Properties

Label 390.2.x.a.49.3
Level $390$
Weight $2$
Character 390.49
Analytic conductor $3.114$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,2,Mod(49,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.x (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + \cdots + 2197 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.3
Root \(2.00607 - 1.30680i\) of defining polynomial
Character \(\chi\) \(=\) 390.49
Dual form 390.2.x.a.199.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.26873 - 1.84128i) q^{5} +(0.866025 + 0.500000i) q^{6} +(-2.17283 + 3.76344i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.26873 - 1.84128i) q^{5} +(0.866025 + 0.500000i) q^{6} +(-2.17283 + 3.76344i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +(-2.22896 - 0.178114i) q^{10} +(-2.04055 + 1.17811i) q^{11} -1.00000i q^{12} +(-3.18419 + 1.69144i) q^{13} +4.34565 q^{14} +(-0.178114 + 2.22896i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.60564 + 1.50437i) q^{17} -1.00000 q^{18} +(0.585872 + 0.338254i) q^{19} +(0.960230 + 2.01940i) q^{20} -4.34565i q^{21} +(2.04055 + 1.17811i) q^{22} +(-5.58405 + 3.22396i) q^{23} +(-0.866025 + 0.500000i) q^{24} +(-1.78064 - 4.67219i) q^{25} +(3.05692 + 1.91187i) q^{26} +1.00000i q^{27} +(-2.17283 - 3.76344i) q^{28} +(4.82620 + 8.35922i) q^{29} +(2.01940 - 0.960230i) q^{30} +7.11493i q^{31} +(-0.500000 + 0.866025i) q^{32} +(1.17811 - 2.04055i) q^{33} -3.00874i q^{34} +(4.17283 + 8.77559i) q^{35} +(0.500000 + 0.866025i) q^{36} +(3.74165 + 6.48073i) q^{37} -0.676507i q^{38} +(1.91187 - 3.05692i) q^{39} +(1.26873 - 1.84128i) q^{40} +(-2.60564 + 1.50437i) q^{41} +(-3.76344 + 2.17283i) q^{42} +(-5.91710 - 3.41624i) q^{43} -2.35623i q^{44} +(-0.960230 - 2.01940i) q^{45} +(5.58405 + 3.22396i) q^{46} +5.61529 q^{47} +(0.866025 + 0.500000i) q^{48} +(-5.94234 - 10.2924i) q^{49} +(-3.15592 + 3.87817i) q^{50} -3.00874 q^{51} +(0.127265 - 3.60330i) q^{52} -9.43400i q^{53} +(0.866025 - 0.500000i) q^{54} +(-0.419677 + 5.25194i) q^{55} +(-2.17283 + 3.76344i) q^{56} -0.676507 q^{57} +(4.82620 - 8.35922i) q^{58} +(-4.56364 - 2.63482i) q^{59} +(-1.84128 - 1.26873i) q^{60} +(2.15646 - 3.73509i) q^{61} +(6.16171 - 3.55746i) q^{62} +(2.17283 + 3.76344i) q^{63} +1.00000 q^{64} +(-0.925468 + 8.00896i) q^{65} -2.35623 q^{66} +(-2.91329 - 5.04596i) q^{67} +(-2.60564 + 1.50437i) q^{68} +(3.22396 - 5.58405i) q^{69} +(5.51347 - 8.00157i) q^{70} +(2.52520 + 1.45793i) q^{71} +(0.500000 - 0.866025i) q^{72} -7.67804 q^{73} +(3.74165 - 6.48073i) q^{74} +(3.87817 + 3.15592i) q^{75} +(-0.585872 + 0.338254i) q^{76} -10.2393i q^{77} +(-3.60330 - 0.127265i) q^{78} -3.74519 q^{79} +(-2.22896 - 0.178114i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(2.60564 + 1.50437i) q^{82} +10.3557 q^{83} +(3.76344 + 2.17283i) q^{84} +(6.07583 - 2.88908i) q^{85} +6.83247i q^{86} +(-8.35922 - 4.82620i) q^{87} +(-2.04055 + 1.17811i) q^{88} +(4.15208 - 2.39720i) q^{89} +(-1.26873 + 1.84128i) q^{90} +(0.553049 - 15.6587i) q^{91} -6.44791i q^{92} +(-3.55746 - 6.16171i) q^{93} +(-2.80764 - 4.86298i) q^{94} +(1.36614 - 0.649603i) q^{95} -1.00000i q^{96} +(-8.17066 + 14.1520i) q^{97} +(-5.94234 + 10.2924i) q^{98} +2.35623i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9} - 2 q^{10} + 6 q^{11} - 8 q^{13} + 4 q^{14} + 6 q^{15} - 6 q^{16} + 18 q^{17} - 12 q^{18} - 6 q^{19} + 4 q^{20} - 6 q^{22} + 6 q^{23} - 10 q^{25} - 2 q^{26} - 2 q^{28} + 14 q^{29} - 6 q^{30} - 6 q^{32} + 6 q^{33} + 26 q^{35} + 6 q^{36} - 12 q^{37} - 2 q^{39} - 2 q^{40} - 18 q^{41} - 12 q^{42} - 36 q^{43} - 4 q^{45} - 6 q^{46} + 16 q^{47} + 8 q^{49} - 10 q^{50} + 16 q^{51} + 10 q^{52} - 28 q^{55} - 2 q^{56} - 8 q^{57} + 14 q^{58} - 36 q^{59} + 10 q^{61} + 6 q^{62} + 2 q^{63} + 12 q^{64} + 6 q^{65} - 12 q^{66} + 4 q^{67} - 18 q^{68} + 16 q^{69} - 4 q^{70} - 12 q^{71} + 6 q^{72} + 28 q^{73} - 12 q^{74} - 8 q^{75} + 6 q^{76} - 2 q^{78} + 4 q^{79} - 2 q^{80} - 6 q^{81} + 18 q^{82} + 72 q^{83} + 12 q^{84} + 18 q^{85} + 6 q^{87} + 6 q^{88} + 18 q^{89} + 2 q^{90} + 2 q^{91} - 16 q^{93} - 8 q^{94} - 42 q^{95} - 48 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.26873 1.84128i 0.567394 0.823446i
\(6\) 0.866025 + 0.500000i 0.353553 + 0.204124i
\(7\) −2.17283 + 3.76344i −0.821251 + 1.42245i 0.0835003 + 0.996508i \(0.473390\pi\)
−0.904751 + 0.425940i \(0.859943\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −2.22896 0.178114i −0.704860 0.0563246i
\(11\) −2.04055 + 1.17811i −0.615250 + 0.355215i −0.775017 0.631940i \(-0.782259\pi\)
0.159767 + 0.987155i \(0.448926\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −3.18419 + 1.69144i −0.883134 + 0.469120i
\(14\) 4.34565 1.16142
\(15\) −0.178114 + 2.22896i −0.0459888 + 0.575516i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.60564 + 1.50437i 0.631962 + 0.364863i 0.781511 0.623891i \(-0.214449\pi\)
−0.149550 + 0.988754i \(0.547782\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0.585872 + 0.338254i 0.134408 + 0.0776007i 0.565696 0.824614i \(-0.308607\pi\)
−0.431288 + 0.902214i \(0.641941\pi\)
\(20\) 0.960230 + 2.01940i 0.214714 + 0.451551i
\(21\) 4.34565i 0.948299i
\(22\) 2.04055 + 1.17811i 0.435047 + 0.251175i
\(23\) −5.58405 + 3.22396i −1.16436 + 0.672241i −0.952344 0.305026i \(-0.901335\pi\)
−0.212012 + 0.977267i \(0.568002\pi\)
\(24\) −0.866025 + 0.500000i −0.176777 + 0.102062i
\(25\) −1.78064 4.67219i −0.356127 0.934438i
\(26\) 3.05692 + 1.91187i 0.599511 + 0.374948i
\(27\) 1.00000i 0.192450i
\(28\) −2.17283 3.76344i −0.410625 0.711224i
\(29\) 4.82620 + 8.35922i 0.896202 + 1.55227i 0.832310 + 0.554311i \(0.187018\pi\)
0.0638921 + 0.997957i \(0.479649\pi\)
\(30\) 2.01940 0.960230i 0.368689 0.175313i
\(31\) 7.11493i 1.27788i 0.769257 + 0.638939i \(0.220626\pi\)
−0.769257 + 0.638939i \(0.779374\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 1.17811 2.04055i 0.205083 0.355215i
\(34\) 3.00874i 0.515995i
\(35\) 4.17283 + 8.77559i 0.705336 + 1.48335i
\(36\) 0.500000 + 0.866025i 0.0833333 + 0.144338i
\(37\) 3.74165 + 6.48073i 0.615123 + 1.06542i 0.990363 + 0.138497i \(0.0442271\pi\)
−0.375240 + 0.926928i \(0.622440\pi\)
\(38\) 0.676507i 0.109744i
\(39\) 1.91187 3.05692i 0.306144 0.489499i
\(40\) 1.26873 1.84128i 0.200604 0.291132i
\(41\) −2.60564 + 1.50437i −0.406933 + 0.234943i −0.689471 0.724313i \(-0.742157\pi\)
0.282538 + 0.959256i \(0.408824\pi\)
\(42\) −3.76344 + 2.17283i −0.580712 + 0.335274i
\(43\) −5.91710 3.41624i −0.902349 0.520971i −0.0243872 0.999703i \(-0.507763\pi\)
−0.877961 + 0.478731i \(0.841097\pi\)
\(44\) 2.35623i 0.355215i
\(45\) −0.960230 2.01940i −0.143143 0.301034i
\(46\) 5.58405 + 3.22396i 0.823324 + 0.475346i
\(47\) 5.61529 0.819074 0.409537 0.912294i \(-0.365690\pi\)
0.409537 + 0.912294i \(0.365690\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) −5.94234 10.2924i −0.848906 1.47035i
\(50\) −3.15592 + 3.87817i −0.446314 + 0.548456i
\(51\) −3.00874 −0.421308
\(52\) 0.127265 3.60330i 0.0176485 0.499688i
\(53\) 9.43400i 1.29586i −0.761700 0.647930i \(-0.775635\pi\)
0.761700 0.647930i \(-0.224365\pi\)
\(54\) 0.866025 0.500000i 0.117851 0.0680414i
\(55\) −0.419677 + 5.25194i −0.0565892 + 0.708172i
\(56\) −2.17283 + 3.76344i −0.290356 + 0.502911i
\(57\) −0.676507 −0.0896056
\(58\) 4.82620 8.35922i 0.633711 1.09762i
\(59\) −4.56364 2.63482i −0.594135 0.343024i 0.172596 0.984993i \(-0.444785\pi\)
−0.766731 + 0.641969i \(0.778118\pi\)
\(60\) −1.84128 1.26873i −0.237708 0.163793i
\(61\) 2.15646 3.73509i 0.276106 0.478230i −0.694307 0.719679i \(-0.744289\pi\)
0.970414 + 0.241449i \(0.0776225\pi\)
\(62\) 6.16171 3.55746i 0.782538 0.451798i
\(63\) 2.17283 + 3.76344i 0.273750 + 0.474149i
\(64\) 1.00000 0.125000
\(65\) −0.925468 + 8.00896i −0.114790 + 0.993390i
\(66\) −2.35623 −0.290032
\(67\) −2.91329 5.04596i −0.355915 0.616463i 0.631359 0.775490i \(-0.282497\pi\)
−0.987274 + 0.159028i \(0.949164\pi\)
\(68\) −2.60564 + 1.50437i −0.315981 + 0.182432i
\(69\) 3.22396 5.58405i 0.388119 0.672241i
\(70\) 5.51347 8.00157i 0.658986 0.956370i
\(71\) 2.52520 + 1.45793i 0.299686 + 0.173024i 0.642302 0.766452i \(-0.277980\pi\)
−0.342616 + 0.939476i \(0.611313\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) −7.67804 −0.898647 −0.449323 0.893369i \(-0.648335\pi\)
−0.449323 + 0.893369i \(0.648335\pi\)
\(74\) 3.74165 6.48073i 0.434958 0.753369i
\(75\) 3.87817 + 3.15592i 0.447812 + 0.364414i
\(76\) −0.585872 + 0.338254i −0.0672042 + 0.0388004i
\(77\) 10.2393i 1.16688i
\(78\) −3.60330 0.127265i −0.407994 0.0144099i
\(79\) −3.74519 −0.421367 −0.210683 0.977554i \(-0.567569\pi\)
−0.210683 + 0.977554i \(0.567569\pi\)
\(80\) −2.22896 0.178114i −0.249206 0.0199137i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.60564 + 1.50437i 0.287745 + 0.166130i
\(83\) 10.3557 1.13668 0.568341 0.822793i \(-0.307585\pi\)
0.568341 + 0.822793i \(0.307585\pi\)
\(84\) 3.76344 + 2.17283i 0.410625 + 0.237075i
\(85\) 6.07583 2.88908i 0.659017 0.313365i
\(86\) 6.83247i 0.736765i
\(87\) −8.35922 4.82620i −0.896202 0.517422i
\(88\) −2.04055 + 1.17811i −0.217524 + 0.125587i
\(89\) 4.15208 2.39720i 0.440119 0.254103i −0.263529 0.964651i \(-0.584886\pi\)
0.703648 + 0.710549i \(0.251553\pi\)
\(90\) −1.26873 + 1.84128i −0.133736 + 0.194088i
\(91\) 0.553049 15.6587i 0.0579753 1.64148i
\(92\) 6.44791i 0.672241i
\(93\) −3.55746 6.16171i −0.368892 0.638939i
\(94\) −2.80764 4.86298i −0.289586 0.501578i
\(95\) 1.36614 0.649603i 0.140163 0.0666478i
\(96\) 1.00000i 0.102062i
\(97\) −8.17066 + 14.1520i −0.829605 + 1.43692i 0.0687436 + 0.997634i \(0.478101\pi\)
−0.898349 + 0.439283i \(0.855232\pi\)
\(98\) −5.94234 + 10.2924i −0.600267 + 1.03969i
\(99\) 2.35623i 0.236810i
\(100\) 4.93655 + 0.794019i 0.493655 + 0.0794019i
\(101\) −6.11911 10.5986i −0.608875 1.05460i −0.991426 0.130668i \(-0.958288\pi\)
0.382552 0.923934i \(-0.375045\pi\)
\(102\) 1.50437 + 2.60564i 0.148955 + 0.257997i
\(103\) 3.75144i 0.369640i −0.982772 0.184820i \(-0.940830\pi\)
0.982772 0.184820i \(-0.0591702\pi\)
\(104\) −3.18419 + 1.69144i −0.312235 + 0.165859i
\(105\) −8.00157 5.51347i −0.780873 0.538060i
\(106\) −8.17008 + 4.71700i −0.793549 + 0.458156i
\(107\) 14.3904 8.30831i 1.39117 0.803194i 0.397728 0.917503i \(-0.369799\pi\)
0.993445 + 0.114309i \(0.0364654\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) 11.1116i 1.06430i 0.846652 + 0.532148i \(0.178615\pi\)
−0.846652 + 0.532148i \(0.821385\pi\)
\(110\) 4.75816 2.26252i 0.453672 0.215723i
\(111\) −6.48073 3.74165i −0.615123 0.355142i
\(112\) 4.34565 0.410625
\(113\) −13.5620 7.83002i −1.27581 0.736587i −0.299731 0.954024i \(-0.596897\pi\)
−0.976074 + 0.217437i \(0.930230\pi\)
\(114\) 0.338254 + 0.585872i 0.0316804 + 0.0548720i
\(115\) −1.14846 + 14.3722i −0.107095 + 1.34021i
\(116\) −9.65239 −0.896202
\(117\) −0.127265 + 3.60330i −0.0117657 + 0.333126i
\(118\) 5.26964i 0.485109i
\(119\) −11.3232 + 6.53747i −1.03800 + 0.599288i
\(120\) −0.178114 + 2.22896i −0.0162595 + 0.203476i
\(121\) −2.72410 + 4.71827i −0.247645 + 0.428934i
\(122\) −4.31292 −0.390473
\(123\) 1.50437 2.60564i 0.135644 0.234943i
\(124\) −6.16171 3.55746i −0.553338 0.319470i
\(125\) −10.8620 2.64911i −0.971523 0.236943i
\(126\) 2.17283 3.76344i 0.193571 0.335274i
\(127\) 11.7820 6.80236i 1.04549 0.603611i 0.124103 0.992269i \(-0.460395\pi\)
0.921382 + 0.388658i \(0.127061\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 6.83247 0.601566
\(130\) 7.39870 3.20300i 0.648909 0.280922i
\(131\) 10.2122 0.892246 0.446123 0.894972i \(-0.352804\pi\)
0.446123 + 0.894972i \(0.352804\pi\)
\(132\) 1.17811 + 2.04055i 0.102542 + 0.177607i
\(133\) −2.54600 + 1.46993i −0.220766 + 0.127459i
\(134\) −2.91329 + 5.04596i −0.251670 + 0.435905i
\(135\) 1.84128 + 1.26873i 0.158472 + 0.109195i
\(136\) 2.60564 + 1.50437i 0.223432 + 0.128999i
\(137\) −6.20689 + 10.7506i −0.530290 + 0.918489i 0.469085 + 0.883153i \(0.344584\pi\)
−0.999375 + 0.0353365i \(0.988750\pi\)
\(138\) −6.44791 −0.548883
\(139\) −7.80915 + 13.5258i −0.662363 + 1.14725i 0.317630 + 0.948215i \(0.397113\pi\)
−0.979993 + 0.199032i \(0.936220\pi\)
\(140\) −9.68629 0.774021i −0.818641 0.0654167i
\(141\) −4.86298 + 2.80764i −0.409537 + 0.236446i
\(142\) 2.91585i 0.244693i
\(143\) 4.50479 7.20280i 0.376710 0.602329i
\(144\) −1.00000 −0.0833333
\(145\) 21.5148 + 1.71923i 1.78671 + 0.142774i
\(146\) 3.83902 + 6.64938i 0.317720 + 0.550307i
\(147\) 10.2924 + 5.94234i 0.848906 + 0.490116i
\(148\) −7.48330 −0.615123
\(149\) 16.9104 + 9.76324i 1.38536 + 0.799836i 0.992788 0.119886i \(-0.0382530\pi\)
0.392569 + 0.919722i \(0.371586\pi\)
\(150\) 0.794019 4.93655i 0.0648314 0.403068i
\(151\) 11.5027i 0.936079i −0.883707 0.468040i \(-0.844960\pi\)
0.883707 0.468040i \(-0.155040\pi\)
\(152\) 0.585872 + 0.338254i 0.0475205 + 0.0274360i
\(153\) 2.60564 1.50437i 0.210654 0.121621i
\(154\) −8.86753 + 5.11967i −0.714566 + 0.412555i
\(155\) 13.1006 + 9.02694i 1.05226 + 0.725061i
\(156\) 1.69144 + 3.18419i 0.135423 + 0.254939i
\(157\) 4.47595i 0.357220i −0.983920 0.178610i \(-0.942840\pi\)
0.983920 0.178610i \(-0.0571600\pi\)
\(158\) 1.87260 + 3.24343i 0.148976 + 0.258033i
\(159\) 4.71700 + 8.17008i 0.374082 + 0.647930i
\(160\) 0.960230 + 2.01940i 0.0759129 + 0.159647i
\(161\) 28.0204i 2.20831i
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) 3.87774 6.71645i 0.303728 0.526073i −0.673249 0.739416i \(-0.735102\pi\)
0.976977 + 0.213343i \(0.0684352\pi\)
\(164\) 3.00874i 0.234943i
\(165\) −2.26252 4.75816i −0.176137 0.370422i
\(166\) −5.17783 8.96827i −0.401878 0.696073i
\(167\) 0.339021 + 0.587202i 0.0262342 + 0.0454390i 0.878844 0.477108i \(-0.158315\pi\)
−0.852610 + 0.522547i \(0.824982\pi\)
\(168\) 4.34565i 0.335274i
\(169\) 7.27808 10.7717i 0.559852 0.828593i
\(170\) −5.53994 3.81729i −0.424894 0.292772i
\(171\) 0.585872 0.338254i 0.0448028 0.0258669i
\(172\) 5.91710 3.41624i 0.451174 0.260486i
\(173\) 0.625226 + 0.360974i 0.0475350 + 0.0274444i 0.523579 0.851977i \(-0.324596\pi\)
−0.476044 + 0.879421i \(0.657930\pi\)
\(174\) 9.65239i 0.731746i
\(175\) 21.4525 + 3.45053i 1.62166 + 0.260835i
\(176\) 2.04055 + 1.17811i 0.153812 + 0.0888037i
\(177\) 5.26964 0.396090
\(178\) −4.15208 2.39720i −0.311211 0.179678i
\(179\) 3.18673 + 5.51958i 0.238187 + 0.412553i 0.960194 0.279333i \(-0.0901134\pi\)
−0.722007 + 0.691886i \(0.756780\pi\)
\(180\) 2.22896 + 0.178114i 0.166137 + 0.0132758i
\(181\) 22.0214 1.63683 0.818417 0.574624i \(-0.194852\pi\)
0.818417 + 0.574624i \(0.194852\pi\)
\(182\) −13.8374 + 7.35040i −1.02569 + 0.544848i
\(183\) 4.31292i 0.318820i
\(184\) −5.58405 + 3.22396i −0.411662 + 0.237673i
\(185\) 16.6800 + 1.33288i 1.22634 + 0.0979953i
\(186\) −3.55746 + 6.16171i −0.260846 + 0.451798i
\(187\) −7.08928 −0.518419
\(188\) −2.80764 + 4.86298i −0.204768 + 0.354669i
\(189\) −3.76344 2.17283i −0.273750 0.158050i
\(190\) −1.24564 0.858307i −0.0903682 0.0622681i
\(191\) −0.293441 + 0.508255i −0.0212326 + 0.0367760i −0.876446 0.481499i \(-0.840092\pi\)
0.855214 + 0.518275i \(0.173426\pi\)
\(192\) −0.866025 + 0.500000i −0.0625000 + 0.0360844i
\(193\) 11.3135 + 19.5955i 0.814363 + 1.41052i 0.909784 + 0.415081i \(0.136247\pi\)
−0.0954215 + 0.995437i \(0.530420\pi\)
\(194\) 16.3413 1.17324
\(195\) −3.20300 7.39870i −0.229372 0.529832i
\(196\) 11.8847 0.848906
\(197\) −0.823770 1.42681i −0.0586912 0.101656i 0.835187 0.549966i \(-0.185359\pi\)
−0.893878 + 0.448310i \(0.852026\pi\)
\(198\) 2.04055 1.17811i 0.145016 0.0837249i
\(199\) −5.13665 + 8.89694i −0.364127 + 0.630687i −0.988636 0.150331i \(-0.951966\pi\)
0.624508 + 0.781018i \(0.285299\pi\)
\(200\) −1.78064 4.67219i −0.125910 0.330374i
\(201\) 5.04596 + 2.91329i 0.355915 + 0.205488i
\(202\) −6.11911 + 10.5986i −0.430539 + 0.745716i
\(203\) −41.9459 −2.94403
\(204\) 1.50437 2.60564i 0.105327 0.182432i
\(205\) −0.535898 + 6.70637i −0.0374288 + 0.468393i
\(206\) −3.24884 + 1.87572i −0.226357 + 0.130688i
\(207\) 6.44791i 0.448161i
\(208\) 3.05692 + 1.91187i 0.211959 + 0.132564i
\(209\) −1.59401 −0.110260
\(210\) −0.774021 + 9.68629i −0.0534125 + 0.668418i
\(211\) 12.1905 + 21.1145i 0.839226 + 1.45358i 0.890543 + 0.454900i \(0.150325\pi\)
−0.0513166 + 0.998682i \(0.516342\pi\)
\(212\) 8.17008 + 4.71700i 0.561124 + 0.323965i
\(213\) −2.91585 −0.199791
\(214\) −14.3904 8.30831i −0.983708 0.567944i
\(215\) −13.7975 + 6.56075i −0.940979 + 0.447439i
\(216\) 1.00000i 0.0680414i
\(217\) −26.7766 15.4595i −1.81772 1.04946i
\(218\) 9.62290 5.55578i 0.651745 0.376285i
\(219\) 6.64938 3.83902i 0.449323 0.259417i
\(220\) −4.33848 2.98942i −0.292500 0.201547i
\(221\) −10.8414 0.382907i −0.729272 0.0257571i
\(222\) 7.48330i 0.502246i
\(223\) 2.31792 + 4.01476i 0.155220 + 0.268848i 0.933139 0.359516i \(-0.117058\pi\)
−0.777919 + 0.628364i \(0.783725\pi\)
\(224\) −2.17283 3.76344i −0.145178 0.251456i
\(225\) −4.93655 0.794019i −0.329103 0.0529346i
\(226\) 15.6600i 1.04169i
\(227\) −8.89213 + 15.4016i −0.590192 + 1.02224i 0.404015 + 0.914753i \(0.367615\pi\)
−0.994206 + 0.107489i \(0.965719\pi\)
\(228\) 0.338254 0.585872i 0.0224014 0.0388004i
\(229\) 15.3361i 1.01344i 0.862111 + 0.506720i \(0.169142\pi\)
−0.862111 + 0.506720i \(0.830858\pi\)
\(230\) 13.0209 6.19148i 0.858572 0.408254i
\(231\) 5.11967 + 8.86753i 0.336850 + 0.583441i
\(232\) 4.82620 + 8.35922i 0.316855 + 0.548809i
\(233\) 7.75548i 0.508079i 0.967194 + 0.254039i \(0.0817593\pi\)
−0.967194 + 0.254039i \(0.918241\pi\)
\(234\) 3.18419 1.69144i 0.208157 0.110573i
\(235\) 7.12430 10.3393i 0.464738 0.674463i
\(236\) 4.56364 2.63482i 0.297068 0.171512i
\(237\) 3.24343 1.87260i 0.210683 0.121638i
\(238\) 11.3232 + 6.53747i 0.733975 + 0.423761i
\(239\) 18.6409i 1.20578i −0.797824 0.602890i \(-0.794016\pi\)
0.797824 0.602890i \(-0.205984\pi\)
\(240\) 2.01940 0.960230i 0.130351 0.0619826i
\(241\) −2.65884 1.53508i −0.171271 0.0988833i 0.411914 0.911223i \(-0.364860\pi\)
−0.583185 + 0.812339i \(0.698194\pi\)
\(242\) 5.44819 0.350223
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 2.15646 + 3.73509i 0.138053 + 0.239115i
\(245\) −26.4905 2.11683i −1.69242 0.135239i
\(246\) −3.00874 −0.191830
\(247\) −2.43766 0.0860957i −0.155105 0.00547814i
\(248\) 7.11493i 0.451798i
\(249\) −8.96827 + 5.17783i −0.568341 + 0.328132i
\(250\) 3.13679 + 10.7313i 0.198388 + 0.678706i
\(251\) −3.56404 + 6.17309i −0.224960 + 0.389642i −0.956307 0.292363i \(-0.905558\pi\)
0.731347 + 0.682005i \(0.238892\pi\)
\(252\) −4.34565 −0.273750
\(253\) 7.59637 13.1573i 0.477580 0.827193i
\(254\) −11.7820 6.80236i −0.739270 0.426818i
\(255\) −3.81729 + 5.53994i −0.239048 + 0.346924i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 12.3353 7.12178i 0.769454 0.444244i −0.0632261 0.997999i \(-0.520139\pi\)
0.832680 + 0.553755i \(0.186806\pi\)
\(258\) −3.41624 5.91710i −0.212686 0.368382i
\(259\) −32.5198 −2.02068
\(260\) −6.47323 4.80596i −0.401453 0.298053i
\(261\) 9.65239 0.597468
\(262\) −5.10611 8.84404i −0.315457 0.546387i
\(263\) 13.3385 7.70101i 0.822490 0.474865i −0.0287845 0.999586i \(-0.509164\pi\)
0.851274 + 0.524721i \(0.175830\pi\)
\(264\) 1.17811 2.04055i 0.0725079 0.125587i
\(265\) −17.3707 11.9692i −1.06707 0.735264i
\(266\) 2.54600 + 1.46993i 0.156105 + 0.0901273i
\(267\) −2.39720 + 4.15208i −0.146706 + 0.254103i
\(268\) 5.82658 0.355915
\(269\) 13.3134 23.0595i 0.811732 1.40596i −0.0999185 0.994996i \(-0.531858\pi\)
0.911651 0.410966i \(-0.134808\pi\)
\(270\) 0.178114 2.22896i 0.0108397 0.135650i
\(271\) −6.66899 + 3.85034i −0.405112 + 0.233892i −0.688687 0.725058i \(-0.741813\pi\)
0.283575 + 0.958950i \(0.408479\pi\)
\(272\) 3.00874i 0.182432i
\(273\) 7.35040 + 13.8374i 0.444866 + 0.837475i
\(274\) 12.4138 0.749943
\(275\) 9.13785 + 7.43606i 0.551033 + 0.448411i
\(276\) 3.22396 + 5.58405i 0.194059 + 0.336121i
\(277\) 12.3861 + 7.15114i 0.744211 + 0.429671i 0.823599 0.567173i \(-0.191963\pi\)
−0.0793871 + 0.996844i \(0.525296\pi\)
\(278\) 15.6183 0.936723
\(279\) 6.16171 + 3.55746i 0.368892 + 0.212980i
\(280\) 4.17283 + 8.77559i 0.249374 + 0.524442i
\(281\) 7.96746i 0.475299i −0.971351 0.237649i \(-0.923623\pi\)
0.971351 0.237649i \(-0.0763769\pi\)
\(282\) 4.86298 + 2.80764i 0.289586 + 0.167193i
\(283\) −12.7095 + 7.33785i −0.755503 + 0.436190i −0.827679 0.561202i \(-0.810339\pi\)
0.0721756 + 0.997392i \(0.477006\pi\)
\(284\) −2.52520 + 1.45793i −0.149843 + 0.0865120i
\(285\) −0.858307 + 1.24564i −0.0508417 + 0.0737854i
\(286\) −8.49021 0.299865i −0.502036 0.0177314i
\(287\) 13.0749i 0.771789i
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) −3.97374 6.88273i −0.233750 0.404866i
\(290\) −9.26852 19.4920i −0.544266 1.14461i
\(291\) 16.3413i 0.957945i
\(292\) 3.83902 6.64938i 0.224662 0.389125i
\(293\) −3.43198 + 5.94436i −0.200498 + 0.347273i −0.948689 0.316210i \(-0.897589\pi\)
0.748191 + 0.663484i \(0.230923\pi\)
\(294\) 11.8847i 0.693129i
\(295\) −10.6415 + 5.06006i −0.619571 + 0.294608i
\(296\) 3.74165 + 6.48073i 0.217479 + 0.376685i
\(297\) −1.17811 2.04055i −0.0683611 0.118405i
\(298\) 19.5265i 1.13114i
\(299\) 12.3275 19.7108i 0.712921 1.13990i
\(300\) −4.67219 + 1.78064i −0.269749 + 0.102805i
\(301\) 25.7136 14.8458i 1.48211 0.855696i
\(302\) −9.96166 + 5.75137i −0.573229 + 0.330954i
\(303\) 10.5986 + 6.11911i 0.608875 + 0.351534i
\(304\) 0.676507i 0.0388004i
\(305\) −4.14139 8.70948i −0.237135 0.498704i
\(306\) −2.60564 1.50437i −0.148955 0.0859991i
\(307\) 10.9917 0.627328 0.313664 0.949534i \(-0.398443\pi\)
0.313664 + 0.949534i \(0.398443\pi\)
\(308\) 8.86753 + 5.11967i 0.505275 + 0.291720i
\(309\) 1.87572 + 3.24884i 0.106706 + 0.184820i
\(310\) 1.26727 15.8589i 0.0719760 0.900725i
\(311\) −13.9044 −0.788446 −0.394223 0.919015i \(-0.628986\pi\)
−0.394223 + 0.919015i \(0.628986\pi\)
\(312\) 1.91187 3.05692i 0.108238 0.173064i
\(313\) 14.1734i 0.801130i 0.916268 + 0.400565i \(0.131186\pi\)
−0.916268 + 0.400565i \(0.868814\pi\)
\(314\) −3.87629 + 2.23798i −0.218752 + 0.126296i
\(315\) 9.68629 + 0.774021i 0.545761 + 0.0436111i
\(316\) 1.87260 3.24343i 0.105342 0.182457i
\(317\) −3.20808 −0.180184 −0.0900920 0.995933i \(-0.528716\pi\)
−0.0900920 + 0.995933i \(0.528716\pi\)
\(318\) 4.71700 8.17008i 0.264516 0.458156i
\(319\) −19.6962 11.3716i −1.10278 0.636688i
\(320\) 1.26873 1.84128i 0.0709243 0.102931i
\(321\) −8.30831 + 14.3904i −0.463724 + 0.803194i
\(322\) −24.2664 + 14.0102i −1.35231 + 0.780757i
\(323\) 1.01772 + 1.76274i 0.0566273 + 0.0980813i
\(324\) 1.00000 0.0555556
\(325\) 13.5726 + 11.8653i 0.752872 + 0.658167i
\(326\) −7.75548 −0.429537
\(327\) −5.55578 9.62290i −0.307236 0.532148i
\(328\) −2.60564 + 1.50437i −0.143873 + 0.0830649i
\(329\) −12.2010 + 21.1328i −0.672665 + 1.16509i
\(330\) −2.98942 + 4.33848i −0.164562 + 0.238825i
\(331\) −22.3066 12.8787i −1.22608 0.707878i −0.259873 0.965643i \(-0.583681\pi\)
−0.966208 + 0.257765i \(0.917014\pi\)
\(332\) −5.17783 + 8.96827i −0.284170 + 0.492198i
\(333\) 7.48330 0.410082
\(334\) 0.339021 0.587202i 0.0185504 0.0321302i
\(335\) −12.9872 1.03779i −0.709568 0.0567008i
\(336\) −3.76344 + 2.17283i −0.205313 + 0.118537i
\(337\) 0.772078i 0.0420578i 0.999779 + 0.0210289i \(0.00669420\pi\)
−0.999779 + 0.0210289i \(0.993306\pi\)
\(338\) −12.9676 0.917149i −0.705345 0.0498863i
\(339\) 15.6600 0.850537
\(340\) −0.535898 + 6.70637i −0.0290632 + 0.363704i
\(341\) −8.38219 14.5184i −0.453921 0.786215i
\(342\) −0.585872 0.338254i −0.0316804 0.0182907i
\(343\) 21.2271 1.14616
\(344\) −5.91710 3.41624i −0.319028 0.184191i
\(345\) −6.19148 13.0209i −0.333338 0.701021i
\(346\) 0.721948i 0.0388122i
\(347\) 21.7856 + 12.5779i 1.16951 + 0.675218i 0.953565 0.301188i \(-0.0973830\pi\)
0.215946 + 0.976405i \(0.430716\pi\)
\(348\) 8.35922 4.82620i 0.448101 0.258711i
\(349\) −23.6602 + 13.6602i −1.26650 + 0.731214i −0.974324 0.225151i \(-0.927713\pi\)
−0.292176 + 0.956365i \(0.594379\pi\)
\(350\) −7.73802 20.3037i −0.413614 1.08528i
\(351\) −1.69144 3.18419i −0.0902823 0.169959i
\(352\) 2.35623i 0.125587i
\(353\) 3.75948 + 6.51161i 0.200097 + 0.346578i 0.948559 0.316599i \(-0.102541\pi\)
−0.748462 + 0.663177i \(0.769208\pi\)
\(354\) −2.63482 4.56364i −0.140039 0.242555i
\(355\) 5.88826 2.79989i 0.312516 0.148603i
\(356\) 4.79440i 0.254103i
\(357\) 6.53747 11.3232i 0.345999 0.599288i
\(358\) 3.18673 5.51958i 0.168424 0.291719i
\(359\) 10.8402i 0.572124i 0.958211 + 0.286062i \(0.0923463\pi\)
−0.958211 + 0.286062i \(0.907654\pi\)
\(360\) −0.960230 2.01940i −0.0506086 0.106431i
\(361\) −9.27117 16.0581i −0.487956 0.845165i
\(362\) −11.0107 19.0711i −0.578708 1.00235i
\(363\) 5.44819i 0.285956i
\(364\) 13.2843 + 8.30831i 0.696287 + 0.435474i
\(365\) −9.74138 + 14.1374i −0.509887 + 0.739987i
\(366\) 3.73509 2.15646i 0.195237 0.112720i
\(367\) 6.50838 3.75761i 0.339735 0.196146i −0.320420 0.947276i \(-0.603824\pi\)
0.660155 + 0.751130i \(0.270491\pi\)
\(368\) 5.58405 + 3.22396i 0.291089 + 0.168060i
\(369\) 3.00874i 0.156629i
\(370\) −7.18569 15.1117i −0.373566 0.785622i
\(371\) 35.5043 + 20.4984i 1.84329 + 1.06423i
\(372\) 7.11493 0.368892
\(373\) 19.8135 + 11.4393i 1.02590 + 0.592305i 0.915808 0.401616i \(-0.131551\pi\)
0.110095 + 0.993921i \(0.464885\pi\)
\(374\) 3.54464 + 6.13949i 0.183289 + 0.317466i
\(375\) 10.7313 3.13679i 0.554161 0.161983i
\(376\) 5.61529 0.289586
\(377\) −29.5066 18.4541i −1.51967 0.950434i
\(378\) 4.34565i 0.223516i
\(379\) −22.6152 + 13.0569i −1.16166 + 0.670687i −0.951702 0.307022i \(-0.900667\pi\)
−0.209962 + 0.977710i \(0.567334\pi\)
\(380\) −0.120495 + 1.50791i −0.00618128 + 0.0773541i
\(381\) −6.80236 + 11.7820i −0.348495 + 0.603611i
\(382\) 0.586882 0.0300275
\(383\) 6.84652 11.8585i 0.349841 0.605942i −0.636380 0.771376i \(-0.719569\pi\)
0.986221 + 0.165434i \(0.0529024\pi\)
\(384\) 0.866025 + 0.500000i 0.0441942 + 0.0255155i
\(385\) −18.8535 12.9910i −0.960864 0.662082i
\(386\) 11.3135 19.5955i 0.575842 0.997387i
\(387\) −5.91710 + 3.41624i −0.300783 + 0.173657i
\(388\) −8.17066 14.1520i −0.414802 0.718459i
\(389\) 24.9403 1.26452 0.632261 0.774755i \(-0.282127\pi\)
0.632261 + 0.774755i \(0.282127\pi\)
\(390\) −4.80596 + 6.47323i −0.243359 + 0.327785i
\(391\) −19.4001 −0.981104
\(392\) −5.94234 10.2924i −0.300134 0.519847i
\(393\) −8.84404 + 5.10611i −0.446123 + 0.257569i
\(394\) −0.823770 + 1.42681i −0.0415009 + 0.0718817i
\(395\) −4.75165 + 6.89595i −0.239081 + 0.346973i
\(396\) −2.04055 1.17811i −0.102542 0.0592025i
\(397\) 14.5517 25.2043i 0.730328 1.26497i −0.226415 0.974031i \(-0.572700\pi\)
0.956743 0.290934i \(-0.0939662\pi\)
\(398\) 10.2733 0.514954
\(399\) 1.46993 2.54600i 0.0735887 0.127459i
\(400\) −3.15592 + 3.87817i −0.157796 + 0.193908i
\(401\) −14.4596 + 8.34823i −0.722076 + 0.416891i −0.815516 0.578734i \(-0.803547\pi\)
0.0934404 + 0.995625i \(0.470214\pi\)
\(402\) 5.82658i 0.290603i
\(403\) −12.0345 22.6552i −0.599479 1.12854i
\(404\) 12.2382 0.608875
\(405\) −2.22896 0.178114i −0.110758 0.00885055i
\(406\) 20.9730 + 36.3262i 1.04087 + 1.80284i
\(407\) −15.2701 8.81618i −0.756909 0.437002i
\(408\) −3.00874 −0.148955
\(409\) 21.3140 + 12.3056i 1.05391 + 0.608475i 0.923741 0.383017i \(-0.125115\pi\)
0.130168 + 0.991492i \(0.458448\pi\)
\(410\) 6.07583 2.88908i 0.300064 0.142682i
\(411\) 12.4138i 0.612326i
\(412\) 3.24884 + 1.87572i 0.160059 + 0.0924100i
\(413\) 19.8320 11.4500i 0.975868 0.563418i
\(414\) 5.58405 3.22396i 0.274441 0.158449i
\(415\) 13.1386 19.0677i 0.644947 0.935996i
\(416\) 0.127265 3.60330i 0.00623968 0.176667i
\(417\) 15.6183i 0.764831i
\(418\) 0.797003 + 1.38045i 0.0389827 + 0.0675200i
\(419\) −13.5527 23.4739i −0.662091 1.14678i −0.980065 0.198676i \(-0.936336\pi\)
0.317974 0.948099i \(-0.396998\pi\)
\(420\) 8.77559 4.17283i 0.428205 0.203613i
\(421\) 32.9996i 1.60830i 0.594425 + 0.804151i \(0.297380\pi\)
−0.594425 + 0.804151i \(0.702620\pi\)
\(422\) 12.1905 21.1145i 0.593422 1.02784i
\(423\) 2.80764 4.86298i 0.136512 0.236446i
\(424\) 9.43400i 0.458156i
\(425\) 2.38900 14.8528i 0.115883 0.720466i
\(426\) 1.45793 + 2.52520i 0.0706367 + 0.122346i
\(427\) 9.37121 + 16.2314i 0.453505 + 0.785493i
\(428\) 16.6166i 0.803194i
\(429\) −0.299865 + 8.49021i −0.0144776 + 0.409911i
\(430\) 12.5805 + 8.66858i 0.606686 + 0.418036i
\(431\) 7.45678 4.30517i 0.359180 0.207373i −0.309541 0.950886i \(-0.600175\pi\)
0.668721 + 0.743513i \(0.266842\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) −2.99201 1.72744i −0.143787 0.0830155i 0.426381 0.904544i \(-0.359788\pi\)
−0.570168 + 0.821528i \(0.693122\pi\)
\(434\) 30.9190i 1.48416i
\(435\) −19.4920 + 9.26852i −0.934570 + 0.444391i
\(436\) −9.62290 5.55578i −0.460853 0.266074i
\(437\) −4.36206 −0.208666
\(438\) −6.64938 3.83902i −0.317720 0.183436i
\(439\) −12.1229 20.9974i −0.578593 1.00215i −0.995641 0.0932675i \(-0.970269\pi\)
0.417049 0.908884i \(-0.363064\pi\)
\(440\) −0.419677 + 5.25194i −0.0200073 + 0.250377i
\(441\) −11.8847 −0.565937
\(442\) 5.08909 + 9.58038i 0.242064 + 0.455692i
\(443\) 13.1629i 0.625390i 0.949854 + 0.312695i \(0.101232\pi\)
−0.949854 + 0.312695i \(0.898768\pi\)
\(444\) 6.48073 3.74165i 0.307562 0.177571i
\(445\) 0.853950 10.6865i 0.0404811 0.506591i
\(446\) 2.31792 4.01476i 0.109757 0.190104i
\(447\) −19.5265 −0.923571
\(448\) −2.17283 + 3.76344i −0.102656 + 0.177806i
\(449\) 2.17774 + 1.25732i 0.102774 + 0.0593365i 0.550506 0.834831i \(-0.314435\pi\)
−0.447732 + 0.894168i \(0.647768\pi\)
\(450\) 1.78064 + 4.67219i 0.0839399 + 0.220249i
\(451\) 3.54464 6.13949i 0.166910 0.289097i
\(452\) 13.5620 7.83002i 0.637903 0.368293i
\(453\) 5.75137 + 9.96166i 0.270223 + 0.468040i
\(454\) 17.7843 0.834657
\(455\) −28.1304 20.8850i −1.31877 0.979105i
\(456\) −0.676507 −0.0316804
\(457\) 5.38493 + 9.32698i 0.251897 + 0.436298i 0.964048 0.265728i \(-0.0856124\pi\)
−0.712151 + 0.702026i \(0.752279\pi\)
\(458\) 13.2815 7.66806i 0.620602 0.358305i
\(459\) −1.50437 + 2.60564i −0.0702180 + 0.121621i
\(460\) −11.8724 8.18068i −0.553554 0.381426i
\(461\) 10.2984 + 5.94576i 0.479642 + 0.276922i 0.720267 0.693697i \(-0.244019\pi\)
−0.240625 + 0.970618i \(0.577352\pi\)
\(462\) 5.11967 8.86753i 0.238189 0.412555i
\(463\) 29.9462 1.39172 0.695860 0.718178i \(-0.255024\pi\)
0.695860 + 0.718178i \(0.255024\pi\)
\(464\) 4.82620 8.35922i 0.224051 0.388067i
\(465\) −15.8589 1.26727i −0.735439 0.0587681i
\(466\) 6.71645 3.87774i 0.311133 0.179633i
\(467\) 21.8940i 1.01313i 0.862201 + 0.506566i \(0.169085\pi\)
−0.862201 + 0.506566i \(0.830915\pi\)
\(468\) −3.05692 1.91187i −0.141306 0.0883761i
\(469\) 25.3203 1.16918
\(470\) −12.5163 1.00016i −0.577332 0.0461340i
\(471\) 2.23798 + 3.87629i 0.103121 + 0.178610i
\(472\) −4.56364 2.63482i −0.210059 0.121277i
\(473\) 16.0989 0.740227
\(474\) −3.24343 1.87260i −0.148976 0.0860112i
\(475\) 0.537159 3.33961i 0.0246466 0.153232i
\(476\) 13.0749i 0.599288i
\(477\) −8.17008 4.71700i −0.374082 0.215977i
\(478\) −16.1435 + 9.32045i −0.738386 + 0.426307i
\(479\) −7.90106 + 4.56168i −0.361009 + 0.208429i −0.669523 0.742791i \(-0.733502\pi\)
0.308514 + 0.951220i \(0.400168\pi\)
\(480\) −1.84128 1.26873i −0.0840426 0.0579095i
\(481\) −22.8758 14.3071i −1.04305 0.652346i
\(482\) 3.07016i 0.139842i
\(483\) 14.0102 + 24.2664i 0.637486 + 1.10416i
\(484\) −2.72410 4.71827i −0.123823 0.214467i
\(485\) 15.6914 + 32.9996i 0.712511 + 1.49843i
\(486\) 1.00000i 0.0453609i
\(487\) −10.8587 + 18.8079i −0.492056 + 0.852265i −0.999958 0.00914916i \(-0.997088\pi\)
0.507902 + 0.861415i \(0.330421\pi\)
\(488\) 2.15646 3.73509i 0.0976183 0.169080i
\(489\) 7.75548i 0.350715i
\(490\) 11.4120 + 23.9999i 0.515543 + 1.08420i
\(491\) 16.5438 + 28.6548i 0.746613 + 1.29317i 0.949437 + 0.313957i \(0.101655\pi\)
−0.202824 + 0.979215i \(0.565012\pi\)
\(492\) 1.50437 + 2.60564i 0.0678222 + 0.117472i
\(493\) 29.0415i 1.30796i
\(494\) 1.14427 + 2.15412i 0.0514831 + 0.0969187i
\(495\) 4.33848 + 2.98942i 0.195000 + 0.134365i
\(496\) 6.16171 3.55746i 0.276669 0.159735i
\(497\) −10.9736 + 6.33564i −0.492235 + 0.284192i
\(498\) 8.96827 + 5.17783i 0.401878 + 0.232024i
\(499\) 10.4889i 0.469546i −0.972050 0.234773i \(-0.924565\pi\)
0.972050 0.234773i \(-0.0754347\pi\)
\(500\) 7.72518 8.08218i 0.345480 0.361446i
\(501\) −0.587202 0.339021i −0.0262342 0.0151463i
\(502\) 7.12807 0.318142
\(503\) 7.14818 + 4.12700i 0.318722 + 0.184014i 0.650823 0.759230i \(-0.274424\pi\)
−0.332101 + 0.943244i \(0.607757\pi\)
\(504\) 2.17283 + 3.76344i 0.0967853 + 0.167637i
\(505\) −27.2786 2.17980i −1.21388 0.0969998i
\(506\) −15.1927 −0.675400
\(507\) −0.917149 + 12.9676i −0.0407320 + 0.575912i
\(508\) 13.6047i 0.603611i
\(509\) 5.84526 3.37476i 0.259087 0.149584i −0.364831 0.931074i \(-0.618873\pi\)
0.623918 + 0.781490i \(0.285540\pi\)
\(510\) 6.70637 + 0.535898i 0.296963 + 0.0237300i
\(511\) 16.6830 28.8959i 0.738014 1.27828i
\(512\) 1.00000 0.0441942
\(513\) −0.338254 + 0.585872i −0.0149343 + 0.0258669i
\(514\) −12.3353 7.12178i −0.544086 0.314128i
\(515\) −6.90745 4.75957i −0.304379 0.209732i
\(516\) −3.41624 + 5.91710i −0.150391 + 0.260486i
\(517\) −11.4583 + 6.61545i −0.503935 + 0.290947i
\(518\) 16.2599 + 28.1630i 0.714419 + 1.23741i
\(519\) −0.721948 −0.0316900
\(520\) −0.925468 + 8.00896i −0.0405844 + 0.351216i
\(521\) −30.4048 −1.33206 −0.666029 0.745926i \(-0.732007\pi\)
−0.666029 + 0.745926i \(0.732007\pi\)
\(522\) −4.82620 8.35922i −0.211237 0.365873i
\(523\) 2.72235 1.57175i 0.119040 0.0687279i −0.439298 0.898342i \(-0.644773\pi\)
0.558338 + 0.829614i \(0.311439\pi\)
\(524\) −5.10611 + 8.84404i −0.223062 + 0.386354i
\(525\) −20.3037 + 7.73802i −0.886126 + 0.337715i
\(526\) −13.3385 7.70101i −0.581588 0.335780i
\(527\) −10.7035 + 18.5390i −0.466251 + 0.807570i
\(528\) −2.35623 −0.102542
\(529\) 9.28778 16.0869i 0.403816 0.699431i
\(530\) −1.68033 + 21.0280i −0.0729887 + 0.913400i
\(531\) −4.56364 + 2.63482i −0.198045 + 0.114341i
\(532\) 2.93986i 0.127459i
\(533\) 5.75231 9.19748i 0.249160 0.398387i
\(534\) 4.79440 0.207474
\(535\) 2.95965 37.0378i 0.127957 1.60128i
\(536\) −2.91329 5.04596i −0.125835 0.217952i
\(537\) −5.51958 3.18673i −0.238187 0.137518i
\(538\) −26.6268 −1.14796
\(539\) 24.2513 + 14.0015i 1.04458 + 0.603088i
\(540\) −2.01940 + 0.960230i −0.0869009 + 0.0413217i
\(541\) 17.6144i 0.757301i 0.925540 + 0.378650i \(0.123612\pi\)
−0.925540 + 0.378650i \(0.876388\pi\)
\(542\) 6.66899 + 3.85034i 0.286458 + 0.165386i
\(543\) −19.0711 + 11.0107i −0.818417 + 0.472513i
\(544\) −2.60564 + 1.50437i −0.111716 + 0.0644993i
\(545\) 20.4595 + 14.0976i 0.876390 + 0.603875i
\(546\) 8.30831 13.2843i 0.355563 0.568516i
\(547\) 40.8067i 1.74477i −0.488820 0.872385i \(-0.662572\pi\)
0.488820 0.872385i \(-0.337428\pi\)
\(548\) −6.20689 10.7506i −0.265145 0.459245i
\(549\) −2.15646 3.73509i −0.0920354 0.159410i
\(550\) 1.87089 11.6316i 0.0797750 0.495975i
\(551\) 6.52991i 0.278184i
\(552\) 3.22396 5.58405i 0.137221 0.237673i
\(553\) 8.13765 14.0948i 0.346048 0.599373i
\(554\) 14.3023i 0.607646i
\(555\) −15.1117 + 7.18569i −0.641457 + 0.305015i
\(556\) −7.80915 13.5258i −0.331182 0.573623i
\(557\) 12.6109 + 21.8427i 0.534340 + 0.925504i 0.999195 + 0.0401170i \(0.0127731\pi\)
−0.464855 + 0.885387i \(0.653894\pi\)
\(558\) 7.11493i 0.301199i
\(559\) 24.6195 + 0.869535i 1.04129 + 0.0367774i
\(560\) 5.51347 8.00157i 0.232987 0.338128i
\(561\) 6.13949 3.54464i 0.259210 0.149655i
\(562\) −6.90002 + 3.98373i −0.291060 + 0.168043i
\(563\) −31.5356 18.2071i −1.32907 0.767337i −0.343912 0.939002i \(-0.611752\pi\)
−0.985155 + 0.171664i \(0.945086\pi\)
\(564\) 5.61529i 0.236446i
\(565\) −31.6238 + 15.0372i −1.33042 + 0.632622i
\(566\) 12.7095 + 7.33785i 0.534222 + 0.308433i
\(567\) 4.34565 0.182500
\(568\) 2.52520 + 1.45793i 0.105955 + 0.0611732i
\(569\) −13.6768 23.6888i −0.573360 0.993088i −0.996218 0.0868922i \(-0.972306\pi\)
0.422858 0.906196i \(-0.361027\pi\)
\(570\) 1.50791 + 0.120495i 0.0631594 + 0.00504700i
\(571\) 45.7020 1.91257 0.956285 0.292438i \(-0.0944664\pi\)
0.956285 + 0.292438i \(0.0944664\pi\)
\(572\) 3.98541 + 7.50267i 0.166638 + 0.313702i
\(573\) 0.586882i 0.0245174i
\(574\) −11.3232 + 6.53747i −0.472622 + 0.272869i
\(575\) 25.0061 + 20.3491i 1.04283 + 0.848615i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 31.1697 1.29761 0.648806 0.760954i \(-0.275269\pi\)
0.648806 + 0.760954i \(0.275269\pi\)
\(578\) −3.97374 + 6.88273i −0.165286 + 0.286284i
\(579\) −19.5955 11.3135i −0.814363 0.470173i
\(580\) −12.2463 + 17.7728i −0.508500 + 0.737974i
\(581\) −22.5011 + 38.9730i −0.933501 + 1.61687i
\(582\) −14.1520 + 8.17066i −0.586619 + 0.338685i
\(583\) 11.1143 + 19.2506i 0.460308 + 0.797278i
\(584\) −7.67804 −0.317720
\(585\) 6.47323 + 4.80596i 0.267635 + 0.198702i
\(586\) 6.86396 0.283547
\(587\) 7.61411 + 13.1880i 0.314268 + 0.544328i 0.979282 0.202503i \(-0.0649076\pi\)
−0.665014 + 0.746831i \(0.731574\pi\)
\(588\) −10.2924 + 5.94234i −0.424453 + 0.245058i
\(589\) −2.40665 + 4.16844i −0.0991643 + 0.171758i
\(590\) 9.70288 + 6.68576i 0.399461 + 0.275248i
\(591\) 1.42681 + 0.823770i 0.0586912 + 0.0338854i
\(592\) 3.74165 6.48073i 0.153781 0.266356i
\(593\) −15.1921 −0.623865 −0.311933 0.950104i \(-0.600976\pi\)
−0.311933 + 0.950104i \(0.600976\pi\)
\(594\) −1.17811 + 2.04055i −0.0483386 + 0.0837249i
\(595\) −2.32883 + 29.1435i −0.0954726 + 1.19477i
\(596\) −16.9104 + 9.76324i −0.692678 + 0.399918i
\(597\) 10.2733i 0.420458i
\(598\) −23.2338 0.820594i −0.950100 0.0335566i
\(599\) 4.34655 0.177595 0.0887975 0.996050i \(-0.471698\pi\)
0.0887975 + 0.996050i \(0.471698\pi\)
\(600\) 3.87817 + 3.15592i 0.158326 + 0.128840i
\(601\) −5.14622 8.91351i −0.209918 0.363590i 0.741770 0.670654i \(-0.233987\pi\)
−0.951689 + 0.307065i \(0.900653\pi\)
\(602\) −25.7136 14.8458i −1.04801 0.605069i
\(603\) −5.82658 −0.237277
\(604\) 9.96166 + 5.75137i 0.405334 + 0.234020i
\(605\) 5.23152 + 11.0021i 0.212691 + 0.447297i
\(606\) 12.2382i 0.497144i
\(607\) −37.6094 21.7138i −1.52652 0.881335i −0.999504 0.0314772i \(-0.989979\pi\)
−0.527012 0.849858i \(-0.676688\pi\)
\(608\) −0.585872 + 0.338254i −0.0237603 + 0.0137180i
\(609\) 36.3262 20.9730i 1.47201 0.849867i
\(610\) −5.47194 + 7.94129i −0.221552 + 0.321534i
\(611\) −17.8801 + 9.49791i −0.723352 + 0.384244i
\(612\) 3.00874i 0.121621i
\(613\) 16.3258 + 28.2771i 0.659392 + 1.14210i 0.980773 + 0.195150i \(0.0625194\pi\)
−0.321382 + 0.946950i \(0.604147\pi\)
\(614\) −5.49584 9.51907i −0.221794 0.384159i
\(615\) −2.88908 6.07583i −0.116499 0.245001i
\(616\) 10.2393i 0.412555i
\(617\) −4.83488 + 8.37426i −0.194645 + 0.337135i −0.946784 0.321869i \(-0.895689\pi\)
0.752139 + 0.659004i \(0.229022\pi\)
\(618\) 1.87572 3.24884i 0.0754525 0.130688i
\(619\) 5.20064i 0.209031i −0.994523 0.104516i \(-0.966671\pi\)
0.994523 0.104516i \(-0.0333292\pi\)
\(620\) −14.3678 + 6.83197i −0.577027 + 0.274378i
\(621\) −3.22396 5.58405i −0.129373 0.224080i
\(622\) 6.95220 + 12.0416i 0.278758 + 0.482823i
\(623\) 20.8348i 0.834729i
\(624\) −3.60330 0.127265i −0.144248 0.00509468i
\(625\) −18.6587 + 16.6389i −0.746347 + 0.665557i
\(626\) 12.2746 7.08672i 0.490590 0.283242i
\(627\) 1.38045 0.797003i 0.0551298 0.0318292i
\(628\) 3.87629 + 2.23798i 0.154681 + 0.0893050i
\(629\) 22.5153i 0.897743i
\(630\) −4.17283 8.77559i −0.166249 0.349628i
\(631\) −6.86811 3.96531i −0.273415 0.157856i 0.357023 0.934095i \(-0.383792\pi\)
−0.630439 + 0.776239i \(0.717125\pi\)
\(632\) −3.74519 −0.148976
\(633\) −21.1145 12.1905i −0.839226 0.484527i
\(634\) 1.60404 + 2.77828i 0.0637046 + 0.110340i
\(635\) 2.42319 30.3244i 0.0961613 1.20339i
\(636\) −9.43400 −0.374082
\(637\) 36.3305 + 22.7219i 1.43947 + 0.900276i
\(638\) 22.7432i 0.900413i
\(639\) 2.52520 1.45793i 0.0998954 0.0576746i
\(640\) −2.22896 0.178114i −0.0881075 0.00704057i
\(641\) −1.69937 + 2.94340i −0.0671212 + 0.116257i −0.897633 0.440744i \(-0.854715\pi\)
0.830512 + 0.557001i \(0.188048\pi\)
\(642\) 16.6166 0.655805
\(643\) 4.69916 8.13918i 0.185317 0.320978i −0.758367 0.651828i \(-0.774002\pi\)
0.943683 + 0.330851i \(0.107336\pi\)
\(644\) 24.2664 + 14.0102i 0.956228 + 0.552079i
\(645\) 8.66858 12.5805i 0.341325 0.495357i
\(646\) 1.01772 1.76274i 0.0400415 0.0693540i
\(647\) −34.6972 + 20.0324i −1.36409 + 0.787555i −0.990165 0.139905i \(-0.955320\pi\)
−0.373921 + 0.927461i \(0.621987\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 12.4165 0.487389
\(650\) 3.48934 17.6868i 0.136863 0.693735i
\(651\) 30.9190 1.21181
\(652\) 3.87774 + 6.71645i 0.151864 + 0.263036i
\(653\) 27.1900 15.6981i 1.06403 0.614316i 0.137483 0.990504i \(-0.456099\pi\)
0.926543 + 0.376189i \(0.122766\pi\)
\(654\) −5.55578 + 9.62290i −0.217248 + 0.376285i
\(655\) 12.9566 18.8036i 0.506255 0.734717i
\(656\) 2.60564 + 1.50437i 0.101733 + 0.0587358i
\(657\) −3.83902 + 6.64938i −0.149774 + 0.259417i
\(658\) 24.4021 0.951292
\(659\) 9.48950 16.4363i 0.369659 0.640268i −0.619853 0.784718i \(-0.712808\pi\)
0.989512 + 0.144450i \(0.0461413\pi\)
\(660\) 5.25194 + 0.419677i 0.204432 + 0.0163359i
\(661\) 11.4484 6.60972i 0.445290 0.257088i −0.260549 0.965461i \(-0.583904\pi\)
0.705839 + 0.708372i \(0.250570\pi\)
\(662\) 25.7574i 1.00109i
\(663\) 9.58038 5.08909i 0.372071 0.197644i
\(664\) 10.3557 0.401878
\(665\) −0.523631 + 6.55285i −0.0203055 + 0.254109i
\(666\) −3.74165 6.48073i −0.144986 0.251123i
\(667\) −53.8995 31.1189i −2.08700 1.20493i
\(668\) −0.678042 −0.0262342
\(669\) −4.01476 2.31792i −0.155220 0.0896161i
\(670\) 5.59485 + 11.7662i 0.216148 + 0.454566i
\(671\) 10.1622i 0.392308i
\(672\) 3.76344 + 2.17283i 0.145178 + 0.0838186i
\(673\) 7.44817 4.30020i 0.287106 0.165761i −0.349530 0.936925i \(-0.613659\pi\)
0.636636 + 0.771164i \(0.280325\pi\)
\(674\) 0.668639 0.386039i 0.0257550 0.0148697i
\(675\) 4.67219 1.78064i 0.179833 0.0685367i
\(676\) 5.68953 + 11.6889i 0.218828 + 0.449571i
\(677\) 25.8539i 0.993646i −0.867852 0.496823i \(-0.834500\pi\)
0.867852 0.496823i \(-0.165500\pi\)
\(678\) −7.83002 13.5620i −0.300710 0.520845i
\(679\) −35.5068 61.4997i −1.36263 2.36014i
\(680\) 6.07583 2.88908i 0.232998 0.110791i
\(681\) 17.7843i 0.681495i
\(682\) −8.38219 + 14.5184i −0.320971 + 0.555938i
\(683\) 10.4524 18.1041i 0.399950 0.692734i −0.593769 0.804636i \(-0.702361\pi\)
0.993719 + 0.111901i \(0.0356941\pi\)
\(684\) 0.676507i 0.0258669i
\(685\) 11.9201 + 25.0683i 0.455443 + 0.957811i
\(686\) −10.6136 18.3832i −0.405228 0.701875i
\(687\) −7.66806 13.2815i −0.292555 0.506720i
\(688\) 6.83247i 0.260486i
\(689\) 15.9570 + 30.0396i 0.607914 + 1.14442i
\(690\) −8.18068 + 11.8724i −0.311433 + 0.451975i
\(691\) −42.3440 + 24.4473i −1.61084 + 0.930019i −0.621665 + 0.783283i \(0.713543\pi\)
−0.989176 + 0.146736i \(0.953123\pi\)
\(692\) −0.625226 + 0.360974i −0.0237675 + 0.0137222i
\(693\) −8.86753 5.11967i −0.336850 0.194480i
\(694\) 25.1558i 0.954902i
\(695\) 14.9972 + 31.5395i 0.568875 + 1.19636i
\(696\) −8.35922 4.82620i −0.316855 0.182936i
\(697\) −9.05251 −0.342888
\(698\) 23.6602 + 13.6602i 0.895551 + 0.517046i
\(699\) −3.87774 6.71645i −0.146670 0.254039i
\(700\) −13.7145 + 16.8532i −0.518360 + 0.636990i
\(701\) 31.9805 1.20789 0.603944 0.797027i \(-0.293595\pi\)
0.603944 + 0.797027i \(0.293595\pi\)
\(702\) −1.91187 + 3.05692i −0.0721588 + 0.115376i
\(703\) 5.06250i 0.190936i
\(704\) −2.04055 + 1.17811i −0.0769062 + 0.0444018i
\(705\) −1.00016 + 12.5163i −0.0376682 + 0.471390i
\(706\) 3.75948 6.51161i 0.141490 0.245068i
\(707\) 53.1831 2.00016
\(708\) −2.63482 + 4.56364i −0.0990225 + 0.171512i
\(709\) −5.42026 3.12939i −0.203562 0.117527i 0.394754 0.918787i \(-0.370830\pi\)
−0.598316 + 0.801260i \(0.704163\pi\)
\(710\) −5.36890 3.69944i −0.201491 0.138837i
\(711\) −1.87260 + 3.24343i −0.0702278 + 0.121638i
\(712\) 4.15208 2.39720i 0.155606 0.0898389i
\(713\) −22.9382 39.7301i −0.859043 1.48791i
\(714\) −13.0749 −0.489317
\(715\) −7.54701 17.4330i −0.282242 0.651958i
\(716\) −6.37346 −0.238187
\(717\) 9.32045 + 16.1435i 0.348079 + 0.602890i
\(718\) 9.38789 5.42010i 0.350353 0.202276i
\(719\) −9.52308 + 16.4945i −0.355151 + 0.615140i −0.987144 0.159835i \(-0.948904\pi\)
0.631993 + 0.774974i \(0.282237\pi\)
\(720\) −1.26873 + 1.84128i −0.0472829 + 0.0686205i
\(721\) 14.1183 + 8.15122i 0.525794 + 0.303567i
\(722\) −9.27117 + 16.0581i −0.345037 + 0.597622i
\(723\) 3.07016 0.114181
\(724\) −11.0107 + 19.0711i −0.409209 + 0.708770i
\(725\) 30.4621 37.4336i 1.13134 1.39025i
\(726\) −4.71827 + 2.72410i −0.175111 + 0.101101i
\(727\) 28.2602i 1.04811i 0.851684 + 0.524056i \(0.175582\pi\)
−0.851684 + 0.524056i \(0.824418\pi\)
\(728\) 0.553049 15.6587i 0.0204974 0.580350i
\(729\) −1.00000 −0.0370370
\(730\) 17.1141 + 1.36757i 0.633420 + 0.0506159i
\(731\) −10.2786 17.8030i −0.380166 0.658468i
\(732\) −3.73509 2.15646i −0.138053 0.0797050i
\(733\) −5.28165 −0.195082 −0.0975410 0.995232i \(-0.531098\pi\)
−0.0975410 + 0.995232i \(0.531098\pi\)
\(734\) −6.50838 3.75761i −0.240229 0.138696i
\(735\) 23.9999 11.4120i 0.885249 0.420939i
\(736\) 6.44791i 0.237673i
\(737\) 11.8894 + 6.86437i 0.437953 + 0.252852i
\(738\) 2.60564 1.50437i 0.0959151 0.0553766i
\(739\) 34.5736 19.9611i 1.27181 0.734280i 0.296482 0.955038i \(-0.404187\pi\)
0.975329 + 0.220758i \(0.0708533\pi\)
\(740\) −9.49430 + 13.7789i −0.349018 + 0.506521i
\(741\) 2.15412 1.14427i 0.0791337 0.0420358i
\(742\) 40.9969i 1.50504i
\(743\) −9.28543 16.0828i −0.340650 0.590022i 0.643904 0.765106i \(-0.277314\pi\)
−0.984553 + 0.175084i \(0.943980\pi\)
\(744\) −3.55746 6.16171i −0.130423 0.225899i
\(745\) 39.4317 18.7499i 1.44467 0.686944i
\(746\) 22.8786i 0.837646i
\(747\) 5.17783 8.96827i 0.189447 0.328132i
\(748\) 3.54464 6.13949i 0.129605 0.224482i
\(749\) 72.2100i 2.63850i
\(750\) −8.08218 7.72518i −0.295120 0.282084i
\(751\) 15.1001 + 26.1541i 0.551010 + 0.954377i 0.998202 + 0.0599394i \(0.0190907\pi\)
−0.447192 + 0.894438i \(0.647576\pi\)
\(752\) −2.80764 4.86298i −0.102384 0.177335i
\(753\) 7.12807i 0.259761i
\(754\) −1.22841 + 34.7805i −0.0447361 + 1.26663i
\(755\) −21.1798 14.5939i −0.770811 0.531126i
\(756\) 3.76344 2.17283i 0.136875 0.0790249i
\(757\) −4.85341 + 2.80211i −0.176400 + 0.101845i −0.585600 0.810600i \(-0.699141\pi\)
0.409200 + 0.912445i \(0.365808\pi\)
\(758\) 22.6152 + 13.0569i 0.821421 + 0.474247i
\(759\) 15.1927i 0.551462i
\(760\) 1.36614 0.649603i 0.0495549 0.0235636i
\(761\) −5.77640 3.33501i −0.209394 0.120894i 0.391635 0.920120i \(-0.371909\pi\)
−0.601030 + 0.799227i \(0.705243\pi\)
\(762\) 13.6047 0.492847
\(763\) −41.8178 24.1435i −1.51391 0.874053i
\(764\) −0.293441 0.508255i −0.0106163 0.0183880i
\(765\) 0.535898 6.70637i 0.0193754 0.242469i
\(766\) −13.6930 −0.494750
\(767\) 18.9881 + 0.670640i 0.685621 + 0.0242154i
\(768\) 1.00000i