Properties

Label 390.2.x.a.49.4
Level $390$
Weight $2$
Character 390.49
Analytic conductor $3.114$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \( x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + 190 x^{3} - 1196 x^{2} - 338 x + 2197 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.4
Root \(-0.330925 + 1.46916i\) of defining polynomial
Character \(\chi\) \(=\) 390.49
Dual form 390.2.x.a.199.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.571769 - 2.16173i) q^{5} +(-0.866025 - 0.500000i) q^{6} +(-0.603137 + 1.04466i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.571769 - 2.16173i) q^{5} +(-0.866025 - 0.500000i) q^{6} +(-0.603137 + 1.04466i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.58623 + 1.57603i) q^{10} +(4.46182 - 2.57603i) q^{11} +1.00000i q^{12} +(-2.24511 - 2.82126i) q^{13} +1.20627 q^{14} +(-1.57603 - 1.58623i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-4.10150 - 2.36800i) q^{17} -1.00000 q^{18} +(-1.84474 - 1.06506i) q^{19} +(2.15800 + 0.585699i) q^{20} +1.20627i q^{21} +(-4.46182 - 2.57603i) q^{22} +(1.88293 - 1.08711i) q^{23} +(0.866025 - 0.500000i) q^{24} +(-4.34616 + 2.47202i) q^{25} +(-1.32073 + 3.35495i) q^{26} -1.00000i q^{27} +(-0.603137 - 1.04466i) q^{28} +(2.38346 + 4.12828i) q^{29} +(-0.585699 + 2.15800i) q^{30} -5.91046i q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.57603 - 4.46182i) q^{33} +4.73601i q^{34} +(2.60314 + 0.706513i) q^{35} +(0.500000 + 0.866025i) q^{36} +(2.20034 + 3.81110i) q^{37} +2.13012i q^{38} +(-3.35495 - 1.32073i) q^{39} +(-0.571769 - 2.16173i) q^{40} +(4.10150 - 2.36800i) q^{41} +(1.04466 - 0.603137i) q^{42} +(-1.70944 - 0.986944i) q^{43} +5.15206i q^{44} +(-2.15800 - 0.585699i) q^{45} +(-1.88293 - 1.08711i) q^{46} -0.852296 q^{47} +(-0.866025 - 0.500000i) q^{48} +(2.77245 + 4.80203i) q^{49} +(4.31391 + 2.52788i) q^{50} -4.73601 q^{51} +(3.56583 - 0.533691i) q^{52} -4.48042i q^{53} +(-0.866025 + 0.500000i) q^{54} +(-8.11982 - 8.17235i) q^{55} +(-0.603137 + 1.04466i) q^{56} -2.13012 q^{57} +(2.38346 - 4.12828i) q^{58} +(1.68133 + 0.970715i) q^{59} +(2.16173 - 0.571769i) q^{60} +(-1.53795 + 2.66381i) q^{61} +(-5.11861 + 2.95523i) q^{62} +(0.603137 + 1.04466i) q^{63} +1.00000 q^{64} +(-4.81512 + 6.46642i) q^{65} -5.15206 q^{66} +(7.02765 + 12.1723i) q^{67} +(4.10150 - 2.36800i) q^{68} +(1.08711 - 1.88293i) q^{69} +(-0.689710 - 2.60764i) q^{70} +(-0.298707 - 0.172459i) q^{71} +(0.500000 - 0.866025i) q^{72} +15.7228 q^{73} +(2.20034 - 3.81110i) q^{74} +(-2.52788 + 4.31391i) q^{75} +(1.84474 - 1.06506i) q^{76} +6.21480i q^{77} +(0.533691 + 3.56583i) q^{78} -13.5863 q^{79} +(-1.58623 + 1.57603i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-4.10150 - 2.36800i) q^{82} +10.2045 q^{83} +(-1.04466 - 0.603137i) q^{84} +(-2.77388 + 10.2203i) q^{85} +1.97389i q^{86} +(4.12828 + 2.38346i) q^{87} +(4.46182 - 2.57603i) q^{88} +(14.1941 - 8.19497i) q^{89} +(0.571769 + 2.16173i) q^{90} +(4.30137 - 0.643777i) q^{91} +2.17422i q^{92} +(-2.95523 - 5.11861i) q^{93} +(0.426148 + 0.738110i) q^{94} +(-1.24761 + 4.59679i) q^{95} +1.00000i q^{96} +(4.24139 - 7.34631i) q^{97} +(2.77245 - 4.80203i) q^{98} -5.15206i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9} - 2 q^{10} + 6 q^{11} - 8 q^{13} + 4 q^{14} + 6 q^{15} - 6 q^{16} + 18 q^{17} - 12 q^{18} - 6 q^{19} + 4 q^{20} - 6 q^{22} + 6 q^{23} - 10 q^{25} - 2 q^{26} - 2 q^{28} + 14 q^{29} - 6 q^{30} - 6 q^{32} + 6 q^{33} + 26 q^{35} + 6 q^{36} - 12 q^{37} - 2 q^{39} - 2 q^{40} - 18 q^{41} - 12 q^{42} - 36 q^{43} - 4 q^{45} - 6 q^{46} + 16 q^{47} + 8 q^{49} - 10 q^{50} + 16 q^{51} + 10 q^{52} - 28 q^{55} - 2 q^{56} - 8 q^{57} + 14 q^{58} - 36 q^{59} + 10 q^{61} + 6 q^{62} + 2 q^{63} + 12 q^{64} + 6 q^{65} - 12 q^{66} + 4 q^{67} - 18 q^{68} + 16 q^{69} - 4 q^{70} - 12 q^{71} + 6 q^{72} + 28 q^{73} - 12 q^{74} - 8 q^{75} + 6 q^{76} - 2 q^{78} + 4 q^{79} - 2 q^{80} - 6 q^{81} + 18 q^{82} + 72 q^{83} + 12 q^{84} + 18 q^{85} + 6 q^{87} + 6 q^{88} + 18 q^{89} + 2 q^{90} + 2 q^{91} - 16 q^{93} - 8 q^{94} - 42 q^{95} - 48 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.571769 2.16173i −0.255703 0.966755i
\(6\) −0.866025 0.500000i −0.353553 0.204124i
\(7\) −0.603137 + 1.04466i −0.227964 + 0.394846i −0.957205 0.289412i \(-0.906540\pi\)
0.729240 + 0.684258i \(0.239874\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.58623 + 1.57603i −0.501610 + 0.498385i
\(11\) 4.46182 2.57603i 1.34529 0.776703i 0.357711 0.933832i \(-0.383557\pi\)
0.987578 + 0.157130i \(0.0502240\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −2.24511 2.82126i −0.622681 0.782476i
\(14\) 1.20627 0.322390
\(15\) −1.57603 1.58623i −0.406930 0.409563i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −4.10150 2.36800i −0.994761 0.574326i −0.0880670 0.996115i \(-0.528069\pi\)
−0.906694 + 0.421789i \(0.861402\pi\)
\(18\) −1.00000 −0.235702
\(19\) −1.84474 1.06506i −0.423212 0.244341i 0.273239 0.961946i \(-0.411905\pi\)
−0.696450 + 0.717605i \(0.745238\pi\)
\(20\) 2.15800 + 0.585699i 0.482543 + 0.130966i
\(21\) 1.20627i 0.263231i
\(22\) −4.46182 2.57603i −0.951263 0.549212i
\(23\) 1.88293 1.08711i 0.392618 0.226678i −0.290676 0.956822i \(-0.593880\pi\)
0.683294 + 0.730144i \(0.260547\pi\)
\(24\) 0.866025 0.500000i 0.176777 0.102062i
\(25\) −4.34616 + 2.47202i −0.869232 + 0.494404i
\(26\) −1.32073 + 3.35495i −0.259016 + 0.657960i
\(27\) 1.00000i 0.192450i
\(28\) −0.603137 1.04466i −0.113982 0.197423i
\(29\) 2.38346 + 4.12828i 0.442598 + 0.766602i 0.997881 0.0650589i \(-0.0207235\pi\)
−0.555283 + 0.831661i \(0.687390\pi\)
\(30\) −0.585699 + 2.15800i −0.106934 + 0.393995i
\(31\) 5.91046i 1.06155i −0.847513 0.530775i \(-0.821901\pi\)
0.847513 0.530775i \(-0.178099\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 2.57603 4.46182i 0.448430 0.776703i
\(34\) 4.73601i 0.812219i
\(35\) 2.60314 + 0.706513i 0.440010 + 0.119423i
\(36\) 0.500000 + 0.866025i 0.0833333 + 0.144338i
\(37\) 2.20034 + 3.81110i 0.361734 + 0.626541i 0.988246 0.152870i \(-0.0488517\pi\)
−0.626513 + 0.779411i \(0.715518\pi\)
\(38\) 2.13012i 0.345551i
\(39\) −3.35495 1.32073i −0.537222 0.211486i
\(40\) −0.571769 2.16173i −0.0904046 0.341800i
\(41\) 4.10150 2.36800i 0.640547 0.369820i −0.144278 0.989537i \(-0.546086\pi\)
0.784825 + 0.619717i \(0.212753\pi\)
\(42\) 1.04466 0.603137i 0.161195 0.0930660i
\(43\) −1.70944 0.986944i −0.260687 0.150508i 0.363961 0.931414i \(-0.381424\pi\)
−0.624648 + 0.780907i \(0.714757\pi\)
\(44\) 5.15206i 0.776703i
\(45\) −2.15800 0.585699i −0.321695 0.0873109i
\(46\) −1.88293 1.08711i −0.277623 0.160285i
\(47\) −0.852296 −0.124320 −0.0621600 0.998066i \(-0.519799\pi\)
−0.0621600 + 0.998066i \(0.519799\pi\)
\(48\) −0.866025 0.500000i −0.125000 0.0721688i
\(49\) 2.77245 + 4.80203i 0.396065 + 0.686004i
\(50\) 4.31391 + 2.52788i 0.610079 + 0.357496i
\(51\) −4.73601 −0.663174
\(52\) 3.56583 0.533691i 0.494492 0.0740096i
\(53\) 4.48042i 0.615433i −0.951478 0.307716i \(-0.900435\pi\)
0.951478 0.307716i \(-0.0995648\pi\)
\(54\) −0.866025 + 0.500000i −0.117851 + 0.0680414i
\(55\) −8.11982 8.17235i −1.09488 1.10196i
\(56\) −0.603137 + 1.04466i −0.0805976 + 0.139599i
\(57\) −2.13012 −0.282141
\(58\) 2.38346 4.12828i 0.312964 0.542070i
\(59\) 1.68133 + 0.970715i 0.218890 + 0.126376i 0.605436 0.795894i \(-0.292999\pi\)
−0.386546 + 0.922270i \(0.626332\pi\)
\(60\) 2.16173 0.571769i 0.279078 0.0738150i
\(61\) −1.53795 + 2.66381i −0.196915 + 0.341066i −0.947527 0.319677i \(-0.896426\pi\)
0.750612 + 0.660744i \(0.229759\pi\)
\(62\) −5.11861 + 2.95523i −0.650064 + 0.375315i
\(63\) 0.603137 + 1.04466i 0.0759881 + 0.131615i
\(64\) 1.00000 0.125000
\(65\) −4.81512 + 6.46642i −0.597242 + 0.802061i
\(66\) −5.15206 −0.634175
\(67\) 7.02765 + 12.1723i 0.858564 + 1.48708i 0.873298 + 0.487186i \(0.161977\pi\)
−0.0147340 + 0.999891i \(0.504690\pi\)
\(68\) 4.10150 2.36800i 0.497380 0.287163i
\(69\) 1.08711 1.88293i 0.130873 0.226678i
\(70\) −0.689710 2.60764i −0.0824361 0.311673i
\(71\) −0.298707 0.172459i −0.0354500 0.0204671i 0.482170 0.876078i \(-0.339849\pi\)
−0.517620 + 0.855610i \(0.673182\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) 15.7228 1.84022 0.920109 0.391662i \(-0.128100\pi\)
0.920109 + 0.391662i \(0.128100\pi\)
\(74\) 2.20034 3.81110i 0.255784 0.443031i
\(75\) −2.52788 + 4.31391i −0.291894 + 0.498128i
\(76\) 1.84474 1.06506i 0.211606 0.122171i
\(77\) 6.21480i 0.708242i
\(78\) 0.533691 + 3.56583i 0.0604286 + 0.403751i
\(79\) −13.5863 −1.52858 −0.764290 0.644873i \(-0.776910\pi\)
−0.764290 + 0.644873i \(0.776910\pi\)
\(80\) −1.58623 + 1.57603i −0.177346 + 0.176206i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −4.10150 2.36800i −0.452935 0.261502i
\(83\) 10.2045 1.12009 0.560046 0.828462i \(-0.310784\pi\)
0.560046 + 0.828462i \(0.310784\pi\)
\(84\) −1.04466 0.603137i −0.113982 0.0658076i
\(85\) −2.77388 + 10.2203i −0.300869 + 1.10855i
\(86\) 1.97389i 0.212850i
\(87\) 4.12828 + 2.38346i 0.442598 + 0.255534i
\(88\) 4.46182 2.57603i 0.475631 0.274606i
\(89\) 14.1941 8.19497i 1.50457 0.868665i 0.504586 0.863361i \(-0.331645\pi\)
0.999986 0.00530346i \(-0.00168815\pi\)
\(90\) 0.571769 + 2.16173i 0.0602697 + 0.227866i
\(91\) 4.30137 0.643777i 0.450906 0.0674862i
\(92\) 2.17422i 0.226678i
\(93\) −2.95523 5.11861i −0.306443 0.530775i
\(94\) 0.426148 + 0.738110i 0.0439538 + 0.0761302i
\(95\) −1.24761 + 4.59679i −0.128002 + 0.471621i
\(96\) 1.00000i 0.102062i
\(97\) 4.24139 7.34631i 0.430648 0.745904i −0.566281 0.824212i \(-0.691618\pi\)
0.996929 + 0.0783078i \(0.0249517\pi\)
\(98\) 2.77245 4.80203i 0.280060 0.485078i
\(99\) 5.15206i 0.517802i
\(100\) 0.0322474 4.99990i 0.00322474 0.499990i
\(101\) 6.79121 + 11.7627i 0.675751 + 1.17044i 0.976249 + 0.216653i \(0.0695139\pi\)
−0.300498 + 0.953783i \(0.597153\pi\)
\(102\) 2.36800 + 4.10150i 0.234467 + 0.406109i
\(103\) 2.15696i 0.212531i −0.994338 0.106266i \(-0.966111\pi\)
0.994338 0.106266i \(-0.0338894\pi\)
\(104\) −2.24511 2.82126i −0.220151 0.276647i
\(105\) 2.60764 0.689710i 0.254480 0.0673088i
\(106\) −3.88016 + 2.24021i −0.376874 + 0.217588i
\(107\) 7.00959 4.04699i 0.677642 0.391237i −0.121324 0.992613i \(-0.538714\pi\)
0.798966 + 0.601376i \(0.205381\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) 16.8839i 1.61718i 0.588370 + 0.808592i \(0.299770\pi\)
−0.588370 + 0.808592i \(0.700230\pi\)
\(110\) −3.01756 + 11.1181i −0.287713 + 1.06007i
\(111\) 3.81110 + 2.20034i 0.361734 + 0.208847i
\(112\) 1.20627 0.113982
\(113\) 4.28771 + 2.47551i 0.403354 + 0.232876i 0.687930 0.725777i \(-0.258520\pi\)
−0.284576 + 0.958653i \(0.591853\pi\)
\(114\) 1.06506 + 1.84474i 0.0997519 + 0.172775i
\(115\) −3.42664 3.44881i −0.319535 0.321603i
\(116\) −4.76693 −0.442598
\(117\) −3.56583 + 0.533691i −0.329661 + 0.0493397i
\(118\) 1.94143i 0.178723i
\(119\) 4.94754 2.85646i 0.453540 0.261851i
\(120\) −1.57603 1.58623i −0.143871 0.144802i
\(121\) 7.77188 13.4613i 0.706535 1.22375i
\(122\) 3.07591 0.278480
\(123\) 2.36800 4.10150i 0.213516 0.369820i
\(124\) 5.11861 + 2.95523i 0.459665 + 0.265388i
\(125\) 7.82884 + 7.98180i 0.700233 + 0.713914i
\(126\) 0.603137 1.04466i 0.0537317 0.0930660i
\(127\) −1.04089 + 0.600957i −0.0923639 + 0.0533263i −0.545471 0.838130i \(-0.683649\pi\)
0.453107 + 0.891456i \(0.350316\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −1.97389 −0.173791
\(130\) 8.00765 + 0.936802i 0.702317 + 0.0821629i
\(131\) −6.65149 −0.581143 −0.290572 0.956853i \(-0.593845\pi\)
−0.290572 + 0.956853i \(0.593845\pi\)
\(132\) 2.57603 + 4.46182i 0.224215 + 0.388351i
\(133\) 2.22526 1.28475i 0.192954 0.111402i
\(134\) 7.02765 12.1723i 0.607097 1.05152i
\(135\) −2.16173 + 0.571769i −0.186052 + 0.0492100i
\(136\) −4.10150 2.36800i −0.351701 0.203055i
\(137\) −7.35746 + 12.7435i −0.628590 + 1.08875i 0.359245 + 0.933243i \(0.383034\pi\)
−0.987835 + 0.155507i \(0.950299\pi\)
\(138\) −2.17422 −0.185082
\(139\) −7.82540 + 13.5540i −0.663742 + 1.14963i 0.315883 + 0.948798i \(0.397699\pi\)
−0.979625 + 0.200837i \(0.935634\pi\)
\(140\) −1.91343 + 1.90113i −0.161714 + 0.160674i
\(141\) −0.738110 + 0.426148i −0.0621600 + 0.0358881i
\(142\) 0.344918i 0.0289448i
\(143\) −17.2849 6.80447i −1.44544 0.569018i
\(144\) −1.00000 −0.0833333
\(145\) 7.56144 7.51283i 0.627943 0.623906i
\(146\) −7.86142 13.6164i −0.650615 1.12690i
\(147\) 4.80203 + 2.77245i 0.396065 + 0.228668i
\(148\) −4.40068 −0.361734
\(149\) −19.7555 11.4058i −1.61843 0.934401i −0.987327 0.158702i \(-0.949269\pi\)
−0.631103 0.775699i \(-0.717398\pi\)
\(150\) 4.99990 + 0.0322474i 0.408240 + 0.00263299i
\(151\) 19.8995i 1.61940i 0.586845 + 0.809699i \(0.300370\pi\)
−0.586845 + 0.809699i \(0.699630\pi\)
\(152\) −1.84474 1.06506i −0.149628 0.0863877i
\(153\) −4.10150 + 2.36800i −0.331587 + 0.191442i
\(154\) 5.38217 3.10740i 0.433708 0.250401i
\(155\) −12.7768 + 3.37942i −1.02626 + 0.271442i
\(156\) 2.82126 2.24511i 0.225881 0.179752i
\(157\) 4.74392i 0.378606i 0.981919 + 0.189303i \(0.0606228\pi\)
−0.981919 + 0.189303i \(0.939377\pi\)
\(158\) 6.79315 + 11.7661i 0.540434 + 0.936060i
\(159\) −2.24021 3.88016i −0.177660 0.307716i
\(160\) 2.15800 + 0.585699i 0.170605 + 0.0463036i
\(161\) 2.62270i 0.206698i
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) 1.93329 3.34855i 0.151427 0.262279i −0.780325 0.625374i \(-0.784947\pi\)
0.931752 + 0.363095i \(0.118280\pi\)
\(164\) 4.73601i 0.369820i
\(165\) −11.1181 3.01756i −0.865546 0.234917i
\(166\) −5.10226 8.83737i −0.396012 0.685913i
\(167\) −11.3614 19.6785i −0.879173 1.52277i −0.852250 0.523134i \(-0.824763\pi\)
−0.0269225 0.999638i \(-0.508571\pi\)
\(168\) 1.20627i 0.0930660i
\(169\) −2.91899 + 12.6681i −0.224538 + 0.974465i
\(170\) 10.2380 2.70790i 0.785217 0.207687i
\(171\) −1.84474 + 1.06506i −0.141071 + 0.0814471i
\(172\) 1.70944 0.986944i 0.130343 0.0752538i
\(173\) −4.06859 2.34900i −0.309329 0.178591i 0.337297 0.941398i \(-0.390487\pi\)
−0.646626 + 0.762807i \(0.723821\pi\)
\(174\) 4.76693i 0.361380i
\(175\) 0.0388991 6.03124i 0.00294050 0.455919i
\(176\) −4.46182 2.57603i −0.336322 0.194176i
\(177\) 1.94143 0.145927
\(178\) −14.1941 8.19497i −1.06389 0.614239i
\(179\) −4.34913 7.53292i −0.325069 0.563037i 0.656457 0.754363i \(-0.272054\pi\)
−0.981526 + 0.191327i \(0.938721\pi\)
\(180\) 1.58623 1.57603i 0.118231 0.117470i
\(181\) 9.75480 0.725069 0.362534 0.931970i \(-0.381912\pi\)
0.362534 + 0.931970i \(0.381912\pi\)
\(182\) −2.70821 3.40321i −0.200746 0.252263i
\(183\) 3.07591i 0.227378i
\(184\) 1.88293 1.08711i 0.138811 0.0801427i
\(185\) 6.98049 6.93561i 0.513215 0.509916i
\(186\) −2.95523 + 5.11861i −0.216688 + 0.375315i
\(187\) −24.4002 −1.78432
\(188\) 0.426148 0.738110i 0.0310800 0.0538322i
\(189\) 1.04466 + 0.603137i 0.0759881 + 0.0438718i
\(190\) 4.60474 1.21794i 0.334063 0.0883583i
\(191\) −5.77729 + 10.0066i −0.418030 + 0.724049i −0.995741 0.0921920i \(-0.970613\pi\)
0.577711 + 0.816241i \(0.303946\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) 5.23154 + 9.06130i 0.376575 + 0.652247i 0.990561 0.137070i \(-0.0437685\pi\)
−0.613987 + 0.789316i \(0.710435\pi\)
\(194\) −8.48278 −0.609028
\(195\) −0.936802 + 8.00765i −0.0670858 + 0.573439i
\(196\) −5.54490 −0.396065
\(197\) −8.79472 15.2329i −0.626598 1.08530i −0.988230 0.152978i \(-0.951113\pi\)
0.361632 0.932321i \(-0.382220\pi\)
\(198\) −4.46182 + 2.57603i −0.317088 + 0.183071i
\(199\) 12.7858 22.1457i 0.906362 1.56986i 0.0872828 0.996184i \(-0.472182\pi\)
0.819079 0.573681i \(-0.194485\pi\)
\(200\) −4.34616 + 2.47202i −0.307320 + 0.174798i
\(201\) 12.1723 + 7.02765i 0.858564 + 0.495692i
\(202\) 6.79121 11.7627i 0.477828 0.827623i
\(203\) −5.75022 −0.403586
\(204\) 2.36800 4.10150i 0.165793 0.287163i
\(205\) −7.46410 7.51240i −0.521315 0.524689i
\(206\) −1.86798 + 1.07848i −0.130148 + 0.0751412i
\(207\) 2.17422i 0.151119i
\(208\) −1.32073 + 3.35495i −0.0915760 + 0.232624i
\(209\) −10.9745 −0.759122
\(210\) −1.90113 1.91343i −0.131190 0.132039i
\(211\) −6.45984 11.1888i −0.444714 0.770267i 0.553318 0.832970i \(-0.313361\pi\)
−0.998032 + 0.0627029i \(0.980028\pi\)
\(212\) 3.88016 + 2.24021i 0.266490 + 0.153858i
\(213\) −0.344918 −0.0236334
\(214\) −7.00959 4.04699i −0.479165 0.276646i
\(215\) −1.15610 + 4.25965i −0.0788456 + 0.290505i
\(216\) 1.00000i 0.0680414i
\(217\) 6.17445 + 3.56482i 0.419149 + 0.241996i
\(218\) 14.6219 8.44195i 0.990319 0.571761i
\(219\) 13.6164 7.86142i 0.920109 0.531225i
\(220\) 11.1374 2.94579i 0.750882 0.198605i
\(221\) 2.52757 + 16.8878i 0.170022 + 1.13600i
\(222\) 4.40068i 0.295354i
\(223\) −3.57679 6.19518i −0.239519 0.414860i 0.721057 0.692876i \(-0.243657\pi\)
−0.960576 + 0.278016i \(0.910323\pi\)
\(224\) −0.603137 1.04466i −0.0402988 0.0697995i
\(225\) −0.0322474 + 4.99990i −0.00214982 + 0.333326i
\(226\) 4.95102i 0.329337i
\(227\) 12.9192 22.3768i 0.857480 1.48520i −0.0168460 0.999858i \(-0.505362\pi\)
0.874325 0.485340i \(-0.161304\pi\)
\(228\) 1.06506 1.84474i 0.0705353 0.122171i
\(229\) 8.95153i 0.591533i 0.955260 + 0.295767i \(0.0955751\pi\)
−0.955260 + 0.295767i \(0.904425\pi\)
\(230\) −1.27344 + 4.69196i −0.0839680 + 0.309379i
\(231\) 3.10740 + 5.38217i 0.204452 + 0.354121i
\(232\) 2.38346 + 4.12828i 0.156482 + 0.271035i
\(233\) 3.86657i 0.253308i −0.991947 0.126654i \(-0.959576\pi\)
0.991947 0.126654i \(-0.0404237\pi\)
\(234\) 2.24511 + 2.82126i 0.146767 + 0.184431i
\(235\) 0.487316 + 1.84243i 0.0317890 + 0.120187i
\(236\) −1.68133 + 0.970715i −0.109445 + 0.0631882i
\(237\) −11.7661 + 6.79315i −0.764290 + 0.441263i
\(238\) −4.94754 2.85646i −0.320701 0.185157i
\(239\) 15.4177i 0.997286i −0.866807 0.498643i \(-0.833832\pi\)
0.866807 0.498643i \(-0.166168\pi\)
\(240\) −0.585699 + 2.15800i −0.0378067 + 0.139298i
\(241\) 9.76603 + 5.63842i 0.629085 + 0.363203i 0.780398 0.625283i \(-0.215017\pi\)
−0.151312 + 0.988486i \(0.548350\pi\)
\(242\) −15.5438 −0.999191
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −1.53795 2.66381i −0.0984574 0.170533i
\(245\) 8.79549 8.73894i 0.561923 0.558311i
\(246\) −4.73601 −0.301957
\(247\) 1.13682 + 7.59565i 0.0723344 + 0.483299i
\(248\) 5.91046i 0.375315i
\(249\) 8.83737 5.10226i 0.560046 0.323342i
\(250\) 2.99802 10.7709i 0.189612 0.681210i
\(251\) 6.15329 10.6578i 0.388392 0.672715i −0.603841 0.797104i \(-0.706364\pi\)
0.992233 + 0.124390i \(0.0396973\pi\)
\(252\) −1.20627 −0.0759881
\(253\) 5.60085 9.70096i 0.352123 0.609894i
\(254\) 1.04089 + 0.600957i 0.0653112 + 0.0377074i
\(255\) 2.70790 + 10.2380i 0.169575 + 0.641127i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −24.3239 + 14.0434i −1.51728 + 0.876004i −0.517490 + 0.855689i \(0.673134\pi\)
−0.999794 + 0.0203154i \(0.993533\pi\)
\(258\) 0.986944 + 1.70944i 0.0614444 + 0.106425i
\(259\) −5.30842 −0.329849
\(260\) −3.19253 7.40323i −0.197992 0.459129i
\(261\) 4.76693 0.295065
\(262\) 3.32575 + 5.76036i 0.205465 + 0.355876i
\(263\) −6.56756 + 3.79178i −0.404973 + 0.233811i −0.688628 0.725115i \(-0.741787\pi\)
0.283654 + 0.958927i \(0.408453\pi\)
\(264\) 2.57603 4.46182i 0.158544 0.274606i
\(265\) −9.68546 + 2.56176i −0.594973 + 0.157368i
\(266\) −2.22526 1.28475i −0.136439 0.0787732i
\(267\) 8.19497 14.1941i 0.501524 0.868665i
\(268\) −14.0553 −0.858564
\(269\) −12.2355 + 21.1924i −0.746010 + 1.29213i 0.203712 + 0.979031i \(0.434699\pi\)
−0.949722 + 0.313096i \(0.898634\pi\)
\(270\) 1.57603 + 1.58623i 0.0959142 + 0.0965348i
\(271\) 10.0199 5.78497i 0.608664 0.351412i −0.163779 0.986497i \(-0.552368\pi\)
0.772442 + 0.635085i \(0.219035\pi\)
\(272\) 4.73601i 0.287163i
\(273\) 3.40321 2.70821i 0.205972 0.163909i
\(274\) 14.7149 0.888961
\(275\) −13.0238 + 22.2256i −0.785363 + 1.34025i
\(276\) 1.08711 + 1.88293i 0.0654363 + 0.113339i
\(277\) 11.2111 + 6.47271i 0.673608 + 0.388908i 0.797442 0.603395i \(-0.206186\pi\)
−0.123835 + 0.992303i \(0.539519\pi\)
\(278\) 15.6508 0.938673
\(279\) −5.11861 2.95523i −0.306443 0.176925i
\(280\) 2.60314 + 0.706513i 0.155567 + 0.0422223i
\(281\) 2.57187i 0.153425i −0.997053 0.0767124i \(-0.975558\pi\)
0.997053 0.0767124i \(-0.0244423\pi\)
\(282\) 0.738110 + 0.426148i 0.0439538 + 0.0253767i
\(283\) 4.80517 2.77427i 0.285638 0.164913i −0.350335 0.936624i \(-0.613932\pi\)
0.635973 + 0.771711i \(0.280599\pi\)
\(284\) 0.298707 0.172459i 0.0177250 0.0102335i
\(285\) 1.21794 + 4.60474i 0.0721443 + 0.272761i
\(286\) 2.74961 + 18.3714i 0.162588 + 1.08632i
\(287\) 5.71292i 0.337223i
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) 2.71489 + 4.70233i 0.159700 + 0.276608i
\(290\) −10.2870 2.79198i −0.604075 0.163951i
\(291\) 8.48278i 0.497270i
\(292\) −7.86142 + 13.6164i −0.460055 + 0.796838i
\(293\) −12.0658 + 20.8986i −0.704891 + 1.22091i 0.261840 + 0.965111i \(0.415671\pi\)
−0.966731 + 0.255795i \(0.917663\pi\)
\(294\) 5.54490i 0.323385i
\(295\) 1.13709 4.18960i 0.0662042 0.243928i
\(296\) 2.20034 + 3.81110i 0.127892 + 0.221516i
\(297\) −2.57603 4.46182i −0.149477 0.258901i
\(298\) 22.8116i 1.32144i
\(299\) −7.29439 2.87155i −0.421845 0.166066i
\(300\) −2.47202 4.34616i −0.142722 0.250926i
\(301\) 2.06205 1.19052i 0.118855 0.0686207i
\(302\) 17.2335 9.94975i 0.991675 0.572544i
\(303\) 11.7627 + 6.79121i 0.675751 + 0.390145i
\(304\) 2.13012i 0.122171i
\(305\) 6.63780 + 1.80156i 0.380080 + 0.103157i
\(306\) 4.10150 + 2.36800i 0.234467 + 0.135370i
\(307\) −30.3243 −1.73070 −0.865348 0.501171i \(-0.832903\pi\)
−0.865348 + 0.501171i \(0.832903\pi\)
\(308\) −5.38217 3.10740i −0.306678 0.177061i
\(309\) −1.07848 1.86798i −0.0613525 0.106266i
\(310\) 9.31508 + 9.37535i 0.529061 + 0.532484i
\(311\) 8.76406 0.496964 0.248482 0.968636i \(-0.420068\pi\)
0.248482 + 0.968636i \(0.420068\pi\)
\(312\) −3.35495 1.32073i −0.189937 0.0747715i
\(313\) 29.0155i 1.64005i 0.572326 + 0.820026i \(0.306041\pi\)
−0.572326 + 0.820026i \(0.693959\pi\)
\(314\) 4.10836 2.37196i 0.231848 0.133857i
\(315\) 1.91343 1.90113i 0.107809 0.107116i
\(316\) 6.79315 11.7661i 0.382145 0.661894i
\(317\) 25.9970 1.46014 0.730068 0.683375i \(-0.239489\pi\)
0.730068 + 0.683375i \(0.239489\pi\)
\(318\) −2.24021 + 3.88016i −0.125625 + 0.217588i
\(319\) 21.2692 + 12.2798i 1.19084 + 0.687534i
\(320\) −0.571769 2.16173i −0.0319629 0.120844i
\(321\) 4.04699 7.00959i 0.225881 0.391237i
\(322\) 2.27133 1.31135i 0.126576 0.0730787i
\(323\) 5.04413 + 8.73669i 0.280663 + 0.486122i
\(324\) 1.00000 0.0555556
\(325\) 16.7318 + 6.71169i 0.928113 + 0.372297i
\(326\) −3.86657 −0.214150
\(327\) 8.44195 + 14.6219i 0.466841 + 0.808592i
\(328\) 4.10150 2.36800i 0.226468 0.130751i
\(329\) 0.514051 0.890362i 0.0283405 0.0490873i
\(330\) 2.94579 + 11.1374i 0.162160 + 0.613092i
\(331\) −9.56025 5.51961i −0.525479 0.303385i 0.213694 0.976901i \(-0.431450\pi\)
−0.739173 + 0.673515i \(0.764784\pi\)
\(332\) −5.10226 + 8.83737i −0.280023 + 0.485014i
\(333\) 4.40068 0.241156
\(334\) −11.3614 + 19.6785i −0.621669 + 1.07676i
\(335\) 22.2949 22.1516i 1.21810 1.21027i
\(336\) 1.04466 0.603137i 0.0569911 0.0329038i
\(337\) 17.7108i 0.964769i −0.875960 0.482384i \(-0.839771\pi\)
0.875960 0.482384i \(-0.160229\pi\)
\(338\) 12.4303 3.80611i 0.676122 0.207025i
\(339\) 4.95102 0.268902
\(340\) −7.46410 7.51240i −0.404798 0.407417i
\(341\) −15.2255 26.3714i −0.824509 1.42809i
\(342\) 1.84474 + 1.06506i 0.0997519 + 0.0575918i
\(343\) −15.1326 −0.817083
\(344\) −1.70944 0.986944i −0.0921667 0.0532124i
\(345\) −4.69196 1.27344i −0.252607 0.0685595i
\(346\) 4.69800i 0.252566i
\(347\) 30.0526 + 17.3509i 1.61331 + 0.931443i 0.988597 + 0.150587i \(0.0481162\pi\)
0.624710 + 0.780857i \(0.285217\pi\)
\(348\) −4.12828 + 2.38346i −0.221299 + 0.127767i
\(349\) −30.4563 + 17.5840i −1.63029 + 0.941249i −0.646288 + 0.763093i \(0.723680\pi\)
−0.984002 + 0.178156i \(0.942987\pi\)
\(350\) −5.24266 + 2.98193i −0.280232 + 0.159391i
\(351\) −2.82126 + 2.24511i −0.150588 + 0.119835i
\(352\) 5.15206i 0.274606i
\(353\) −5.54542 9.60495i −0.295153 0.511220i 0.679868 0.733335i \(-0.262037\pi\)
−0.975020 + 0.222115i \(0.928704\pi\)
\(354\) −0.970715 1.68133i −0.0515929 0.0893616i
\(355\) −0.202018 + 0.744332i −0.0107220 + 0.0395050i
\(356\) 16.3899i 0.868665i
\(357\) 2.85646 4.94754i 0.151180 0.261851i
\(358\) −4.34913 + 7.53292i −0.229859 + 0.398127i
\(359\) 26.1575i 1.38054i −0.723552 0.690270i \(-0.757492\pi\)
0.723552 0.690270i \(-0.242508\pi\)
\(360\) −2.15800 0.585699i −0.113736 0.0308690i
\(361\) −7.23130 12.5250i −0.380595 0.659209i
\(362\) −4.87740 8.44791i −0.256351 0.444012i
\(363\) 15.5438i 0.815836i
\(364\) −1.59316 + 4.04699i −0.0835042 + 0.212120i
\(365\) −8.98983 33.9885i −0.470549 1.77904i
\(366\) 2.66381 1.53795i 0.139240 0.0803901i
\(367\) 13.4988 7.79352i 0.704630 0.406818i −0.104440 0.994531i \(-0.533305\pi\)
0.809070 + 0.587713i \(0.199972\pi\)
\(368\) −1.88293 1.08711i −0.0981544 0.0566695i
\(369\) 4.73601i 0.246547i
\(370\) −9.49666 2.57747i −0.493708 0.133996i
\(371\) 4.68053 + 2.70231i 0.243001 + 0.140297i
\(372\) 5.91046 0.306443
\(373\) 0.860358 + 0.496728i 0.0445476 + 0.0257196i 0.522108 0.852879i \(-0.325146\pi\)
−0.477561 + 0.878599i \(0.658479\pi\)
\(374\) 12.2001 + 21.1312i 0.630853 + 1.09267i
\(375\) 10.7709 + 2.99802i 0.556206 + 0.154817i
\(376\) −0.852296 −0.0439538
\(377\) 6.29581 15.9928i 0.324251 0.823671i
\(378\) 1.20627i 0.0620440i
\(379\) 23.7856 13.7326i 1.22178 0.705398i 0.256486 0.966548i \(-0.417435\pi\)
0.965298 + 0.261150i \(0.0841018\pi\)
\(380\) −3.35713 3.37886i −0.172217 0.173332i
\(381\) −0.600957 + 1.04089i −0.0307880 + 0.0533263i
\(382\) 11.5546 0.591184
\(383\) −16.2851 + 28.2067i −0.832132 + 1.44130i 0.0642122 + 0.997936i \(0.479547\pi\)
−0.896344 + 0.443359i \(0.853787\pi\)
\(384\) −0.866025 0.500000i −0.0441942 0.0255155i
\(385\) 13.4347 3.55343i 0.684697 0.181100i
\(386\) 5.23154 9.06130i 0.266279 0.461208i
\(387\) −1.70944 + 0.986944i −0.0868956 + 0.0501692i
\(388\) 4.24139 + 7.34631i 0.215324 + 0.372952i
\(389\) −16.9110 −0.857421 −0.428710 0.903442i \(-0.641032\pi\)
−0.428710 + 0.903442i \(0.641032\pi\)
\(390\) 7.40323 3.19253i 0.374877 0.161660i
\(391\) −10.2971 −0.520747
\(392\) 2.77245 + 4.80203i 0.140030 + 0.242539i
\(393\) −5.76036 + 3.32575i −0.290572 + 0.167762i
\(394\) −8.79472 + 15.2329i −0.443072 + 0.767423i
\(395\) 7.76823 + 29.3699i 0.390862 + 1.47776i
\(396\) 4.46182 + 2.57603i 0.224215 + 0.129450i
\(397\) 16.1198 27.9204i 0.809031 1.40128i −0.104504 0.994524i \(-0.533326\pi\)
0.913536 0.406759i \(-0.133341\pi\)
\(398\) −25.5716 −1.28179
\(399\) 1.28475 2.22526i 0.0643181 0.111402i
\(400\) 4.31391 + 2.52788i 0.215696 + 0.126394i
\(401\) 28.0082 16.1705i 1.39866 0.807518i 0.404410 0.914578i \(-0.367477\pi\)
0.994253 + 0.107060i \(0.0341437\pi\)
\(402\) 14.0553i 0.701015i
\(403\) −16.6749 + 13.2696i −0.830638 + 0.661007i
\(404\) −13.5824 −0.675751
\(405\) −1.58623 + 1.57603i −0.0788204 + 0.0783137i
\(406\) 2.87511 + 4.97984i 0.142689 + 0.247145i
\(407\) 19.6350 + 11.3363i 0.973272 + 0.561919i
\(408\) −4.73601 −0.234467
\(409\) 1.00971 + 0.582957i 0.0499270 + 0.0288254i 0.524756 0.851253i \(-0.324157\pi\)
−0.474829 + 0.880078i \(0.657490\pi\)
\(410\) −2.77388 + 10.2203i −0.136992 + 0.504745i
\(411\) 14.7149i 0.725833i
\(412\) 1.86798 + 1.07848i 0.0920288 + 0.0531328i
\(413\) −2.02814 + 1.17095i −0.0997984 + 0.0576186i
\(414\) −1.88293 + 1.08711i −0.0925408 + 0.0534285i
\(415\) −5.83462 22.0594i −0.286410 1.08285i
\(416\) 3.56583 0.533691i 0.174829 0.0261663i
\(417\) 15.6508i 0.766423i
\(418\) 5.48725 + 9.50420i 0.268390 + 0.464866i
\(419\) 5.91396 + 10.2433i 0.288916 + 0.500417i 0.973551 0.228469i \(-0.0733719\pi\)
−0.684635 + 0.728886i \(0.740039\pi\)
\(420\) −0.706513 + 2.60314i −0.0344743 + 0.127020i
\(421\) 23.9102i 1.16531i 0.812719 + 0.582655i \(0.197986\pi\)
−0.812719 + 0.582655i \(0.802014\pi\)
\(422\) −6.45984 + 11.1888i −0.314460 + 0.544661i
\(423\) −0.426148 + 0.738110i −0.0207200 + 0.0358881i
\(424\) 4.48042i 0.217588i
\(425\) 23.6796 + 0.152724i 1.14863 + 0.00740819i
\(426\) 0.172459 + 0.298707i 0.00835566 + 0.0144724i
\(427\) −1.85519 3.21329i −0.0897791 0.155502i
\(428\) 8.09397i 0.391237i
\(429\) −18.3714 + 2.74961i −0.886980 + 0.132752i
\(430\) 4.26701 1.12861i 0.205774 0.0544263i
\(431\) −22.8082 + 13.1683i −1.09863 + 0.634294i −0.935861 0.352370i \(-0.885376\pi\)
−0.162769 + 0.986664i \(0.552043\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 11.2232 + 6.47972i 0.539353 + 0.311396i 0.744817 0.667269i \(-0.232537\pi\)
−0.205464 + 0.978665i \(0.565870\pi\)
\(434\) 7.12964i 0.342234i
\(435\) 2.79198 10.2870i 0.133865 0.493225i
\(436\) −14.6219 8.44195i −0.700261 0.404296i
\(437\) −4.63134 −0.221547
\(438\) −13.6164 7.86142i −0.650615 0.375633i
\(439\) 11.6234 + 20.1324i 0.554756 + 0.960865i 0.997922 + 0.0644259i \(0.0205216\pi\)
−0.443167 + 0.896439i \(0.646145\pi\)
\(440\) −8.11982 8.17235i −0.387097 0.389602i
\(441\) 5.54490 0.264043
\(442\) 13.3615 10.6328i 0.635542 0.505753i
\(443\) 23.3728i 1.11047i 0.831692 + 0.555237i \(0.187373\pi\)
−0.831692 + 0.555237i \(0.812627\pi\)
\(444\) −3.81110 + 2.20034i −0.180867 + 0.104423i
\(445\) −25.8311 25.9982i −1.22451 1.23243i
\(446\) −3.57679 + 6.19518i −0.169366 + 0.293350i
\(447\) −22.8116 −1.07895
\(448\) −0.603137 + 1.04466i −0.0284955 + 0.0493557i
\(449\) 1.20931 + 0.698196i 0.0570709 + 0.0329499i 0.528264 0.849080i \(-0.322843\pi\)
−0.471193 + 0.882030i \(0.656176\pi\)
\(450\) 4.34616 2.47202i 0.204880 0.116532i
\(451\) 12.2001 21.1312i 0.574481 0.995030i
\(452\) −4.28771 + 2.47551i −0.201677 + 0.116438i
\(453\) 9.94975 + 17.2335i 0.467480 + 0.809699i
\(454\) −25.8385 −1.21266
\(455\) −3.85106 8.93032i −0.180541 0.418660i
\(456\) −2.13012 −0.0997519
\(457\) 3.60093 + 6.23699i 0.168444 + 0.291754i 0.937873 0.346979i \(-0.112792\pi\)
−0.769429 + 0.638733i \(0.779459\pi\)
\(458\) 7.75225 4.47576i 0.362239 0.209139i
\(459\) −2.36800 + 4.10150i −0.110529 + 0.191442i
\(460\) 4.70007 1.24315i 0.219142 0.0579622i
\(461\) −4.10920 2.37245i −0.191384 0.110496i 0.401246 0.915970i \(-0.368577\pi\)
−0.592630 + 0.805474i \(0.701911\pi\)
\(462\) 3.10740 5.38217i 0.144569 0.250401i
\(463\) 15.7510 0.732012 0.366006 0.930612i \(-0.380725\pi\)
0.366006 + 0.930612i \(0.380725\pi\)
\(464\) 2.38346 4.12828i 0.110650 0.191651i
\(465\) −9.37535 + 9.31508i −0.434772 + 0.431976i
\(466\) −3.34855 + 1.93329i −0.155119 + 0.0895578i
\(467\) 17.9789i 0.831962i −0.909373 0.415981i \(-0.863438\pi\)
0.909373 0.415981i \(-0.136562\pi\)
\(468\) 1.32073 3.35495i 0.0610506 0.155083i
\(469\) −16.9545 −0.782888
\(470\) 1.35194 1.34324i 0.0623602 0.0619593i
\(471\) 2.37196 + 4.10836i 0.109294 + 0.189303i
\(472\) 1.68133 + 0.970715i 0.0773894 + 0.0446808i
\(473\) −10.1696 −0.467598
\(474\) 11.7661 + 6.79315i 0.540434 + 0.312020i
\(475\) 10.6504 + 0.0686907i 0.488672 + 0.00315174i
\(476\) 5.71292i 0.261851i
\(477\) −3.88016 2.24021i −0.177660 0.102572i
\(478\) −13.3521 + 7.70884i −0.610711 + 0.352594i
\(479\) 2.83964 1.63947i 0.129747 0.0749093i −0.433722 0.901047i \(-0.642800\pi\)
0.563468 + 0.826138i \(0.309467\pi\)
\(480\) 2.16173 0.571769i 0.0986691 0.0260976i
\(481\) 5.81210 14.7640i 0.265009 0.673183i
\(482\) 11.2768i 0.513646i
\(483\) 1.31135 + 2.27133i 0.0596685 + 0.103349i
\(484\) 7.77188 + 13.4613i 0.353267 + 0.611877i
\(485\) −18.3058 4.96836i −0.831225 0.225601i
\(486\) 1.00000i 0.0453609i
\(487\) −4.98852 + 8.64037i −0.226052 + 0.391533i −0.956634 0.291291i \(-0.905915\pi\)
0.730583 + 0.682824i \(0.239248\pi\)
\(488\) −1.53795 + 2.66381i −0.0696199 + 0.120585i
\(489\) 3.86657i 0.174852i
\(490\) −11.9659 3.24764i −0.540564 0.146714i
\(491\) 10.0376 + 17.3857i 0.452992 + 0.784605i 0.998570 0.0534548i \(-0.0170233\pi\)
−0.545578 + 0.838060i \(0.683690\pi\)
\(492\) 2.36800 + 4.10150i 0.106758 + 0.184910i
\(493\) 22.5762i 1.01678i
\(494\) 6.00961 4.78234i 0.270385 0.215168i
\(495\) −11.1374 + 2.94579i −0.500588 + 0.132403i
\(496\) −5.11861 + 2.95523i −0.229832 + 0.132694i
\(497\) 0.360323 0.208033i 0.0161627 0.00933153i
\(498\) −8.83737 5.10226i −0.396012 0.228638i
\(499\) 23.9474i 1.07203i −0.844208 0.536016i \(-0.819929\pi\)
0.844208 0.536016i \(-0.180071\pi\)
\(500\) −10.8269 + 2.78907i −0.484192 + 0.124731i
\(501\) −19.6785 11.3614i −0.879173 0.507591i
\(502\) −12.3066 −0.549269
\(503\) 10.5377 + 6.08395i 0.469853 + 0.271270i 0.716178 0.697917i \(-0.245890\pi\)
−0.246325 + 0.969187i \(0.579223\pi\)
\(504\) 0.603137 + 1.04466i 0.0268659 + 0.0465330i
\(505\) 21.5448 21.4063i 0.958733 0.952570i
\(506\) −11.2017 −0.497977
\(507\) 3.80611 + 12.4303i 0.169035 + 0.552051i
\(508\) 1.20191i 0.0533263i
\(509\) 34.9666 20.1880i 1.54987 0.894817i 0.551717 0.834031i \(-0.313973\pi\)
0.998151 0.0607857i \(-0.0193606\pi\)
\(510\) 7.51240 7.46410i 0.332655 0.330516i
\(511\) −9.48302 + 16.4251i −0.419504 + 0.726602i
\(512\) 1.00000 0.0441942
\(513\) −1.06506 + 1.84474i −0.0470235 + 0.0814471i
\(514\) 24.3239 + 14.0434i 1.07288 + 0.619429i
\(515\) −4.66276 + 1.23328i −0.205466 + 0.0543449i
\(516\) 0.986944 1.70944i 0.0434478 0.0752538i
\(517\) −3.80279 + 2.19554i −0.167246 + 0.0965598i
\(518\) 2.65421 + 4.59723i 0.116619 + 0.201991i
\(519\) −4.69800 −0.206219
\(520\) −4.81512 + 6.46642i −0.211157 + 0.283571i
\(521\) −0.259356 −0.0113626 −0.00568129 0.999984i \(-0.501808\pi\)
−0.00568129 + 0.999984i \(0.501808\pi\)
\(522\) −2.38346 4.12828i −0.104321 0.180690i
\(523\) −33.4527 + 19.3139i −1.46278 + 0.844539i −0.999139 0.0414825i \(-0.986792\pi\)
−0.463645 + 0.886021i \(0.653459\pi\)
\(524\) 3.32575 5.76036i 0.145286 0.251642i
\(525\) −2.98193 5.24266i −0.130142 0.228808i
\(526\) 6.56756 + 3.79178i 0.286359 + 0.165330i
\(527\) −13.9960 + 24.2418i −0.609676 + 1.05599i
\(528\) −5.15206 −0.224215
\(529\) −9.13639 + 15.8247i −0.397234 + 0.688030i
\(530\) 7.06128 + 7.10697i 0.306723 + 0.308707i
\(531\) 1.68133 0.970715i 0.0729634 0.0421255i
\(532\) 2.56951i 0.111402i
\(533\) −15.8891 6.25498i −0.688232 0.270933i
\(534\) −16.3899 −0.709262
\(535\) −12.7564 12.8389i −0.551506 0.555074i
\(536\) 7.02765 + 12.1723i 0.303548 + 0.525761i
\(537\) −7.53292 4.34913i −0.325069 0.187679i
\(538\) 24.4709 1.05502
\(539\) 24.7403 + 14.2838i 1.06564 + 0.615249i
\(540\) 0.585699 2.15800i 0.0252045 0.0928655i
\(541\) 19.4443i 0.835975i −0.908453 0.417988i \(-0.862736\pi\)
0.908453 0.417988i \(-0.137264\pi\)
\(542\) −10.0199 5.78497i −0.430390 0.248486i
\(543\) 8.44791 4.87740i 0.362534 0.209309i
\(544\) 4.10150 2.36800i 0.175851 0.101527i
\(545\) 36.4984 9.65369i 1.56342 0.413518i
\(546\) −4.04699 1.59316i −0.173195 0.0681809i
\(547\) 25.2121i 1.07799i −0.842308 0.538997i \(-0.818803\pi\)
0.842308 0.538997i \(-0.181197\pi\)
\(548\) −7.35746 12.7435i −0.314295 0.544375i
\(549\) 1.53795 + 2.66381i 0.0656383 + 0.113689i
\(550\) 25.7598 + 0.166140i 1.09840 + 0.00708425i
\(551\) 10.1541i 0.432580i
\(552\) 1.08711 1.88293i 0.0462704 0.0801427i
\(553\) 8.19440 14.1931i 0.348462 0.603553i
\(554\) 12.9454i 0.549998i
\(555\) 2.57747 9.49666i 0.109408 0.403111i
\(556\) −7.82540 13.5540i −0.331871 0.574817i
\(557\) 5.63445 + 9.75916i 0.238739 + 0.413509i 0.960353 0.278787i \(-0.0899325\pi\)
−0.721613 + 0.692296i \(0.756599\pi\)
\(558\) 5.91046i 0.250210i
\(559\) 1.05345 + 7.03856i 0.0445560 + 0.297699i
\(560\) −0.689710 2.60764i −0.0291456 0.110193i
\(561\) −21.1312 + 12.2001i −0.892160 + 0.515089i
\(562\) −2.22730 + 1.28593i −0.0939531 + 0.0542439i
\(563\) −14.2495 8.22694i −0.600544 0.346724i 0.168712 0.985665i \(-0.446039\pi\)
−0.769256 + 0.638941i \(0.779373\pi\)
\(564\) 0.852296i 0.0358881i
\(565\) 2.89981 10.6843i 0.121996 0.449491i
\(566\) −4.80517 2.77427i −0.201976 0.116611i
\(567\) 1.20627 0.0506587
\(568\) −0.298707 0.172459i −0.0125335 0.00723621i
\(569\) 15.2444 + 26.4040i 0.639077 + 1.10691i 0.985636 + 0.168886i \(0.0540170\pi\)
−0.346558 + 0.938028i \(0.612650\pi\)
\(570\) 3.37886 3.35713i 0.141525 0.140615i
\(571\) 13.0909 0.547836 0.273918 0.961753i \(-0.411680\pi\)
0.273918 + 0.961753i \(0.411680\pi\)
\(572\) 14.5353 11.5669i 0.607751 0.483638i
\(573\) 11.5546i 0.482699i
\(574\) 4.94754 2.85646i 0.206506 0.119226i
\(575\) −5.49615 + 9.37939i −0.229205 + 0.391147i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 13.1315 0.546670 0.273335 0.961919i \(-0.411873\pi\)
0.273335 + 0.961919i \(0.411873\pi\)
\(578\) 2.71489 4.70233i 0.112925 0.195591i
\(579\) 9.06130 + 5.23154i 0.376575 + 0.217416i
\(580\) 2.72558 + 10.3048i 0.113174 + 0.427884i
\(581\) −6.15472 + 10.6603i −0.255341 + 0.442263i
\(582\) −7.34631 + 4.24139i −0.304514 + 0.175811i
\(583\) −11.5417 19.9908i −0.478009 0.827935i
\(584\) 15.7228 0.650615
\(585\) 3.19253 + 7.40323i 0.131995 + 0.306086i
\(586\) 24.1316 0.996866
\(587\) −3.03785 5.26171i −0.125386 0.217174i 0.796498 0.604641i \(-0.206683\pi\)
−0.921884 + 0.387467i \(0.873350\pi\)
\(588\) −4.80203 + 2.77245i −0.198032 + 0.114334i
\(589\) −6.29499 + 10.9032i −0.259381 + 0.449260i
\(590\) −4.19685 + 1.11005i −0.172782 + 0.0457000i
\(591\) −15.2329 8.79472i −0.626598 0.361767i
\(592\) 2.20034 3.81110i 0.0904334 0.156635i
\(593\) −18.3609 −0.753990 −0.376995 0.926215i \(-0.623043\pi\)
−0.376995 + 0.926215i \(0.623043\pi\)
\(594\) −2.57603 + 4.46182i −0.105696 + 0.183071i
\(595\) −9.00375 9.06201i −0.369118 0.371506i
\(596\) 19.7555 11.4058i 0.809215 0.467200i
\(597\) 25.5716i 1.04658i
\(598\) 1.16036 + 7.75290i 0.0474507 + 0.317040i
\(599\) 22.1098 0.903382 0.451691 0.892174i \(-0.350821\pi\)
0.451691 + 0.892174i \(0.350821\pi\)
\(600\) −2.52788 + 4.31391i −0.103200 + 0.176115i
\(601\) −5.90349 10.2251i −0.240808 0.417092i 0.720136 0.693832i \(-0.244079\pi\)
−0.960945 + 0.276740i \(0.910746\pi\)
\(602\) −2.06205 1.19052i −0.0840428 0.0485222i
\(603\) 14.0553 0.572376
\(604\) −17.2335 9.94975i −0.701220 0.404850i
\(605\) −33.5434 9.10397i −1.36373 0.370129i
\(606\) 13.5824i 0.551748i
\(607\) −22.3119 12.8818i −0.905612 0.522856i −0.0265955 0.999646i \(-0.508467\pi\)
−0.879017 + 0.476791i \(0.841800\pi\)
\(608\) 1.84474 1.06506i 0.0748139 0.0431938i
\(609\) −4.97984 + 2.87511i −0.201793 + 0.116505i
\(610\) −1.75871 6.64928i −0.0712080 0.269222i
\(611\) 1.91349 + 2.40455i 0.0774117 + 0.0972775i
\(612\) 4.73601i 0.191442i
\(613\) −6.54178 11.3307i −0.264220 0.457642i 0.703139 0.711052i \(-0.251781\pi\)
−0.967359 + 0.253410i \(0.918448\pi\)
\(614\) 15.1621 + 26.2616i 0.611894 + 1.05983i
\(615\) −10.2203 2.77388i −0.412122 0.111853i
\(616\) 6.21480i 0.250401i
\(617\) 2.20914 3.82634i 0.0889366 0.154043i −0.818125 0.575040i \(-0.804986\pi\)
0.907062 + 0.420997i \(0.138320\pi\)
\(618\) −1.07848 + 1.86798i −0.0433828 + 0.0751412i
\(619\) 1.12760i 0.0453220i 0.999743 + 0.0226610i \(0.00721383\pi\)
−0.999743 + 0.0226610i \(0.992786\pi\)
\(620\) 3.46175 12.7548i 0.139027 0.512244i
\(621\) −1.08711 1.88293i −0.0436242 0.0755593i
\(622\) −4.38203 7.58990i −0.175703 0.304327i
\(623\) 19.7708i 0.792099i
\(624\) 0.533691 + 3.56583i 0.0213647 + 0.142748i
\(625\) 12.7782 21.4876i 0.511129 0.859504i
\(626\) 25.1282 14.5077i 1.00432 0.579846i
\(627\) −9.50420 + 5.48725i −0.379561 + 0.219140i
\(628\) −4.10836 2.37196i −0.163941 0.0946515i
\(629\) 20.8417i 0.831011i
\(630\) −2.60314 0.706513i −0.103711 0.0281482i
\(631\) −14.3916 8.30898i −0.572920 0.330775i 0.185395 0.982664i \(-0.440644\pi\)
−0.758315 + 0.651889i \(0.773977\pi\)
\(632\) −13.5863 −0.540434
\(633\) −11.1888 6.45984i −0.444714 0.256756i
\(634\) −12.9985 22.5140i −0.516236 0.894147i
\(635\) 1.89426 + 1.90651i 0.0751712 + 0.0756576i
\(636\) 4.48042 0.177660
\(637\) 7.32331 18.6029i 0.290160 0.737072i
\(638\) 24.5595i 0.972320i
\(639\) −0.298707 + 0.172459i −0.0118167 + 0.00682236i
\(640\) −1.58623 + 1.57603i −0.0627012 + 0.0622981i
\(641\) 5.05184 8.75005i 0.199536 0.345606i −0.748842 0.662748i \(-0.769390\pi\)
0.948378 + 0.317142i \(0.102723\pi\)
\(642\) −8.09397 −0.319444
\(643\) 17.5208 30.3469i 0.690951 1.19676i −0.280575 0.959832i \(-0.590525\pi\)
0.971526 0.236931i \(-0.0761415\pi\)
\(644\) −2.27133 1.31135i −0.0895028 0.0516745i
\(645\) 1.12861 + 4.26701i 0.0444389 + 0.168014i
\(646\) 5.04413 8.73669i 0.198459 0.343740i
\(647\) 17.2864 9.98031i 0.679598 0.392366i −0.120105 0.992761i \(-0.538323\pi\)
0.799704 + 0.600395i \(0.204990\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 10.0024 0.392628
\(650\) −2.55341 17.8460i −0.100153 0.699978i
\(651\) 7.12964 0.279433
\(652\) 1.93329 + 3.34855i 0.0757133 + 0.131139i
\(653\) −4.51410 + 2.60621i −0.176650 + 0.101989i −0.585718 0.810515i \(-0.699187\pi\)
0.409068 + 0.912504i \(0.365854\pi\)
\(654\) 8.44195 14.6219i 0.330106 0.571761i
\(655\) 3.80312 + 14.3787i 0.148600 + 0.561824i
\(656\) −4.10150 2.36800i −0.160137 0.0924551i
\(657\) 7.86142 13.6164i 0.306703 0.531225i
\(658\) −1.02810 −0.0400796
\(659\) 3.66183 6.34248i 0.142645 0.247068i −0.785847 0.618421i \(-0.787773\pi\)
0.928492 + 0.371353i \(0.121106\pi\)
\(660\) 8.17235 8.11982i 0.318108 0.316063i
\(661\) −31.7189 + 18.3129i −1.23372 + 0.712289i −0.967803 0.251707i \(-0.919008\pi\)
−0.265917 + 0.963996i \(0.585675\pi\)
\(662\) 11.0392i 0.429052i
\(663\) 10.6328 + 13.3615i 0.412946 + 0.518918i
\(664\) 10.2045 0.396012
\(665\) −4.04962 4.07583i −0.157038 0.158054i
\(666\) −2.20034 3.81110i −0.0852614 0.147677i
\(667\) 8.97578 + 5.18217i 0.347543 + 0.200654i
\(668\) 22.7228 0.879173
\(669\) −6.19518 3.57679i −0.239519 0.138287i
\(670\) −30.3313 8.23218i −1.17180 0.318037i
\(671\) 15.8473i 0.611777i
\(672\) −1.04466 0.603137i −0.0402988 0.0232665i
\(673\) −29.4292 + 16.9909i −1.13441 + 0.654952i −0.945041 0.326953i \(-0.893978\pi\)
−0.189370 + 0.981906i \(0.560645\pi\)
\(674\) −15.3380 + 8.85540i −0.590798 + 0.341097i
\(675\) 2.47202 + 4.34616i 0.0951481 + 0.167284i
\(676\) −9.51136 8.86194i −0.365822 0.340844i
\(677\) 41.7902i 1.60613i 0.595894 + 0.803063i \(0.296798\pi\)
−0.595894 + 0.803063i \(0.703202\pi\)
\(678\) −2.47551 4.28771i −0.0950713 0.164668i
\(679\) 5.11628 + 8.86166i 0.196345 + 0.340079i
\(680\) −2.77388 + 10.2203i −0.106373 + 0.391931i
\(681\) 25.8385i 0.990132i
\(682\) −15.2255 + 26.3714i −0.583016 + 1.00981i
\(683\) −24.2071 + 41.9280i −0.926260 + 1.60433i −0.136737 + 0.990607i \(0.543662\pi\)
−0.789523 + 0.613721i \(0.789672\pi\)
\(684\) 2.13012i 0.0814471i
\(685\) 31.7548 + 8.61851i 1.21329 + 0.329296i
\(686\) 7.56629 + 13.1052i 0.288882 + 0.500359i
\(687\) 4.47576 + 7.75225i 0.170761 + 0.295767i
\(688\) 1.97389i 0.0752538i
\(689\) −12.6404 + 10.0590i −0.481562 + 0.383218i
\(690\) 1.24315 + 4.70007i 0.0473259 + 0.178929i
\(691\) −23.8905 + 13.7932i −0.908837 + 0.524717i −0.880057 0.474868i \(-0.842496\pi\)
−0.0287804 + 0.999586i \(0.509162\pi\)
\(692\) 4.06859 2.34900i 0.154664 0.0892955i
\(693\) 5.38217 + 3.10740i 0.204452 + 0.118040i
\(694\) 34.7017i 1.31726i
\(695\) 33.7744 + 9.16666i 1.28114 + 0.347711i
\(696\) 4.12828 + 2.38346i 0.156482 + 0.0903449i
\(697\) −22.4298 −0.849589
\(698\) 30.4563 + 17.5840i 1.15279 + 0.665563i
\(699\) −1.93329 3.34855i −0.0731236 0.126654i
\(700\) 5.20376 + 3.04931i 0.196684 + 0.115253i
\(701\) −19.7883 −0.747392 −0.373696 0.927551i \(-0.621910\pi\)
−0.373696 + 0.927551i \(0.621910\pi\)
\(702\) 3.35495 + 1.32073i 0.126624 + 0.0498476i
\(703\) 9.37396i 0.353546i
\(704\) 4.46182 2.57603i 0.168161 0.0970879i
\(705\) 1.34324 + 1.35194i 0.0505895 + 0.0509169i
\(706\) −5.54542 + 9.60495i −0.208705 + 0.361487i
\(707\) −16.3841 −0.616189
\(708\) −0.970715 + 1.68133i −0.0364817 + 0.0631882i
\(709\) −6.09389 3.51831i −0.228861 0.132133i 0.381186 0.924499i \(-0.375516\pi\)
−0.610046 + 0.792366i \(0.708849\pi\)
\(710\) 0.745619 0.197213i 0.0279826 0.00740128i
\(711\) −6.79315 + 11.7661i −0.254763 + 0.441263i
\(712\) 14.1941 8.19497i 0.531946 0.307119i
\(713\) −6.42532 11.1290i −0.240630 0.416783i
\(714\) −5.71292 −0.213801
\(715\) −4.82646 + 41.2559i −0.180499 + 1.54288i
\(716\) 8.69827 0.325069
\(717\) −7.70884 13.3521i −0.287892 0.498643i
\(718\) −22.6531 + 13.0788i −0.845405 + 0.488095i
\(719\) −5.52118 + 9.56296i −0.205905 + 0.356638i −0.950421 0.310967i \(-0.899347\pi\)
0.744516 + 0.667605i \(0.232681\pi\)
\(720\) 0.571769 + 2.16173i 0.0213086 + 0.0805630i
\(721\) 2.25330 + 1.30094i 0.0839171 + 0.0484496i
\(722\) −7.23130 + 12.5250i −0.269121 + 0.466131i
\(723\) 11.2768 0.419390
\(724\) −4.87740 + 8.44791i −0.181267 + 0.313964i
\(725\) −20.5641 12.0502i −0.763732 0.447533i
\(726\) −13.4613 + 7.77188i −0.499595 + 0.288442i
\(727\) 14.1056i 0.523147i −0.965184 0.261573i \(-0.915759\pi\)
0.965184 0.261573i \(-0.0842414\pi\)
\(728\) 4.30137 0.643777i 0.159419 0.0238600i
\(729\) −1.00000 −0.0370370
\(730\) −24.9400 + 24.7797i −0.923071 + 0.917137i
\(731\) 4.67418 + 8.09591i 0.172881 + 0.299438i
\(732\) −2.66381 1.53795i −0.0984574 0.0568444i
\(733\) 11.3855 0.420535 0.210267 0.977644i \(-0.432567\pi\)
0.210267 + 0.977644i \(0.432567\pi\)
\(734\) −13.4988 7.79352i −0.498249 0.287664i
\(735\) 3.24764 11.9659i 0.119791 0.441369i
\(736\) 2.17422i 0.0801427i
\(737\) 62.7122 + 36.2069i 2.31003 + 1.33370i
\(738\) −4.10150 + 2.36800i −0.150978 + 0.0871675i
\(739\) −7.93251 + 4.57983i −0.291802 + 0.168472i −0.638754 0.769411i \(-0.720550\pi\)
0.346952 + 0.937883i \(0.387217\pi\)
\(740\) 2.51617 + 9.51308i 0.0924963 + 0.349708i
\(741\) 4.78234 + 6.00961i 0.175684 + 0.220769i
\(742\) 5.40461i 0.198410i
\(743\) −19.9566 34.5658i −0.732135 1.26809i −0.955969 0.293468i \(-0.905191\pi\)
0.223834 0.974627i \(-0.428143\pi\)
\(744\) −2.95523 5.11861i −0.108344 0.187657i
\(745\) −13.3607 + 49.2275i −0.489500 + 1.80355i
\(746\) 0.993455i 0.0363730i
\(747\) 5.10226 8.83737i 0.186682 0.323342i
\(748\) 12.2001 21.1312i 0.446080 0.772634i
\(749\) 9.76355i 0.356752i
\(750\) −2.78907 10.8269i −0.101843 0.395341i
\(751\) 8.79993 + 15.2419i 0.321114 + 0.556186i 0.980718 0.195427i \(-0.0626094\pi\)
−0.659604 + 0.751613i \(0.729276\pi\)
\(752\) 0.426148 + 0.738110i 0.0155400 + 0.0269161i
\(753\) 12.3066i 0.448476i
\(754\) −16.9981 + 2.54407i −0.619033 + 0.0926494i
\(755\) 43.0174 11.3779i 1.56556 0.414085i
\(756\) −1.04466 + 0.603137i −0.0379941 + 0.0219359i
\(757\) −19.1099 + 11.0331i −0.694560 + 0.401004i −0.805318 0.592843i \(-0.798005\pi\)
0.110758 + 0.993847i \(0.464672\pi\)
\(758\) −23.7856 13.7326i −0.863932 0.498791i
\(759\) 11.2017i 0.406596i
\(760\) −1.24761 + 4.59679i −0.0452555 + 0.166743i
\(761\) −17.4454 10.0721i −0.632394 0.365113i 0.149285 0.988794i \(-0.452303\pi\)
−0.781678 + 0.623682i \(0.785636\pi\)
\(762\) 1.20191 0.0435408
\(763\) −17.6380 10.1833i −0.638538 0.368660i
\(764\) −5.77729 10.0066i −0.209015 0.362025i
\(765\) 7.46410 + 7.51240i 0.269865 + 0.271611i
\(766\) 32.5703 1.17681
\(767\) −1.03612 6.92282i −0.0374123 0.249969i
\(768\) 1.00000i 0.0360844i
\(769\) 26.9356 15.5513i 0.971323 0.560794i 0.0716840 0.997427i \(-0.477163\pi\)
0.899639 + 0.436634i \(0.143829\pi\)
\(770\) −9.79472 9.85810i −0.352977 0.355261i
\(771\) −14.0434 + 24.3239i −0.505761 + 0.876004i
\(772\) −10.4631 −0.376575