Properties

Label 390.2.x.a.49.6
Level $390$
Weight $2$
Character 390.49
Analytic conductor $3.114$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \( x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + 190 x^{3} - 1196 x^{2} - 338 x + 2197 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.6
Root \(1.40719 - 0.536449i\) of defining polynomial
Character \(\chi\) \(=\) 390.49
Dual form 390.2.x.a.199.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.03420 - 0.928463i) q^{5} +(-0.866025 - 0.500000i) q^{6} +(1.40247 - 2.42916i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.03420 - 0.928463i) q^{5} +(-0.866025 - 0.500000i) q^{6} +(1.40247 - 2.42916i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.82117 - 1.29743i) q^{10} +(-0.515171 + 0.297434i) q^{11} +1.00000i q^{12} +(-1.10975 + 3.43052i) q^{13} -2.80495 q^{14} +(1.29743 - 1.82117i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(4.98222 + 2.87649i) q^{17} -1.00000 q^{18} +(-6.59574 - 3.80805i) q^{19} +(-0.213026 + 2.22590i) q^{20} -2.80495i q^{21} +(0.515171 + 0.297434i) q^{22} +(4.02317 - 2.32278i) q^{23} +(0.866025 - 0.500000i) q^{24} +(3.27591 - 3.77735i) q^{25} +(3.52579 - 0.754186i) q^{26} -1.00000i q^{27} +(1.40247 + 2.42916i) q^{28} +(-1.26235 - 2.18645i) q^{29} +(-2.22590 - 0.213026i) q^{30} +6.59309i q^{31} +(-0.500000 + 0.866025i) q^{32} +(-0.297434 + 0.515171i) q^{33} -5.75297i q^{34} +(0.597526 - 6.24353i) q^{35} +(0.500000 + 0.866025i) q^{36} +(-5.18679 - 8.98379i) q^{37} +7.61611i q^{38} +(0.754186 + 3.52579i) q^{39} +(2.03420 - 0.928463i) q^{40} +(-4.98222 + 2.87649i) q^{41} +(-2.42916 + 1.40247i) q^{42} +(-3.67593 - 2.12230i) q^{43} -0.594869i q^{44} +(0.213026 - 2.22590i) q^{45} +(-4.02317 - 2.32278i) q^{46} +2.89798 q^{47} +(-0.866025 - 0.500000i) q^{48} +(-0.433868 - 0.751482i) q^{49} +(-4.90924 - 0.948346i) q^{50} +5.75297 q^{51} +(-2.41604 - 2.67633i) q^{52} +13.8960i q^{53} +(-0.866025 + 0.500000i) q^{54} +(-0.771803 + 1.08336i) q^{55} +(1.40247 - 2.42916i) q^{56} -7.61611 q^{57} +(-1.26235 + 2.18645i) q^{58} +(8.40299 + 4.85147i) q^{59} +(0.928463 + 2.03420i) q^{60} +(-3.41309 + 5.91165i) q^{61} +(5.70978 - 3.29654i) q^{62} +(-1.40247 - 2.42916i) q^{63} +1.00000 q^{64} +(0.927657 + 8.00871i) q^{65} +0.594869 q^{66} +(-3.93121 - 6.80906i) q^{67} +(-4.98222 + 2.87649i) q^{68} +(2.32278 - 4.02317i) q^{69} +(-5.70582 + 2.60429i) q^{70} +(-1.11257 - 0.642342i) q^{71} +(0.500000 - 0.866025i) q^{72} +14.5400 q^{73} +(-5.18679 + 8.98379i) q^{74} +(0.948346 - 4.90924i) q^{75} +(6.59574 - 3.80805i) q^{76} +1.66858i q^{77} +(2.67633 - 2.41604i) q^{78} -1.83150 q^{79} +(-1.82117 - 1.29743i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(4.98222 + 2.87649i) q^{82} +4.19184 q^{83} +(2.42916 + 1.40247i) q^{84} +(12.8055 + 1.22553i) q^{85} +4.24460i q^{86} +(-2.18645 - 1.26235i) q^{87} +(-0.515171 + 0.297434i) q^{88} +(-5.24333 + 3.02724i) q^{89} +(-2.03420 + 0.928463i) q^{90} +(6.77687 + 7.50697i) q^{91} +4.64555i q^{92} +(3.29654 + 5.70978i) q^{93} +(-1.44899 - 2.50973i) q^{94} +(-16.9527 - 1.62243i) q^{95} +1.00000i q^{96} +(-8.45318 + 14.6413i) q^{97} +(-0.433868 + 0.751482i) q^{98} +0.594869i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9} - 2 q^{10} + 6 q^{11} - 8 q^{13} + 4 q^{14} + 6 q^{15} - 6 q^{16} + 18 q^{17} - 12 q^{18} - 6 q^{19} + 4 q^{20} - 6 q^{22} + 6 q^{23} - 10 q^{25} - 2 q^{26} - 2 q^{28} + 14 q^{29} - 6 q^{30} - 6 q^{32} + 6 q^{33} + 26 q^{35} + 6 q^{36} - 12 q^{37} - 2 q^{39} - 2 q^{40} - 18 q^{41} - 12 q^{42} - 36 q^{43} - 4 q^{45} - 6 q^{46} + 16 q^{47} + 8 q^{49} - 10 q^{50} + 16 q^{51} + 10 q^{52} - 28 q^{55} - 2 q^{56} - 8 q^{57} + 14 q^{58} - 36 q^{59} + 10 q^{61} + 6 q^{62} + 2 q^{63} + 12 q^{64} + 6 q^{65} - 12 q^{66} + 4 q^{67} - 18 q^{68} + 16 q^{69} - 4 q^{70} - 12 q^{71} + 6 q^{72} + 28 q^{73} - 12 q^{74} - 8 q^{75} + 6 q^{76} - 2 q^{78} + 4 q^{79} - 2 q^{80} - 6 q^{81} + 18 q^{82} + 72 q^{83} + 12 q^{84} + 18 q^{85} + 6 q^{87} + 6 q^{88} + 18 q^{89} + 2 q^{90} + 2 q^{91} - 16 q^{93} - 8 q^{94} - 42 q^{95} - 48 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.03420 0.928463i 0.909720 0.415221i
\(6\) −0.866025 0.500000i −0.353553 0.204124i
\(7\) 1.40247 2.42916i 0.530085 0.918135i −0.469299 0.883040i \(-0.655493\pi\)
0.999384 0.0350954i \(-0.0111735\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.82117 1.29743i −0.575905 0.410285i
\(11\) −0.515171 + 0.297434i −0.155330 + 0.0896798i −0.575650 0.817696i \(-0.695251\pi\)
0.420320 + 0.907376i \(0.361918\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −1.10975 + 3.43052i −0.307790 + 0.951454i
\(14\) −2.80495 −0.749654
\(15\) 1.29743 1.82117i 0.334996 0.470224i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.98222 + 2.87649i 1.20837 + 0.697650i 0.962402 0.271629i \(-0.0875623\pi\)
0.245963 + 0.969279i \(0.420896\pi\)
\(18\) −1.00000 −0.235702
\(19\) −6.59574 3.80805i −1.51317 0.873628i −0.999881 0.0154099i \(-0.995095\pi\)
−0.513286 0.858218i \(-0.671572\pi\)
\(20\) −0.213026 + 2.22590i −0.0476340 + 0.497726i
\(21\) 2.80495i 0.612090i
\(22\) 0.515171 + 0.297434i 0.109835 + 0.0634132i
\(23\) 4.02317 2.32278i 0.838888 0.484332i −0.0179978 0.999838i \(-0.505729\pi\)
0.856886 + 0.515506i \(0.172396\pi\)
\(24\) 0.866025 0.500000i 0.176777 0.102062i
\(25\) 3.27591 3.77735i 0.655182 0.755471i
\(26\) 3.52579 0.754186i 0.691465 0.147908i
\(27\) 1.00000i 0.192450i
\(28\) 1.40247 + 2.42916i 0.265043 + 0.459067i
\(29\) −1.26235 2.18645i −0.234412 0.406013i 0.724690 0.689075i \(-0.241983\pi\)
−0.959102 + 0.283062i \(0.908650\pi\)
\(30\) −2.22590 0.213026i −0.406391 0.0388930i
\(31\) 6.59309i 1.18415i 0.805882 + 0.592077i \(0.201692\pi\)
−0.805882 + 0.592077i \(0.798308\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −0.297434 + 0.515171i −0.0517767 + 0.0896798i
\(34\) 5.75297i 0.986626i
\(35\) 0.597526 6.24353i 0.101000 1.05535i
\(36\) 0.500000 + 0.866025i 0.0833333 + 0.144338i
\(37\) −5.18679 8.98379i −0.852703 1.47693i −0.878759 0.477265i \(-0.841628\pi\)
0.0260561 0.999660i \(-0.491705\pi\)
\(38\) 7.61611i 1.23550i
\(39\) 0.754186 + 3.52579i 0.120766 + 0.564578i
\(40\) 2.03420 0.928463i 0.321635 0.146803i
\(41\) −4.98222 + 2.87649i −0.778092 + 0.449232i −0.835754 0.549105i \(-0.814969\pi\)
0.0576618 + 0.998336i \(0.481636\pi\)
\(42\) −2.42916 + 1.40247i −0.374827 + 0.216406i
\(43\) −3.67593 2.12230i −0.560574 0.323648i 0.192802 0.981238i \(-0.438243\pi\)
−0.753376 + 0.657590i \(0.771576\pi\)
\(44\) 0.594869i 0.0896798i
\(45\) 0.213026 2.22590i 0.0317560 0.331817i
\(46\) −4.02317 2.32278i −0.593184 0.342475i
\(47\) 2.89798 0.422715 0.211357 0.977409i \(-0.432212\pi\)
0.211357 + 0.977409i \(0.432212\pi\)
\(48\) −0.866025 0.500000i −0.125000 0.0721688i
\(49\) −0.433868 0.751482i −0.0619812 0.107355i
\(50\) −4.90924 0.948346i −0.694271 0.134116i
\(51\) 5.75297 0.805577
\(52\) −2.41604 2.67633i −0.335044 0.371140i
\(53\) 13.8960i 1.90876i 0.298598 + 0.954379i \(0.403481\pi\)
−0.298598 + 0.954379i \(0.596519\pi\)
\(54\) −0.866025 + 0.500000i −0.117851 + 0.0680414i
\(55\) −0.771803 + 1.08336i −0.104070 + 0.146080i
\(56\) 1.40247 2.42916i 0.187414 0.324610i
\(57\) −7.61611 −1.00878
\(58\) −1.26235 + 2.18645i −0.165754 + 0.287095i
\(59\) 8.40299 + 4.85147i 1.09398 + 0.631607i 0.934632 0.355616i \(-0.115729\pi\)
0.159344 + 0.987223i \(0.449062\pi\)
\(60\) 0.928463 + 2.03420i 0.119864 + 0.262614i
\(61\) −3.41309 + 5.91165i −0.437002 + 0.756910i −0.997457 0.0712755i \(-0.977293\pi\)
0.560455 + 0.828185i \(0.310626\pi\)
\(62\) 5.70978 3.29654i 0.725143 0.418661i
\(63\) −1.40247 2.42916i −0.176695 0.306045i
\(64\) 1.00000 0.125000
\(65\) 0.927657 + 8.00871i 0.115062 + 0.993358i
\(66\) 0.594869 0.0732233
\(67\) −3.93121 6.80906i −0.480274 0.831859i 0.519470 0.854489i \(-0.326129\pi\)
−0.999744 + 0.0226299i \(0.992796\pi\)
\(68\) −4.98222 + 2.87649i −0.604183 + 0.348825i
\(69\) 2.32278 4.02317i 0.279629 0.484332i
\(70\) −5.70582 + 2.60429i −0.681976 + 0.311272i
\(71\) −1.11257 0.642342i −0.132038 0.0762320i 0.432526 0.901621i \(-0.357622\pi\)
−0.564564 + 0.825389i \(0.690956\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) 14.5400 1.70178 0.850892 0.525341i \(-0.176062\pi\)
0.850892 + 0.525341i \(0.176062\pi\)
\(74\) −5.18679 + 8.98379i −0.602952 + 1.04434i
\(75\) 0.948346 4.90924i 0.109506 0.566870i
\(76\) 6.59574 3.80805i 0.756584 0.436814i
\(77\) 1.66858i 0.190152i
\(78\) 2.67633 2.41604i 0.303035 0.273563i
\(79\) −1.83150 −0.206060 −0.103030 0.994678i \(-0.532854\pi\)
−0.103030 + 0.994678i \(0.532854\pi\)
\(80\) −1.82117 1.29743i −0.203613 0.145058i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 4.98222 + 2.87649i 0.550194 + 0.317655i
\(83\) 4.19184 0.460114 0.230057 0.973177i \(-0.426109\pi\)
0.230057 + 0.973177i \(0.426109\pi\)
\(84\) 2.42916 + 1.40247i 0.265043 + 0.153022i
\(85\) 12.8055 + 1.22553i 1.38895 + 0.132927i
\(86\) 4.24460i 0.457707i
\(87\) −2.18645 1.26235i −0.234412 0.135338i
\(88\) −0.515171 + 0.297434i −0.0549175 + 0.0317066i
\(89\) −5.24333 + 3.02724i −0.555792 + 0.320886i −0.751455 0.659785i \(-0.770647\pi\)
0.195663 + 0.980671i \(0.437314\pi\)
\(90\) −2.03420 + 0.928463i −0.214423 + 0.0978686i
\(91\) 6.77687 + 7.50697i 0.710409 + 0.786945i
\(92\) 4.64555i 0.484332i
\(93\) 3.29654 + 5.70978i 0.341836 + 0.592077i
\(94\) −1.44899 2.50973i −0.149452 0.258859i
\(95\) −16.9527 1.62243i −1.73931 0.166457i
\(96\) 1.00000i 0.102062i
\(97\) −8.45318 + 14.6413i −0.858291 + 1.48660i 0.0152677 + 0.999883i \(0.495140\pi\)
−0.873558 + 0.486719i \(0.838193\pi\)
\(98\) −0.433868 + 0.751482i −0.0438273 + 0.0759111i
\(99\) 0.594869i 0.0597866i
\(100\) 1.63333 + 4.72570i 0.163333 + 0.472570i
\(101\) 2.72360 + 4.71741i 0.271008 + 0.469400i 0.969120 0.246589i \(-0.0793096\pi\)
−0.698112 + 0.715988i \(0.745976\pi\)
\(102\) −2.87649 4.98222i −0.284814 0.493313i
\(103\) 13.7529i 1.35511i 0.735471 + 0.677556i \(0.236961\pi\)
−0.735471 + 0.677556i \(0.763039\pi\)
\(104\) −1.10975 + 3.43052i −0.108820 + 0.336390i
\(105\) −2.60429 5.70582i −0.254153 0.556831i
\(106\) 12.0343 6.94798i 1.16887 0.674848i
\(107\) 3.66407 2.11545i 0.354219 0.204509i −0.312323 0.949976i \(-0.601107\pi\)
0.666542 + 0.745468i \(0.267774\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) 0.447358i 0.0428491i 0.999770 + 0.0214246i \(0.00682017\pi\)
−0.999770 + 0.0214246i \(0.993180\pi\)
\(110\) 1.32412 + 0.126722i 0.126250 + 0.0120825i
\(111\) −8.98379 5.18679i −0.852703 0.492308i
\(112\) −2.80495 −0.265043
\(113\) 8.11206 + 4.68350i 0.763119 + 0.440587i 0.830414 0.557146i \(-0.188104\pi\)
−0.0672956 + 0.997733i \(0.521437\pi\)
\(114\) 3.80805 + 6.59574i 0.356657 + 0.617748i
\(115\) 6.02730 8.46035i 0.562049 0.788932i
\(116\) 2.52469 0.234412
\(117\) 2.41604 + 2.67633i 0.223363 + 0.247427i
\(118\) 9.70293i 0.893227i
\(119\) 13.9749 8.06839i 1.28107 0.739628i
\(120\) 1.29743 1.82117i 0.118439 0.166249i
\(121\) −5.32307 + 9.21982i −0.483915 + 0.838165i
\(122\) 6.82619 0.618014
\(123\) −2.87649 + 4.98222i −0.259364 + 0.449232i
\(124\) −5.70978 3.29654i −0.512753 0.296038i
\(125\) 3.15672 10.7254i 0.282345 0.959313i
\(126\) −1.40247 + 2.42916i −0.124942 + 0.216406i
\(127\) −5.79190 + 3.34395i −0.513948 + 0.296728i −0.734455 0.678658i \(-0.762562\pi\)
0.220507 + 0.975385i \(0.429229\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −4.24460 −0.373716
\(130\) 6.47192 4.80773i 0.567625 0.421666i
\(131\) −11.6724 −1.01982 −0.509911 0.860227i \(-0.670322\pi\)
−0.509911 + 0.860227i \(0.670322\pi\)
\(132\) −0.297434 0.515171i −0.0258883 0.0448399i
\(133\) −18.5007 + 10.6814i −1.60422 + 0.926194i
\(134\) −3.93121 + 6.80906i −0.339605 + 0.588213i
\(135\) −0.928463 2.03420i −0.0799094 0.175076i
\(136\) 4.98222 + 2.87649i 0.427222 + 0.246657i
\(137\) 3.40142 5.89144i 0.290603 0.503339i −0.683349 0.730092i \(-0.739477\pi\)
0.973953 + 0.226752i \(0.0728107\pi\)
\(138\) −4.64555 −0.395456
\(139\) −3.54908 + 6.14719i −0.301029 + 0.521397i −0.976369 0.216109i \(-0.930663\pi\)
0.675340 + 0.737506i \(0.263997\pi\)
\(140\) 5.10829 + 3.63924i 0.431729 + 0.307572i
\(141\) 2.50973 1.44899i 0.211357 0.122027i
\(142\) 1.28468i 0.107808i
\(143\) −0.448642 2.09738i −0.0375173 0.175392i
\(144\) −1.00000 −0.0833333
\(145\) −4.59790 3.27562i −0.381835 0.272026i
\(146\) −7.27002 12.5920i −0.601671 1.04213i
\(147\) −0.751482 0.433868i −0.0619812 0.0357848i
\(148\) 10.3736 0.852703
\(149\) −3.02342 1.74557i −0.247688 0.143003i 0.371017 0.928626i \(-0.379009\pi\)
−0.618705 + 0.785623i \(0.712342\pi\)
\(150\) −4.72570 + 1.63333i −0.385852 + 0.133361i
\(151\) 4.54988i 0.370264i −0.982714 0.185132i \(-0.940729\pi\)
0.982714 0.185132i \(-0.0592713\pi\)
\(152\) −6.59574 3.80805i −0.534985 0.308874i
\(153\) 4.98222 2.87649i 0.402789 0.232550i
\(154\) 1.44503 0.834288i 0.116444 0.0672288i
\(155\) 6.12144 + 13.4116i 0.491686 + 1.07725i
\(156\) −3.43052 1.10975i −0.274661 0.0888512i
\(157\) 11.4957i 0.917460i 0.888576 + 0.458730i \(0.151695\pi\)
−0.888576 + 0.458730i \(0.848305\pi\)
\(158\) 0.915751 + 1.58613i 0.0728532 + 0.126186i
\(159\) 6.94798 + 12.0343i 0.551011 + 0.954379i
\(160\) −0.213026 + 2.22590i −0.0168411 + 0.175973i
\(161\) 13.0305i 1.02695i
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) 6.91443 11.9762i 0.541580 0.938045i −0.457233 0.889347i \(-0.651160\pi\)
0.998814 0.0486977i \(-0.0155071\pi\)
\(164\) 5.75297i 0.449232i
\(165\) −0.126722 + 1.32412i −0.00986531 + 0.103082i
\(166\) −2.09592 3.63024i −0.162675 0.281761i
\(167\) −10.7700 18.6542i −0.833409 1.44351i −0.895319 0.445425i \(-0.853052\pi\)
0.0619099 0.998082i \(-0.480281\pi\)
\(168\) 2.80495i 0.216406i
\(169\) −10.5369 7.61404i −0.810531 0.585696i
\(170\) −5.34142 11.7027i −0.409668 0.897554i
\(171\) −6.59574 + 3.80805i −0.504389 + 0.291209i
\(172\) 3.67593 2.12230i 0.280287 0.161824i
\(173\) −11.8342 6.83251i −0.899741 0.519466i −0.0226249 0.999744i \(-0.507202\pi\)
−0.877116 + 0.480278i \(0.840536\pi\)
\(174\) 2.52469i 0.191396i
\(175\) −4.58140 13.2553i −0.346321 1.00201i
\(176\) 0.515171 + 0.297434i 0.0388325 + 0.0224200i
\(177\) 9.70293 0.729317
\(178\) 5.24333 + 3.02724i 0.393004 + 0.226901i
\(179\) 5.37886 + 9.31647i 0.402035 + 0.696345i 0.993971 0.109639i \(-0.0349696\pi\)
−0.591936 + 0.805985i \(0.701636\pi\)
\(180\) 1.82117 + 1.29743i 0.135742 + 0.0967050i
\(181\) 5.86469 0.435919 0.217959 0.975958i \(-0.430060\pi\)
0.217959 + 0.975958i \(0.430060\pi\)
\(182\) 3.11280 9.62243i 0.230736 0.713262i
\(183\) 6.82619i 0.504606i
\(184\) 4.02317 2.32278i 0.296592 0.171237i
\(185\) −18.8921 13.4590i −1.38897 0.989529i
\(186\) 3.29654 5.70978i 0.241714 0.418661i
\(187\) −3.42226 −0.250261
\(188\) −1.44899 + 2.50973i −0.105679 + 0.183041i
\(189\) −2.42916 1.40247i −0.176695 0.102015i
\(190\) 7.07128 + 15.4927i 0.513004 + 1.12396i
\(191\) 6.91728 11.9811i 0.500517 0.866921i −0.499483 0.866324i \(-0.666477\pi\)
1.00000 0.000597179i \(-0.000190088\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) 8.50322 + 14.7280i 0.612075 + 1.06014i 0.990890 + 0.134673i \(0.0429983\pi\)
−0.378815 + 0.925472i \(0.623668\pi\)
\(194\) 16.9064 1.21381
\(195\) 4.80773 + 6.47192i 0.344289 + 0.463464i
\(196\) 0.867736 0.0619812
\(197\) 3.16487 + 5.48171i 0.225487 + 0.390556i 0.956466 0.291845i \(-0.0942692\pi\)
−0.730978 + 0.682401i \(0.760936\pi\)
\(198\) 0.515171 0.297434i 0.0366116 0.0211377i
\(199\) 8.31782 14.4069i 0.589634 1.02128i −0.404646 0.914473i \(-0.632605\pi\)
0.994280 0.106803i \(-0.0340615\pi\)
\(200\) 3.27591 3.77735i 0.231642 0.267099i
\(201\) −6.80906 3.93121i −0.480274 0.277286i
\(202\) 2.72360 4.71741i 0.191632 0.331916i
\(203\) −7.08163 −0.497033
\(204\) −2.87649 + 4.98222i −0.201394 + 0.348825i
\(205\) −7.46410 + 10.4771i −0.521315 + 0.731755i
\(206\) 11.9104 6.87645i 0.829834 0.479105i
\(207\) 4.64555i 0.322888i
\(208\) 3.52579 0.754186i 0.244470 0.0522934i
\(209\) 4.53058 0.313387
\(210\) −3.63924 + 5.10829i −0.251131 + 0.352506i
\(211\) −8.27443 14.3317i −0.569635 0.986637i −0.996602 0.0823697i \(-0.973751\pi\)
0.426967 0.904267i \(-0.359582\pi\)
\(212\) −12.0343 6.94798i −0.826516 0.477190i
\(213\) −1.28468 −0.0880251
\(214\) −3.66407 2.11545i −0.250471 0.144609i
\(215\) −9.44804 0.904208i −0.644351 0.0616665i
\(216\) 1.00000i 0.0680414i
\(217\) 16.0156 + 9.24663i 1.08721 + 0.627702i
\(218\) 0.387423 0.223679i 0.0262396 0.0151495i
\(219\) 12.5920 7.27002i 0.850892 0.491262i
\(220\) −0.552314 1.21008i −0.0372370 0.0815836i
\(221\) −15.3969 + 13.8994i −1.03570 + 0.934975i
\(222\) 10.3736i 0.696229i
\(223\) −8.32779 14.4242i −0.557670 0.965913i −0.997690 0.0679254i \(-0.978362\pi\)
0.440020 0.897988i \(-0.354971\pi\)
\(224\) 1.40247 + 2.42916i 0.0937068 + 0.162305i
\(225\) −1.63333 4.72570i −0.108889 0.315047i
\(226\) 9.36701i 0.623084i
\(227\) −1.51105 + 2.61722i −0.100292 + 0.173711i −0.911805 0.410624i \(-0.865311\pi\)
0.811513 + 0.584334i \(0.198644\pi\)
\(228\) 3.80805 6.59574i 0.252195 0.436814i
\(229\) 16.4472i 1.08686i −0.839453 0.543432i \(-0.817125\pi\)
0.839453 0.543432i \(-0.182875\pi\)
\(230\) −10.3405 0.989622i −0.681834 0.0652537i
\(231\) 0.834288 + 1.44503i 0.0548921 + 0.0950759i
\(232\) −1.26235 2.18645i −0.0828771 0.143547i
\(233\) 13.8289i 0.905959i −0.891521 0.452980i \(-0.850361\pi\)
0.891521 0.452980i \(-0.149639\pi\)
\(234\) 1.10975 3.43052i 0.0725467 0.224260i
\(235\) 5.89507 2.69067i 0.384552 0.175520i
\(236\) −8.40299 + 4.85147i −0.546988 + 0.315804i
\(237\) −1.58613 + 0.915751i −0.103030 + 0.0594844i
\(238\) −13.9749 8.06839i −0.905856 0.522996i
\(239\) 4.60216i 0.297689i −0.988861 0.148845i \(-0.952445\pi\)
0.988861 0.148845i \(-0.0475554\pi\)
\(240\) −2.22590 0.213026i −0.143681 0.0137507i
\(241\) 5.38108 + 3.10677i 0.346626 + 0.200125i 0.663198 0.748444i \(-0.269199\pi\)
−0.316572 + 0.948568i \(0.602532\pi\)
\(242\) 10.6461 0.684359
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −3.41309 5.91165i −0.218501 0.378455i
\(245\) −1.58030 1.12583i −0.100961 0.0719267i
\(246\) 5.75297 0.366796
\(247\) 20.3832 18.4008i 1.29695 1.17082i
\(248\) 6.59309i 0.418661i
\(249\) 3.63024 2.09592i 0.230057 0.132824i
\(250\) −10.8669 + 2.62893i −0.687281 + 0.166268i
\(251\) 8.19386 14.1922i 0.517192 0.895802i −0.482609 0.875836i \(-0.660311\pi\)
0.999801 0.0199663i \(-0.00635591\pi\)
\(252\) 2.80495 0.176695
\(253\) −1.38175 + 2.39326i −0.0868697 + 0.150463i
\(254\) 5.79190 + 3.34395i 0.363416 + 0.209818i
\(255\) 11.7027 5.34142i 0.732850 0.334493i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.28269 4.20466i 0.454282 0.262280i −0.255355 0.966847i \(-0.582192\pi\)
0.709637 + 0.704568i \(0.248859\pi\)
\(258\) 2.12230 + 3.67593i 0.132129 + 0.228853i
\(259\) −29.0974 −1.80802
\(260\) −7.39958 3.20098i −0.458902 0.198516i
\(261\) −2.52469 −0.156275
\(262\) 5.83620 + 10.1086i 0.360562 + 0.624511i
\(263\) −5.10152 + 2.94536i −0.314573 + 0.181619i −0.648971 0.760813i \(-0.724800\pi\)
0.334398 + 0.942432i \(0.391467\pi\)
\(264\) −0.297434 + 0.515171i −0.0183058 + 0.0317066i
\(265\) 12.9019 + 28.2671i 0.792557 + 1.73644i
\(266\) 18.5007 + 10.6814i 1.13435 + 0.654918i
\(267\) −3.02724 + 5.24333i −0.185264 + 0.320886i
\(268\) 7.86242 0.480274
\(269\) 11.4228 19.7848i 0.696459 1.20630i −0.273228 0.961949i \(-0.588091\pi\)
0.969686 0.244352i \(-0.0785754\pi\)
\(270\) −1.29743 + 1.82117i −0.0789593 + 0.110833i
\(271\) −23.2565 + 13.4271i −1.41273 + 0.815639i −0.995645 0.0932285i \(-0.970281\pi\)
−0.417084 + 0.908868i \(0.636948\pi\)
\(272\) 5.75297i 0.348825i
\(273\) 9.62243 + 3.11280i 0.582376 + 0.188395i
\(274\) −6.80285 −0.410975
\(275\) −0.564141 + 2.92035i −0.0340190 + 0.176104i
\(276\) 2.32278 + 4.02317i 0.139815 + 0.242166i
\(277\) −9.20150 5.31249i −0.552865 0.319197i 0.197412 0.980321i \(-0.436746\pi\)
−0.750277 + 0.661124i \(0.770080\pi\)
\(278\) 7.09816 0.425719
\(279\) 5.70978 + 3.29654i 0.341836 + 0.197359i
\(280\) 0.597526 6.24353i 0.0357090 0.373122i
\(281\) 28.3732i 1.69260i 0.532705 + 0.846301i \(0.321176\pi\)
−0.532705 + 0.846301i \(0.678824\pi\)
\(282\) −2.50973 1.44899i −0.149452 0.0862862i
\(283\) 4.91005 2.83482i 0.291872 0.168512i −0.346914 0.937897i \(-0.612770\pi\)
0.638786 + 0.769385i \(0.279437\pi\)
\(284\) 1.11257 0.642342i 0.0660188 0.0381160i
\(285\) −15.4927 + 7.07128i −0.917706 + 0.418866i
\(286\) −1.59207 + 1.43723i −0.0941408 + 0.0849850i
\(287\) 16.1368i 0.952524i
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) 8.04834 + 13.9401i 0.473431 + 0.820007i
\(290\) −0.537824 + 5.61971i −0.0315821 + 0.330001i
\(291\) 16.9064i 0.991069i
\(292\) −7.27002 + 12.5920i −0.425446 + 0.736894i
\(293\) 0.829176 1.43617i 0.0484410 0.0839022i −0.840788 0.541364i \(-0.817908\pi\)
0.889229 + 0.457462i \(0.151241\pi\)
\(294\) 0.867736i 0.0506074i
\(295\) 21.5977 + 2.06697i 1.25747 + 0.120344i
\(296\) −5.18679 8.98379i −0.301476 0.522172i
\(297\) 0.297434 + 0.515171i 0.0172589 + 0.0298933i
\(298\) 3.49115i 0.202237i
\(299\) 3.50361 + 16.3793i 0.202619 + 0.947237i
\(300\) 3.77735 + 3.27591i 0.218086 + 0.189135i
\(301\) −10.3108 + 5.95294i −0.594304 + 0.343122i
\(302\) −3.94031 + 2.27494i −0.226740 + 0.130908i
\(303\) 4.71741 + 2.72360i 0.271008 + 0.156467i
\(304\) 7.61611i 0.436814i
\(305\) −1.45415 + 15.1944i −0.0832645 + 0.870029i
\(306\) −4.98222 2.87649i −0.284814 0.164438i
\(307\) −0.384087 −0.0219210 −0.0109605 0.999940i \(-0.503489\pi\)
−0.0109605 + 0.999940i \(0.503489\pi\)
\(308\) −1.44503 0.834288i −0.0823382 0.0475380i
\(309\) 6.87645 + 11.9104i 0.391187 + 0.677556i
\(310\) 8.55410 12.0071i 0.485840 0.681960i
\(311\) −11.6920 −0.662993 −0.331497 0.943456i \(-0.607554\pi\)
−0.331497 + 0.943456i \(0.607554\pi\)
\(312\) 0.754186 + 3.52579i 0.0426974 + 0.199609i
\(313\) 10.5788i 0.597948i 0.954261 + 0.298974i \(0.0966444\pi\)
−0.954261 + 0.298974i \(0.903356\pi\)
\(314\) 9.95560 5.74787i 0.561827 0.324371i
\(315\) −5.10829 3.63924i −0.287820 0.205048i
\(316\) 0.915751 1.58613i 0.0515150 0.0892266i
\(317\) −22.1023 −1.24139 −0.620695 0.784052i \(-0.713150\pi\)
−0.620695 + 0.784052i \(0.713150\pi\)
\(318\) 6.94798 12.0343i 0.389624 0.674848i
\(319\) 1.30065 + 0.750930i 0.0728224 + 0.0420440i
\(320\) 2.03420 0.928463i 0.113715 0.0519027i
\(321\) 2.11545 3.66407i 0.118073 0.204509i
\(322\) −11.2848 + 6.51527i −0.628876 + 0.363082i
\(323\) −21.9076 37.9451i −1.21897 2.11132i
\(324\) 1.00000 0.0555556
\(325\) 9.32283 + 15.4300i 0.517138 + 0.855902i
\(326\) −13.8289 −0.765910
\(327\) 0.223679 + 0.387423i 0.0123695 + 0.0214246i
\(328\) −4.98222 + 2.87649i −0.275097 + 0.158827i
\(329\) 4.06435 7.03966i 0.224075 0.388109i
\(330\) 1.21008 0.552314i 0.0666127 0.0304039i
\(331\) −5.28809 3.05308i −0.290660 0.167812i 0.347580 0.937650i \(-0.387004\pi\)
−0.638239 + 0.769838i \(0.720337\pi\)
\(332\) −2.09592 + 3.63024i −0.115029 + 0.199235i
\(333\) −10.3736 −0.568469
\(334\) −10.7700 + 18.6542i −0.589309 + 1.02071i
\(335\) −14.3188 10.2010i −0.782321 0.557339i
\(336\) −2.42916 + 1.40247i −0.132521 + 0.0765112i
\(337\) 4.29852i 0.234155i −0.993123 0.117078i \(-0.962647\pi\)
0.993123 0.117078i \(-0.0373526\pi\)
\(338\) −1.32550 + 12.9322i −0.0720979 + 0.703422i
\(339\) 9.36701 0.508746
\(340\) −7.46410 + 10.4771i −0.404798 + 0.568203i
\(341\) −1.96101 3.39657i −0.106195 0.183935i
\(342\) 6.59574 + 3.80805i 0.356657 + 0.205916i
\(343\) 17.2007 0.928750
\(344\) −3.67593 2.12230i −0.198193 0.114427i
\(345\) 0.989622 10.3405i 0.0532794 0.556715i
\(346\) 13.6650i 0.734636i
\(347\) 29.7444 + 17.1730i 1.59677 + 0.921893i 0.992105 + 0.125409i \(0.0400244\pi\)
0.604660 + 0.796484i \(0.293309\pi\)
\(348\) 2.18645 1.26235i 0.117206 0.0676689i
\(349\) 13.8581 8.00099i 0.741808 0.428283i −0.0809181 0.996721i \(-0.525785\pi\)
0.822726 + 0.568438i \(0.192452\pi\)
\(350\) −9.18876 + 10.5953i −0.491160 + 0.566342i
\(351\) 3.43052 + 1.10975i 0.183107 + 0.0592341i
\(352\) 0.594869i 0.0317066i
\(353\) −9.69607 16.7941i −0.516070 0.893859i −0.999826 0.0186563i \(-0.994061\pi\)
0.483756 0.875203i \(-0.339272\pi\)
\(354\) −4.85147 8.40299i −0.257853 0.446614i
\(355\) −2.85958 0.273671i −0.151771 0.0145249i
\(356\) 6.05447i 0.320886i
\(357\) 8.06839 13.9749i 0.427025 0.739628i
\(358\) 5.37886 9.31647i 0.284282 0.492391i
\(359\) 15.8342i 0.835699i 0.908516 + 0.417850i \(0.137216\pi\)
−0.908516 + 0.417850i \(0.862784\pi\)
\(360\) 0.213026 2.22590i 0.0112274 0.117315i
\(361\) 19.5026 + 33.7794i 1.02645 + 1.77786i
\(362\) −2.93234 5.07897i −0.154121 0.266945i
\(363\) 10.6461i 0.558777i
\(364\) −9.88966 + 2.11545i −0.518359 + 0.110880i
\(365\) 29.5773 13.4999i 1.54815 0.706617i
\(366\) 5.91165 3.41309i 0.309007 0.178405i
\(367\) −13.2440 + 7.64645i −0.691333 + 0.399141i −0.804111 0.594479i \(-0.797358\pi\)
0.112778 + 0.993620i \(0.464025\pi\)
\(368\) −4.02317 2.32278i −0.209722 0.121083i
\(369\) 5.75297i 0.299488i
\(370\) −2.20984 + 23.0905i −0.114884 + 1.20042i
\(371\) 33.7555 + 19.4887i 1.75250 + 1.01180i
\(372\) −6.59309 −0.341836
\(373\) −18.7508 10.8258i −0.970881 0.560538i −0.0713760 0.997449i \(-0.522739\pi\)
−0.899505 + 0.436911i \(0.856072\pi\)
\(374\) 1.71113 + 2.96377i 0.0884805 + 0.153253i
\(375\) −2.62893 10.8669i −0.135757 0.561162i
\(376\) 2.89798 0.149452
\(377\) 8.90154 1.90409i 0.458453 0.0980655i
\(378\) 2.80495i 0.144271i
\(379\) 7.81479 4.51187i 0.401419 0.231759i −0.285677 0.958326i \(-0.592218\pi\)
0.687096 + 0.726567i \(0.258885\pi\)
\(380\) 9.88140 13.8702i 0.506905 0.711528i
\(381\) −3.34395 + 5.79190i −0.171316 + 0.296728i
\(382\) −13.8346 −0.707838
\(383\) 5.03703 8.72439i 0.257380 0.445795i −0.708159 0.706053i \(-0.750474\pi\)
0.965539 + 0.260257i \(0.0838074\pi\)
\(384\) −0.866025 0.500000i −0.0441942 0.0255155i
\(385\) 1.54921 + 3.39421i 0.0789551 + 0.172985i
\(386\) 8.50322 14.7280i 0.432802 0.749636i
\(387\) −3.67593 + 2.12230i −0.186858 + 0.107883i
\(388\) −8.45318 14.6413i −0.429145 0.743301i
\(389\) −24.3591 −1.23505 −0.617527 0.786550i \(-0.711865\pi\)
−0.617527 + 0.786550i \(0.711865\pi\)
\(390\) 3.20098 7.39958i 0.162088 0.374692i
\(391\) 26.7257 1.35158
\(392\) −0.433868 0.751482i −0.0219137 0.0379556i
\(393\) −10.1086 + 5.83620i −0.509911 + 0.294397i
\(394\) 3.16487 5.48171i 0.159444 0.276165i
\(395\) −3.72564 + 1.70048i −0.187457 + 0.0855606i
\(396\) −0.515171 0.297434i −0.0258883 0.0149466i
\(397\) 15.0190 26.0137i 0.753784 1.30559i −0.192193 0.981357i \(-0.561560\pi\)
0.945977 0.324234i \(-0.105107\pi\)
\(398\) −16.6356 −0.833869
\(399\) −10.6814 + 18.5007i −0.534739 + 0.926194i
\(400\) −4.90924 0.948346i −0.245462 0.0474173i
\(401\) 2.35786 1.36131i 0.117746 0.0679807i −0.439970 0.898012i \(-0.645011\pi\)
0.557716 + 0.830032i \(0.311678\pi\)
\(402\) 7.86242i 0.392142i
\(403\) −22.6177 7.31669i −1.12667 0.364470i
\(404\) −5.44720 −0.271008
\(405\) −1.82117 1.29743i −0.0904947 0.0644700i
\(406\) 3.54082 + 6.13287i 0.175728 + 0.304369i
\(407\) 5.34417 + 3.08546i 0.264901 + 0.152941i
\(408\) 5.75297 0.284814
\(409\) −33.1032 19.1121i −1.63685 0.945034i −0.981909 0.189352i \(-0.939361\pi\)
−0.654938 0.755683i \(-0.727305\pi\)
\(410\) 12.8055 + 1.22553i 0.632420 + 0.0605246i
\(411\) 6.80285i 0.335560i
\(412\) −11.9104 6.87645i −0.586781 0.338778i
\(413\) 23.5699 13.6081i 1.15980 0.669612i
\(414\) −4.02317 + 2.32278i −0.197728 + 0.114158i
\(415\) 8.52703 3.89197i 0.418575 0.191049i
\(416\) −2.41604 2.67633i −0.118456 0.131218i
\(417\) 7.09816i 0.347598i
\(418\) −2.26529 3.92360i −0.110799 0.191910i
\(419\) 14.9365 + 25.8708i 0.729695 + 1.26387i 0.957012 + 0.290048i \(0.0936714\pi\)
−0.227317 + 0.973821i \(0.572995\pi\)
\(420\) 6.24353 + 0.597526i 0.304653 + 0.0291563i
\(421\) 14.2033i 0.692226i −0.938193 0.346113i \(-0.887501\pi\)
0.938193 0.346113i \(-0.112499\pi\)
\(422\) −8.27443 + 14.3317i −0.402793 + 0.697658i
\(423\) 1.44899 2.50973i 0.0704524 0.122027i
\(424\) 13.8960i 0.674848i
\(425\) 27.1868 9.39649i 1.31875 0.455797i
\(426\) 0.642342 + 1.11257i 0.0311216 + 0.0539042i
\(427\) 9.57355 + 16.5819i 0.463297 + 0.802453i
\(428\) 4.23091i 0.204509i
\(429\) −1.43723 1.59207i −0.0693899 0.0768657i
\(430\) 3.94095 + 8.63435i 0.190050 + 0.416385i
\(431\) −8.09901 + 4.67596i −0.390115 + 0.225233i −0.682210 0.731156i \(-0.738981\pi\)
0.292095 + 0.956389i \(0.405648\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) −3.42954 1.98005i −0.164813 0.0951549i 0.415325 0.909673i \(-0.363668\pi\)
−0.580138 + 0.814518i \(0.697001\pi\)
\(434\) 18.4933i 0.887705i
\(435\) −5.61971 0.537824i −0.269444 0.0257867i
\(436\) −0.387423 0.223679i −0.0185542 0.0107123i
\(437\) −35.3810 −1.69250
\(438\) −12.5920 7.27002i −0.601671 0.347375i
\(439\) −11.2992 19.5708i −0.539281 0.934062i −0.998943 0.0459680i \(-0.985363\pi\)
0.459662 0.888094i \(-0.347971\pi\)
\(440\) −0.771803 + 1.08336i −0.0367943 + 0.0516470i
\(441\) −0.867736 −0.0413208
\(442\) 19.7357 + 6.38437i 0.938730 + 0.303673i
\(443\) 29.0428i 1.37987i −0.723873 0.689933i \(-0.757640\pi\)
0.723873 0.689933i \(-0.242360\pi\)
\(444\) 8.98379 5.18679i 0.426352 0.246154i
\(445\) −7.85528 + 11.0262i −0.372376 + 0.522694i
\(446\) −8.32779 + 14.4242i −0.394332 + 0.683004i
\(447\) −3.49115 −0.165125
\(448\) 1.40247 2.42916i 0.0662607 0.114767i
\(449\) 23.7886 + 13.7343i 1.12265 + 0.648164i 0.942077 0.335397i \(-0.108870\pi\)
0.180576 + 0.983561i \(0.442204\pi\)
\(450\) −3.27591 + 3.77735i −0.154428 + 0.178066i
\(451\) 1.71113 2.96377i 0.0805740 0.139558i
\(452\) −8.11206 + 4.68350i −0.381559 + 0.220293i
\(453\) −2.27494 3.94031i −0.106886 0.185132i
\(454\) 3.02210 0.141834
\(455\) 20.7554 + 8.97859i 0.973030 + 0.420923i
\(456\) −7.61611 −0.356657
\(457\) 2.19087 + 3.79470i 0.102485 + 0.177508i 0.912708 0.408613i \(-0.133987\pi\)
−0.810223 + 0.586122i \(0.800654\pi\)
\(458\) −14.2437 + 8.22361i −0.665565 + 0.384264i
\(459\) 2.87649 4.98222i 0.134263 0.232550i
\(460\) 4.31323 + 9.44997i 0.201105 + 0.440607i
\(461\) −21.0593 12.1586i −0.980829 0.566282i −0.0783090 0.996929i \(-0.524952\pi\)
−0.902520 + 0.430647i \(0.858285\pi\)
\(462\) 0.834288 1.44503i 0.0388146 0.0672288i
\(463\) 19.0660 0.886071 0.443035 0.896504i \(-0.353902\pi\)
0.443035 + 0.896504i \(0.353902\pi\)
\(464\) −1.26235 + 2.18645i −0.0586030 + 0.101503i
\(465\) 12.0071 + 8.55410i 0.556818 + 0.396687i
\(466\) −11.9762 + 6.91443i −0.554784 + 0.320305i
\(467\) 10.1176i 0.468188i 0.972214 + 0.234094i \(0.0752123\pi\)
−0.972214 + 0.234094i \(0.924788\pi\)
\(468\) −3.52579 + 0.754186i −0.162980 + 0.0348623i
\(469\) −22.0537 −1.01834
\(470\) −5.27773 3.75995i −0.243443 0.173433i
\(471\) 5.74787 + 9.95560i 0.264848 + 0.458730i
\(472\) 8.40299 + 4.85147i 0.386779 + 0.223307i
\(473\) 2.52498 0.116099
\(474\) 1.58613 + 0.915751i 0.0728532 + 0.0420618i
\(475\) −35.9914 + 12.4396i −1.65140 + 0.570768i
\(476\) 16.1368i 0.739628i
\(477\) 12.0343 + 6.94798i 0.551011 + 0.318126i
\(478\) −3.98559 + 2.30108i −0.182297 + 0.105249i
\(479\) −24.8215 + 14.3307i −1.13412 + 0.654786i −0.944969 0.327161i \(-0.893908\pi\)
−0.189155 + 0.981947i \(0.560575\pi\)
\(480\) 0.928463 + 2.03420i 0.0423784 + 0.0928479i
\(481\) 36.5751 7.82361i 1.66768 0.356726i
\(482\) 6.21354i 0.283019i
\(483\) −6.51527 11.2848i −0.296455 0.513475i
\(484\) −5.32307 9.21982i −0.241958 0.419083i
\(485\) −3.60149 + 37.6318i −0.163535 + 1.70877i
\(486\) 1.00000i 0.0453609i
\(487\) 8.71990 15.1033i 0.395136 0.684396i −0.597982 0.801509i \(-0.704031\pi\)
0.993119 + 0.117113i \(0.0373641\pi\)
\(488\) −3.41309 + 5.91165i −0.154504 + 0.267608i
\(489\) 13.8289i 0.625363i
\(490\) −0.184850 + 1.93149i −0.00835067 + 0.0872559i
\(491\) −11.2233 19.4394i −0.506503 0.877288i −0.999972 0.00752493i \(-0.997605\pi\)
0.493469 0.869763i \(-0.335729\pi\)
\(492\) −2.87649 4.98222i −0.129682 0.224616i
\(493\) 14.5245i 0.654150i
\(494\) −26.1272 8.45199i −1.17552 0.380273i
\(495\) 0.552314 + 1.21008i 0.0248247 + 0.0543890i
\(496\) 5.70978 3.29654i 0.256377 0.148019i
\(497\) −3.12070 + 1.80174i −0.139983 + 0.0808189i
\(498\) −3.63024 2.09592i −0.162675 0.0939204i
\(499\) 10.4136i 0.466177i 0.972456 + 0.233088i \(0.0748832\pi\)
−0.972456 + 0.233088i \(0.925117\pi\)
\(500\) 7.71015 + 8.09652i 0.344808 + 0.362087i
\(501\) −18.6542 10.7700i −0.833409 0.481169i
\(502\) −16.3877 −0.731420
\(503\) 5.00387 + 2.88899i 0.223112 + 0.128814i 0.607390 0.794404i \(-0.292216\pi\)
−0.384279 + 0.923217i \(0.625550\pi\)
\(504\) −1.40247 2.42916i −0.0624712 0.108203i
\(505\) 9.92028 + 7.06738i 0.441447 + 0.314494i
\(506\) 2.76349 0.122852
\(507\) −12.9322 1.32550i −0.574341 0.0588677i
\(508\) 6.68791i 0.296728i
\(509\) −6.18024 + 3.56816i −0.273934 + 0.158156i −0.630674 0.776048i \(-0.717222\pi\)
0.356740 + 0.934204i \(0.383888\pi\)
\(510\) −10.4771 7.46410i −0.463936 0.330516i
\(511\) 20.3920 35.3200i 0.902090 1.56247i
\(512\) 1.00000 0.0441942
\(513\) −3.80805 + 6.59574i −0.168130 + 0.291209i
\(514\) −7.28269 4.20466i −0.321226 0.185460i
\(515\) 12.7691 + 27.9761i 0.562672 + 1.23277i
\(516\) 2.12230 3.67593i 0.0934290 0.161824i
\(517\) −1.49296 + 0.861960i −0.0656603 + 0.0379090i
\(518\) 14.5487 + 25.1991i 0.639232 + 1.10718i
\(519\) −13.6650 −0.599827
\(520\) 0.927657 + 8.00871i 0.0406805 + 0.351205i
\(521\) 1.09782 0.0480965 0.0240483 0.999711i \(-0.492344\pi\)
0.0240483 + 0.999711i \(0.492344\pi\)
\(522\) 1.26235 + 2.18645i 0.0552514 + 0.0956982i
\(523\) 12.9411 7.47153i 0.565873 0.326707i −0.189626 0.981856i \(-0.560728\pi\)
0.755499 + 0.655149i \(0.227394\pi\)
\(524\) 5.83620 10.1086i 0.254956 0.441596i
\(525\) −10.5953 9.18876i −0.462416 0.401031i
\(526\) 5.10152 + 2.94536i 0.222437 + 0.128424i
\(527\) −18.9649 + 32.8482i −0.826125 + 1.43089i
\(528\) 0.594869 0.0258883
\(529\) −0.709414 + 1.22874i −0.0308441 + 0.0534235i
\(530\) 18.0291 25.3069i 0.783134 1.09926i
\(531\) 8.40299 4.85147i 0.364659 0.210536i
\(532\) 21.3628i 0.926194i
\(533\) −4.33881 20.2838i −0.187935 0.878588i
\(534\) 6.05447 0.262003
\(535\) 5.48932 7.70520i 0.237324 0.333125i
\(536\) −3.93121 6.80906i −0.169802 0.294106i
\(537\) 9.31647 + 5.37886i 0.402035 + 0.232115i
\(538\) −22.8455 −0.984941
\(539\) 0.447033 + 0.258095i 0.0192551 + 0.0111169i
\(540\) 2.22590 + 0.213026i 0.0957874 + 0.00916716i
\(541\) 19.3888i 0.833589i −0.909001 0.416794i \(-0.863154\pi\)
0.909001 0.416794i \(-0.136846\pi\)
\(542\) 23.2565 + 13.4271i 0.998950 + 0.576744i
\(543\) 5.07897 2.93234i 0.217959 0.125839i
\(544\) −4.98222 + 2.87649i −0.213611 + 0.123328i
\(545\) 0.415355 + 0.910014i 0.0177919 + 0.0389807i
\(546\) −2.11545 9.88966i −0.0905330 0.423239i
\(547\) 26.1335i 1.11739i 0.829374 + 0.558693i \(0.188697\pi\)
−0.829374 + 0.558693i \(0.811303\pi\)
\(548\) 3.40142 + 5.89144i 0.145302 + 0.251670i
\(549\) 3.41309 + 5.91165i 0.145667 + 0.252303i
\(550\) 2.81117 0.971616i 0.119869 0.0414298i
\(551\) 19.2283i 0.819155i
\(552\) 2.32278 4.02317i 0.0988640 0.171237i
\(553\) −2.56863 + 4.44901i −0.109229 + 0.189191i
\(554\) 10.6250i 0.451412i
\(555\) −23.0905 2.20984i −0.980139 0.0938024i
\(556\) −3.54908 6.14719i −0.150514 0.260699i
\(557\) −17.6927 30.6446i −0.749663 1.29846i −0.947984 0.318318i \(-0.896882\pi\)
0.198321 0.980137i \(-0.436451\pi\)
\(558\) 6.59309i 0.279108i
\(559\) 11.3600 10.2551i 0.480475 0.433745i
\(560\) −5.70582 + 2.60429i −0.241115 + 0.110051i
\(561\) −2.96377 + 1.71113i −0.125130 + 0.0722440i
\(562\) 24.5719 14.1866i 1.03650 0.598425i
\(563\) 25.8011 + 14.8963i 1.08739 + 0.627804i 0.932880 0.360187i \(-0.117287\pi\)
0.154509 + 0.987991i \(0.450621\pi\)
\(564\) 2.89798i 0.122027i
\(565\) 20.8500 + 1.99541i 0.877166 + 0.0839476i
\(566\) −4.91005 2.83482i −0.206385 0.119156i
\(567\) −2.80495 −0.117797
\(568\) −1.11257 0.642342i −0.0466824 0.0269521i
\(569\) −7.14388 12.3736i −0.299487 0.518727i 0.676532 0.736414i \(-0.263482\pi\)
−0.976019 + 0.217687i \(0.930149\pi\)
\(570\) 13.8702 + 9.88140i 0.580960 + 0.413886i
\(571\) −37.4439 −1.56698 −0.783490 0.621404i \(-0.786562\pi\)
−0.783490 + 0.621404i \(0.786562\pi\)
\(572\) 2.04071 + 0.660156i 0.0853263 + 0.0276025i
\(573\) 13.8346i 0.577947i
\(574\) 13.9749 8.06839i 0.583300 0.336768i
\(575\) 4.40559 22.8061i 0.183726 0.951082i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 47.6052 1.98183 0.990916 0.134485i \(-0.0429381\pi\)
0.990916 + 0.134485i \(0.0429381\pi\)
\(578\) 8.04834 13.9401i 0.334767 0.579833i
\(579\) 14.7280 + 8.50322i 0.612075 + 0.353382i
\(580\) 5.13572 2.34408i 0.213249 0.0973328i
\(581\) 5.87895 10.1826i 0.243900 0.422447i
\(582\) 14.6413 8.45318i 0.606903 0.350396i
\(583\) −4.13314 7.15881i −0.171177 0.296487i
\(584\) 14.5400 0.601671
\(585\) 7.39958 + 3.20098i 0.305935 + 0.132344i
\(586\) −1.65835 −0.0685059
\(587\) 18.8016 + 32.5654i 0.776027 + 1.34412i 0.934216 + 0.356709i \(0.116101\pi\)
−0.158189 + 0.987409i \(0.550565\pi\)
\(588\) 0.751482 0.433868i 0.0309906 0.0178924i
\(589\) 25.1068 43.4863i 1.03451 1.79182i
\(590\) −9.00882 19.7377i −0.370887 0.812587i
\(591\) 5.48171 + 3.16487i 0.225487 + 0.130185i
\(592\) −5.18679 + 8.98379i −0.213176 + 0.369231i
\(593\) 24.0046 0.985752 0.492876 0.870100i \(-0.335946\pi\)
0.492876 + 0.870100i \(0.335946\pi\)
\(594\) 0.297434 0.515171i 0.0122039 0.0211377i
\(595\) 20.9364 29.3878i 0.858310 1.20478i
\(596\) 3.02342 1.74557i 0.123844 0.0715014i
\(597\) 16.6356i 0.680851i
\(598\) 12.4330 11.2238i 0.508425 0.458977i
\(599\) −23.7092 −0.968731 −0.484365 0.874866i \(-0.660949\pi\)
−0.484365 + 0.874866i \(0.660949\pi\)
\(600\) 0.948346 4.90924i 0.0387161 0.200419i
\(601\) 0.918249 + 1.59045i 0.0374562 + 0.0648760i 0.884146 0.467211i \(-0.154741\pi\)
−0.846690 + 0.532087i \(0.821408\pi\)
\(602\) 10.3108 + 5.95294i 0.420237 + 0.242624i
\(603\) −7.86242 −0.320183
\(604\) 3.94031 + 2.27494i 0.160329 + 0.0925661i
\(605\) −2.26790 + 23.6972i −0.0922032 + 0.963428i
\(606\) 5.44720i 0.221277i
\(607\) −30.2214 17.4483i −1.22665 0.708206i −0.260321 0.965522i \(-0.583828\pi\)
−0.966327 + 0.257316i \(0.917162\pi\)
\(608\) 6.59574 3.80805i 0.267493 0.154437i
\(609\) −6.13287 + 3.54082i −0.248517 + 0.143481i
\(610\) 13.8858 6.33786i 0.562220 0.256613i
\(611\) −3.21604 + 9.94159i −0.130107 + 0.402194i
\(612\) 5.75297i 0.232550i
\(613\) −4.70575 8.15061i −0.190064 0.329200i 0.755207 0.655486i \(-0.227536\pi\)
−0.945271 + 0.326286i \(0.894203\pi\)
\(614\) 0.192044 + 0.332629i 0.00775025 + 0.0134238i
\(615\) −1.22553 + 12.8055i −0.0494181 + 0.516369i
\(616\) 1.66858i 0.0672288i
\(617\) 5.47577 9.48432i 0.220446 0.381824i −0.734497 0.678612i \(-0.762582\pi\)
0.954944 + 0.296787i \(0.0959153\pi\)
\(618\) 6.87645 11.9104i 0.276611 0.479105i
\(619\) 1.00216i 0.0402803i 0.999797 + 0.0201402i \(0.00641125\pi\)
−0.999797 + 0.0201402i \(0.993589\pi\)
\(620\) −14.6755 1.40450i −0.589384 0.0564059i
\(621\) −2.32278 4.02317i −0.0932098 0.161444i
\(622\) 5.84601 + 10.1256i 0.234404 + 0.405999i
\(623\) 16.9825i 0.680389i
\(624\) 2.67633 2.41604i 0.107139 0.0967190i
\(625\) −3.53680 24.7486i −0.141472 0.989942i
\(626\) 9.16150 5.28939i 0.366167 0.211407i
\(627\) 3.92360 2.26529i 0.156694 0.0904671i
\(628\) −9.95560 5.74787i −0.397272 0.229365i
\(629\) 59.6789i 2.37955i
\(630\) −0.597526 + 6.24353i −0.0238060 + 0.248748i
\(631\) −33.5167 19.3509i −1.33428 0.770346i −0.348327 0.937373i \(-0.613250\pi\)
−0.985952 + 0.167027i \(0.946583\pi\)
\(632\) −1.83150 −0.0728532
\(633\) −14.3317 8.27443i −0.569635 0.328879i
\(634\) 11.0512 + 19.1412i 0.438898 + 0.760193i
\(635\) −8.67712 + 12.1798i −0.344341 + 0.483341i
\(636\) −13.8960 −0.551011
\(637\) 3.05946 0.654435i 0.121220 0.0259296i
\(638\) 1.50186i 0.0594592i
\(639\) −1.11257 + 0.642342i −0.0440126 + 0.0254107i
\(640\) −1.82117 1.29743i −0.0719881 0.0512856i
\(641\) 4.99961 8.65957i 0.197473 0.342033i −0.750236 0.661170i \(-0.770060\pi\)
0.947708 + 0.319138i \(0.103393\pi\)
\(642\) −4.23091 −0.166981
\(643\) −3.38728 + 5.86694i −0.133581 + 0.231369i −0.925055 0.379834i \(-0.875981\pi\)
0.791473 + 0.611204i \(0.209314\pi\)
\(644\) 11.2848 + 6.51527i 0.444683 + 0.256738i
\(645\) −8.63435 + 3.94095i −0.339977 + 0.155175i
\(646\) −21.9076 + 37.9451i −0.861944 + 1.49293i
\(647\) −14.8850 + 8.59384i −0.585188 + 0.337859i −0.763193 0.646171i \(-0.776369\pi\)
0.178004 + 0.984030i \(0.443036\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) −5.77197 −0.226570
\(650\) 8.70135 15.7888i 0.341295 0.619288i
\(651\) 18.4933 0.724808
\(652\) 6.91443 + 11.9762i 0.270790 + 0.469022i
\(653\) 21.5401 12.4362i 0.842930 0.486666i −0.0153292 0.999883i \(-0.504880\pi\)
0.858259 + 0.513217i \(0.171546\pi\)
\(654\) 0.223679 0.387423i 0.00874654 0.0151495i
\(655\) −23.7440 + 10.8374i −0.927753 + 0.423452i
\(656\) 4.98222 + 2.87649i 0.194523 + 0.112308i
\(657\) 7.27002 12.5920i 0.283631 0.491262i
\(658\) −8.12870 −0.316890
\(659\) −4.12151 + 7.13867i −0.160551 + 0.278083i −0.935067 0.354472i \(-0.884661\pi\)
0.774515 + 0.632555i \(0.217994\pi\)
\(660\) −1.08336 0.771803i −0.0421696 0.0300424i
\(661\) 22.3962 12.9305i 0.871112 0.502937i 0.00339467 0.999994i \(-0.498919\pi\)
0.867718 + 0.497057i \(0.165586\pi\)
\(662\) 6.10616i 0.237323i
\(663\) −6.38437 + 19.7357i −0.247948 + 0.766470i
\(664\) 4.19184 0.162675
\(665\) −27.7168 + 38.9053i −1.07481 + 1.50868i
\(666\) 5.18679 + 8.98379i 0.200984 + 0.348115i
\(667\) −10.1573 5.86430i −0.393291 0.227067i
\(668\) 21.5400 0.833409
\(669\) −14.4242 8.32779i −0.557670 0.321971i
\(670\) −1.67490 + 17.5009i −0.0647069 + 0.676121i
\(671\) 4.06069i 0.156761i
\(672\) 2.42916 + 1.40247i 0.0937068 + 0.0541016i
\(673\) −5.99820 + 3.46306i −0.231213 + 0.133491i −0.611132 0.791529i \(-0.709285\pi\)
0.379918 + 0.925020i \(0.375952\pi\)
\(674\) −3.72263 + 2.14926i −0.143390 + 0.0827864i
\(675\) −3.77735 3.27591i −0.145390 0.126090i
\(676\) 11.8624 5.31820i 0.456246 0.204546i
\(677\) 4.72639i 0.181650i −0.995867 0.0908250i \(-0.971050\pi\)
0.995867 0.0908250i \(-0.0289504\pi\)
\(678\) −4.68350 8.11206i −0.179869 0.311542i
\(679\) 23.7107 + 41.0682i 0.909935 + 1.57605i
\(680\) 12.8055 + 1.22553i 0.491069 + 0.0469969i
\(681\) 3.02210i 0.115807i
\(682\) −1.96101 + 3.39657i −0.0750910 + 0.130061i
\(683\) −9.78995 + 16.9567i −0.374602 + 0.648830i −0.990267 0.139178i \(-0.955554\pi\)
0.615665 + 0.788008i \(0.288887\pi\)
\(684\) 7.61611i 0.291209i
\(685\) 1.44918 15.1424i 0.0553703 0.578563i
\(686\) −8.60034 14.8962i −0.328363 0.568741i
\(687\) −8.22361 14.2437i −0.313750 0.543432i
\(688\) 4.24460i 0.161824i
\(689\) −47.6704 15.4211i −1.81610 0.587496i
\(690\) −9.44997 + 4.31323i −0.359754 + 0.164202i
\(691\) −10.7079 + 6.18224i −0.407350 + 0.235183i −0.689650 0.724143i \(-0.742236\pi\)
0.282301 + 0.959326i \(0.408902\pi\)
\(692\) 11.8342 6.83251i 0.449871 0.259733i
\(693\) 1.44503 + 0.834288i 0.0548921 + 0.0316920i
\(694\) 34.3459i 1.30375i
\(695\) −1.51209 + 15.7998i −0.0573568 + 0.599320i
\(696\) −2.18645 1.26235i −0.0828771 0.0478491i
\(697\) −33.0967 −1.25363
\(698\) −13.8581 8.00099i −0.524538 0.302842i
\(699\) −6.91443 11.9762i −0.261528 0.452980i
\(700\) 13.7702 + 2.66006i 0.520463 + 0.100541i
\(701\) 43.7550 1.65260 0.826302 0.563227i \(-0.190441\pi\)
0.826302 + 0.563227i \(0.190441\pi\)
\(702\) −0.754186 3.52579i −0.0284649 0.133072i
\(703\) 79.0063i 2.97978i
\(704\) −0.515171 + 0.297434i −0.0194163 + 0.0112100i
\(705\) 3.75995 5.27773i 0.141608 0.198771i
\(706\) −9.69607 + 16.7941i −0.364916 + 0.632054i
\(707\) 15.2791 0.574630
\(708\) −4.85147 + 8.40299i −0.182329 + 0.315804i
\(709\) 16.4104 + 9.47457i 0.616307 + 0.355825i 0.775430 0.631434i \(-0.217533\pi\)
−0.159123 + 0.987259i \(0.550867\pi\)
\(710\) 1.19278 + 2.61330i 0.0447643 + 0.0980754i
\(711\) −0.915751 + 1.58613i −0.0343434 + 0.0594844i
\(712\) −5.24333 + 3.02724i −0.196502 + 0.113451i
\(713\) 15.3143 + 26.5251i 0.573524 + 0.993372i
\(714\) −16.1368 −0.603904
\(715\) −2.85997 3.84994i −0.106957 0.143980i
\(716\) −10.7577 −0.402035
\(717\) −2.30108 3.98559i −0.0859355 0.148845i
\(718\) 13.7129 7.91712i 0.511759 0.295464i
\(719\) −23.5155 + 40.7301i −0.876981 + 1.51898i −0.0223436 + 0.999750i \(0.507113\pi\)
−0.854637 + 0.519225i \(0.826221\pi\)
\(720\) −2.03420 + 0.928463i −0.0758100 + 0.0346018i
\(721\) 33.4079 + 19.2881i 1.24418 + 0.718326i
\(722\) 19.5026 33.7794i 0.725810 1.25714i
\(723\) 6.21354 0.231084
\(724\) −2.93234 + 5.07897i −0.108980 + 0.188758i
\(725\) −12.3943 2.39428i −0.460314 0.0889214i
\(726\) 9.21982 5.32307i 0.342180 0.197557i
\(727\) 4.10440i 0.152224i −0.997099 0.0761119i \(-0.975749\pi\)
0.997099 0.0761119i \(-0.0242506\pi\)
\(728\) 6.77687 + 7.50697i 0.251167 + 0.278227i
\(729\) −1.00000 −0.0370370
\(730\) −26.4799 18.8647i −0.980065 0.698216i
\(731\) −12.2095 21.1475i −0.451586 0.782169i
\(732\) −5.91165 3.41309i −0.218501 0.126152i
\(733\) −24.2968 −0.897421 −0.448711 0.893677i \(-0.648117\pi\)
−0.448711 + 0.893677i \(0.648117\pi\)
\(734\) 13.2440 + 7.64645i 0.488847 + 0.282236i
\(735\) −1.93149 0.184850i −0.0712442 0.00681830i
\(736\) 4.64555i 0.171237i
\(737\) 4.05050 + 2.33855i 0.149202 + 0.0861418i
\(738\) 4.98222 2.87649i 0.183398 0.105885i
\(739\) −35.0414 + 20.2311i −1.28902 + 0.744215i −0.978479 0.206346i \(-0.933843\pi\)
−0.310539 + 0.950561i \(0.600509\pi\)
\(740\) 21.1019 9.63149i 0.775722 0.354061i
\(741\) 8.45199 26.1272i 0.310492 0.959806i
\(742\) 38.9775i 1.43091i
\(743\) −15.7497 27.2794i −0.577802 1.00078i −0.995731 0.0923027i \(-0.970577\pi\)
0.417929 0.908480i \(-0.362756\pi\)
\(744\) 3.29654 + 5.70978i 0.120857 + 0.209331i
\(745\) −7.77093 0.743703i −0.284705 0.0272472i
\(746\) 21.6516i 0.792721i
\(747\) 2.09592 3.63024i 0.0766857 0.132824i
\(748\) 1.71113 2.96377i 0.0625651 0.108366i
\(749\) 11.8675i 0.433628i
\(750\) −8.09652 + 7.71015i −0.295643 + 0.281535i
\(751\) −8.37551 14.5068i −0.305627 0.529361i 0.671774 0.740756i \(-0.265533\pi\)
−0.977401 + 0.211395i \(0.932199\pi\)
\(752\) −1.44899 2.50973i −0.0528393 0.0915204i
\(753\) 16.3877i 0.597202i
\(754\) −6.09976 6.75692i −0.222140 0.246072i
\(755\) −4.22440 9.25536i −0.153742 0.336837i
\(756\) 2.42916 1.40247i 0.0883476 0.0510075i
\(757\) −23.1908 + 13.3892i −0.842885 + 0.486640i −0.858244 0.513242i \(-0.828444\pi\)
0.0153589 + 0.999882i \(0.495111\pi\)
\(758\) −7.81479 4.51187i −0.283846 0.163879i
\(759\) 2.76349i 0.100308i
\(760\) −16.9527 1.62243i −0.614938 0.0588516i
\(761\) −0.217029 0.125302i −0.00786729 0.00454218i 0.496061 0.868288i \(-0.334779\pi\)
−0.503928 + 0.863745i \(0.668112\pi\)
\(762\) 6.68791 0.242277
\(763\) 1.08670 + 0.627408i 0.0393413 + 0.0227137i
\(764\) 6.91728 + 11.9811i 0.250259 + 0.433461i
\(765\) 7.46410 10.4771i 0.269865 0.378802i
\(766\) −10.0741 −0.363990
\(767\) −25.9683 + 23.4427i −0.937660 + 0.846466i
\(768\) 1.00000i 0.0360844i
\(769\) 17.1777 9.91755i 0.619444 0.357636i −0.157209 0.987565i \(-0.550250\pi\)
0.776652 + 0.629929i \(0.216916\pi\)
\(770\) 2.16487 3.03876i 0.0780164 0.109509i
\(771\) 4.20466 7.28269i 0.151427 0.262280i
\(772\) −17.0064