Properties

Label 390.2.x.b.199.1
Level $390$
Weight $2$
Character 390.199
Analytic conductor $3.114$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + 190 x^{3} - 1196 x^{2} - 338 x + 2197\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.1
Root \(1.40719 + 0.536449i\) of defining polynomial
Character \(\chi\) \(=\) 390.199
Dual form 390.2.x.b.49.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.03420 + 0.928463i) q^{5} +(-0.866025 + 0.500000i) q^{6} +(-1.40247 - 2.42916i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.03420 + 0.928463i) q^{5} +(-0.866025 + 0.500000i) q^{6} +(-1.40247 - 2.42916i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.213026 + 2.22590i) q^{10} +(-0.515171 - 0.297434i) q^{11} +1.00000i q^{12} +(1.10975 + 3.43052i) q^{13} -2.80495 q^{14} +(2.22590 + 0.213026i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-4.98222 + 2.87649i) q^{17} +1.00000 q^{18} +(-6.59574 + 3.80805i) q^{19} +(1.82117 + 1.29743i) q^{20} +2.80495i q^{21} +(-0.515171 + 0.297434i) q^{22} +(-4.02317 - 2.32278i) q^{23} +(0.866025 + 0.500000i) q^{24} +(3.27591 - 3.77735i) q^{25} +(3.52579 + 0.754186i) q^{26} -1.00000i q^{27} +(-1.40247 + 2.42916i) q^{28} +(-1.26235 + 2.18645i) q^{29} +(1.29743 - 1.82117i) q^{30} -6.59309i q^{31} +(0.500000 + 0.866025i) q^{32} +(0.297434 + 0.515171i) q^{33} +5.75297i q^{34} +(5.10829 + 3.63924i) q^{35} +(0.500000 - 0.866025i) q^{36} +(5.18679 - 8.98379i) q^{37} +7.61611i q^{38} +(0.754186 - 3.52579i) q^{39} +(2.03420 - 0.928463i) q^{40} +(-4.98222 - 2.87649i) q^{41} +(2.42916 + 1.40247i) q^{42} +(3.67593 - 2.12230i) q^{43} +0.594869i q^{44} +(-1.82117 - 1.29743i) q^{45} +(-4.02317 + 2.32278i) q^{46} -2.89798 q^{47} +(0.866025 - 0.500000i) q^{48} +(-0.433868 + 0.751482i) q^{49} +(-1.63333 - 4.72570i) q^{50} +5.75297 q^{51} +(2.41604 - 2.67633i) q^{52} +13.8960i q^{53} +(-0.866025 - 0.500000i) q^{54} +(1.32412 + 0.126722i) q^{55} +(1.40247 + 2.42916i) q^{56} +7.61611 q^{57} +(1.26235 + 2.18645i) q^{58} +(8.40299 - 4.85147i) q^{59} +(-0.928463 - 2.03420i) q^{60} +(-3.41309 - 5.91165i) q^{61} +(-5.70978 - 3.29654i) q^{62} +(1.40247 - 2.42916i) q^{63} +1.00000 q^{64} +(-5.44256 - 5.94798i) q^{65} +0.594869 q^{66} +(3.93121 - 6.80906i) q^{67} +(4.98222 + 2.87649i) q^{68} +(2.32278 + 4.02317i) q^{69} +(5.70582 - 2.60429i) q^{70} +(-1.11257 + 0.642342i) q^{71} +(-0.500000 - 0.866025i) q^{72} -14.5400 q^{73} +(-5.18679 - 8.98379i) q^{74} +(-4.72570 + 1.63333i) q^{75} +(6.59574 + 3.80805i) q^{76} +1.66858i q^{77} +(-2.67633 - 2.41604i) q^{78} -1.83150 q^{79} +(0.213026 - 2.22590i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-4.98222 + 2.87649i) q^{82} -4.19184 q^{83} +(2.42916 - 1.40247i) q^{84} +(7.46410 - 10.4771i) q^{85} -4.24460i q^{86} +(2.18645 - 1.26235i) q^{87} +(0.515171 + 0.297434i) q^{88} +(-5.24333 - 3.02724i) q^{89} +(-2.03420 + 0.928463i) q^{90} +(6.77687 - 7.50697i) q^{91} +4.64555i q^{92} +(-3.29654 + 5.70978i) q^{93} +(-1.44899 + 2.50973i) q^{94} +(9.88140 - 13.8702i) q^{95} -1.00000i q^{96} +(8.45318 + 14.6413i) q^{97} +(0.433868 + 0.751482i) q^{98} -0.594869i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 6 q^{4} + 2 q^{5} + 2 q^{7} - 12 q^{8} + 6 q^{9} + O(q^{10}) \) \( 12 q + 6 q^{2} - 6 q^{4} + 2 q^{5} + 2 q^{7} - 12 q^{8} + 6 q^{9} + 4 q^{10} + 6 q^{11} + 8 q^{13} + 4 q^{14} + 6 q^{15} - 6 q^{16} - 18 q^{17} + 12 q^{18} - 6 q^{19} + 2 q^{20} + 6 q^{22} - 6 q^{23} - 10 q^{25} - 2 q^{26} + 2 q^{28} + 14 q^{29} + 6 q^{30} + 6 q^{32} - 6 q^{33} - 22 q^{35} + 6 q^{36} + 12 q^{37} - 2 q^{39} - 2 q^{40} - 18 q^{41} + 12 q^{42} + 36 q^{43} - 2 q^{45} - 6 q^{46} - 16 q^{47} + 8 q^{49} - 20 q^{50} + 16 q^{51} - 10 q^{52} + 8 q^{55} - 2 q^{56} + 8 q^{57} - 14 q^{58} - 36 q^{59} + 10 q^{61} - 6 q^{62} - 2 q^{63} + 12 q^{64} - 44 q^{65} - 12 q^{66} - 4 q^{67} + 18 q^{68} + 16 q^{69} + 4 q^{70} - 12 q^{71} - 6 q^{72} - 28 q^{73} - 12 q^{74} + 16 q^{75} + 6 q^{76} + 2 q^{78} + 4 q^{79} - 4 q^{80} - 6 q^{81} - 18 q^{82} - 72 q^{83} + 12 q^{84} + 48 q^{85} - 6 q^{87} - 6 q^{88} + 18 q^{89} + 2 q^{90} + 2 q^{91} + 16 q^{93} - 8 q^{94} + 18 q^{95} + 48 q^{97} - 8 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.03420 + 0.928463i −0.909720 + 0.415221i
\(6\) −0.866025 + 0.500000i −0.353553 + 0.204124i
\(7\) −1.40247 2.42916i −0.530085 0.918135i −0.999384 0.0350954i \(-0.988827\pi\)
0.469299 0.883040i \(-0.344507\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −0.213026 + 2.22590i −0.0673646 + 0.703891i
\(11\) −0.515171 0.297434i −0.155330 0.0896798i 0.420320 0.907376i \(-0.361918\pi\)
−0.575650 + 0.817696i \(0.695251\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 1.10975 + 3.43052i 0.307790 + 0.951454i
\(14\) −2.80495 −0.749654
\(15\) 2.22590 + 0.213026i 0.574724 + 0.0550030i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −4.98222 + 2.87649i −1.20837 + 0.697650i −0.962402 0.271629i \(-0.912438\pi\)
−0.245963 + 0.969279i \(0.579104\pi\)
\(18\) 1.00000 0.235702
\(19\) −6.59574 + 3.80805i −1.51317 + 0.873628i −0.513286 + 0.858218i \(0.671572\pi\)
−0.999881 + 0.0154099i \(0.995095\pi\)
\(20\) 1.82117 + 1.29743i 0.407226 + 0.290115i
\(21\) 2.80495i 0.612090i
\(22\) −0.515171 + 0.297434i −0.109835 + 0.0634132i
\(23\) −4.02317 2.32278i −0.838888 0.484332i 0.0179978 0.999838i \(-0.494271\pi\)
−0.856886 + 0.515506i \(0.827604\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) 3.27591 3.77735i 0.655182 0.755471i
\(26\) 3.52579 + 0.754186i 0.691465 + 0.147908i
\(27\) 1.00000i 0.192450i
\(28\) −1.40247 + 2.42916i −0.265043 + 0.459067i
\(29\) −1.26235 + 2.18645i −0.234412 + 0.406013i −0.959102 0.283062i \(-0.908650\pi\)
0.724690 + 0.689075i \(0.241983\pi\)
\(30\) 1.29743 1.82117i 0.236878 0.332499i
\(31\) 6.59309i 1.18415i −0.805882 0.592077i \(-0.798308\pi\)
0.805882 0.592077i \(-0.201692\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0.297434 + 0.515171i 0.0517767 + 0.0896798i
\(34\) 5.75297i 0.986626i
\(35\) 5.10829 + 3.63924i 0.863459 + 0.615143i
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 5.18679 8.98379i 0.852703 1.47693i −0.0260561 0.999660i \(-0.508295\pi\)
0.878759 0.477265i \(-0.158372\pi\)
\(38\) 7.61611i 1.23550i
\(39\) 0.754186 3.52579i 0.120766 0.564578i
\(40\) 2.03420 0.928463i 0.321635 0.146803i
\(41\) −4.98222 2.87649i −0.778092 0.449232i 0.0576618 0.998336i \(-0.481636\pi\)
−0.835754 + 0.549105i \(0.814969\pi\)
\(42\) 2.42916 + 1.40247i 0.374827 + 0.216406i
\(43\) 3.67593 2.12230i 0.560574 0.323648i −0.192802 0.981238i \(-0.561757\pi\)
0.753376 + 0.657590i \(0.228424\pi\)
\(44\) 0.594869i 0.0896798i
\(45\) −1.82117 1.29743i −0.271484 0.193410i
\(46\) −4.02317 + 2.32278i −0.593184 + 0.342475i
\(47\) −2.89798 −0.422715 −0.211357 0.977409i \(-0.567788\pi\)
−0.211357 + 0.977409i \(0.567788\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) −0.433868 + 0.751482i −0.0619812 + 0.107355i
\(50\) −1.63333 4.72570i −0.230987 0.668315i
\(51\) 5.75297 0.805577
\(52\) 2.41604 2.67633i 0.335044 0.371140i
\(53\) 13.8960i 1.90876i 0.298598 + 0.954379i \(0.403481\pi\)
−0.298598 + 0.954379i \(0.596519\pi\)
\(54\) −0.866025 0.500000i −0.117851 0.0680414i
\(55\) 1.32412 + 0.126722i 0.178544 + 0.0170872i
\(56\) 1.40247 + 2.42916i 0.187414 + 0.324610i
\(57\) 7.61611 1.00878
\(58\) 1.26235 + 2.18645i 0.165754 + 0.287095i
\(59\) 8.40299 4.85147i 1.09398 0.631607i 0.159344 0.987223i \(-0.449062\pi\)
0.934632 + 0.355616i \(0.115729\pi\)
\(60\) −0.928463 2.03420i −0.119864 0.262614i
\(61\) −3.41309 5.91165i −0.437002 0.756910i 0.560455 0.828185i \(-0.310626\pi\)
−0.997457 + 0.0712755i \(0.977293\pi\)
\(62\) −5.70978 3.29654i −0.725143 0.418661i
\(63\) 1.40247 2.42916i 0.176695 0.306045i
\(64\) 1.00000 0.125000
\(65\) −5.44256 5.94798i −0.675067 0.737757i
\(66\) 0.594869 0.0732233
\(67\) 3.93121 6.80906i 0.480274 0.831859i −0.519470 0.854489i \(-0.673871\pi\)
0.999744 + 0.0226299i \(0.00720394\pi\)
\(68\) 4.98222 + 2.87649i 0.604183 + 0.348825i
\(69\) 2.32278 + 4.02317i 0.279629 + 0.484332i
\(70\) 5.70582 2.60429i 0.681976 0.311272i
\(71\) −1.11257 + 0.642342i −0.132038 + 0.0762320i −0.564564 0.825389i \(-0.690956\pi\)
0.432526 + 0.901621i \(0.357622\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) −14.5400 −1.70178 −0.850892 0.525341i \(-0.823938\pi\)
−0.850892 + 0.525341i \(0.823938\pi\)
\(74\) −5.18679 8.98379i −0.602952 1.04434i
\(75\) −4.72570 + 1.63333i −0.545677 + 0.188601i
\(76\) 6.59574 + 3.80805i 0.756584 + 0.436814i
\(77\) 1.66858i 0.190152i
\(78\) −2.67633 2.41604i −0.303035 0.273563i
\(79\) −1.83150 −0.206060 −0.103030 0.994678i \(-0.532854\pi\)
−0.103030 + 0.994678i \(0.532854\pi\)
\(80\) 0.213026 2.22590i 0.0238170 0.248863i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −4.98222 + 2.87649i −0.550194 + 0.317655i
\(83\) −4.19184 −0.460114 −0.230057 0.973177i \(-0.573891\pi\)
−0.230057 + 0.973177i \(0.573891\pi\)
\(84\) 2.42916 1.40247i 0.265043 0.153022i
\(85\) 7.46410 10.4771i 0.809595 1.13641i
\(86\) 4.24460i 0.457707i
\(87\) 2.18645 1.26235i 0.234412 0.135338i
\(88\) 0.515171 + 0.297434i 0.0549175 + 0.0317066i
\(89\) −5.24333 3.02724i −0.555792 0.320886i 0.195663 0.980671i \(-0.437314\pi\)
−0.751455 + 0.659785i \(0.770647\pi\)
\(90\) −2.03420 + 0.928463i −0.214423 + 0.0978686i
\(91\) 6.77687 7.50697i 0.710409 0.786945i
\(92\) 4.64555i 0.484332i
\(93\) −3.29654 + 5.70978i −0.341836 + 0.592077i
\(94\) −1.44899 + 2.50973i −0.149452 + 0.258859i
\(95\) 9.88140 13.8702i 1.01381 1.42306i
\(96\) 1.00000i 0.102062i
\(97\) 8.45318 + 14.6413i 0.858291 + 1.48660i 0.873558 + 0.486719i \(0.161807\pi\)
−0.0152677 + 0.999883i \(0.504860\pi\)
\(98\) 0.433868 + 0.751482i 0.0438273 + 0.0759111i
\(99\) 0.594869i 0.0597866i
\(100\) −4.90924 0.948346i −0.490924 0.0948346i
\(101\) 2.72360 4.71741i 0.271008 0.469400i −0.698112 0.715988i \(-0.745976\pi\)
0.969120 + 0.246589i \(0.0793096\pi\)
\(102\) 2.87649 4.98222i 0.284814 0.493313i
\(103\) 13.7529i 1.35511i 0.735471 + 0.677556i \(0.236961\pi\)
−0.735471 + 0.677556i \(0.763039\pi\)
\(104\) −1.10975 3.43052i −0.108820 0.336390i
\(105\) −2.60429 5.70582i −0.254153 0.556831i
\(106\) 12.0343 + 6.94798i 1.16887 + 0.674848i
\(107\) −3.66407 2.11545i −0.354219 0.204509i 0.312323 0.949976i \(-0.398893\pi\)
−0.666542 + 0.745468i \(0.732226\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 0.447358i 0.0428491i −0.999770 0.0214246i \(-0.993180\pi\)
0.999770 0.0214246i \(-0.00682017\pi\)
\(110\) 0.771803 1.08336i 0.0735885 0.103294i
\(111\) −8.98379 + 5.18679i −0.852703 + 0.492308i
\(112\) 2.80495 0.265043
\(113\) −8.11206 + 4.68350i −0.763119 + 0.440587i −0.830414 0.557146i \(-0.811896\pi\)
0.0672956 + 0.997733i \(0.478563\pi\)
\(114\) 3.80805 6.59574i 0.356657 0.617748i
\(115\) 10.3405 + 0.989622i 0.964259 + 0.0922827i
\(116\) 2.52469 0.234412
\(117\) −2.41604 + 2.67633i −0.223363 + 0.247427i
\(118\) 9.70293i 0.893227i
\(119\) 13.9749 + 8.06839i 1.28107 + 0.739628i
\(120\) −2.22590 0.213026i −0.203196 0.0194465i
\(121\) −5.32307 9.21982i −0.483915 0.838165i
\(122\) −6.82619 −0.618014
\(123\) 2.87649 + 4.98222i 0.259364 + 0.449232i
\(124\) −5.70978 + 3.29654i −0.512753 + 0.296038i
\(125\) −3.15672 + 10.7254i −0.282345 + 0.959313i
\(126\) −1.40247 2.42916i −0.124942 0.216406i
\(127\) 5.79190 + 3.34395i 0.513948 + 0.296728i 0.734455 0.678658i \(-0.237438\pi\)
−0.220507 + 0.975385i \(0.570771\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −4.24460 −0.373716
\(130\) −7.87239 + 1.73941i −0.690454 + 0.152556i
\(131\) −11.6724 −1.01982 −0.509911 0.860227i \(-0.670322\pi\)
−0.509911 + 0.860227i \(0.670322\pi\)
\(132\) 0.297434 0.515171i 0.0258883 0.0448399i
\(133\) 18.5007 + 10.6814i 1.60422 + 0.926194i
\(134\) −3.93121 6.80906i −0.339605 0.588213i
\(135\) 0.928463 + 2.03420i 0.0799094 + 0.175076i
\(136\) 4.98222 2.87649i 0.427222 0.246657i
\(137\) −3.40142 5.89144i −0.290603 0.503339i 0.683349 0.730092i \(-0.260523\pi\)
−0.973953 + 0.226752i \(0.927189\pi\)
\(138\) 4.64555 0.395456
\(139\) −3.54908 6.14719i −0.301029 0.521397i 0.675340 0.737506i \(-0.263997\pi\)
−0.976369 + 0.216109i \(0.930663\pi\)
\(140\) 0.597526 6.24353i 0.0505001 0.527674i
\(141\) 2.50973 + 1.44899i 0.211357 + 0.122027i
\(142\) 1.28468i 0.107808i
\(143\) 0.448642 2.09738i 0.0375173 0.175392i
\(144\) −1.00000 −0.0833333
\(145\) 0.537824 5.61971i 0.0446639 0.466691i
\(146\) −7.27002 + 12.5920i −0.601671 + 1.04213i
\(147\) 0.751482 0.433868i 0.0619812 0.0357848i
\(148\) −10.3736 −0.852703
\(149\) −3.02342 + 1.74557i −0.247688 + 0.143003i −0.618705 0.785623i \(-0.712342\pi\)
0.371017 + 0.928626i \(0.379009\pi\)
\(150\) −0.948346 + 4.90924i −0.0774321 + 0.400838i
\(151\) 4.54988i 0.370264i 0.982714 + 0.185132i \(0.0592713\pi\)
−0.982714 + 0.185132i \(0.940729\pi\)
\(152\) 6.59574 3.80805i 0.534985 0.308874i
\(153\) −4.98222 2.87649i −0.402789 0.232550i
\(154\) 1.44503 + 0.834288i 0.116444 + 0.0672288i
\(155\) 6.12144 + 13.4116i 0.491686 + 1.07725i
\(156\) −3.43052 + 1.10975i −0.274661 + 0.0888512i
\(157\) 11.4957i 0.917460i 0.888576 + 0.458730i \(0.151695\pi\)
−0.888576 + 0.458730i \(0.848305\pi\)
\(158\) −0.915751 + 1.58613i −0.0728532 + 0.126186i
\(159\) 6.94798 12.0343i 0.551011 0.954379i
\(160\) −1.82117 1.29743i −0.143976 0.102571i
\(161\) 13.0305i 1.02695i
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) −6.91443 11.9762i −0.541580 0.938045i −0.998814 0.0486977i \(-0.984493\pi\)
0.457233 0.889347i \(-0.348840\pi\)
\(164\) 5.75297i 0.449232i
\(165\) −1.08336 0.771803i −0.0843393 0.0600848i
\(166\) −2.09592 + 3.63024i −0.162675 + 0.281761i
\(167\) 10.7700 18.6542i 0.833409 1.44351i −0.0619099 0.998082i \(-0.519719\pi\)
0.895319 0.445425i \(-0.146948\pi\)
\(168\) 2.80495i 0.216406i
\(169\) −10.5369 + 7.61404i −0.810531 + 0.585696i
\(170\) −5.34142 11.7027i −0.409668 0.897554i
\(171\) −6.59574 3.80805i −0.504389 0.291209i
\(172\) −3.67593 2.12230i −0.280287 0.161824i
\(173\) 11.8342 6.83251i 0.899741 0.519466i 0.0226249 0.999744i \(-0.492798\pi\)
0.877116 + 0.480278i \(0.159464\pi\)
\(174\) 2.52469i 0.191396i
\(175\) −13.7702 2.66006i −1.04093 0.201082i
\(176\) 0.515171 0.297434i 0.0388325 0.0224200i
\(177\) −9.70293 −0.729317
\(178\) −5.24333 + 3.02724i −0.393004 + 0.226901i
\(179\) 5.37886 9.31647i 0.402035 0.696345i −0.591936 0.805985i \(-0.701636\pi\)
0.993971 + 0.109639i \(0.0349696\pi\)
\(180\) −0.213026 + 2.22590i −0.0158780 + 0.165909i
\(181\) 5.86469 0.435919 0.217959 0.975958i \(-0.430060\pi\)
0.217959 + 0.975958i \(0.430060\pi\)
\(182\) −3.11280 9.62243i −0.230736 0.713262i
\(183\) 6.82619i 0.504606i
\(184\) 4.02317 + 2.32278i 0.296592 + 0.171237i
\(185\) −2.20984 + 23.0905i −0.162471 + 1.69765i
\(186\) 3.29654 + 5.70978i 0.241714 + 0.418661i
\(187\) 3.42226 0.250261
\(188\) 1.44899 + 2.50973i 0.105679 + 0.183041i
\(189\) −2.42916 + 1.40247i −0.176695 + 0.102015i
\(190\) −7.07128 15.4927i −0.513004 1.12396i
\(191\) 6.91728 + 11.9811i 0.500517 + 0.866921i 1.00000 0.000597179i \(0.000190088\pi\)
−0.499483 + 0.866324i \(0.666477\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) −8.50322 + 14.7280i −0.612075 + 1.06014i 0.378815 + 0.925472i \(0.376332\pi\)
−0.990890 + 0.134673i \(0.957002\pi\)
\(194\) 16.9064 1.21381
\(195\) 1.73941 + 7.87239i 0.124561 + 0.563753i
\(196\) 0.867736 0.0619812
\(197\) −3.16487 + 5.48171i −0.225487 + 0.390556i −0.956466 0.291845i \(-0.905731\pi\)
0.730978 + 0.682401i \(0.239064\pi\)
\(198\) −0.515171 0.297434i −0.0366116 0.0211377i
\(199\) 8.31782 + 14.4069i 0.589634 + 1.02128i 0.994280 + 0.106803i \(0.0340615\pi\)
−0.404646 + 0.914473i \(0.632605\pi\)
\(200\) −3.27591 + 3.77735i −0.231642 + 0.267099i
\(201\) −6.80906 + 3.93121i −0.480274 + 0.277286i
\(202\) −2.72360 4.71741i −0.191632 0.331916i
\(203\) 7.08163 0.497033
\(204\) −2.87649 4.98222i −0.201394 0.348825i
\(205\) 12.8055 + 1.22553i 0.894377 + 0.0855947i
\(206\) 11.9104 + 6.87645i 0.829834 + 0.479105i
\(207\) 4.64555i 0.322888i
\(208\) −3.52579 0.754186i −0.244470 0.0522934i
\(209\) 4.53058 0.313387
\(210\) −6.24353 0.597526i −0.430844 0.0412332i
\(211\) −8.27443 + 14.3317i −0.569635 + 0.986637i 0.426967 + 0.904267i \(0.359582\pi\)
−0.996602 + 0.0823697i \(0.973751\pi\)
\(212\) 12.0343 6.94798i 0.826516 0.477190i
\(213\) 1.28468 0.0880251
\(214\) −3.66407 + 2.11545i −0.250471 + 0.144609i
\(215\) −5.50709 + 7.73014i −0.375580 + 0.527191i
\(216\) 1.00000i 0.0680414i
\(217\) −16.0156 + 9.24663i −1.08721 + 0.627702i
\(218\) −0.387423 0.223679i −0.0262396 0.0151495i
\(219\) 12.5920 + 7.27002i 0.850892 + 0.491262i
\(220\) −0.552314 1.21008i −0.0372370 0.0815836i
\(221\) −15.3969 13.8994i −1.03570 0.934975i
\(222\) 10.3736i 0.696229i
\(223\) 8.32779 14.4242i 0.557670 0.965913i −0.440020 0.897988i \(-0.645029\pi\)
0.997690 0.0679254i \(-0.0216380\pi\)
\(224\) 1.40247 2.42916i 0.0937068 0.162305i
\(225\) 4.90924 + 0.948346i 0.327283 + 0.0632231i
\(226\) 9.36701i 0.623084i
\(227\) 1.51105 + 2.61722i 0.100292 + 0.173711i 0.911805 0.410624i \(-0.134689\pi\)
−0.811513 + 0.584334i \(0.801356\pi\)
\(228\) −3.80805 6.59574i −0.252195 0.436814i
\(229\) 16.4472i 1.08686i 0.839453 + 0.543432i \(0.182875\pi\)
−0.839453 + 0.543432i \(0.817125\pi\)
\(230\) 6.02730 8.46035i 0.397428 0.557859i
\(231\) 0.834288 1.44503i 0.0548921 0.0950759i
\(232\) 1.26235 2.18645i 0.0828771 0.143547i
\(233\) 13.8289i 0.905959i −0.891521 0.452980i \(-0.850361\pi\)
0.891521 0.452980i \(-0.149639\pi\)
\(234\) 1.10975 + 3.43052i 0.0725467 + 0.224260i
\(235\) 5.89507 2.69067i 0.384552 0.175520i
\(236\) −8.40299 4.85147i −0.546988 0.315804i
\(237\) 1.58613 + 0.915751i 0.103030 + 0.0594844i
\(238\) 13.9749 8.06839i 0.905856 0.522996i
\(239\) 4.60216i 0.297689i 0.988861 + 0.148845i \(0.0475554\pi\)
−0.988861 + 0.148845i \(0.952445\pi\)
\(240\) −1.29743 + 1.82117i −0.0837490 + 0.117556i
\(241\) 5.38108 3.10677i 0.346626 0.200125i −0.316572 0.948568i \(-0.602532\pi\)
0.663198 + 0.748444i \(0.269199\pi\)
\(242\) −10.6461 −0.684359
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) −3.41309 + 5.91165i −0.218501 + 0.378455i
\(245\) 0.184850 1.93149i 0.0118096 0.123399i
\(246\) 5.75297 0.366796
\(247\) −20.3832 18.4008i −1.29695 1.17082i
\(248\) 6.59309i 0.418661i
\(249\) 3.63024 + 2.09592i 0.230057 + 0.132824i
\(250\) 7.71015 + 8.09652i 0.487633 + 0.512069i
\(251\) 8.19386 + 14.1922i 0.517192 + 0.895802i 0.999801 + 0.0199663i \(0.00635591\pi\)
−0.482609 + 0.875836i \(0.660311\pi\)
\(252\) −2.80495 −0.176695
\(253\) 1.38175 + 2.39326i 0.0868697 + 0.150463i
\(254\) 5.79190 3.34395i 0.363416 0.209818i
\(255\) −11.7027 + 5.34142i −0.732850 + 0.334493i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −7.28269 4.20466i −0.454282 0.262280i 0.255355 0.966847i \(-0.417808\pi\)
−0.709637 + 0.704568i \(0.751141\pi\)
\(258\) −2.12230 + 3.67593i −0.132129 + 0.228853i
\(259\) −29.0974 −1.80802
\(260\) −2.42982 + 7.68739i −0.150691 + 0.476752i
\(261\) −2.52469 −0.156275
\(262\) −5.83620 + 10.1086i −0.360562 + 0.624511i
\(263\) 5.10152 + 2.94536i 0.314573 + 0.181619i 0.648971 0.760813i \(-0.275200\pi\)
−0.334398 + 0.942432i \(0.608533\pi\)
\(264\) −0.297434 0.515171i −0.0183058 0.0317066i
\(265\) −12.9019 28.2671i −0.792557 1.73644i
\(266\) 18.5007 10.6814i 1.13435 0.654918i
\(267\) 3.02724 + 5.24333i 0.185264 + 0.320886i
\(268\) −7.86242 −0.480274
\(269\) 11.4228 + 19.7848i 0.696459 + 1.20630i 0.969686 + 0.244352i \(0.0785754\pi\)
−0.273228 + 0.961949i \(0.588091\pi\)
\(270\) 2.22590 + 0.213026i 0.135464 + 0.0129643i
\(271\) −23.2565 13.4271i −1.41273 0.815639i −0.417084 0.908868i \(-0.636948\pi\)
−0.995645 + 0.0932285i \(0.970281\pi\)
\(272\) 5.75297i 0.348825i
\(273\) −9.62243 + 3.11280i −0.582376 + 0.188395i
\(274\) −6.80285 −0.410975
\(275\) −2.81117 + 0.971616i −0.169520 + 0.0585906i
\(276\) 2.32278 4.02317i 0.139815 0.242166i
\(277\) 9.20150 5.31249i 0.552865 0.319197i −0.197412 0.980321i \(-0.563254\pi\)
0.750277 + 0.661124i \(0.229920\pi\)
\(278\) −7.09816 −0.425719
\(279\) 5.70978 3.29654i 0.341836 0.197359i
\(280\) −5.10829 3.63924i −0.305279 0.217486i
\(281\) 28.3732i 1.69260i −0.532705 0.846301i \(-0.678824\pi\)
0.532705 0.846301i \(-0.321176\pi\)
\(282\) 2.50973 1.44899i 0.149452 0.0862862i
\(283\) −4.91005 2.83482i −0.291872 0.168512i 0.346914 0.937897i \(-0.387230\pi\)
−0.638786 + 0.769385i \(0.720563\pi\)
\(284\) 1.11257 + 0.642342i 0.0660188 + 0.0381160i
\(285\) −15.4927 + 7.07128i −0.917706 + 0.418866i
\(286\) −1.59207 1.43723i −0.0941408 0.0849850i
\(287\) 16.1368i 0.952524i
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) 8.04834 13.9401i 0.473431 0.820007i
\(290\) −4.59790 3.27562i −0.269998 0.192351i
\(291\) 16.9064i 0.991069i
\(292\) 7.27002 + 12.5920i 0.425446 + 0.736894i
\(293\) −0.829176 1.43617i −0.0484410 0.0839022i 0.840788 0.541364i \(-0.182092\pi\)
−0.889229 + 0.457462i \(0.848759\pi\)
\(294\) 0.867736i 0.0506074i
\(295\) −12.5889 + 17.6707i −0.732955 + 1.02883i
\(296\) −5.18679 + 8.98379i −0.301476 + 0.522172i
\(297\) −0.297434 + 0.515171i −0.0172589 + 0.0298933i
\(298\) 3.49115i 0.202237i
\(299\) 3.50361 16.3793i 0.202619 0.947237i
\(300\) 3.77735 + 3.27591i 0.218086 + 0.189135i
\(301\) −10.3108 5.95294i −0.594304 0.343122i
\(302\) 3.94031 + 2.27494i 0.226740 + 0.130908i
\(303\) −4.71741 + 2.72360i −0.271008 + 0.156467i
\(304\) 7.61611i 0.436814i
\(305\) 12.4317 + 8.85653i 0.711835 + 0.507123i
\(306\) −4.98222 + 2.87649i −0.284814 + 0.164438i
\(307\) 0.384087 0.0219210 0.0109605 0.999940i \(-0.496511\pi\)
0.0109605 + 0.999940i \(0.496511\pi\)
\(308\) 1.44503 0.834288i 0.0823382 0.0475380i
\(309\) 6.87645 11.9104i 0.391187 0.677556i
\(310\) 14.6755 + 1.40450i 0.833514 + 0.0797700i
\(311\) −11.6920 −0.662993 −0.331497 0.943456i \(-0.607554\pi\)
−0.331497 + 0.943456i \(0.607554\pi\)
\(312\) −0.754186 + 3.52579i −0.0426974 + 0.199609i
\(313\) 10.5788i 0.597948i 0.954261 + 0.298974i \(0.0966444\pi\)
−0.954261 + 0.298974i \(0.903356\pi\)
\(314\) 9.95560 + 5.74787i 0.561827 + 0.324371i
\(315\) −0.597526 + 6.24353i −0.0336668 + 0.351783i
\(316\) 0.915751 + 1.58613i 0.0515150 + 0.0892266i
\(317\) 22.1023 1.24139 0.620695 0.784052i \(-0.286850\pi\)
0.620695 + 0.784052i \(0.286850\pi\)
\(318\) −6.94798 12.0343i −0.389624 0.674848i
\(319\) 1.30065 0.750930i 0.0728224 0.0420440i
\(320\) −2.03420 + 0.928463i −0.113715 + 0.0519027i
\(321\) 2.11545 + 3.66407i 0.118073 + 0.204509i
\(322\) 11.2848 + 6.51527i 0.628876 + 0.363082i
\(323\) 21.9076 37.9451i 1.21897 2.11132i
\(324\) 1.00000 0.0555556
\(325\) 16.5937 + 7.04615i 0.920454 + 0.390850i
\(326\) −13.8289 −0.765910
\(327\) −0.223679 + 0.387423i −0.0123695 + 0.0214246i
\(328\) 4.98222 + 2.87649i 0.275097 + 0.158827i
\(329\) 4.06435 + 7.03966i 0.224075 + 0.388109i
\(330\) −1.21008 + 0.552314i −0.0666127 + 0.0304039i
\(331\) −5.28809 + 3.05308i −0.290660 + 0.167812i −0.638239 0.769838i \(-0.720337\pi\)
0.347580 + 0.937650i \(0.387004\pi\)
\(332\) 2.09592 + 3.63024i 0.115029 + 0.199235i
\(333\) 10.3736 0.568469
\(334\) −10.7700 18.6542i −0.589309 1.02071i
\(335\) −1.67490 + 17.5009i −0.0915094 + 0.956179i
\(336\) −2.42916 1.40247i −0.132521 0.0765112i
\(337\) 4.29852i 0.234155i −0.993123 0.117078i \(-0.962647\pi\)
0.993123 0.117078i \(-0.0373526\pi\)
\(338\) 1.32550 + 12.9322i 0.0720979 + 0.703422i
\(339\) 9.36701 0.508746
\(340\) −12.8055 1.22553i −0.694477 0.0664637i
\(341\) −1.96101 + 3.39657i −0.106195 + 0.183935i
\(342\) −6.59574 + 3.80805i −0.356657 + 0.205916i
\(343\) −17.2007 −0.928750
\(344\) −3.67593 + 2.12230i −0.198193 + 0.114427i
\(345\) −8.46035 6.02730i −0.455490 0.324499i
\(346\) 13.6650i 0.734636i
\(347\) −29.7444 + 17.1730i −1.59677 + 0.921893i −0.604660 + 0.796484i \(0.706691\pi\)
−0.992105 + 0.125409i \(0.959976\pi\)
\(348\) −2.18645 1.26235i −0.117206 0.0676689i
\(349\) 13.8581 + 8.00099i 0.741808 + 0.428283i 0.822726 0.568438i \(-0.192452\pi\)
−0.0809181 + 0.996721i \(0.525785\pi\)
\(350\) −9.18876 + 10.5953i −0.491160 + 0.566342i
\(351\) 3.43052 1.10975i 0.183107 0.0592341i
\(352\) 0.594869i 0.0317066i
\(353\) 9.69607 16.7941i 0.516070 0.893859i −0.483756 0.875203i \(-0.660728\pi\)
0.999826 0.0186563i \(-0.00593884\pi\)
\(354\) −4.85147 + 8.40299i −0.257853 + 0.446614i
\(355\) 1.66679 2.33963i 0.0884642 0.124175i
\(356\) 6.05447i 0.320886i
\(357\) −8.06839 13.9749i −0.427025 0.739628i
\(358\) −5.37886 9.31647i −0.284282 0.492391i
\(359\) 15.8342i 0.835699i −0.908516 0.417850i \(-0.862784\pi\)
0.908516 0.417850i \(-0.137216\pi\)
\(360\) 1.82117 + 1.29743i 0.0959841 + 0.0683808i
\(361\) 19.5026 33.7794i 1.02645 1.77786i
\(362\) 2.93234 5.07897i 0.154121 0.266945i
\(363\) 10.6461i 0.558777i
\(364\) −9.88966 2.11545i −0.518359 0.110880i
\(365\) 29.5773 13.4999i 1.54815 0.706617i
\(366\) 5.91165 + 3.41309i 0.309007 + 0.178405i
\(367\) 13.2440 + 7.64645i 0.691333 + 0.399141i 0.804111 0.594479i \(-0.202642\pi\)
−0.112778 + 0.993620i \(0.535975\pi\)
\(368\) 4.02317 2.32278i 0.209722 0.121083i
\(369\) 5.75297i 0.299488i
\(370\) 18.8921 + 13.4590i 0.982152 + 0.699702i
\(371\) 33.7555 19.4887i 1.75250 1.01180i
\(372\) 6.59309 0.341836
\(373\) 18.7508 10.8258i 0.970881 0.560538i 0.0713760 0.997449i \(-0.477261\pi\)
0.899505 + 0.436911i \(0.143928\pi\)
\(374\) 1.71113 2.96377i 0.0884805 0.153253i
\(375\) 8.09652 7.71015i 0.418102 0.398150i
\(376\) 2.89798 0.149452
\(377\) −8.90154 1.90409i −0.458453 0.0980655i
\(378\) 2.80495i 0.144271i
\(379\) 7.81479 + 4.51187i 0.401419 + 0.231759i 0.687096 0.726567i \(-0.258885\pi\)
−0.285677 + 0.958326i \(0.592218\pi\)
\(380\) −16.9527 1.62243i −0.869654 0.0832287i
\(381\) −3.34395 5.79190i −0.171316 0.296728i
\(382\) 13.8346 0.707838
\(383\) −5.03703 8.72439i −0.257380 0.445795i 0.708159 0.706053i \(-0.249526\pi\)
−0.965539 + 0.260257i \(0.916193\pi\)
\(384\) −0.866025 + 0.500000i −0.0441942 + 0.0255155i
\(385\) −1.54921 3.39421i −0.0789551 0.172985i
\(386\) 8.50322 + 14.7280i 0.432802 + 0.749636i
\(387\) 3.67593 + 2.12230i 0.186858 + 0.107883i
\(388\) 8.45318 14.6413i 0.429145 0.743301i
\(389\) −24.3591 −1.23505 −0.617527 0.786550i \(-0.711865\pi\)
−0.617527 + 0.786550i \(0.711865\pi\)
\(390\) 7.68739 + 2.42982i 0.389266 + 0.123039i
\(391\) 26.7257 1.35158
\(392\) 0.433868 0.751482i 0.0219137 0.0379556i
\(393\) 10.1086 + 5.83620i 0.509911 + 0.294397i
\(394\) 3.16487 + 5.48171i 0.159444 + 0.276165i
\(395\) 3.72564 1.70048i 0.187457 0.0855606i
\(396\) −0.515171 + 0.297434i −0.0258883 + 0.0149466i
\(397\) −15.0190 26.0137i −0.753784 1.30559i −0.945977 0.324234i \(-0.894893\pi\)
0.192193 0.981357i \(-0.438440\pi\)
\(398\) 16.6356 0.833869
\(399\) −10.6814 18.5007i −0.534739 0.926194i
\(400\) 1.63333 + 4.72570i 0.0816664 + 0.236285i
\(401\) 2.35786 + 1.36131i 0.117746 + 0.0679807i 0.557716 0.830032i \(-0.311678\pi\)
−0.439970 + 0.898012i \(0.645011\pi\)
\(402\) 7.86242i 0.392142i
\(403\) 22.6177 7.31669i 1.12667 0.364470i
\(404\) −5.44720 −0.271008
\(405\) 0.213026 2.22590i 0.0105853 0.110606i
\(406\) 3.54082 6.13287i 0.175728 0.304369i
\(407\) −5.34417 + 3.08546i −0.264901 + 0.152941i
\(408\) −5.75297 −0.284814
\(409\) −33.1032 + 19.1121i −1.63685 + 0.945034i −0.654938 + 0.755683i \(0.727305\pi\)
−0.981909 + 0.189352i \(0.939361\pi\)
\(410\) 7.46410 10.4771i 0.368626 0.517429i
\(411\) 6.80285i 0.335560i
\(412\) 11.9104 6.87645i 0.586781 0.338778i
\(413\) −23.5699 13.6081i −1.15980 0.669612i
\(414\) −4.02317 2.32278i −0.197728 0.114158i
\(415\) 8.52703 3.89197i 0.418575 0.191049i
\(416\) −2.41604 + 2.67633i −0.118456 + 0.131218i
\(417\) 7.09816i 0.347598i
\(418\) 2.26529 3.92360i 0.110799 0.191910i
\(419\) 14.9365 25.8708i 0.729695 1.26387i −0.227317 0.973821i \(-0.572995\pi\)
0.957012 0.290048i \(-0.0936714\pi\)
\(420\) −3.63924 + 5.10829i −0.177577 + 0.249259i
\(421\) 14.2033i 0.692226i 0.938193 + 0.346113i \(0.112499\pi\)
−0.938193 + 0.346113i \(0.887501\pi\)
\(422\) 8.27443 + 14.3317i 0.402793 + 0.697658i
\(423\) −1.44899 2.50973i −0.0704524 0.122027i
\(424\) 13.8960i 0.674848i
\(425\) −5.45581 + 28.2427i −0.264646 + 1.36997i
\(426\) 0.642342 1.11257i 0.0311216 0.0539042i
\(427\) −9.57355 + 16.5819i −0.463297 + 0.802453i
\(428\) 4.23091i 0.204509i
\(429\) −1.43723 + 1.59207i −0.0693899 + 0.0768657i
\(430\) 3.94095 + 8.63435i 0.190050 + 0.416385i
\(431\) −8.09901 4.67596i −0.390115 0.225233i 0.292095 0.956389i \(-0.405648\pi\)
−0.682210 + 0.731156i \(0.738981\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) 3.42954 1.98005i 0.164813 0.0951549i −0.415325 0.909673i \(-0.636332\pi\)
0.580138 + 0.814518i \(0.302999\pi\)
\(434\) 18.4933i 0.887705i
\(435\) −3.27562 + 4.59790i −0.157054 + 0.220452i
\(436\) −0.387423 + 0.223679i −0.0185542 + 0.0107123i
\(437\) 35.3810 1.69250
\(438\) 12.5920 7.27002i 0.601671 0.347375i
\(439\) −11.2992 + 19.5708i −0.539281 + 0.934062i 0.459662 + 0.888094i \(0.347971\pi\)
−0.998943 + 0.0459680i \(0.985363\pi\)
\(440\) −1.32412 0.126722i −0.0631248 0.00604125i
\(441\) −0.867736 −0.0413208
\(442\) −19.7357 + 6.38437i −0.938730 + 0.303673i
\(443\) 29.0428i 1.37987i −0.723873 0.689933i \(-0.757640\pi\)
0.723873 0.689933i \(-0.242360\pi\)
\(444\) 8.98379 + 5.18679i 0.426352 + 0.246154i
\(445\) 13.4766 + 1.28976i 0.638854 + 0.0611404i
\(446\) −8.32779 14.4242i −0.394332 0.683004i
\(447\) 3.49115 0.165125
\(448\) −1.40247 2.42916i −0.0662607 0.114767i
\(449\) 23.7886 13.7343i 1.12265 0.648164i 0.180576 0.983561i \(-0.442204\pi\)
0.942077 + 0.335397i \(0.108870\pi\)
\(450\) 3.27591 3.77735i 0.154428 0.178066i
\(451\) 1.71113 + 2.96377i 0.0805740 + 0.139558i
\(452\) 8.11206 + 4.68350i 0.381559 + 0.220293i
\(453\) 2.27494 3.94031i 0.106886 0.185132i
\(454\) 3.02210 0.141834
\(455\) −6.81553 + 21.5627i −0.319517 + 1.01088i
\(456\) −7.61611 −0.356657
\(457\) −2.19087 + 3.79470i −0.102485 + 0.177508i −0.912708 0.408613i \(-0.866013\pi\)
0.810223 + 0.586122i \(0.199346\pi\)
\(458\) 14.2437 + 8.22361i 0.665565 + 0.384264i
\(459\) 2.87649 + 4.98222i 0.134263 + 0.232550i
\(460\) −4.31323 9.44997i −0.201105 0.440607i
\(461\) −21.0593 + 12.1586i −0.980829 + 0.566282i −0.902520 0.430647i \(-0.858285\pi\)
−0.0783090 + 0.996929i \(0.524952\pi\)
\(462\) −0.834288 1.44503i −0.0388146 0.0672288i
\(463\) −19.0660 −0.886071 −0.443035 0.896504i \(-0.646098\pi\)
−0.443035 + 0.896504i \(0.646098\pi\)
\(464\) −1.26235 2.18645i −0.0586030 0.101503i
\(465\) 1.40450 14.6755i 0.0651319 0.680562i
\(466\) −11.9762 6.91443i −0.554784 0.320305i
\(467\) 10.1176i 0.468188i 0.972214 + 0.234094i \(0.0752123\pi\)
−0.972214 + 0.234094i \(0.924788\pi\)
\(468\) 3.52579 + 0.754186i 0.162980 + 0.0348623i
\(469\) −22.0537 −1.01834
\(470\) 0.617345 6.45062i 0.0284760 0.297545i
\(471\) 5.74787 9.95560i 0.264848 0.458730i
\(472\) −8.40299 + 4.85147i −0.386779 + 0.223307i
\(473\) −2.52498 −0.116099
\(474\) 1.58613 0.915751i 0.0728532 0.0420618i
\(475\) −7.22271 + 37.3893i −0.331401 + 1.71554i
\(476\) 16.1368i 0.739628i
\(477\) −12.0343 + 6.94798i −0.551011 + 0.318126i
\(478\) 3.98559 + 2.30108i 0.182297 + 0.105249i
\(479\) −24.8215 14.3307i −1.13412 0.654786i −0.189155 0.981947i \(-0.560575\pi\)
−0.944969 + 0.327161i \(0.893908\pi\)
\(480\) 0.928463 + 2.03420i 0.0423784 + 0.0928479i
\(481\) 36.5751 + 7.82361i 1.66768 + 0.356726i
\(482\) 6.21354i 0.283019i
\(483\) 6.51527 11.2848i 0.296455 0.513475i
\(484\) −5.32307 + 9.21982i −0.241958 + 0.419083i
\(485\) −30.7894 21.9349i −1.39807 0.996012i
\(486\) 1.00000i 0.0453609i
\(487\) −8.71990 15.1033i −0.395136 0.684396i 0.597982 0.801509i \(-0.295969\pi\)
−0.993119 + 0.117113i \(0.962636\pi\)
\(488\) 3.41309 + 5.91165i 0.154504 + 0.267608i
\(489\) 13.8289i 0.625363i
\(490\) −1.58030 1.12583i −0.0713905 0.0508599i
\(491\) −11.2233 + 19.4394i −0.506503 + 0.877288i 0.493469 + 0.869763i \(0.335729\pi\)
−0.999972 + 0.00752493i \(0.997605\pi\)
\(492\) 2.87649 4.98222i 0.129682 0.224616i
\(493\) 14.5245i 0.654150i
\(494\) −26.1272 + 8.45199i −1.17552 + 0.380273i
\(495\) 0.552314 + 1.21008i 0.0248247 + 0.0543890i
\(496\) 5.70978 + 3.29654i 0.256377 + 0.148019i
\(497\) 3.12070 + 1.80174i 0.139983 + 0.0808189i
\(498\) 3.63024 2.09592i 0.162675 0.0939204i
\(499\) 10.4136i 0.466177i −0.972456 0.233088i \(-0.925117\pi\)
0.972456 0.233088i \(-0.0748832\pi\)
\(500\) 10.8669 2.62893i 0.485981 0.117569i
\(501\) −18.6542 + 10.7700i −0.833409 + 0.481169i
\(502\) 16.3877 0.731420
\(503\) −5.00387 + 2.88899i −0.223112 + 0.128814i −0.607390 0.794404i \(-0.707784\pi\)
0.384279 + 0.923217i \(0.374450\pi\)
\(504\) −1.40247 + 2.42916i −0.0624712 + 0.108203i
\(505\) −1.16039 + 12.1249i −0.0516368 + 0.539551i
\(506\) 2.76349 0.122852
\(507\) 12.9322 1.32550i 0.574341 0.0588677i
\(508\) 6.68791i 0.296728i
\(509\) −6.18024 3.56816i −0.273934 0.158156i 0.356740 0.934204i \(-0.383888\pi\)
−0.630674 + 0.776048i \(0.717222\pi\)
\(510\) −1.22553 + 12.8055i −0.0542674 + 0.567038i
\(511\) 20.3920 + 35.3200i 0.902090 + 1.56247i
\(512\) −1.00000 −0.0441942
\(513\) 3.80805 + 6.59574i 0.168130 + 0.291209i
\(514\) −7.28269 + 4.20466i −0.321226 + 0.185460i
\(515\) −12.7691 27.9761i −0.562672 1.23277i
\(516\) 2.12230 + 3.67593i 0.0934290 + 0.161824i
\(517\) 1.49296 + 0.861960i 0.0656603 + 0.0379090i
\(518\) −14.5487 + 25.1991i −0.639232 + 1.10718i
\(519\) −13.6650 −0.599827
\(520\) 5.44256 + 5.94798i 0.238672 + 0.260836i
\(521\) 1.09782 0.0480965 0.0240483 0.999711i \(-0.492344\pi\)
0.0240483 + 0.999711i \(0.492344\pi\)
\(522\) −1.26235 + 2.18645i −0.0552514 + 0.0956982i
\(523\) −12.9411 7.47153i −0.565873 0.326707i 0.189626 0.981856i \(-0.439272\pi\)
−0.755499 + 0.655149i \(0.772606\pi\)
\(524\) 5.83620 + 10.1086i 0.254956 + 0.441596i
\(525\) 10.5953 + 9.18876i 0.462416 + 0.401031i
\(526\) 5.10152 2.94536i 0.222437 0.128424i
\(527\) 18.9649 + 32.8482i 0.826125 + 1.43089i
\(528\) −0.594869 −0.0258883
\(529\) −0.709414 1.22874i −0.0308441 0.0534235i
\(530\) −30.9310 2.96020i −1.34356 0.128583i
\(531\) 8.40299 + 4.85147i 0.364659 + 0.210536i
\(532\) 21.3628i 0.926194i
\(533\) 4.33881 20.2838i 0.187935 0.878588i
\(534\) 6.05447 0.262003
\(535\) 9.41756 + 0.901291i 0.407157 + 0.0389662i
\(536\) −3.93121 + 6.80906i −0.169802 + 0.294106i
\(537\) −9.31647 + 5.37886i −0.402035 + 0.232115i
\(538\) 22.8455 0.984941
\(539\) 0.447033 0.258095i 0.0192551 0.0111169i
\(540\) 1.29743 1.82117i 0.0558327 0.0783707i
\(541\) 19.3888i 0.833589i 0.909001 + 0.416794i \(0.136846\pi\)
−0.909001 + 0.416794i \(0.863154\pi\)
\(542\) −23.2565 + 13.4271i −0.998950 + 0.576744i
\(543\) −5.07897 2.93234i −0.217959 0.125839i
\(544\) −4.98222 2.87649i −0.213611 0.123328i
\(545\) 0.415355 + 0.910014i 0.0177919 + 0.0389807i
\(546\) −2.11545 + 9.88966i −0.0905330 + 0.423239i
\(547\) 26.1335i 1.11739i 0.829374 + 0.558693i \(0.188697\pi\)
−0.829374 + 0.558693i \(0.811303\pi\)
\(548\) −3.40142 + 5.89144i −0.145302 + 0.251670i
\(549\) 3.41309 5.91165i 0.145667 0.252303i
\(550\) −0.564141 + 2.92035i −0.0240551 + 0.124524i
\(551\) 19.2283i 0.819155i
\(552\) −2.32278 4.02317i −0.0988640 0.171237i
\(553\) 2.56863 + 4.44901i 0.109229 + 0.189191i
\(554\) 10.6250i 0.451412i
\(555\) 13.4590 18.8921i 0.571305 0.801924i
\(556\) −3.54908 + 6.14719i −0.150514 + 0.260699i
\(557\) 17.6927 30.6446i 0.749663 1.29846i −0.198321 0.980137i \(-0.563549\pi\)
0.947984 0.318318i \(-0.103118\pi\)
\(558\) 6.59309i 0.279108i
\(559\) 11.3600 + 10.2551i 0.480475 + 0.433745i
\(560\) −5.70582 + 2.60429i −0.241115 + 0.110051i
\(561\) −2.96377 1.71113i −0.125130 0.0722440i
\(562\) −24.5719 14.1866i −1.03650 0.598425i
\(563\) −25.8011 + 14.8963i −1.08739 + 0.627804i −0.932880 0.360187i \(-0.882713\pi\)
−0.154509 + 0.987991i \(0.549379\pi\)
\(564\) 2.89798i 0.122027i
\(565\) 12.1531 17.0589i 0.511284 0.717674i
\(566\) −4.91005 + 2.83482i −0.206385 + 0.119156i
\(567\) 2.80495 0.117797
\(568\) 1.11257 0.642342i 0.0466824 0.0269521i
\(569\) −7.14388 + 12.3736i −0.299487 + 0.518727i −0.976019 0.217687i \(-0.930149\pi\)
0.676532 + 0.736414i \(0.263482\pi\)
\(570\) −1.62243 + 16.9527i −0.0679559 + 0.710070i
\(571\) −37.4439 −1.56698 −0.783490 0.621404i \(-0.786562\pi\)
−0.783490 + 0.621404i \(0.786562\pi\)
\(572\) −2.04071 + 0.660156i −0.0853263 + 0.0276025i
\(573\) 13.8346i 0.577947i
\(574\) 13.9749 + 8.06839i 0.583300 + 0.336768i
\(575\) −21.9535 + 7.58771i −0.915524 + 0.316430i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −47.6052 −1.98183 −0.990916 0.134485i \(-0.957062\pi\)
−0.990916 + 0.134485i \(0.957062\pi\)
\(578\) −8.04834 13.9401i −0.334767 0.579833i
\(579\) 14.7280 8.50322i 0.612075 0.353382i
\(580\) −5.13572 + 2.34408i −0.213249 + 0.0973328i
\(581\) 5.87895 + 10.1826i 0.243900 + 0.422447i
\(582\) −14.6413 8.45318i −0.606903 0.350396i
\(583\) 4.13314 7.15881i 0.171177 0.296487i
\(584\) 14.5400 0.601671
\(585\) 2.42982 7.68739i 0.100461 0.317834i
\(586\) −1.65835 −0.0685059
\(587\) −18.8016 + 32.5654i −0.776027 + 1.34412i 0.158189 + 0.987409i \(0.449435\pi\)
−0.934216 + 0.356709i \(0.883899\pi\)
\(588\) −0.751482 0.433868i −0.0309906 0.0178924i
\(589\) 25.1068 + 43.4863i 1.03451 + 1.79182i
\(590\) 9.00882 + 19.7377i 0.370887 + 0.812587i
\(591\) 5.48171 3.16487i 0.225487 0.130185i
\(592\) 5.18679 + 8.98379i 0.213176 + 0.369231i
\(593\) −24.0046 −0.985752 −0.492876 0.870100i \(-0.664054\pi\)
−0.492876 + 0.870100i \(0.664054\pi\)
\(594\) 0.297434 + 0.515171i 0.0122039 + 0.0211377i
\(595\) −35.9188 3.43755i −1.47253 0.140926i
\(596\) 3.02342 + 1.74557i 0.123844 + 0.0715014i
\(597\) 16.6356i 0.680851i
\(598\) −12.4330 11.2238i −0.508425 0.458977i
\(599\) −23.7092 −0.968731 −0.484365 0.874866i \(-0.660949\pi\)
−0.484365 + 0.874866i \(0.660949\pi\)
\(600\) 4.72570 1.63333i 0.192926 0.0666803i
\(601\) 0.918249 1.59045i 0.0374562 0.0648760i −0.846690 0.532087i \(-0.821408\pi\)
0.884146 + 0.467211i \(0.154741\pi\)
\(602\) −10.3108 + 5.95294i −0.420237 + 0.242624i
\(603\) 7.86242 0.320183
\(604\) 3.94031 2.27494i 0.160329 0.0925661i
\(605\) 19.3884 + 13.8127i 0.788252 + 0.561564i
\(606\) 5.44720i 0.221277i
\(607\) 30.2214 17.4483i 1.22665 0.708206i 0.260321 0.965522i \(-0.416172\pi\)
0.966327 + 0.257316i \(0.0828382\pi\)
\(608\) −6.59574 3.80805i −0.267493 0.154437i
\(609\) −6.13287 3.54082i −0.248517 0.143481i
\(610\) 13.8858 6.33786i 0.562220 0.256613i
\(611\) −3.21604 9.94159i −0.130107 0.402194i
\(612\) 5.75297i 0.232550i
\(613\) 4.70575 8.15061i 0.190064 0.329200i −0.755207 0.655486i \(-0.772464\pi\)
0.945271 + 0.326286i \(0.105797\pi\)
\(614\) 0.192044 0.332629i 0.00775025 0.0134238i
\(615\) −10.4771 7.46410i −0.422479 0.300982i
\(616\) 1.66858i 0.0672288i
\(617\) −5.47577 9.48432i −0.220446 0.381824i 0.734497 0.678612i \(-0.237418\pi\)
−0.954944 + 0.296787i \(0.904085\pi\)
\(618\) −6.87645 11.9104i −0.276611 0.479105i
\(619\) 1.00216i 0.0402803i −0.999797 0.0201402i \(-0.993589\pi\)
0.999797 0.0201402i \(-0.00641125\pi\)
\(620\) 8.55410 12.0071i 0.343541 0.482218i
\(621\) −2.32278 + 4.02317i −0.0932098 + 0.161444i
\(622\) −5.84601 + 10.1256i −0.234404 + 0.405999i
\(623\) 16.9825i 0.680389i
\(624\) 2.67633 + 2.41604i 0.107139 + 0.0967190i
\(625\) −3.53680 24.7486i −0.141472 0.989942i
\(626\) 9.16150 + 5.28939i 0.366167 + 0.211407i
\(627\) −3.92360 2.26529i −0.156694 0.0904671i
\(628\) 9.95560 5.74787i 0.397272 0.229365i
\(629\) 59.6789i 2.37955i
\(630\) 5.10829 + 3.63924i 0.203519 + 0.144991i
\(631\) −33.5167 + 19.3509i −1.33428 + 0.770346i −0.985952 0.167027i \(-0.946583\pi\)
−0.348327 + 0.937373i \(0.613250\pi\)
\(632\) 1.83150 0.0728532
\(633\) 14.3317 8.27443i 0.569635 0.328879i
\(634\) 11.0512 19.1412i 0.438898 0.760193i
\(635\) −14.8866 1.42469i −0.590756 0.0565373i
\(636\) −13.8960 −0.551011
\(637\) −3.05946 0.654435i −0.121220 0.0259296i
\(638\) 1.50186i 0.0594592i
\(639\) −1.11257 0.642342i −0.0440126 0.0254107i
\(640\) −0.213026 + 2.22590i −0.00842057 + 0.0879863i
\(641\) 4.99961 + 8.65957i 0.197473 + 0.342033i 0.947708 0.319138i \(-0.103393\pi\)
−0.750236 + 0.661170i \(0.770060\pi\)
\(642\) 4.23091 0.166981
\(643\) 3.38728 + 5.86694i 0.133581 + 0.231369i 0.925055 0.379834i \(-0.124019\pi\)
−0.791473 + 0.611204i \(0.790686\pi\)
\(644\) 11.2848 6.51527i 0.444683 0.256738i
\(645\) 8.63435 3.94095i 0.339977 0.155175i
\(646\) −21.9076 37.9451i −0.861944 1.49293i
\(647\) 14.8850 + 8.59384i 0.585188 + 0.337859i 0.763193 0.646171i \(-0.223631\pi\)
−0.178004 + 0.984030i \(0.556964\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −5.77197 −0.226570
\(650\) 14.3990 10.8475i 0.564776 0.425474i
\(651\) 18.4933 0.724808
\(652\) −6.91443 + 11.9762i −0.270790 + 0.469022i
\(653\) −21.5401 12.4362i −0.842930 0.486666i 0.0153292 0.999883i \(-0.495120\pi\)
−0.858259 + 0.513217i \(0.828454\pi\)
\(654\) 0.223679 + 0.387423i 0.00874654 + 0.0151495i
\(655\) 23.7440 10.8374i 0.927753 0.423452i
\(656\) 4.98222 2.87649i 0.194523 0.112308i
\(657\) −7.27002 12.5920i −0.283631 0.491262i
\(658\) 8.12870 0.316890
\(659\) −4.12151 7.13867i −0.160551 0.278083i 0.774515 0.632555i \(-0.217994\pi\)
−0.935067 + 0.354472i \(0.884661\pi\)
\(660\) −0.126722 + 1.32412i −0.00493266 + 0.0515412i
\(661\) 22.3962 + 12.9305i 0.871112 + 0.502937i 0.867718 0.497057i \(-0.165586\pi\)
0.00339467 + 0.999994i \(0.498919\pi\)
\(662\) 6.10616i 0.237323i
\(663\) 6.38437 + 19.7357i 0.247948 + 0.766470i
\(664\) 4.19184 0.162675
\(665\) −47.5514 4.55082i −1.84396 0.176473i
\(666\) 5.18679 8.98379i 0.200984 0.348115i
\(667\) 10.1573 5.86430i 0.393291 0.227067i
\(668\) −21.5400 −0.833409
\(669\) −14.4242 + 8.32779i −0.557670 + 0.321971i
\(670\) 14.3188 + 10.2010i 0.553184 + 0.394098i
\(671\) 4.06069i 0.156761i
\(672\) −2.42916 + 1.40247i −0.0937068 + 0.0541016i
\(673\) 5.99820 + 3.46306i 0.231213 + 0.133491i 0.611132 0.791529i \(-0.290715\pi\)
−0.379918 + 0.925020i \(0.624048\pi\)
\(674\) −3.72263 2.14926i −0.143390 0.0827864i
\(675\) −3.77735 3.27591i −0.145390 0.126090i
\(676\) 11.8624 + 5.31820i 0.456246 + 0.204546i
\(677\) 4.72639i 0.181650i −0.995867 0.0908250i \(-0.971050\pi\)
0.995867 0.0908250i \(-0.0289504\pi\)
\(678\) 4.68350 8.11206i 0.179869 0.311542i
\(679\) 23.7107 41.0682i 0.909935 1.57605i
\(680\) −7.46410 + 10.4771i −0.286235 + 0.401780i
\(681\) 3.02210i 0.115807i
\(682\) 1.96101 + 3.39657i 0.0750910 + 0.130061i
\(683\) 9.78995 + 16.9567i 0.374602 + 0.648830i 0.990267 0.139178i \(-0.0444460\pi\)
−0.615665 + 0.788008i \(0.711113\pi\)
\(684\) 7.61611i 0.291209i
\(685\) 12.3891 + 8.82625i 0.473365 + 0.337234i
\(686\) −8.60034 + 14.8962i −0.328363 + 0.568741i
\(687\) 8.22361 14.2437i 0.313750 0.543432i
\(688\) 4.24460i 0.161824i
\(689\) −47.6704 + 15.4211i −1.81610 + 0.587496i
\(690\) −9.44997 + 4.31323i −0.359754 + 0.164202i
\(691\) −10.7079 6.18224i −0.407350 0.235183i 0.282301 0.959326i \(-0.408902\pi\)
−0.689650 + 0.724143i \(0.742236\pi\)
\(692\) −11.8342 6.83251i −0.449871 0.259733i
\(693\) −1.44503 + 0.834288i −0.0548921 + 0.0316920i
\(694\) 34.3459i 1.30375i
\(695\) 12.9270 + 9.20939i 0.490348 + 0.349332i
\(696\) −2.18645 + 1.26235i −0.0828771 + 0.0478491i
\(697\) 33.0967 1.25363
\(698\) 13.8581 8.00099i 0.524538 0.302842i
\(699\) −6.91443 + 11.9762i −0.261528 + 0.452980i
\(700\) 4.58140 + 13.2553i 0.173161 + 0.501005i
\(701\) 43.7550 1.65260 0.826302 0.563227i \(-0.190441\pi\)
0.826302 + 0.563227i \(0.190441\pi\)
\(702\) 0.754186 3.52579i 0.0284649 0.133072i
\(703\) 79.0063i 2.97978i
\(704\) −0.515171 0.297434i −0.0194163 0.0112100i
\(705\) −6.45062 0.617345i −0.242944 0.0232506i
\(706\) −9.69607 16.7941i −0.364916 0.632054i
\(707\) −15.2791 −0.574630
\(708\) 4.85147 + 8.40299i 0.182329 + 0.315804i
\(709\) 16.4104 9.47457i 0.616307 0.355825i −0.159123 0.987259i \(-0.550867\pi\)
0.775430 + 0.631434i \(0.217533\pi\)
\(710\) −1.19278 2.61330i −0.0447643 0.0980754i
\(711\) −0.915751 1.58613i −0.0343434 0.0594844i
\(712\) 5.24333 + 3.02724i 0.196502 + 0.113451i
\(713\) −15.3143 + 26.5251i −0.573524 + 0.993372i
\(714\) −16.1368 −0.603904
\(715\) 1.03472 + 4.68304i 0.0386962 + 0.175136i
\(716\) −10.7577 −0.402035
\(717\) 2.30108 3.98559i 0.0859355 0.148845i
\(718\) −13.7129 7.91712i −0.511759 0.295464i
\(719\) −23.5155 40.7301i −0.876981 1.51898i −0.854637 0.519225i \(-0.826221\pi\)
−0.0223436 0.999750i \(-0.507113\pi\)
\(720\) 2.03420 0.928463i 0.0758100 0.0346018i
\(721\) 33.4079 19.2881i 1.24418 0.718326i
\(722\) −19.5026 33.7794i −0.725810 1.25714i
\(723\) −6.21354 −0.231084
\(724\) −2.93234 5.07897i −0.108980 0.188758i
\(725\) 4.12365 + 11.9309i 0.153149 + 0.443104i
\(726\) 9.21982 + 5.32307i 0.342180 + 0.197557i
\(727\) 4.10440i 0.152224i −0.997099 0.0761119i \(-0.975749\pi\)
0.997099 0.0761119i \(-0.0242506\pi\)
\(728\) −6.77687 + 7.50697i −0.251167 + 0.278227i
\(729\) −1.00000 −0.0370370
\(730\) 3.09740 32.3646i 0.114640 1.19787i
\(731\) −12.2095 + 21.1475i −0.451586 + 0.782169i
\(732\) 5.91165 3.41309i 0.218501 0.126152i
\(733\) 24.2968 0.897421 0.448711 0.893677i \(-0.351883\pi\)
0.448711 + 0.893677i \(0.351883\pi\)
\(734\) 13.2440 7.64645i 0.488847 0.282236i
\(735\) −1.12583 + 1.58030i −0.0415269 + 0.0582901i
\(736\) 4.64555i 0.171237i
\(737\) −4.05050 + 2.33855i −0.149202 + 0.0861418i
\(738\) −4.98222 2.87649i −0.183398 0.105885i
\(739\) −35.0414 20.2311i −1.28902 0.744215i −0.310539 0.950561i \(-0.600509\pi\)
−0.978479 + 0.206346i \(0.933843\pi\)
\(740\) 21.1019 9.63149i 0.775722 0.354061i
\(741\) 8.45199 + 26.1272i 0.310492 + 0.959806i
\(742\) 38.9775i 1.43091i
\(743\) 15.7497 27.2794i 0.577802 1.00078i −0.417929 0.908480i \(-0.637244\pi\)
0.995731 0.0923027i \(-0.0294227\pi\)
\(744\) 3.29654 5.70978i 0.120857 0.209331i
\(745\) 4.52953 6.35797i 0.165949 0.232938i
\(746\) 21.6516i 0.792721i
\(747\) −2.09592 3.63024i −0.0766857 0.132824i
\(748\) −1.71113 2.96377i −0.0625651 0.108366i
\(749\) 11.8675i 0.433628i
\(750\) −2.62893 10.8669i −0.0959948 0.396802i
\(751\) −8.37551 + 14.5068i −0.305627 + 0.529361i −0.977401 0.211395i \(-0.932199\pi\)
0.671774 + 0.740756i \(0.265533\pi\)
\(752\) 1.44899 2.50973i 0.0528393 0.0915204i
\(753\) 16.3877i 0.597202i
\(754\) −6.09976 + 6.75692i −0.222140 + 0.246072i
\(755\) −4.22440 9.25536i −0.153742 0.336837i
\(756\) 2.42916 + 1.40247i 0.0883476 + 0.0510075i
\(757\) 23.1908 + 13.3892i 0.842885 + 0.486640i 0.858244 0.513242i \(-0.171556\pi\)
−0.0153589 + 0.999882i \(0.504889\pi\)
\(758\) 7.81479 4.51187i 0.283846 0.163879i
\(759\) 2.76349i 0.100308i
\(760\) −9.88140 + 13.8702i −0.358436 + 0.503126i
\(761\) −0.217029 + 0.125302i −0.00786729 + 0.00454218i −0.503928 0.863745i \(-0.668112\pi\)
0.496061 + 0.868288i \(0.334779\pi\)
\(762\) −6.68791 −0.242277
\(763\) −1.08670 + 0.627408i −0.0393413 + 0.0227137i
\(764\) 6.91728 11.9811i 0.250259 0.433461i
\(765\) 12.8055 + 1.22553i 0.462985 + 0.0443091i
\(766\) −10.0741 −0.363990
\(767\) 25.9683 + 23.4427i 0.937660 + 0.846466i
\(768\) 1.00000i 0.0360844i
\(769\) 17.1777 + 9.91755i 0.619444 + 0.357636i 0.776652 0.629929i \(-0.216916\pi\)
−0.157209 + 0.987565i \(0.550250\pi\)
\(770\) −3.71408 0.355449i −0.133846 0.0128095i
\(771\) 4.20466 + 7.28269i 0.151427 + 0.262280i
\(772\) 17.0064 0.612075
\(773\) 18.3185 + 31.7285i 0.658869 + 1.14120i 0.980909 + 0.194469i \(0.0622984\pi\)
−0.322039 + 0.946726i \(0.604368\pi\)
\(774\) 3.67593 2.12230i 0.132129