i) q^{95} -1.00000i q^{96} +(4.32411 + 7.48957i) q^{97} +(-3.12552 - 5.41356i) q^{98} +0.174856i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 6 q^{4} + 2 q^{5} + 2 q^{7} - 12 q^{8} + 6 q^{9} + O(q^{10}) \) \( 12 q + 6 q^{2} - 6 q^{4} + 2 q^{5} + 2 q^{7} - 12 q^{8} + 6 q^{9} + 4 q^{10} + 6 q^{11} + 8 q^{13} + 4 q^{14} + 6 q^{15} - 6 q^{16} - 18 q^{17} + 12 q^{18} - 6 q^{19} + 2 q^{20} + 6 q^{22} - 6 q^{23} - 10 q^{25} - 2 q^{26} + 2 q^{28} + 14 q^{29} + 6 q^{30} + 6 q^{32} - 6 q^{33} - 22 q^{35} + 6 q^{36} + 12 q^{37} - 2 q^{39} - 2 q^{40} - 18 q^{41} + 12 q^{42} + 36 q^{43} - 2 q^{45} - 6 q^{46} - 16 q^{47} + 8 q^{49} - 20 q^{50} + 16 q^{51} - 10 q^{52} + 8 q^{55} - 2 q^{56} + 8 q^{57} - 14 q^{58} - 36 q^{59} + 10 q^{61} - 6 q^{62} - 2 q^{63} + 12 q^{64} - 44 q^{65} - 12 q^{66} - 4 q^{67} + 18 q^{68} + 16 q^{69} + 4 q^{70} - 12 q^{71} - 6 q^{72} - 28 q^{73} - 12 q^{74} + 16 q^{75} + 6 q^{76} + 2 q^{78} + 4 q^{79} - 4 q^{80} - 6 q^{81} - 18 q^{82} - 72 q^{83} + 12 q^{84} + 48 q^{85} - 6 q^{87} - 6 q^{88} + 18 q^{89} + 2 q^{90} + 2 q^{91} + 16 q^{93} - 8 q^{94} + 18 q^{95} + 48 q^{97} - 8 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.230377 2.22417i 0.103028 0.994678i
\(6\) −0.866025 + 0.500000i −0.353553 + 0.204124i
\(7\) −0.432713 0.749482i −0.163550 0.283277i 0.772589 0.634906i \(-0.218961\pi\)
−0.936140 + 0.351629i \(0.885628\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −1.81100 1.31160i −0.572688 0.414763i
\(11\) 0.151430 + 0.0874279i 0.0456577 + 0.0263605i 0.522655 0.852544i \(-0.324942\pi\)
−0.476997 + 0.878905i \(0.658275\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −1.35486 3.34131i −0.375770 0.926713i
\(14\) −0.865427 −0.231295
\(15\) −1.31160 + 1.81100i −0.338653 + 0.467598i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −7.08339 + 4.08960i −1.71797 + 0.991873i −0.795370 + 0.606125i \(0.792723\pi\)
−0.922604 + 0.385748i \(0.873943\pi\)
\(18\) 1.00000 0.235702
\(19\) 5.20843 3.00709i 1.19490 0.689873i 0.235483 0.971879i \(-0.424333\pi\)
0.959413 + 0.282005i \(0.0909996\pi\)
\(20\) −2.04138 + 0.912572i −0.456465 + 0.204057i
\(21\) 0.865427i 0.188852i
\(22\) 0.151430 0.0874279i 0.0322849 0.0186397i
\(23\) −2.52211 1.45614i −0.525896 0.303626i 0.213448 0.976954i \(-0.431531\pi\)
−0.739344 + 0.673328i \(0.764864\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) −4.89385 1.02479i −0.978771 0.204959i
\(26\) −3.57109 0.497314i −0.700348 0.0975312i
\(27\) 1.00000i 0.192450i
\(28\) −0.432713 + 0.749482i −0.0817752 + 0.141639i
\(29\) 3.24491 5.62035i 0.602564 1.04367i −0.389867 0.920871i \(-0.627479\pi\)
0.992431 0.122801i \(-0.0391877\pi\)
\(30\) 0.912572 + 2.04138i 0.166612 + 0.372702i
\(31\) 6.95057i 1.24836i 0.781281 + 0.624180i \(0.214567\pi\)
−0.781281 + 0.624180i \(0.785433\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −0.0874279 0.151430i −0.0152192 0.0263605i
\(34\) 8.17919i 1.40272i
\(35\) −1.76666 + 0.789764i −0.298620 + 0.133495i
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 0.879573 1.52347i 0.144601 0.250456i −0.784623 0.619973i \(-0.787144\pi\)
0.929224 + 0.369517i \(0.120477\pi\)
\(38\) 6.01418i 0.975628i
\(39\) −0.497314 + 3.57109i −0.0796339 + 0.571832i
\(40\) −0.230377 + 2.22417i −0.0364258 + 0.351672i
\(41\) −7.08339 4.08960i −1.10624 0.638688i −0.168387 0.985721i \(-0.553856\pi\)
−0.937853 + 0.347034i \(0.887189\pi\)
\(42\) 0.749482 + 0.432713i 0.115648 + 0.0667691i
\(43\) 7.94476 4.58691i 1.21156 0.699497i 0.248465 0.968641i \(-0.420074\pi\)
0.963100 + 0.269144i \(0.0867407\pi\)
\(44\) 0.174856i 0.0263605i
\(45\) 2.04138 0.912572i 0.304310 0.136038i
\(46\) −2.52211 + 1.45614i −0.371865 + 0.214696i
\(47\) 11.9021 1.73610 0.868050 0.496478i \(-0.165373\pi\)
0.868050 + 0.496478i \(0.165373\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) 3.12552 5.41356i 0.446503 0.773365i
\(50\) −3.33442 + 3.72580i −0.471559 + 0.526908i
\(51\) 8.17919 1.14532
\(52\) −2.21623 + 2.84400i −0.307336 + 0.394391i
\(53\) 2.48735i 0.341663i −0.985300 0.170832i \(-0.945355\pi\)
0.985300 0.170832i \(-0.0546454\pi\)
\(54\) −0.866025 0.500000i −0.117851 0.0680414i
\(55\) 0.229340 0.316664i 0.0309242 0.0426989i
\(56\) 0.432713 + 0.749482i 0.0578238 + 0.100154i
\(57\) −6.01418 −0.796597
\(58\) −3.24491 5.62035i −0.426077 0.737988i
\(59\) −6.09393 + 3.51833i −0.793363 + 0.458048i −0.841145 0.540810i \(-0.818118\pi\)
0.0477824 + 0.998858i \(0.484785\pi\)
\(60\) 2.22417 + 0.230377i 0.287139 + 0.0297415i
\(61\) 3.98695 + 6.90559i 0.510476 + 0.884171i 0.999926 + 0.0121394i \(0.00386418\pi\)
−0.489450 + 0.872031i \(0.662802\pi\)
\(62\) 6.01937 + 3.47529i 0.764461 + 0.441362i
\(63\) 0.432713 0.749482i 0.0545168 0.0944258i
\(64\) 1.00000 0.125000
\(65\) −7.74377 + 2.24367i −0.960496 + 0.278293i
\(66\) −0.174856 −0.0215233
\(67\) −1.36766 + 2.36886i −0.167086 + 0.289402i −0.937394 0.348270i \(-0.886769\pi\)
0.770308 + 0.637672i \(0.220103\pi\)
\(68\) 7.08339 + 4.08960i 0.858987 + 0.495936i
\(69\) 1.45614 + 2.52211i 0.175299 + 0.303626i
\(70\) −0.199374 + 1.92486i −0.0238298 + 0.230064i
\(71\) 12.2677 7.08275i 1.45591 0.840568i 0.457100 0.889415i \(-0.348888\pi\)
0.998806 + 0.0488476i \(0.0155549\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 12.8706 1.50639 0.753193 0.657800i \(-0.228513\pi\)
0.753193 + 0.657800i \(0.228513\pi\)
\(74\) −0.879573 1.52347i −0.102248 0.177099i
\(75\) 3.72580 + 3.33442i 0.430219 + 0.385026i
\(76\) −5.20843 3.00709i −0.597448 0.344937i
\(77\) 0.151325i 0.0172451i
\(78\) 2.84400 + 2.21623i 0.322019 + 0.250939i
\(79\) 9.48961 1.06766 0.533832 0.845590i \(-0.320751\pi\)
0.533832 + 0.845590i \(0.320751\pi\)
\(80\) 1.81100 + 1.31160i 0.202476 + 0.146641i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −7.08339 + 4.08960i −0.782229 + 0.451620i
\(83\) −0.139544 −0.0153169 −0.00765845 0.999971i \(-0.502438\pi\)
−0.00765845 + 0.999971i \(0.502438\pi\)
\(84\) 0.749482 0.432713i 0.0817752 0.0472129i
\(85\) 7.46410 + 16.6968i 0.809595 + 1.81102i
\(86\) 9.17382i 0.989238i
\(87\) −5.62035 + 3.24491i −0.602564 + 0.347891i
\(88\) −0.151430 0.0874279i −0.0161424 0.00931985i
\(89\) −11.3790 6.56966i −1.20617 0.696382i −0.244249 0.969713i \(-0.578541\pi\)
−0.961920 + 0.273330i \(0.911875\pi\)
\(90\) 0.230377 2.22417i 0.0242839 0.234448i
\(91\) −1.91799 + 2.46127i −0.201060 + 0.258011i
\(92\) 2.91228i 0.303626i
\(93\) 3.47529 6.01937i 0.360370 0.624180i
\(94\) 5.95105 10.3075i 0.613804 1.06314i
\(95\) −5.48837 12.2772i −0.563095 1.25961i
\(96\) 1.00000i 0.102062i
\(97\) 4.32411 + 7.48957i 0.439047 + 0.760451i 0.997616 0.0690066i \(-0.0219830\pi\)
−0.558570 + 0.829458i \(0.688650\pi\)
\(98\) −3.12552 5.41356i −0.315725 0.546852i
\(99\) 0.174856i 0.0175737i
\(100\) 1.55943 + 4.75060i 0.155943 + 0.475060i
\(101\) −5.28276 + 9.15001i −0.525654 + 0.910460i 0.473899 + 0.880579i \(0.342846\pi\)
−0.999553 + 0.0298810i \(0.990487\pi\)
\(102\) 4.08960 7.08339i 0.404930 0.701360i
\(103\) 8.93568i 0.880459i −0.897885 0.440230i \(-0.854897\pi\)
0.897885 0.440230i \(-0.145103\pi\)
\(104\) 1.35486 + 3.34131i 0.132855 + 0.327642i
\(105\) 1.92486 + 0.199374i 0.187847 + 0.0194569i
\(106\) −2.15410 1.24367i −0.209225 0.120796i
\(107\) 0.745455 + 0.430389i 0.0720658 + 0.0416072i 0.535600 0.844472i \(-0.320086\pi\)
−0.463534 + 0.886079i \(0.653419\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 5.45336i 0.522337i −0.965293 0.261168i \(-0.915892\pi\)
0.965293 0.261168i \(-0.0841078\pi\)
\(110\) −0.159569 0.356946i −0.0152143 0.0340335i
\(111\) −1.52347 + 0.879573i −0.144601 + 0.0834854i
\(112\) 0.865427 0.0817752
\(113\) 10.2036 5.89106i 0.959876 0.554184i 0.0637409 0.997966i \(-0.479697\pi\)
0.896135 + 0.443782i \(0.146364\pi\)
\(114\) −3.00709 + 5.20843i −0.281640 + 0.487814i
\(115\) −3.81974 + 5.27413i −0.356192 + 0.491815i
\(116\) −6.48982 −0.602564
\(117\) 2.21623 2.84400i 0.204891 0.262928i
\(118\) 7.03667i 0.647778i
\(119\) 6.13015 + 3.53925i 0.561950 + 0.324442i
\(120\) 1.31160 1.81100i 0.119732 0.165321i
\(121\) −5.48471 9.49980i −0.498610 0.863618i
\(122\) 7.97389 0.721922
\(123\) 4.08960 + 7.08339i 0.368746 + 0.638688i
\(124\) 6.01937 3.47529i 0.540555 0.312090i
\(125\) −3.40675 + 10.6487i −0.304709 + 0.952446i
\(126\) −0.432713 0.749482i −0.0385492 0.0667691i
\(127\) −6.01228 3.47119i −0.533503 0.308018i 0.208939 0.977929i \(-0.432999\pi\)
−0.742442 + 0.669911i \(0.766332\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −9.17382 −0.807710
\(130\) −1.92881 + 7.82814i −0.169167 + 0.686573i
\(131\) 2.27133 0.198447 0.0992235 0.995065i \(-0.468364\pi\)
0.0992235 + 0.995065i \(0.468364\pi\)
\(132\) −0.0874279 + 0.151430i −0.00760962 + 0.0131803i
\(133\) −4.50751 2.60241i −0.390851 0.225658i
\(134\) 1.36766 + 2.36886i 0.118148 + 0.204638i
\(135\) −2.22417 0.230377i −0.191426 0.0198277i
\(136\) 7.08339 4.08960i 0.607395 0.350680i
\(137\) −3.68809 6.38795i −0.315094 0.545760i 0.664363 0.747410i \(-0.268703\pi\)
−0.979458 + 0.201650i \(0.935370\pi\)
\(138\) 2.91228 0.247910
\(139\) 0.410380 + 0.710798i 0.0348079 + 0.0602891i 0.882905 0.469552i \(-0.155585\pi\)
−0.848097 + 0.529842i \(0.822251\pi\)
\(140\) 1.56729 + 1.13509i 0.132460 + 0.0959327i
\(141\) −10.3075 5.95105i −0.868050 0.501169i
\(142\) 14.1655i 1.18874i
\(143\) 0.0869582 0.624426i 0.00727181 0.0522171i
\(144\) −1.00000 −0.0833333
\(145\) −11.7530 8.51202i −0.976037 0.706885i
\(146\) 6.43528 11.1462i 0.532588 0.922469i
\(147\) −5.41356 + 3.12552i −0.446503 + 0.257788i
\(148\) −1.75915 −0.144601
\(149\) −8.90766 + 5.14284i −0.729744 + 0.421318i −0.818329 0.574751i \(-0.805099\pi\)
0.0885845 + 0.996069i \(0.471766\pi\)
\(150\) 4.75060 1.55943i 0.387885 0.127327i
\(151\) 11.7419i 0.955544i 0.878484 + 0.477772i \(0.158555\pi\)
−0.878484 + 0.477772i \(0.841445\pi\)
\(152\) −5.20843 + 3.00709i −0.422459 + 0.243907i
\(153\) −7.08339 4.08960i −0.572658 0.330624i
\(154\) −0.131051 0.0756625i −0.0105604 0.00609706i
\(155\) 15.4592 + 1.60125i 1.24172 + 0.128616i
\(156\) 3.34131 1.35486i 0.267519 0.108475i
\(157\) 6.76034i 0.539534i 0.962926 + 0.269767i \(0.0869467\pi\)
−0.962926 + 0.269767i \(0.913053\pi\)
\(158\) 4.74480 8.21824i 0.377476 0.653808i
\(159\) −1.24367 + 2.15410i −0.0986297 + 0.170832i
\(160\) 2.04138 0.912572i 0.161385 0.0721452i
\(161\) 2.52036i 0.198633i
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) 0.713746 + 1.23624i 0.0559049 + 0.0968301i 0.892623 0.450803i \(-0.148862\pi\)
−0.836719 + 0.547633i \(0.815529\pi\)
\(164\) 8.17919i 0.638688i
\(165\) −0.356946 + 0.159569i −0.0277882 + 0.0124224i
\(166\) −0.0697718 + 0.120848i −0.00541534 + 0.00937964i
\(167\) −2.93528 + 5.08406i −0.227139 + 0.393416i −0.956959 0.290223i \(-0.906271\pi\)
0.729820 + 0.683639i \(0.239604\pi\)
\(168\) 0.865427i 0.0667691i
\(169\) −9.32872 + 9.05401i −0.717594 + 0.696462i
\(170\) 18.1919 + 1.88430i 1.39526 + 0.144519i
\(171\) 5.20843 + 3.00709i 0.398298 + 0.229958i
\(172\) −7.94476 4.58691i −0.605782 0.349749i
\(173\) −11.8669 + 6.85138i −0.902226 + 0.520901i −0.877922 0.478804i \(-0.841070\pi\)
−0.0243045 + 0.999705i \(0.507737\pi\)
\(174\) 6.48982i 0.491992i
\(175\) 1.34957 + 4.11130i 0.102018 + 0.310785i
\(176\) −0.151430 + 0.0874279i −0.0114144 + 0.00659013i
\(177\) 7.03667 0.528908
\(178\) −11.3790 + 6.56966i −0.852890 + 0.492416i
\(179\) −7.09191 + 12.2835i −0.530074 + 0.918115i 0.469310 + 0.883033i \(0.344503\pi\)
−0.999384 + 0.0350821i \(0.988831\pi\)
\(180\) −1.81100 1.31160i −0.134984 0.0977606i
\(181\) 13.7728 1.02373 0.511863 0.859067i \(-0.328956\pi\)
0.511863 + 0.859067i \(0.328956\pi\)
\(182\) 1.17253 + 2.89166i 0.0869138 + 0.214344i
\(183\) 7.97389i 0.589447i
\(184\) 2.52211 + 1.45614i 0.185932 + 0.107348i
\(185\) −3.18581 2.30729i −0.234225 0.169635i
\(186\) −3.47529 6.01937i −0.254820 0.441362i
\(187\) −1.43018 −0.104585
\(188\) −5.95105 10.3075i −0.434025 0.751753i
\(189\) −0.749482 + 0.432713i −0.0545168 + 0.0314753i
\(190\) −13.3765 1.38553i −0.970436 0.100517i
\(191\) 2.78821 + 4.82932i 0.201748 + 0.349437i 0.949092 0.315000i \(-0.102005\pi\)
−0.747344 + 0.664437i \(0.768671\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 0.110405 0.191227i 0.00794712 0.0137648i −0.862024 0.506867i \(-0.830804\pi\)
0.869972 + 0.493102i \(0.164137\pi\)
\(194\) 8.64822 0.620906
\(195\) 7.82814 + 1.92881i 0.560584 + 0.138125i
\(196\) −6.25104 −0.446503
\(197\) −0.861905 + 1.49286i −0.0614082 + 0.106362i −0.895095 0.445875i \(-0.852892\pi\)
0.833687 + 0.552237i \(0.186226\pi\)
\(198\) 0.151430 + 0.0874279i 0.0107616 + 0.00621323i
\(199\) −3.97927 6.89229i −0.282083 0.488581i 0.689815 0.723986i \(-0.257692\pi\)
−0.971898 + 0.235404i \(0.924359\pi\)
\(200\) 4.89385 + 1.02479i 0.346048 + 0.0724639i
\(201\) 2.36886 1.36766i 0.167086 0.0964673i
\(202\) 5.28276 + 9.15001i 0.371694 + 0.643793i
\(203\) −5.61646 −0.394198
\(204\) −4.08960 7.08339i −0.286329 0.495936i
\(205\) −10.7278 + 14.8125i −0.749262 + 1.03455i
\(206\) −7.73853 4.46784i −0.539169 0.311289i
\(207\) 2.91228i 0.202417i
\(208\) 3.57109 + 0.497314i 0.247610 + 0.0344825i
\(209\) 1.05161 0.0727416
\(210\) 1.13509 1.56729i 0.0783287 0.108153i
\(211\) 2.10991 3.65448i 0.145252 0.251585i −0.784215 0.620490i \(-0.786934\pi\)
0.929467 + 0.368905i \(0.120267\pi\)
\(212\) −2.15410 + 1.24367i −0.147945 + 0.0854158i
\(213\) −14.1655 −0.970604
\(214\) 0.745455 0.430389i 0.0509582 0.0294208i
\(215\) −8.37177 18.7272i −0.570950 1.27718i
\(216\) 1.00000i 0.0680414i
\(217\) 5.20933 3.00761i 0.353632 0.204170i
\(218\) −4.72274 2.72668i −0.319865 0.184674i
\(219\) −11.1462 6.43528i −0.753193 0.434856i
\(220\) −0.388909 0.0402827i −0.0262202 0.00271586i
\(221\) 23.2616 + 18.1270i 1.56474 + 1.21935i
\(222\) 1.75915i 0.118066i
\(223\) −3.47638 + 6.02126i −0.232795 + 0.403214i −0.958630 0.284656i \(-0.908121\pi\)
0.725834 + 0.687870i \(0.241454\pi\)
\(224\) 0.432713 0.749482i 0.0289119 0.0500769i
\(225\) −1.55943 4.75060i −0.103962 0.316707i
\(226\) 11.7821i 0.783735i
\(227\) −1.44823 2.50840i −0.0961221 0.166488i 0.813954 0.580929i \(-0.197311\pi\)
−0.910076 + 0.414441i \(0.863977\pi\)
\(228\) 3.00709 + 5.20843i 0.199149 + 0.344937i
\(229\) 7.88800i 0.521254i −0.965440 0.260627i \(-0.916071\pi\)
0.965440 0.260627i \(-0.0839293\pi\)
\(230\) 2.65766 + 5.94505i 0.175241 + 0.392005i
\(231\) −0.0756625 + 0.131051i −0.00497823 + 0.00862254i
\(232\) −3.24491 + 5.62035i −0.213039 + 0.368994i
\(233\) 1.42749i 0.0935181i 0.998906 + 0.0467590i \(0.0148893\pi\)
−0.998906 + 0.0467590i \(0.985111\pi\)
\(234\) −1.35486 3.34131i −0.0885699 0.218428i
\(235\) 2.74197 26.4723i 0.178866 1.72686i
\(236\) 6.09393 + 3.51833i 0.396681 + 0.229024i
\(237\) −8.21824 4.74480i −0.533832 0.308208i
\(238\) 6.13015 3.53925i 0.397359 0.229415i
\(239\) 10.9084i 0.705604i 0.935698 + 0.352802i \(0.114771\pi\)
−0.935698 + 0.352802i \(0.885229\pi\)
\(240\) −0.912572 2.04138i −0.0589063 0.131770i
\(241\) −25.4317 + 14.6830i −1.63820 + 0.945816i −0.656749 + 0.754109i \(0.728069\pi\)
−0.981452 + 0.191707i \(0.938598\pi\)
\(242\) −10.9694 −0.705141
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 3.98695 6.90559i 0.255238 0.442085i
\(245\) −11.3206 8.19884i −0.723248 0.523805i
\(246\) 8.17919 0.521486
\(247\) −17.1043 13.3288i −1.08832 0.848091i
\(248\) 6.95057i 0.441362i
\(249\) 0.120848 + 0.0697718i 0.00765845 + 0.00442161i
\(250\) 7.51864 + 8.27466i 0.475521 + 0.523336i
\(251\) 8.94708 + 15.4968i 0.564735 + 0.978150i 0.997074 + 0.0764387i \(0.0243549\pi\)
−0.432339 + 0.901711i \(0.642312\pi\)
\(252\) −0.865427 −0.0545168
\(253\) −0.254615 0.441005i −0.0160075 0.0277258i
\(254\) −6.01228 + 3.47119i −0.377244 + 0.217802i
\(255\) 1.88430 18.1919i 0.117999 1.13922i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 10.5472 + 6.08945i 0.657918 + 0.379849i 0.791483 0.611191i \(-0.209309\pi\)
−0.133565 + 0.991040i \(0.542642\pi\)
\(258\) −4.58691 + 7.94476i −0.285568 + 0.494619i
\(259\) −1.52241 −0.0945981
\(260\) 5.81496 + 5.58446i 0.360629 + 0.346334i
\(261\) 6.48982 0.401710
\(262\) 1.13567 1.96703i 0.0701616 0.121524i
\(263\) 18.3309 + 10.5834i 1.13033 + 0.652598i 0.944019 0.329892i \(-0.107012\pi\)
0.186314 + 0.982490i \(0.440346\pi\)
\(264\) 0.0874279 + 0.151430i 0.00538082 + 0.00931985i
\(265\) −5.53228 0.573027i −0.339845 0.0352008i
\(266\) −4.50751 + 2.60241i −0.276373 + 0.159564i
\(267\) 6.56966 + 11.3790i 0.402056 + 0.696382i
\(268\) 2.73532 0.167086
\(269\) −6.04371 10.4680i −0.368492 0.638246i 0.620838 0.783939i \(-0.286792\pi\)
−0.989330 + 0.145692i \(0.953459\pi\)
\(270\) −1.31160 + 1.81100i −0.0798212 + 0.110214i
\(271\) −12.7275 7.34824i −0.773142 0.446374i 0.0608525 0.998147i \(-0.480618\pi\)
−0.833994 + 0.551773i \(0.813951\pi\)
\(272\) 8.17919i 0.495936i
\(273\) 2.89166 1.17253i 0.175011 0.0709648i
\(274\) −7.37617 −0.445611
\(275\) −0.651479 0.583044i −0.0392856 0.0351588i
\(276\) 1.45614 2.52211i 0.0876493 0.151813i
\(277\) 17.0717 9.85638i 1.02574 0.592212i 0.109980 0.993934i \(-0.464921\pi\)
0.915762 + 0.401722i \(0.131588\pi\)
\(278\) 0.820759 0.0492259
\(279\) −6.01937 + 3.47529i −0.360370 + 0.208060i
\(280\) 1.76666 0.789764i 0.105578 0.0471975i
\(281\) 9.93073i 0.592418i −0.955123 0.296209i \(-0.904278\pi\)
0.955123 0.296209i \(-0.0957225\pi\)
\(282\) −10.3075 + 5.95105i −0.613804 + 0.354380i
\(283\) −10.0790 5.81912i −0.599135 0.345911i 0.169566 0.985519i \(-0.445763\pi\)
−0.768701 + 0.639608i \(0.779097\pi\)
\(284\) −12.2677 7.08275i −0.727953 0.420284i
\(285\) −1.38553 + 13.3765i −0.0820716 + 0.792358i
\(286\) −0.497290 0.387521i −0.0294053 0.0229146i
\(287\) 7.07849i 0.417830i
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) 24.9496 43.2139i 1.46762 2.54200i
\(290\) −13.2482 + 5.92243i −0.777958 + 0.347777i
\(291\) 8.64822i 0.506967i
\(292\) −6.43528 11.1462i −0.376596 0.652284i
\(293\) −6.57636 11.3906i −0.384195 0.665445i 0.607462 0.794349i \(-0.292188\pi\)
−0.991657 + 0.128903i \(0.958854\pi\)
\(294\) 6.25104i 0.364568i
\(295\) 6.42147 + 14.3645i 0.373872 + 0.836332i
\(296\) −0.879573 + 1.52347i −0.0511241 + 0.0885496i
\(297\) 0.0874279 0.151430i 0.00507308 0.00878684i
\(298\) 10.2857i 0.595834i
\(299\) −1.44832 + 10.4000i −0.0837583 + 0.601448i
\(300\) 1.02479 4.89385i 0.0591665 0.282547i
\(301\) −6.87561 3.96963i −0.396304 0.228806i
\(302\) 10.1688 + 5.87096i 0.585149 + 0.337836i
\(303\) 9.15001 5.28276i 0.525654 0.303487i
\(304\) 6.01418i 0.344937i
\(305\) 16.2777 7.27675i 0.932059 0.416666i
\(306\) −7.08339 + 4.08960i −0.404930 + 0.233787i
\(307\) 14.8609 0.848155 0.424077 0.905626i \(-0.360598\pi\)
0.424077 + 0.905626i \(0.360598\pi\)
\(308\) −0.131051 + 0.0756625i −0.00746734 + 0.00431127i
\(309\) −4.46784 + 7.73853i −0.254167 + 0.440230i
\(310\) 9.11635 12.5875i 0.517774 0.714920i
\(311\) 9.17666 0.520361 0.260180 0.965560i \(-0.416218\pi\)
0.260180 + 0.965560i \(0.416218\pi\)
\(312\) 0.497314 3.57109i 0.0281548 0.202173i
\(313\) 7.43905i 0.420480i 0.977650 + 0.210240i \(0.0674245\pi\)
−0.977650 + 0.210240i \(0.932576\pi\)
\(314\) 5.85463 + 3.38017i 0.330396 + 0.190754i
\(315\) −1.56729 1.13509i −0.0883066 0.0639551i
\(316\) −4.74480 8.21824i −0.266916 0.462312i
\(317\) 25.7510 1.44632 0.723161 0.690679i \(-0.242688\pi\)
0.723161 + 0.690679i \(0.242688\pi\)
\(318\) 1.24367 + 2.15410i 0.0697417 + 0.120796i
\(319\) 0.982750 0.567391i 0.0550235 0.0317678i
\(320\) 0.230377 2.22417i 0.0128785 0.124335i
\(321\) −0.430389 0.745455i −0.0240219 0.0416072i
\(322\) 2.18270 + 1.26018i 0.121637 + 0.0702272i
\(323\) −24.5955 + 42.6007i −1.36853 + 2.37037i
\(324\) 1.00000 0.0555556
\(325\) 3.20632 + 17.7403i 0.177855 + 0.984057i
\(326\) 1.42749 0.0790614
\(327\) −2.72668 + 4.72274i −0.150786 + 0.261168i
\(328\) 7.08339 + 4.08960i 0.391115 + 0.225810i
\(329\) −5.15020 8.92040i −0.283940 0.491798i
\(330\) −0.0402827 + 0.388909i −0.00221749 + 0.0214087i
\(331\) 5.63295 3.25219i 0.309615 0.178756i −0.337139 0.941455i \(-0.609459\pi\)
0.646754 + 0.762699i \(0.276126\pi\)
\(332\) 0.0697718 + 0.120848i 0.00382922 + 0.00663241i
\(333\) 1.75915 0.0964006
\(334\) 2.93528 + 5.08406i 0.160612 + 0.278187i
\(335\) 4.95366 + 3.58764i 0.270647 + 0.196014i
\(336\) −0.749482 0.432713i −0.0408876 0.0236065i
\(337\) 18.6696i 1.01700i 0.861063 + 0.508498i \(0.169799\pi\)
−0.861063 + 0.508498i \(0.830201\pi\)
\(338\) 3.17664 + 12.6059i 0.172786 + 0.685671i
\(339\) −11.7821 −0.639917
\(340\) 10.7278 14.8125i 0.581797 0.803321i
\(341\) −0.607674 + 1.05252i −0.0329074 + 0.0569973i
\(342\) 5.20843 3.00709i 0.281640 0.162605i
\(343\) −11.4678 −0.619203
\(344\) −7.94476 + 4.58691i −0.428353 + 0.247310i
\(345\) 5.94505 2.65766i 0.320071 0.143084i
\(346\) 13.7028i 0.736665i
\(347\) 24.6009 14.2033i 1.32064 0.762474i 0.336813 0.941572i \(-0.390651\pi\)
0.983831 + 0.179098i \(0.0573178\pi\)
\(348\) 5.62035 + 3.24491i 0.301282 + 0.173945i
\(349\) 1.93797 + 1.11889i 0.103737 + 0.0598926i 0.550971 0.834524i \(-0.314258\pi\)
−0.447234 + 0.894417i \(0.647591\pi\)
\(350\) 4.23527 + 0.886885i 0.226385 + 0.0474060i
\(351\) −3.34131 + 1.35486i −0.178346 + 0.0723170i
\(352\) 0.174856i 0.00931985i
\(353\) −0.813287 + 1.40866i −0.0432869 + 0.0749751i −0.886857 0.462044i \(-0.847116\pi\)
0.843570 + 0.537019i \(0.180450\pi\)
\(354\) 3.51833 6.09393i 0.186997 0.323889i
\(355\) −12.9270 28.9171i −0.686096 1.53476i
\(356\) 13.1393i 0.696382i
\(357\) −3.53925 6.13015i −0.187317 0.324442i
\(358\) 7.09191 + 12.2835i 0.374819 + 0.649206i
\(359\) 34.4613i 1.81880i 0.415923 + 0.909400i \(0.363459\pi\)
−0.415923 + 0.909400i \(0.636541\pi\)
\(360\) −2.04138 + 0.912572i −0.107590 + 0.0480968i
\(361\) 8.58515 14.8699i 0.451850 0.782627i
\(362\) 6.88641 11.9276i 0.361942 0.626901i
\(363\) 10.9694i 0.575746i
\(364\) 3.09052 + 0.430389i 0.161987 + 0.0225585i
\(365\) 2.96508 28.6263i 0.155199 1.49837i
\(366\) −6.90559 3.98695i −0.360961 0.208401i
\(367\) −12.6735 7.31703i −0.661550 0.381946i 0.131317 0.991340i \(-0.458079\pi\)
−0.792867 + 0.609394i \(0.791413\pi\)
\(368\) 2.52211 1.45614i 0.131474 0.0759065i
\(369\) 8.17919i 0.425792i
\(370\) −3.59108 + 1.60535i −0.186691 + 0.0834580i
\(371\) −1.86422 + 1.07631i −0.0967855 + 0.0558791i
\(372\) −6.95057 −0.360370
\(373\) 19.1166 11.0370i 0.989819 0.571472i 0.0845988 0.996415i \(-0.473039\pi\)
0.905220 + 0.424943i \(0.139706\pi\)
\(374\) −0.715090 + 1.23857i −0.0369764 + 0.0640450i
\(375\) 8.27466 7.51864i 0.427302 0.388261i
\(376\) −11.9021 −0.613804
\(377\) −23.1757 3.22747i −1.19361 0.166223i
\(378\) 0.865427i 0.0445128i
\(379\) 12.0573 + 6.96127i 0.619341 + 0.357577i 0.776612 0.629979i \(-0.216936\pi\)
−0.157272 + 0.987555i \(0.550270\pi\)
\(380\) −7.88817 + 10.8917i −0.404655 + 0.558730i
\(381\) 3.47119 + 6.01228i 0.177834 + 0.308018i
\(382\) 5.57642 0.285314
\(383\) 12.3044 + 21.3119i 0.628728 + 1.08899i 0.987807 + 0.155681i \(0.0497573\pi\)
−0.359080 + 0.933307i \(0.616909\pi\)
\(384\) −0.866025 + 0.500000i −0.0441942 + 0.0255155i
\(385\) −0.336572 0.0348618i −0.0171533 0.00177672i
\(386\) −0.110405 0.191227i −0.00561946 0.00973319i
\(387\) 7.94476 + 4.58691i 0.403855 + 0.233166i
\(388\) 4.32411 7.48957i 0.219523 0.380226i
\(389\) 5.60980 0.284428 0.142214 0.989836i \(-0.454578\pi\)
0.142214 + 0.989836i \(0.454578\pi\)
\(390\) 5.58446 5.81496i 0.282780 0.294452i
\(391\) 23.8201 1.20463
\(392\) −3.12552 + 5.41356i −0.157863 + 0.273426i
\(393\) −1.96703 1.13567i −0.0992235 0.0572867i
\(394\) 0.861905 + 1.49286i 0.0434222 + 0.0752094i
\(395\) 2.18619 21.1065i 0.109999 1.06198i
\(396\) 0.151430 0.0874279i 0.00760962 0.00439342i
\(397\) 1.18438 + 2.05141i 0.0594424 + 0.102957i 0.894215 0.447637i \(-0.147734\pi\)
−0.834773 + 0.550595i \(0.814401\pi\)
\(398\) −7.95853 −0.398925
\(399\) 2.60241 + 4.50751i 0.130284 + 0.225658i
\(400\) 3.33442 3.72580i 0.166721 0.186290i
\(401\) 14.2942 + 8.25276i 0.713818 + 0.412123i 0.812473 0.582998i \(-0.198121\pi\)
−0.0986548 + 0.995122i \(0.531454\pi\)
\(402\) 2.73532i 0.136425i
\(403\) 23.2240 9.41704i 1.15687 0.469096i
\(404\) 10.5655 0.525654
\(405\) 1.81100 + 1.31160i 0.0899892 + 0.0651738i
\(406\) −2.80823 + 4.86400i −0.139370 + 0.241396i
\(407\) 0.266387 0.153798i 0.0132043 0.00762351i
\(408\) −8.17919 −0.404930
\(409\) 28.8448 16.6535i 1.42628 0.823464i 0.429457 0.903087i \(-0.358705\pi\)
0.996825 + 0.0796230i \(0.0253717\pi\)
\(410\) 7.46410 + 16.6968i 0.368626 + 0.824596i
\(411\) 7.37617i 0.363840i
\(412\) −7.73853 + 4.46784i −0.381250 + 0.220115i
\(413\) 5.27385 + 3.04486i 0.259509 + 0.149828i
\(414\) −2.52211 1.45614i −0.123955 0.0715654i
\(415\) −0.0321476 + 0.310368i −0.00157806 + 0.0152354i
\(416\) 2.21623 2.84400i 0.108660 0.139438i
\(417\) 0.820759i 0.0401927i
\(418\) 0.525807 0.910724i 0.0257181 0.0445450i
\(419\) 15.1303 26.2065i 0.739164 1.28027i −0.213708 0.976898i \(-0.568554\pi\)
0.952872 0.303372i \(-0.0981126\pi\)
\(420\) −0.789764 1.76666i −0.0385366 0.0862042i
\(421\) 40.2235i 1.96038i 0.198070 + 0.980188i \(0.436533\pi\)
−0.198070 + 0.980188i \(0.563467\pi\)
\(422\) −2.10991 3.65448i −0.102709 0.177897i
\(423\) 5.95105 + 10.3075i 0.289350 + 0.501169i
\(424\) 2.48735i 0.120796i
\(425\) 38.8561 12.7549i 1.88480 0.618702i
\(426\) −7.08275 + 12.2677i −0.343160 + 0.594371i
\(427\) 3.45041 5.97629i 0.166977 0.289213i
\(428\) 0.860777i 0.0416072i
\(429\) −0.387521 + 0.497290i −0.0187097 + 0.0240094i
\(430\) −20.4041 2.11344i −0.983974 0.101919i
\(431\) −28.1980 16.2801i −1.35825 0.784185i −0.368860 0.929485i \(-0.620252\pi\)
−0.989388 + 0.145300i \(0.953585\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) −26.6153 + 15.3663i −1.27905 + 0.738460i −0.976674 0.214729i \(-0.931113\pi\)
−0.302376 + 0.953189i \(0.597780\pi\)
\(434\) 6.01521i 0.288739i
\(435\) 5.92243 + 13.2482i 0.283959 + 0.635200i
\(436\) −4.72274 + 2.72668i −0.226178 + 0.130584i
\(437\) −17.5150 −0.837854
\(438\) −11.1462 + 6.43528i −0.532588 + 0.307490i
\(439\) 3.26422 5.65380i 0.155793 0.269841i −0.777555 0.628815i \(-0.783540\pi\)
0.933347 + 0.358974i \(0.116873\pi\)
\(440\) −0.229340 + 0.316664i −0.0109334 + 0.0150963i
\(441\) 6.25104 0.297668
\(442\) 27.3292 11.0816i 1.29992 0.527100i
\(443\) 30.3111i 1.44012i 0.693911 + 0.720061i \(0.255886\pi\)
−0.693911 + 0.720061i \(0.744114\pi\)
\(444\) 1.52347 + 0.879573i 0.0723005 + 0.0417427i
\(445\) −17.2335 + 23.7953i −0.816945 + 1.12800i
\(446\) 3.47638 + 6.02126i 0.164611 + 0.285115i
\(447\) 10.2857 0.486496
\(448\) −0.432713 0.749482i −0.0204438 0.0354097i
\(449\) 13.8034 7.96938i 0.651421 0.376098i −0.137579 0.990491i \(-0.543932\pi\)
0.789001 + 0.614392i \(0.210599\pi\)
\(450\) −4.89385 1.02479i −0.230698 0.0483093i
\(451\) −0.715090 1.23857i −0.0336723 0.0583221i
\(452\) −10.2036 5.89106i −0.479938 0.277092i
\(453\) 5.87096 10.1688i 0.275842 0.477772i
\(454\) −2.89645 −0.135937
\(455\) 5.03242 + 4.83294i 0.235924 + 0.226572i
\(456\) 6.01418 0.281640
\(457\) −9.90436 + 17.1548i −0.463306 + 0.802470i −0.999123 0.0418642i \(-0.986670\pi\)
0.535817 + 0.844334i \(0.320004\pi\)
\(458\) −6.83121 3.94400i −0.319202 0.184291i
\(459\) 4.08960 + 7.08339i 0.190886 + 0.330624i
\(460\) 6.47740 + 0.670922i 0.302010 + 0.0312819i
\(461\) −11.5898 + 6.69139i −0.539792 + 0.311649i −0.744995 0.667070i \(-0.767548\pi\)
0.205202 + 0.978720i \(0.434215\pi\)
\(462\) 0.0756625 + 0.131051i 0.00352014 + 0.00609706i
\(463\) −42.3599 −1.96863 −0.984316 0.176412i \(-0.943551\pi\)
−0.984316 + 0.176412i \(0.943551\pi\)
\(464\) 3.24491 + 5.62035i 0.150641 + 0.260918i
\(465\) −12.5875 9.11635i −0.583730 0.422760i
\(466\) 1.23624 + 0.713746i 0.0572679 + 0.0330636i
\(467\) 33.4593i 1.54831i −0.632996 0.774155i \(-0.718175\pi\)
0.632996 0.774155i \(-0.281825\pi\)
\(468\) −3.57109 0.497314i −0.165074 0.0229883i
\(469\) 2.36722 0.109308
\(470\) −21.5547 15.6107i −0.994243 0.720070i
\(471\) 3.38017 5.85463i 0.155750 0.269767i
\(472\) 6.09393 3.51833i 0.280496 0.161944i
\(473\) 1.60410 0.0737564
\(474\) −8.21824 + 4.74480i −0.377476 + 0.217936i
\(475\) −28.5709 + 9.37868i −1.31092 + 0.430323i
\(476\) 7.07849i 0.324442i
\(477\) 2.15410 1.24367i 0.0986297 0.0569439i
\(478\) 9.44692 + 5.45418i 0.432092 + 0.249469i
\(479\) −19.3387 11.1652i −0.883606 0.510150i −0.0117600 0.999931i \(-0.503743\pi\)
−0.871846 + 0.489781i \(0.837077\pi\)
\(480\) −2.22417 0.230377i −0.101519 0.0105152i
\(481\) −6.28207 0.874847i −0.286438 0.0398896i
\(482\) 29.3660i 1.33759i
\(483\) 1.26018 2.18270i 0.0573403 0.0993163i
\(484\) −5.48471 + 9.49980i −0.249305 + 0.431809i
\(485\) 17.6543 7.89212i 0.801638 0.358363i
\(486\) 1.00000i 0.0453609i
\(487\) 14.3750 + 24.8982i 0.651392 + 1.12824i 0.982785 + 0.184751i \(0.0591479\pi\)
−0.331393 + 0.943493i \(0.607519\pi\)
\(488\) −3.98695 6.90559i −0.180481 0.312602i
\(489\) 1.42749i 0.0645534i
\(490\) −12.7607 + 5.70452i −0.576470 + 0.257704i
\(491\) 8.02546 13.9005i 0.362184 0.627321i −0.626136 0.779714i \(-0.715364\pi\)
0.988320 + 0.152393i \(0.0486978\pi\)
\(492\) 4.08960 7.08339i 0.184373 0.319344i
\(493\) 53.0815i 2.39067i
\(494\) −20.0952 + 8.14836i −0.904127 + 0.366612i
\(495\) 0.388909 + 0.0402827i 0.0174802 + 0.00181057i
\(496\) −6.01937 3.47529i −0.270278 0.156045i
\(497\) −10.6168 6.12960i −0.476228 0.274950i
\(498\) 0.120848 0.0697718i 0.00541534 0.00312655i
\(499\) 33.2509i 1.48851i 0.667894 + 0.744256i \(0.267196\pi\)
−0.667894 + 0.744256i \(0.732804\pi\)
\(500\) 10.9254 2.37400i 0.488598 0.106169i
\(501\) 5.08406 2.93528i 0.227139 0.131139i
\(502\) 17.8942 0.798656
\(503\) 21.7736 12.5710i 0.970838 0.560514i 0.0713466 0.997452i \(-0.477270\pi\)
0.899492 + 0.436938i \(0.143937\pi\)
\(504\) −0.432713 + 0.749482i −0.0192746 + 0.0333846i
\(505\) 19.1341 + 13.8577i 0.851458 + 0.616660i
\(506\) −0.509229 −0.0226380
\(507\) 12.6059 3.17664i 0.559848 0.141080i
\(508\) 6.94238i 0.308018i
\(509\) 22.8809 + 13.2103i 1.01418 + 0.585536i 0.912412 0.409272i \(-0.134217\pi\)
0.101766 + 0.994808i \(0.467551\pi\)
\(510\) −14.8125 10.7278i −0.655909 0.475035i
\(511\) −5.56927 9.64625i −0.246370 0.426725i
\(512\) −1.00000 −0.0441942
\(513\) −3.00709 5.20843i −0.132766 0.229958i
\(514\) 10.5472 6.08945i 0.465219 0.268594i
\(515\) −19.8745 2.05858i −0.875774 0.0907117i
\(516\) 4.58691 + 7.94476i 0.201927 + 0.349749i
\(517\) 1.80233 + 1.04058i 0.0792664 + 0.0457645i
\(518\) −0.761206 + 1.31845i −0.0334455 + 0.0579293i
\(519\) 13.7028 0.601484
\(520\) 7.74377 2.24367i 0.339587 0.0983916i
\(521\) −22.4462 −0.983384 −0.491692 0.870769i \(-0.663621\pi\)
−0.491692 + 0.870769i \(0.663621\pi\)
\(522\) 3.24491 5.62035i 0.142026 0.245996i
\(523\) −25.1815 14.5385i −1.10111 0.635726i −0.164598 0.986361i \(-0.552633\pi\)
−0.936512 + 0.350635i \(0.885966\pi\)
\(524\) −1.13567 1.96703i −0.0496118 0.0859301i
\(525\) 0.886885 4.23527i 0.0387068 0.184842i
\(526\) 18.3309 10.5834i 0.799266 0.461456i
\(527\) −28.4250 49.2336i −1.23821 2.14465i
\(528\) 0.174856 0.00760962
\(529\) −7.25931 12.5735i −0.315622 0.546674i
\(530\) −3.26239 + 4.50458i −0.141709 + 0.195666i
\(531\) −6.09393 3.51833i −0.264454 0.152683i
\(532\) 5.20483i 0.225658i
\(533\) −4.06762 + 29.2086i −0.176188 + 1.26517i
\(534\) 13.1393 0.568594
\(535\) 1.12899 1.55887i 0.0488106 0.0673956i
\(536\) 1.36766 2.36886i 0.0590739 0.102319i
\(537\) 12.2835 7.09191i 0.530074 0.306038i
\(538\) −12.0874 −0.521126
\(539\) 0.946592 0.546515i 0.0407726 0.0235401i
\(540\) 0.912572 + 2.04138i 0.0392708 + 0.0878468i
\(541\) 8.17282i 0.351377i −0.984446 0.175688i \(-0.943785\pi\)
0.984446 0.175688i \(-0.0562151\pi\)
\(542\) −12.7275 + 7.34824i −0.546694 + 0.315634i
\(543\) −11.9276 6.88641i −0.511863 0.295524i
\(544\) −7.08339 4.08960i −0.303698 0.175340i
\(545\) −12.1292 1.25633i −0.519557 0.0538152i
\(546\) 0.430389 3.09052i 0.0184189 0.132262i
\(547\) 40.7393i 1.74188i −0.491385 0.870942i \(-0.663509\pi\)
0.491385 0.870942i \(-0.336491\pi\)
\(548\) −3.68809 + 6.38795i −0.157547 + 0.272880i
\(549\) −3.98695 + 6.90559i −0.170159 + 0.294724i
\(550\) −0.830670 + 0.272675i −0.0354199 + 0.0116269i
\(551\) 39.0309i 1.66277i
\(552\) −1.45614 2.52211i −0.0619774 0.107348i
\(553\) −4.10628 7.11229i −0.174617 0.302445i
\(554\) 19.7128i 0.837515i
\(555\) 1.60535 + 3.59108i 0.0681432 + 0.152433i
\(556\) 0.410380 0.710798i 0.0174040 0.0301446i
\(557\) 0.458421 0.794008i 0.0194239 0.0336432i −0.856150 0.516727i \(-0.827150\pi\)
0.875574 + 0.483084i \(0.160483\pi\)
\(558\) 6.95057i 0.294241i
\(559\) −26.0903 20.3313i −1.10350 0.859922i
\(560\) 0.199374 1.92486i 0.00842511 0.0813400i
\(561\) 1.23857 + 0.715090i 0.0522925 + 0.0301911i
\(562\) −8.60027 4.96537i −0.362780 0.209451i
\(563\) 10.9632 6.32961i 0.462044 0.266761i −0.250859 0.968024i \(-0.580713\pi\)
0.712903 + 0.701262i \(0.247380\pi\)
\(564\) 11.9021i 0.501169i
\(565\) −10.7520 24.0517i −0.452342 1.01186i
\(566\) −10.0790 + 5.81912i −0.423652 + 0.244596i
\(567\) 0.865427 0.0363445
\(568\) −12.2677 + 7.08275i −0.514741 + 0.297186i
\(569\) 12.2559 21.2279i 0.513795 0.889918i −0.486077 0.873916i \(-0.661573\pi\)
0.999872 0.0160026i \(-0.00509402\pi\)
\(570\) 10.8917 + 7.88817i 0.456201 + 0.330399i
\(571\) −11.1443 −0.466376 −0.233188 0.972432i \(-0.574916\pi\)
−0.233188 + 0.972432i \(0.574916\pi\)
\(572\) −0.584248 + 0.236905i −0.0244286 + 0.00990549i
\(573\) 5.57642i 0.232958i
\(574\) 6.13015 + 3.53925i 0.255868 + 0.147725i
\(575\) 10.8506 + 9.71078i 0.452501 + 0.404967i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −23.8325 −0.992161 −0.496081 0.868276i \(-0.665228\pi\)
−0.496081 + 0.868276i \(0.665228\pi\)
\(578\) −24.9496 43.2139i −1.03777 1.79746i
\(579\) −0.191227 + 0.110405i −0.00794712 + 0.00458827i
\(580\) −1.49510 + 14.4344i −0.0620808 + 0.599358i
\(581\) 0.0603824 + 0.104585i 0.00250508 + 0.00433893i
\(582\) −7.48957 4.32411i −0.310453 0.179240i
\(583\) 0.217463 0.376658i 0.00900642 0.0155996i
\(584\) −12.8706 −0.532588
\(585\) −5.81496 5.58446i −0.240419 0.230889i
\(586\) −13.1527 −0.543334
\(587\) −18.6811 + 32.3566i −0.771051 + 1.33550i 0.165937 + 0.986136i \(0.446935\pi\)
−0.936988 + 0.349362i \(0.886398\pi\)
\(588\) 5.41356 + 3.12552i 0.223251 + 0.128894i
\(589\) 20.9010 + 36.2016i 0.861210 + 1.49166i
\(590\) 15.6507 + 1.62109i 0.644331 + 0.0667391i
\(591\) 1.49286 0.861905i 0.0614082 0.0354540i
\(592\) 0.879573 + 1.52347i 0.0361502 + 0.0626140i
\(593\) −6.46136 −0.265336 −0.132668 0.991161i \(-0.542354\pi\)
−0.132668 + 0.991161i \(0.542354\pi\)
\(594\) −0.0874279 0.151430i −0.00358721 0.00621323i
\(595\) 9.28413 12.8191i 0.380612 0.525533i
\(596\) 8.90766 + 5.14284i 0.364872 + 0.210659i
\(597\) 7.95853i 0.325721i
\(598\) 8.28251 + 6.45428i 0.338697 + 0.263935i
\(599\) −38.5057 −1.57330 −0.786651 0.617398i \(-0.788187\pi\)
−0.786651 + 0.617398i \(0.788187\pi\)
\(600\) −3.72580 3.33442i −0.152105 0.136127i
\(601\) −0.371169 + 0.642883i −0.0151403 + 0.0262237i −0.873496 0.486831i \(-0.838153\pi\)
0.858356 + 0.513055i \(0.171486\pi\)
\(602\) −6.87561 + 3.96963i −0.280229 + 0.161790i
\(603\) −2.73532 −0.111391
\(604\) 10.1688 5.87096i 0.413763 0.238886i
\(605\) −22.3927 + 10.0104i −0.910393 + 0.406980i
\(606\) 10.5655i 0.429195i
\(607\) −25.5500 + 14.7513i −1.03704 + 0.598736i −0.918994 0.394272i \(-0.870997\pi\)
−0.118047 + 0.993008i \(0.537663\pi\)
\(608\) 5.20843 + 3.00709i 0.211230 + 0.121954i
\(609\) 4.86400 + 2.80823i 0.197099 + 0.113795i
\(610\) 1.83700 17.7353i 0.0743780 0.718081i
\(611\) −16.1257 39.7686i −0.652374 1.60887i
\(612\) 8.17919i 0.330624i
\(613\) 6.86720 11.8943i 0.277364 0.480408i −0.693365 0.720587i \(-0.743873\pi\)
0.970729 + 0.240178i \(0.0772059\pi\)
\(614\) 7.43044 12.8699i 0.299868 0.519387i
\(615\) 16.6968 7.46410i 0.673280 0.300982i
\(616\) 0.151325i 0.00609706i
\(617\) −21.4394 37.1342i −0.863119 1.49497i −0.868902 0.494983i \(-0.835174\pi\)
0.00578297 0.999983i \(-0.498159\pi\)
\(618\) 4.46784 + 7.73853i 0.179723 + 0.311289i
\(619\) 30.0054i 1.20602i 0.797734 + 0.603010i \(0.206032\pi\)
−0.797734 + 0.603010i \(0.793968\pi\)
\(620\) −6.34290 14.1887i −0.254737 0.569833i
\(621\) −1.45614 + 2.52211i −0.0584329 + 0.101209i
\(622\) 4.58833 7.94722i 0.183975 0.318655i
\(623\) 11.3711i 0.455574i
\(624\) −2.84400 2.21623i −0.113851 0.0887202i
\(625\) 22.8996 + 10.0304i 0.915984 + 0.401215i
\(626\) 6.44240 + 3.71952i 0.257490 + 0.148662i
\(627\) −0.910724 0.525807i −0.0363708 0.0209987i
\(628\) 5.85463 3.38017i 0.233625 0.134884i
\(629\) 14.3884i 0.573703i
\(630\) −1.76666 + 0.789764i −0.0703855 + 0.0314650i
\(631\) 7.73137 4.46371i 0.307781 0.177697i −0.338152 0.941091i \(-0.609802\pi\)
0.645933 + 0.763394i \(0.276468\pi\)
\(632\) −9.48961 −0.377476
\(633\) −3.65448 + 2.10991i −0.145252 + 0.0838616i
\(634\) 12.8755 22.3011i 0.511352 0.885688i
\(635\) −9.10560 + 12.5726i −0.361345 + 0.498930i
\(636\) 2.48735 0.0986297
\(637\) −22.3230 3.10873i −0.884470 0.123172i
\(638\) 1.13478i 0.0449265i
\(639\) 12.2677 + 7.08275i 0.485302 + 0.280189i
\(640\) −1.81100 1.31160i −0.0715860 0.0518454i
\(641\) −11.9079 20.6250i −0.470332 0.814639i 0.529092 0.848564i \(-0.322532\pi\)
−0.999424 + 0.0339254i \(0.989199\pi\)
\(642\) −0.860777 −0.0339722
\(643\) 4.79374 + 8.30300i 0.189047 + 0.327439i 0.944933 0.327265i \(-0.106127\pi\)
−0.755886 + 0.654703i \(0.772794\pi\)
\(644\) 2.18270 1.26018i 0.0860104 0.0496581i
\(645\) −2.11344 + 20.4041i −0.0832165 + 0.803411i
\(646\) 24.5955 + 42.6007i 0.967699 + 1.67610i
\(647\) 39.2219 + 22.6448i 1.54197 + 0.890259i 0.998714 + 0.0506940i \(0.0161433\pi\)
0.543259 + 0.839565i \(0.317190\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −1.23040 −0.0482975
\(650\) 16.9667 + 6.09341i 0.665490 + 0.239003i
\(651\) −6.01521 −0.235755
\(652\) 0.713746 1.23624i 0.0279524 0.0484150i
\(653\) −8.00988 4.62451i −0.313451 0.180971i 0.335019 0.942211i \(-0.391257\pi\)
−0.648470 + 0.761241i \(0.724591\pi\)
\(654\) 2.72668 + 4.72274i 0.106622 + 0.184674i
\(655\) 0.523262 5.05182i 0.0204455 0.197391i
\(656\) 7.08339 4.08960i 0.276560 0.159672i
\(657\) 6.43528 + 11.1462i 0.251064 + 0.434856i
\(658\) −10.3004 −0.401551
\(659\) −11.0666 19.1679i −0.431093 0.746676i 0.565874 0.824491i \(-0.308539\pi\)
−0.996968 + 0.0778159i \(0.975205\pi\)
\(660\) 0.316664 + 0.229340i 0.0123261 + 0.00892706i
\(661\) 8.75083 + 5.05229i 0.340368 + 0.196511i 0.660435 0.750884i \(-0.270372\pi\)
−0.320067 + 0.947395i \(0.603705\pi\)
\(662\) 6.50437i 0.252800i
\(663\) −11.0816 27.3292i −0.430375 1.06138i
\(664\) 0.139544 0.00541534
\(665\) −6.82664 + 9.42594i −0.264726 + 0.365522i
\(666\) 0.879573 1.52347i 0.0340828 0.0590331i
\(667\) −16.3680 + 9.45008i −0.633772 + 0.365909i
\(668\) 5.87057 0.227139
\(669\) 6.02126 3.47638i 0.232795 0.134405i
\(670\) 5.58382 2.49618i 0.215722 0.0964358i
\(671\) 1.39428i 0.0538256i
\(672\) −0.749482 + 0.432713i −0.0289119 + 0.0166923i
\(673\) −11.6594 6.73157i −0.449437 0.259483i 0.258155 0.966103i \(-0.416885\pi\)
−0.707593 + 0.706621i \(0.750219\pi\)
\(674\) 16.1683 + 9.33479i 0.622781 + 0.359562i
\(675\) −1.02479 + 4.89385i −0.0394444 + 0.188364i
\(676\) 12.5054 + 3.55190i 0.480975 + 0.136612i
\(677\) 7.86444i 0.302255i 0.988514 + 0.151127i \(0.0482904\pi\)
−0.988514 + 0.151127i \(0.951710\pi\)
\(678\) −5.89106 + 10.2036i −0.226245 + 0.391868i
\(679\) 3.74220 6.48168i 0.143612 0.248744i
\(680\) −7.46410 16.6968i −0.286235 0.640293i
\(681\) 2.89645i 0.110992i
\(682\) 0.607674 + 1.05252i 0.0232690 + 0.0403032i
\(683\) −9.21246 15.9565i −0.352505 0.610557i 0.634183 0.773183i \(-0.281337\pi\)
−0.986688 + 0.162627i \(0.948003\pi\)
\(684\) 6.01418i 0.229958i
\(685\) −15.0575 + 6.73129i −0.575319 + 0.257189i
\(686\) −5.73390 + 9.93141i −0.218921 + 0.379183i
\(687\) −3.94400 + 6.83121i −0.150473 + 0.260627i
\(688\) 9.17382i 0.349749i
\(689\) −8.31100 + 3.37000i −0.316624 + 0.128387i
\(690\) 0.670922 6.47740i 0.0255416 0.246590i
\(691\) −20.5618 11.8714i −0.782208 0.451608i 0.0550042 0.998486i \(-0.482483\pi\)
−0.837212 + 0.546878i \(0.815816\pi\)
\(692\) 11.8669 + 6.85138i 0.451113 + 0.260450i
\(693\) 0.131051 0.0756625i 0.00497823 0.00287418i
\(694\) 28.4066i 1.07830i
\(695\) 1.67548 0.749002i 0.0635545 0.0284113i
\(696\) 5.62035 3.24491i 0.213039 0.122998i
\(697\) 66.8992 2.53399
\(698\) 1.93797 1.11889i 0.0733532 0.0423505i
\(699\) 0.713746 1.23624i 0.0269963 0.0467590i
\(700\) 2.88570 3.22441i 0.109069 0.121871i
\(701\) −6.52189 −0.246328 −0.123164 0.992386i \(-0.539304\pi\)
−0.123164 + 0.992386i \(0.539304\pi\)
\(702\) −0.497314 + 3.57109i −0.0187699 + 0.134782i
\(703\) 10.5798i 0.399025i
\(704\) 0.151430 + 0.0874279i 0.00570722 + 0.00329506i
\(705\) −15.6107 + 21.5547i −0.587935 + 0.811796i
\(706\) 0.813287 + 1.40866i 0.0306085 + 0.0530154i
\(707\) 9.14369 0.343884
\(708\) −3.51833 6.09393i −0.132227 0.229024i
\(709\) 27.5565 15.9098i 1.03491 0.597504i 0.116521 0.993188i \(-0.462826\pi\)
0.918387 + 0.395684i \(0.129493\pi\)
\(710\) −31.5065 3.26340i −1.18242 0.122473i
\(711\) 4.74480 + 8.21824i 0.177944 + 0.308208i
\(712\) 11.3790 + 6.56966i 0.426445 + 0.246208i
\(713\) 10.1210 17.5301i 0.379035 0.656507i
\(714\) −7.07849 −0.264906
\(715\) −1.36880 0.337263i −0.0511900 0.0126129i
\(716\) 14.1838 0.530074
\(717\) 5.45418 9.44692i 0.203690 0.352802i
\(718\) 29.8444 + 17.2307i 1.11378 + 0.643043i
\(719\) 11.6970 + 20.2597i 0.436223 + 0.755560i 0.997395 0.0721392i \(-0.0229826\pi\)
−0.561172 + 0.827699i \(0.689649\pi\)
\(720\) −0.230377 + 2.22417i −0.00858564 + 0.0828899i
\(721\) −6.69713 + 3.86659i −0.249414 + 0.143999i
\(722\) −8.58515 14.8699i −0.319506 0.553401i
\(723\) 29.3660 1.09213
\(724\) −6.88641 11.9276i −0.255931 0.443286i
\(725\) −21.6398 + 24.1798i −0.803682 + 0.898015i
\(726\) 9.49980 + 5.48471i 0.352571 + 0.203557i
\(727\) 36.0471i 1.33691i 0.743750 + 0.668457i \(0.233045\pi\)
−0.743750 + 0.668457i \(0.766955\pi\)
\(728\) 1.91799 2.46127i 0.0710853 0.0912208i
\(729\) −1.00000 −0.0370370
\(730\) −23.3086 16.8810i −0.862689 0.624794i
\(731\) −37.5172 + 64.9817i −1.38762 + 2.40344i
\(732\) −6.90559 + 3.98695i −0.255238 + 0.147362i
\(733\) 17.0888 0.631189 0.315594 0.948894i \(-0.397796\pi\)
0.315594 + 0.948894i \(0.397796\pi\)
\(734\) −12.6735 + 7.31703i −0.467787 + 0.270077i
\(735\) 5.70452 + 12.7607i 0.210414 + 0.470686i
\(736\) 2.91228i 0.107348i
\(737\) −0.414209 + 0.239143i −0.0152576 + 0.00880896i
\(738\) −7.08339 4.08960i −0.260743 0.150540i
\(739\) 33.4931 + 19.3373i 1.23206 + 0.711333i 0.967460 0.253024i \(-0.0814253\pi\)
0.264604 + 0.964357i \(0.414759\pi\)
\(740\) −0.405267 + 3.91264i −0.0148979 + 0.143831i
\(741\) 8.14836 + 20.0952i 0.299337 + 0.738217i
\(742\) 2.15262i 0.0790250i
\(743\) −0.225532 + 0.390632i −0.00827395 + 0.0143309i −0.870133 0.492817i \(-0.835967\pi\)
0.861859 + 0.507148i \(0.169300\pi\)
\(744\) −3.47529 + 6.01937i −0.127410 + 0.220681i
\(745\) 9.38643 + 20.9969i 0.343892 + 0.769268i
\(746\) 22.0739i 0.808184i
\(747\) −0.0697718 0.120848i −0.00255282 0.00442161i
\(748\) 0.715090 + 1.23857i 0.0261463 + 0.0452867i
\(749\) 0.744940i 0.0272195i
\(750\) −2.37400 10.9254i −0.0866864 0.398939i
\(751\) −11.1206 + 19.2614i −0.405795 + 0.702858i −0.994414 0.105553i \(-0.966339\pi\)
0.588618 + 0.808411i \(0.299672\pi\)
\(752\) −5.95105 + 10.3075i −0.217012 + 0.375876i
\(753\) 17.8942i 0.652100i
\(754\) −14.3829 + 18.4570i −0.523796 + 0.672165i
\(755\) 26.1160 + 2.70507i 0.950459 + 0.0984475i
\(756\) 0.749482 + 0.432713i 0.0272584 + 0.0157376i
\(757\) −7.30326 4.21654i −0.265442 0.153253i 0.361373 0.932421i \(-0.382308\pi\)
−0.626814 + 0.779169i \(0.715642\pi\)
\(758\) 12.0573 6.96127i 0.437940 0.252845i
\(759\) 0.509229i 0.0184838i
\(760\) 5.48837 + 12.2772i 0.199084 + 0.445340i
\(761\) 18.3585 10.5993i 0.665496 0.384224i −0.128872 0.991661i \(-0.541136\pi\)
0.794368 + 0.607437i \(0.207802\pi\)
\(762\) 6.94238 0.251496
\(763\) −4.08719 + 2.35974i −0.147966 + 0.0854283i
\(764\) 2.78821 4.82932i 0.100874 0.174719i
\(765\) −10.7278 + 14.8125i −0.387864 + 0.535547i
\(766\) 24.6089 0.889155
\(767\) 20.0123 + 15.5949i 0.722601 + 0.563099i
\(768\) 1.00000i 0.0360844i
\(769\) 3.34820 + 1.93308i 0.120739 + 0.0697088i 0.559153 0.829064i \(-0.311126\pi\)
−0.438414 + 0.898773i \(0.644460\pi\)
\(770\) −0.198477 + 0.274049i −0.00715262 + 0.00987605i
\(771\) −6.08945 10.5472i −0.219306 0.379849i
\(772\) −0.220810 −0.00794712
\(773\) 16.6218 + 28.7898i 0.597845 + 1.03550i 0.993139 + 0.116944i \(0.0373097\pi\)
−0.395293 + 0.918555i \(0.629357\pi\)
\(774\) 7.94476 4.58691i