Properties

Label 390.2.x.a.199.3
Level $390$
Weight $2$
Character 390.199
Analytic conductor $3.114$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,2,Mod(49,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.x (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + \cdots + 2197 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.3
Root \(2.00607 + 1.30680i\) of defining polynomial
Character \(\chi\) \(=\) 390.199
Dual form 390.2.x.a.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.26873 + 1.84128i) q^{5} +(0.866025 - 0.500000i) q^{6} +(-2.17283 - 3.76344i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.26873 + 1.84128i) q^{5} +(0.866025 - 0.500000i) q^{6} +(-2.17283 - 3.76344i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-2.22896 + 0.178114i) q^{10} +(-2.04055 - 1.17811i) q^{11} +1.00000i q^{12} +(-3.18419 - 1.69144i) q^{13} +4.34565 q^{14} +(-0.178114 - 2.22896i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.60564 - 1.50437i) q^{17} -1.00000 q^{18} +(0.585872 - 0.338254i) q^{19} +(0.960230 - 2.01940i) q^{20} +4.34565i q^{21} +(2.04055 - 1.17811i) q^{22} +(-5.58405 - 3.22396i) q^{23} +(-0.866025 - 0.500000i) q^{24} +(-1.78064 + 4.67219i) q^{25} +(3.05692 - 1.91187i) q^{26} -1.00000i q^{27} +(-2.17283 + 3.76344i) q^{28} +(4.82620 - 8.35922i) q^{29} +(2.01940 + 0.960230i) q^{30} -7.11493i q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.17811 + 2.04055i) q^{33} +3.00874i q^{34} +(4.17283 - 8.77559i) q^{35} +(0.500000 - 0.866025i) q^{36} +(3.74165 - 6.48073i) q^{37} +0.676507i q^{38} +(1.91187 + 3.05692i) q^{39} +(1.26873 + 1.84128i) q^{40} +(-2.60564 - 1.50437i) q^{41} +(-3.76344 - 2.17283i) q^{42} +(-5.91710 + 3.41624i) q^{43} +2.35623i q^{44} +(-0.960230 + 2.01940i) q^{45} +(5.58405 - 3.22396i) q^{46} +5.61529 q^{47} +(0.866025 - 0.500000i) q^{48} +(-5.94234 + 10.2924i) q^{49} +(-3.15592 - 3.87817i) q^{50} -3.00874 q^{51} +(0.127265 + 3.60330i) q^{52} +9.43400i q^{53} +(0.866025 + 0.500000i) q^{54} +(-0.419677 - 5.25194i) q^{55} +(-2.17283 - 3.76344i) q^{56} -0.676507 q^{57} +(4.82620 + 8.35922i) q^{58} +(-4.56364 + 2.63482i) q^{59} +(-1.84128 + 1.26873i) q^{60} +(2.15646 + 3.73509i) q^{61} +(6.16171 + 3.55746i) q^{62} +(2.17283 - 3.76344i) q^{63} +1.00000 q^{64} +(-0.925468 - 8.00896i) q^{65} -2.35623 q^{66} +(-2.91329 + 5.04596i) q^{67} +(-2.60564 - 1.50437i) q^{68} +(3.22396 + 5.58405i) q^{69} +(5.51347 + 8.00157i) q^{70} +(2.52520 - 1.45793i) q^{71} +(0.500000 + 0.866025i) q^{72} -7.67804 q^{73} +(3.74165 + 6.48073i) q^{74} +(3.87817 - 3.15592i) q^{75} +(-0.585872 - 0.338254i) q^{76} +10.2393i q^{77} +(-3.60330 + 0.127265i) q^{78} -3.74519 q^{79} +(-2.22896 + 0.178114i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(2.60564 - 1.50437i) q^{82} +10.3557 q^{83} +(3.76344 - 2.17283i) q^{84} +(6.07583 + 2.88908i) q^{85} -6.83247i q^{86} +(-8.35922 + 4.82620i) q^{87} +(-2.04055 - 1.17811i) q^{88} +(4.15208 + 2.39720i) q^{89} +(-1.26873 - 1.84128i) q^{90} +(0.553049 + 15.6587i) q^{91} +6.44791i q^{92} +(-3.55746 + 6.16171i) q^{93} +(-2.80764 + 4.86298i) q^{94} +(1.36614 + 0.649603i) q^{95} +1.00000i q^{96} +(-8.17066 - 14.1520i) q^{97} +(-5.94234 - 10.2924i) q^{98} -2.35623i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9} - 2 q^{10} + 6 q^{11} - 8 q^{13} + 4 q^{14} + 6 q^{15} - 6 q^{16} + 18 q^{17} - 12 q^{18} - 6 q^{19} + 4 q^{20} - 6 q^{22} + 6 q^{23} - 10 q^{25} - 2 q^{26} - 2 q^{28} + 14 q^{29} - 6 q^{30} - 6 q^{32} + 6 q^{33} + 26 q^{35} + 6 q^{36} - 12 q^{37} - 2 q^{39} - 2 q^{40} - 18 q^{41} - 12 q^{42} - 36 q^{43} - 4 q^{45} - 6 q^{46} + 16 q^{47} + 8 q^{49} - 10 q^{50} + 16 q^{51} + 10 q^{52} - 28 q^{55} - 2 q^{56} - 8 q^{57} + 14 q^{58} - 36 q^{59} + 10 q^{61} + 6 q^{62} + 2 q^{63} + 12 q^{64} + 6 q^{65} - 12 q^{66} + 4 q^{67} - 18 q^{68} + 16 q^{69} - 4 q^{70} - 12 q^{71} + 6 q^{72} + 28 q^{73} - 12 q^{74} - 8 q^{75} + 6 q^{76} - 2 q^{78} + 4 q^{79} - 2 q^{80} - 6 q^{81} + 18 q^{82} + 72 q^{83} + 12 q^{84} + 18 q^{85} + 6 q^{87} + 6 q^{88} + 18 q^{89} + 2 q^{90} + 2 q^{91} - 16 q^{93} - 8 q^{94} - 42 q^{95} - 48 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.26873 + 1.84128i 0.567394 + 0.823446i
\(6\) 0.866025 0.500000i 0.353553 0.204124i
\(7\) −2.17283 3.76344i −0.821251 1.42245i −0.904751 0.425940i \(-0.859943\pi\)
0.0835003 0.996508i \(-0.473390\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −2.22896 + 0.178114i −0.704860 + 0.0563246i
\(11\) −2.04055 1.17811i −0.615250 0.355215i 0.159767 0.987155i \(-0.448926\pi\)
−0.775017 + 0.631940i \(0.782259\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −3.18419 1.69144i −0.883134 0.469120i
\(14\) 4.34565 1.16142
\(15\) −0.178114 2.22896i −0.0459888 0.575516i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.60564 1.50437i 0.631962 0.364863i −0.149550 0.988754i \(-0.547782\pi\)
0.781511 + 0.623891i \(0.214449\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0.585872 0.338254i 0.134408 0.0776007i −0.431288 0.902214i \(-0.641941\pi\)
0.565696 + 0.824614i \(0.308607\pi\)
\(20\) 0.960230 2.01940i 0.214714 0.451551i
\(21\) 4.34565i 0.948299i
\(22\) 2.04055 1.17811i 0.435047 0.251175i
\(23\) −5.58405 3.22396i −1.16436 0.672241i −0.212012 0.977267i \(-0.568002\pi\)
−0.952344 + 0.305026i \(0.901335\pi\)
\(24\) −0.866025 0.500000i −0.176777 0.102062i
\(25\) −1.78064 + 4.67219i −0.356127 + 0.934438i
\(26\) 3.05692 1.91187i 0.599511 0.374948i
\(27\) 1.00000i 0.192450i
\(28\) −2.17283 + 3.76344i −0.410625 + 0.711224i
\(29\) 4.82620 8.35922i 0.896202 1.55227i 0.0638921 0.997957i \(-0.479649\pi\)
0.832310 0.554311i \(-0.187018\pi\)
\(30\) 2.01940 + 0.960230i 0.368689 + 0.175313i
\(31\) 7.11493i 1.27788i −0.769257 0.638939i \(-0.779374\pi\)
0.769257 0.638939i \(-0.220626\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 1.17811 + 2.04055i 0.205083 + 0.355215i
\(34\) 3.00874i 0.515995i
\(35\) 4.17283 8.77559i 0.705336 1.48335i
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 3.74165 6.48073i 0.615123 1.06542i −0.375240 0.926928i \(-0.622440\pi\)
0.990363 0.138497i \(-0.0442271\pi\)
\(38\) 0.676507i 0.109744i
\(39\) 1.91187 + 3.05692i 0.306144 + 0.489499i
\(40\) 1.26873 + 1.84128i 0.200604 + 0.291132i
\(41\) −2.60564 1.50437i −0.406933 0.234943i 0.282538 0.959256i \(-0.408824\pi\)
−0.689471 + 0.724313i \(0.742157\pi\)
\(42\) −3.76344 2.17283i −0.580712 0.335274i
\(43\) −5.91710 + 3.41624i −0.902349 + 0.520971i −0.877961 0.478731i \(-0.841097\pi\)
−0.0243872 + 0.999703i \(0.507763\pi\)
\(44\) 2.35623i 0.355215i
\(45\) −0.960230 + 2.01940i −0.143143 + 0.301034i
\(46\) 5.58405 3.22396i 0.823324 0.475346i
\(47\) 5.61529 0.819074 0.409537 0.912294i \(-0.365690\pi\)
0.409537 + 0.912294i \(0.365690\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) −5.94234 + 10.2924i −0.848906 + 1.47035i
\(50\) −3.15592 3.87817i −0.446314 0.548456i
\(51\) −3.00874 −0.421308
\(52\) 0.127265 + 3.60330i 0.0176485 + 0.499688i
\(53\) 9.43400i 1.29586i 0.761700 + 0.647930i \(0.224365\pi\)
−0.761700 + 0.647930i \(0.775635\pi\)
\(54\) 0.866025 + 0.500000i 0.117851 + 0.0680414i
\(55\) −0.419677 5.25194i −0.0565892 0.708172i
\(56\) −2.17283 3.76344i −0.290356 0.502911i
\(57\) −0.676507 −0.0896056
\(58\) 4.82620 + 8.35922i 0.633711 + 1.09762i
\(59\) −4.56364 + 2.63482i −0.594135 + 0.343024i −0.766731 0.641969i \(-0.778118\pi\)
0.172596 + 0.984993i \(0.444785\pi\)
\(60\) −1.84128 + 1.26873i −0.237708 + 0.163793i
\(61\) 2.15646 + 3.73509i 0.276106 + 0.478230i 0.970414 0.241449i \(-0.0776225\pi\)
−0.694307 + 0.719679i \(0.744289\pi\)
\(62\) 6.16171 + 3.55746i 0.782538 + 0.451798i
\(63\) 2.17283 3.76344i 0.273750 0.474149i
\(64\) 1.00000 0.125000
\(65\) −0.925468 8.00896i −0.114790 0.993390i
\(66\) −2.35623 −0.290032
\(67\) −2.91329 + 5.04596i −0.355915 + 0.616463i −0.987274 0.159028i \(-0.949164\pi\)
0.631359 + 0.775490i \(0.282497\pi\)
\(68\) −2.60564 1.50437i −0.315981 0.182432i
\(69\) 3.22396 + 5.58405i 0.388119 + 0.672241i
\(70\) 5.51347 + 8.00157i 0.658986 + 0.956370i
\(71\) 2.52520 1.45793i 0.299686 0.173024i −0.342616 0.939476i \(-0.611313\pi\)
0.642302 + 0.766452i \(0.277980\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) −7.67804 −0.898647 −0.449323 0.893369i \(-0.648335\pi\)
−0.449323 + 0.893369i \(0.648335\pi\)
\(74\) 3.74165 + 6.48073i 0.434958 + 0.753369i
\(75\) 3.87817 3.15592i 0.447812 0.364414i
\(76\) −0.585872 0.338254i −0.0672042 0.0388004i
\(77\) 10.2393i 1.16688i
\(78\) −3.60330 + 0.127265i −0.407994 + 0.0144099i
\(79\) −3.74519 −0.421367 −0.210683 0.977554i \(-0.567569\pi\)
−0.210683 + 0.977554i \(0.567569\pi\)
\(80\) −2.22896 + 0.178114i −0.249206 + 0.0199137i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 2.60564 1.50437i 0.287745 0.166130i
\(83\) 10.3557 1.13668 0.568341 0.822793i \(-0.307585\pi\)
0.568341 + 0.822793i \(0.307585\pi\)
\(84\) 3.76344 2.17283i 0.410625 0.237075i
\(85\) 6.07583 + 2.88908i 0.659017 + 0.313365i
\(86\) 6.83247i 0.736765i
\(87\) −8.35922 + 4.82620i −0.896202 + 0.517422i
\(88\) −2.04055 1.17811i −0.217524 0.125587i
\(89\) 4.15208 + 2.39720i 0.440119 + 0.254103i 0.703648 0.710549i \(-0.251553\pi\)
−0.263529 + 0.964651i \(0.584886\pi\)
\(90\) −1.26873 1.84128i −0.133736 0.194088i
\(91\) 0.553049 + 15.6587i 0.0579753 + 1.64148i
\(92\) 6.44791i 0.672241i
\(93\) −3.55746 + 6.16171i −0.368892 + 0.638939i
\(94\) −2.80764 + 4.86298i −0.289586 + 0.501578i
\(95\) 1.36614 + 0.649603i 0.140163 + 0.0666478i
\(96\) 1.00000i 0.102062i
\(97\) −8.17066 14.1520i −0.829605 1.43692i −0.898349 0.439283i \(-0.855232\pi\)
0.0687436 0.997634i \(-0.478101\pi\)
\(98\) −5.94234 10.2924i −0.600267 1.03969i
\(99\) 2.35623i 0.236810i
\(100\) 4.93655 0.794019i 0.493655 0.0794019i
\(101\) −6.11911 + 10.5986i −0.608875 + 1.05460i 0.382552 + 0.923934i \(0.375045\pi\)
−0.991426 + 0.130668i \(0.958288\pi\)
\(102\) 1.50437 2.60564i 0.148955 0.257997i
\(103\) 3.75144i 0.369640i 0.982772 + 0.184820i \(0.0591702\pi\)
−0.982772 + 0.184820i \(0.940830\pi\)
\(104\) −3.18419 1.69144i −0.312235 0.165859i
\(105\) −8.00157 + 5.51347i −0.780873 + 0.538060i
\(106\) −8.17008 4.71700i −0.793549 0.458156i
\(107\) 14.3904 + 8.30831i 1.39117 + 0.803194i 0.993445 0.114309i \(-0.0364654\pi\)
0.397728 + 0.917503i \(0.369799\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 11.1116i 1.06430i −0.846652 0.532148i \(-0.821385\pi\)
0.846652 0.532148i \(-0.178615\pi\)
\(110\) 4.75816 + 2.26252i 0.453672 + 0.215723i
\(111\) −6.48073 + 3.74165i −0.615123 + 0.355142i
\(112\) 4.34565 0.410625
\(113\) −13.5620 + 7.83002i −1.27581 + 0.736587i −0.976074 0.217437i \(-0.930230\pi\)
−0.299731 + 0.954024i \(0.596897\pi\)
\(114\) 0.338254 0.585872i 0.0316804 0.0548720i
\(115\) −1.14846 14.3722i −0.107095 1.34021i
\(116\) −9.65239 −0.896202
\(117\) −0.127265 3.60330i −0.0117657 0.333126i
\(118\) 5.26964i 0.485109i
\(119\) −11.3232 6.53747i −1.03800 0.599288i
\(120\) −0.178114 2.22896i −0.0162595 0.203476i
\(121\) −2.72410 4.71827i −0.247645 0.428934i
\(122\) −4.31292 −0.390473
\(123\) 1.50437 + 2.60564i 0.135644 + 0.234943i
\(124\) −6.16171 + 3.55746i −0.553338 + 0.319470i
\(125\) −10.8620 + 2.64911i −0.971523 + 0.236943i
\(126\) 2.17283 + 3.76344i 0.193571 + 0.335274i
\(127\) 11.7820 + 6.80236i 1.04549 + 0.603611i 0.921382 0.388658i \(-0.127061\pi\)
0.124103 + 0.992269i \(0.460395\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 6.83247 0.601566
\(130\) 7.39870 + 3.20300i 0.648909 + 0.280922i
\(131\) 10.2122 0.892246 0.446123 0.894972i \(-0.352804\pi\)
0.446123 + 0.894972i \(0.352804\pi\)
\(132\) 1.17811 2.04055i 0.102542 0.177607i
\(133\) −2.54600 1.46993i −0.220766 0.127459i
\(134\) −2.91329 5.04596i −0.251670 0.435905i
\(135\) 1.84128 1.26873i 0.158472 0.109195i
\(136\) 2.60564 1.50437i 0.223432 0.128999i
\(137\) −6.20689 10.7506i −0.530290 0.918489i −0.999375 0.0353365i \(-0.988750\pi\)
0.469085 0.883153i \(-0.344584\pi\)
\(138\) −6.44791 −0.548883
\(139\) −7.80915 13.5258i −0.662363 1.14725i −0.979993 0.199032i \(-0.936220\pi\)
0.317630 0.948215i \(-0.397113\pi\)
\(140\) −9.68629 + 0.774021i −0.818641 + 0.0654167i
\(141\) −4.86298 2.80764i −0.409537 0.236446i
\(142\) 2.91585i 0.244693i
\(143\) 4.50479 + 7.20280i 0.376710 + 0.602329i
\(144\) −1.00000 −0.0833333
\(145\) 21.5148 1.71923i 1.78671 0.142774i
\(146\) 3.83902 6.64938i 0.317720 0.550307i
\(147\) 10.2924 5.94234i 0.848906 0.490116i
\(148\) −7.48330 −0.615123
\(149\) 16.9104 9.76324i 1.38536 0.799836i 0.392569 0.919722i \(-0.371586\pi\)
0.992788 + 0.119886i \(0.0382530\pi\)
\(150\) 0.794019 + 4.93655i 0.0648314 + 0.403068i
\(151\) 11.5027i 0.936079i 0.883707 + 0.468040i \(0.155040\pi\)
−0.883707 + 0.468040i \(0.844960\pi\)
\(152\) 0.585872 0.338254i 0.0475205 0.0274360i
\(153\) 2.60564 + 1.50437i 0.210654 + 0.121621i
\(154\) −8.86753 5.11967i −0.714566 0.412555i
\(155\) 13.1006 9.02694i 1.05226 0.725061i
\(156\) 1.69144 3.18419i 0.135423 0.254939i
\(157\) 4.47595i 0.357220i 0.983920 + 0.178610i \(0.0571600\pi\)
−0.983920 + 0.178610i \(0.942840\pi\)
\(158\) 1.87260 3.24343i 0.148976 0.258033i
\(159\) 4.71700 8.17008i 0.374082 0.647930i
\(160\) 0.960230 2.01940i 0.0759129 0.159647i
\(161\) 28.0204i 2.20831i
\(162\) −0.500000 0.866025i −0.0392837 0.0680414i
\(163\) 3.87774 + 6.71645i 0.303728 + 0.526073i 0.976977 0.213343i \(-0.0684352\pi\)
−0.673249 + 0.739416i \(0.735102\pi\)
\(164\) 3.00874i 0.234943i
\(165\) −2.26252 + 4.75816i −0.176137 + 0.370422i
\(166\) −5.17783 + 8.96827i −0.401878 + 0.696073i
\(167\) 0.339021 0.587202i 0.0262342 0.0454390i −0.852610 0.522547i \(-0.824982\pi\)
0.878844 + 0.477108i \(0.158315\pi\)
\(168\) 4.34565i 0.335274i
\(169\) 7.27808 + 10.7717i 0.559852 + 0.828593i
\(170\) −5.53994 + 3.81729i −0.424894 + 0.292772i
\(171\) 0.585872 + 0.338254i 0.0448028 + 0.0258669i
\(172\) 5.91710 + 3.41624i 0.451174 + 0.260486i
\(173\) 0.625226 0.360974i 0.0475350 0.0274444i −0.476044 0.879421i \(-0.657930\pi\)
0.523579 + 0.851977i \(0.324596\pi\)
\(174\) 9.65239i 0.731746i
\(175\) 21.4525 3.45053i 1.62166 0.260835i
\(176\) 2.04055 1.17811i 0.153812 0.0888037i
\(177\) 5.26964 0.396090
\(178\) −4.15208 + 2.39720i −0.311211 + 0.179678i
\(179\) 3.18673 5.51958i 0.238187 0.412553i −0.722007 0.691886i \(-0.756780\pi\)
0.960194 + 0.279333i \(0.0901134\pi\)
\(180\) 2.22896 0.178114i 0.166137 0.0132758i
\(181\) 22.0214 1.63683 0.818417 0.574624i \(-0.194852\pi\)
0.818417 + 0.574624i \(0.194852\pi\)
\(182\) −13.8374 7.35040i −1.02569 0.544848i
\(183\) 4.31292i 0.318820i
\(184\) −5.58405 3.22396i −0.411662 0.237673i
\(185\) 16.6800 1.33288i 1.22634 0.0979953i
\(186\) −3.55746 6.16171i −0.260846 0.451798i
\(187\) −7.08928 −0.518419
\(188\) −2.80764 4.86298i −0.204768 0.354669i
\(189\) −3.76344 + 2.17283i −0.273750 + 0.158050i
\(190\) −1.24564 + 0.858307i −0.0903682 + 0.0622681i
\(191\) −0.293441 0.508255i −0.0212326 0.0367760i 0.855214 0.518275i \(-0.173426\pi\)
−0.876446 + 0.481499i \(0.840092\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 11.3135 19.5955i 0.814363 1.41052i −0.0954215 0.995437i \(-0.530420\pi\)
0.909784 0.415081i \(-0.136247\pi\)
\(194\) 16.3413 1.17324
\(195\) −3.20300 + 7.39870i −0.229372 + 0.529832i
\(196\) 11.8847 0.848906
\(197\) −0.823770 + 1.42681i −0.0586912 + 0.101656i −0.893878 0.448310i \(-0.852026\pi\)
0.835187 + 0.549966i \(0.185359\pi\)
\(198\) 2.04055 + 1.17811i 0.145016 + 0.0837249i
\(199\) −5.13665 8.89694i −0.364127 0.630687i 0.624508 0.781018i \(-0.285299\pi\)
−0.988636 + 0.150331i \(0.951966\pi\)
\(200\) −1.78064 + 4.67219i −0.125910 + 0.330374i
\(201\) 5.04596 2.91329i 0.355915 0.205488i
\(202\) −6.11911 10.5986i −0.430539 0.745716i
\(203\) −41.9459 −2.94403
\(204\) 1.50437 + 2.60564i 0.105327 + 0.182432i
\(205\) −0.535898 6.70637i −0.0374288 0.468393i
\(206\) −3.24884 1.87572i −0.226357 0.130688i
\(207\) 6.44791i 0.448161i
\(208\) 3.05692 1.91187i 0.211959 0.132564i
\(209\) −1.59401 −0.110260
\(210\) −0.774021 9.68629i −0.0534125 0.668418i
\(211\) 12.1905 21.1145i 0.839226 1.45358i −0.0513166 0.998682i \(-0.516342\pi\)
0.890543 0.454900i \(-0.150325\pi\)
\(212\) 8.17008 4.71700i 0.561124 0.323965i
\(213\) −2.91585 −0.199791
\(214\) −14.3904 + 8.30831i −0.983708 + 0.567944i
\(215\) −13.7975 6.56075i −0.940979 0.447439i
\(216\) 1.00000i 0.0680414i
\(217\) −26.7766 + 15.4595i −1.81772 + 1.04946i
\(218\) 9.62290 + 5.55578i 0.651745 + 0.376285i
\(219\) 6.64938 + 3.83902i 0.449323 + 0.259417i
\(220\) −4.33848 + 2.98942i −0.292500 + 0.201547i
\(221\) −10.8414 + 0.382907i −0.729272 + 0.0257571i
\(222\) 7.48330i 0.502246i
\(223\) 2.31792 4.01476i 0.155220 0.268848i −0.777919 0.628364i \(-0.783725\pi\)
0.933139 + 0.359516i \(0.117058\pi\)
\(224\) −2.17283 + 3.76344i −0.145178 + 0.251456i
\(225\) −4.93655 + 0.794019i −0.329103 + 0.0529346i
\(226\) 15.6600i 1.04169i
\(227\) −8.89213 15.4016i −0.590192 1.02224i −0.994206 0.107489i \(-0.965719\pi\)
0.404015 0.914753i \(-0.367615\pi\)
\(228\) 0.338254 + 0.585872i 0.0224014 + 0.0388004i
\(229\) 15.3361i 1.01344i −0.862111 0.506720i \(-0.830858\pi\)
0.862111 0.506720i \(-0.169142\pi\)
\(230\) 13.0209 + 6.19148i 0.858572 + 0.408254i
\(231\) 5.11967 8.86753i 0.336850 0.583441i
\(232\) 4.82620 8.35922i 0.316855 0.548809i
\(233\) 7.75548i 0.508079i −0.967194 0.254039i \(-0.918241\pi\)
0.967194 0.254039i \(-0.0817593\pi\)
\(234\) 3.18419 + 1.69144i 0.208157 + 0.110573i
\(235\) 7.12430 + 10.3393i 0.464738 + 0.674463i
\(236\) 4.56364 + 2.63482i 0.297068 + 0.171512i
\(237\) 3.24343 + 1.87260i 0.210683 + 0.121638i
\(238\) 11.3232 6.53747i 0.733975 0.423761i
\(239\) 18.6409i 1.20578i 0.797824 + 0.602890i \(0.205984\pi\)
−0.797824 + 0.602890i \(0.794016\pi\)
\(240\) 2.01940 + 0.960230i 0.130351 + 0.0619826i
\(241\) −2.65884 + 1.53508i −0.171271 + 0.0988833i −0.583185 0.812339i \(-0.698194\pi\)
0.411914 + 0.911223i \(0.364860\pi\)
\(242\) 5.44819 0.350223
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 2.15646 3.73509i 0.138053 0.239115i
\(245\) −26.4905 + 2.11683i −1.69242 + 0.135239i
\(246\) −3.00874 −0.191830
\(247\) −2.43766 + 0.0860957i −0.155105 + 0.00547814i
\(248\) 7.11493i 0.451798i
\(249\) −8.96827 5.17783i −0.568341 0.328132i
\(250\) 3.13679 10.7313i 0.198388 0.678706i
\(251\) −3.56404 6.17309i −0.224960 0.389642i 0.731347 0.682005i \(-0.238892\pi\)
−0.956307 + 0.292363i \(0.905558\pi\)
\(252\) −4.34565 −0.273750
\(253\) 7.59637 + 13.1573i 0.477580 + 0.827193i
\(254\) −11.7820 + 6.80236i −0.739270 + 0.426818i
\(255\) −3.81729 5.53994i −0.239048 0.346924i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 12.3353 + 7.12178i 0.769454 + 0.444244i 0.832680 0.553755i \(-0.186806\pi\)
−0.0632261 + 0.997999i \(0.520139\pi\)
\(258\) −3.41624 + 5.91710i −0.212686 + 0.368382i
\(259\) −32.5198 −2.02068
\(260\) −6.47323 + 4.80596i −0.401453 + 0.298053i
\(261\) 9.65239 0.597468
\(262\) −5.10611 + 8.84404i −0.315457 + 0.546387i
\(263\) 13.3385 + 7.70101i 0.822490 + 0.474865i 0.851274 0.524721i \(-0.175830\pi\)
−0.0287845 + 0.999586i \(0.509164\pi\)
\(264\) 1.17811 + 2.04055i 0.0725079 + 0.125587i
\(265\) −17.3707 + 11.9692i −1.06707 + 0.735264i
\(266\) 2.54600 1.46993i 0.156105 0.0901273i
\(267\) −2.39720 4.15208i −0.146706 0.254103i
\(268\) 5.82658 0.355915
\(269\) 13.3134 + 23.0595i 0.811732 + 1.40596i 0.911651 + 0.410966i \(0.134808\pi\)
−0.0999185 + 0.994996i \(0.531858\pi\)
\(270\) 0.178114 + 2.22896i 0.0108397 + 0.135650i
\(271\) −6.66899 3.85034i −0.405112 0.233892i 0.283575 0.958950i \(-0.408479\pi\)
−0.688687 + 0.725058i \(0.741813\pi\)
\(272\) 3.00874i 0.182432i
\(273\) 7.35040 13.8374i 0.444866 0.837475i
\(274\) 12.4138 0.749943
\(275\) 9.13785 7.43606i 0.551033 0.448411i
\(276\) 3.22396 5.58405i 0.194059 0.336121i
\(277\) 12.3861 7.15114i 0.744211 0.429671i −0.0793871 0.996844i \(-0.525296\pi\)
0.823599 + 0.567173i \(0.191963\pi\)
\(278\) 15.6183 0.936723
\(279\) 6.16171 3.55746i 0.368892 0.212980i
\(280\) 4.17283 8.77559i 0.249374 0.524442i
\(281\) 7.96746i 0.475299i 0.971351 + 0.237649i \(0.0763769\pi\)
−0.971351 + 0.237649i \(0.923623\pi\)
\(282\) 4.86298 2.80764i 0.289586 0.167193i
\(283\) −12.7095 7.33785i −0.755503 0.436190i 0.0721756 0.997392i \(-0.477006\pi\)
−0.827679 + 0.561202i \(0.810339\pi\)
\(284\) −2.52520 1.45793i −0.149843 0.0865120i
\(285\) −0.858307 1.24564i −0.0508417 0.0737854i
\(286\) −8.49021 + 0.299865i −0.502036 + 0.0177314i
\(287\) 13.0749i 0.771789i
\(288\) 0.500000 0.866025i 0.0294628 0.0510310i
\(289\) −3.97374 + 6.88273i −0.233750 + 0.404866i
\(290\) −9.26852 + 19.4920i −0.544266 + 1.14461i
\(291\) 16.3413i 0.957945i
\(292\) 3.83902 + 6.64938i 0.224662 + 0.389125i
\(293\) −3.43198 5.94436i −0.200498 0.347273i 0.748191 0.663484i \(-0.230923\pi\)
−0.948689 + 0.316210i \(0.897589\pi\)
\(294\) 11.8847i 0.693129i
\(295\) −10.6415 5.06006i −0.619571 0.294608i
\(296\) 3.74165 6.48073i 0.217479 0.376685i
\(297\) −1.17811 + 2.04055i −0.0683611 + 0.118405i
\(298\) 19.5265i 1.13114i
\(299\) 12.3275 + 19.7108i 0.712921 + 1.13990i
\(300\) −4.67219 1.78064i −0.269749 0.102805i
\(301\) 25.7136 + 14.8458i 1.48211 + 0.855696i
\(302\) −9.96166 5.75137i −0.573229 0.330954i
\(303\) 10.5986 6.11911i 0.608875 0.351534i
\(304\) 0.676507i 0.0388004i
\(305\) −4.14139 + 8.70948i −0.237135 + 0.498704i
\(306\) −2.60564 + 1.50437i −0.148955 + 0.0859991i
\(307\) 10.9917 0.627328 0.313664 0.949534i \(-0.398443\pi\)
0.313664 + 0.949534i \(0.398443\pi\)
\(308\) 8.86753 5.11967i 0.505275 0.291720i
\(309\) 1.87572 3.24884i 0.106706 0.184820i
\(310\) 1.26727 + 15.8589i 0.0719760 + 0.900725i
\(311\) −13.9044 −0.788446 −0.394223 0.919015i \(-0.628986\pi\)
−0.394223 + 0.919015i \(0.628986\pi\)
\(312\) 1.91187 + 3.05692i 0.108238 + 0.173064i
\(313\) 14.1734i 0.801130i −0.916268 0.400565i \(-0.868814\pi\)
0.916268 0.400565i \(-0.131186\pi\)
\(314\) −3.87629 2.23798i −0.218752 0.126296i
\(315\) 9.68629 0.774021i 0.545761 0.0436111i
\(316\) 1.87260 + 3.24343i 0.105342 + 0.182457i
\(317\) −3.20808 −0.180184 −0.0900920 0.995933i \(-0.528716\pi\)
−0.0900920 + 0.995933i \(0.528716\pi\)
\(318\) 4.71700 + 8.17008i 0.264516 + 0.458156i
\(319\) −19.6962 + 11.3716i −1.10278 + 0.636688i
\(320\) 1.26873 + 1.84128i 0.0709243 + 0.102931i
\(321\) −8.30831 14.3904i −0.463724 0.803194i
\(322\) −24.2664 14.0102i −1.35231 0.780757i
\(323\) 1.01772 1.76274i 0.0566273 0.0980813i
\(324\) 1.00000 0.0555556
\(325\) 13.5726 11.8653i 0.752872 0.658167i
\(326\) −7.75548 −0.429537
\(327\) −5.55578 + 9.62290i −0.307236 + 0.532148i
\(328\) −2.60564 1.50437i −0.143873 0.0830649i
\(329\) −12.2010 21.1328i −0.672665 1.16509i
\(330\) −2.98942 4.33848i −0.164562 0.238825i
\(331\) −22.3066 + 12.8787i −1.22608 + 0.707878i −0.966208 0.257765i \(-0.917014\pi\)
−0.259873 + 0.965643i \(0.583681\pi\)
\(332\) −5.17783 8.96827i −0.284170 0.492198i
\(333\) 7.48330 0.410082
\(334\) 0.339021 + 0.587202i 0.0185504 + 0.0321302i
\(335\) −12.9872 + 1.03779i −0.709568 + 0.0567008i
\(336\) −3.76344 2.17283i −0.205313 0.118537i
\(337\) 0.772078i 0.0420578i −0.999779 0.0210289i \(-0.993306\pi\)
0.999779 0.0210289i \(-0.00669420\pi\)
\(338\) −12.9676 + 0.917149i −0.705345 + 0.0498863i
\(339\) 15.6600 0.850537
\(340\) −0.535898 6.70637i −0.0290632 0.363704i
\(341\) −8.38219 + 14.5184i −0.453921 + 0.786215i
\(342\) −0.585872 + 0.338254i −0.0316804 + 0.0182907i
\(343\) 21.2271 1.14616
\(344\) −5.91710 + 3.41624i −0.319028 + 0.184191i
\(345\) −6.19148 + 13.0209i −0.333338 + 0.701021i
\(346\) 0.721948i 0.0388122i
\(347\) 21.7856 12.5779i 1.16951 0.675218i 0.215946 0.976405i \(-0.430716\pi\)
0.953565 + 0.301188i \(0.0973830\pi\)
\(348\) 8.35922 + 4.82620i 0.448101 + 0.258711i
\(349\) −23.6602 13.6602i −1.26650 0.731214i −0.292176 0.956365i \(-0.594379\pi\)
−0.974324 + 0.225151i \(0.927713\pi\)
\(350\) −7.73802 + 20.3037i −0.413614 + 1.08528i
\(351\) −1.69144 + 3.18419i −0.0902823 + 0.169959i
\(352\) 2.35623i 0.125587i
\(353\) 3.75948 6.51161i 0.200097 0.346578i −0.748462 0.663177i \(-0.769208\pi\)
0.948559 + 0.316599i \(0.102541\pi\)
\(354\) −2.63482 + 4.56364i −0.140039 + 0.242555i
\(355\) 5.88826 + 2.79989i 0.312516 + 0.148603i
\(356\) 4.79440i 0.254103i
\(357\) 6.53747 + 11.3232i 0.345999 + 0.599288i
\(358\) 3.18673 + 5.51958i 0.168424 + 0.291719i
\(359\) 10.8402i 0.572124i −0.958211 0.286062i \(-0.907654\pi\)
0.958211 0.286062i \(-0.0923463\pi\)
\(360\) −0.960230 + 2.01940i −0.0506086 + 0.106431i
\(361\) −9.27117 + 16.0581i −0.487956 + 0.845165i
\(362\) −11.0107 + 19.0711i −0.578708 + 1.00235i
\(363\) 5.44819i 0.285956i
\(364\) 13.2843 8.30831i 0.696287 0.435474i
\(365\) −9.74138 14.1374i −0.509887 0.739987i
\(366\) 3.73509 + 2.15646i 0.195237 + 0.112720i
\(367\) 6.50838 + 3.75761i 0.339735 + 0.196146i 0.660155 0.751130i \(-0.270491\pi\)
−0.320420 + 0.947276i \(0.603824\pi\)
\(368\) 5.58405 3.22396i 0.291089 0.168060i
\(369\) 3.00874i 0.156629i
\(370\) −7.18569 + 15.1117i −0.373566 + 0.785622i
\(371\) 35.5043 20.4984i 1.84329 1.06423i
\(372\) 7.11493 0.368892
\(373\) 19.8135 11.4393i 1.02590 0.592305i 0.110095 0.993921i \(-0.464885\pi\)
0.915808 + 0.401616i \(0.131551\pi\)
\(374\) 3.54464 6.13949i 0.183289 0.317466i
\(375\) 10.7313 + 3.13679i 0.554161 + 0.161983i
\(376\) 5.61529 0.289586
\(377\) −29.5066 + 18.4541i −1.51967 + 0.950434i
\(378\) 4.34565i 0.223516i
\(379\) −22.6152 13.0569i −1.16166 0.670687i −0.209962 0.977710i \(-0.567334\pi\)
−0.951702 + 0.307022i \(0.900667\pi\)
\(380\) −0.120495 1.50791i −0.00618128 0.0773541i
\(381\) −6.80236 11.7820i −0.348495 0.603611i
\(382\) 0.586882 0.0300275
\(383\) 6.84652 + 11.8585i 0.349841 + 0.605942i 0.986221 0.165434i \(-0.0529024\pi\)
−0.636380 + 0.771376i \(0.719569\pi\)
\(384\) 0.866025 0.500000i 0.0441942 0.0255155i
\(385\) −18.8535 + 12.9910i −0.960864 + 0.662082i
\(386\) 11.3135 + 19.5955i 0.575842 + 0.997387i
\(387\) −5.91710 3.41624i −0.300783 0.173657i
\(388\) −8.17066 + 14.1520i −0.414802 + 0.718459i
\(389\) 24.9403 1.26452 0.632261 0.774755i \(-0.282127\pi\)
0.632261 + 0.774755i \(0.282127\pi\)
\(390\) −4.80596 6.47323i −0.243359 0.327785i
\(391\) −19.4001 −0.981104
\(392\) −5.94234 + 10.2924i −0.300134 + 0.519847i
\(393\) −8.84404 5.10611i −0.446123 0.257569i
\(394\) −0.823770 1.42681i −0.0415009 0.0718817i
\(395\) −4.75165 6.89595i −0.239081 0.346973i
\(396\) −2.04055 + 1.17811i −0.102542 + 0.0592025i
\(397\) 14.5517 + 25.2043i 0.730328 + 1.26497i 0.956743 + 0.290934i \(0.0939662\pi\)
−0.226415 + 0.974031i \(0.572700\pi\)
\(398\) 10.2733 0.514954
\(399\) 1.46993 + 2.54600i 0.0735887 + 0.127459i
\(400\) −3.15592 3.87817i −0.157796 0.193908i
\(401\) −14.4596 8.34823i −0.722076 0.416891i 0.0934404 0.995625i \(-0.470214\pi\)
−0.815516 + 0.578734i \(0.803547\pi\)
\(402\) 5.82658i 0.290603i
\(403\) −12.0345 + 22.6552i −0.599479 + 1.12854i
\(404\) 12.2382 0.608875
\(405\) −2.22896 + 0.178114i −0.110758 + 0.00885055i
\(406\) 20.9730 36.3262i 1.04087 1.80284i
\(407\) −15.2701 + 8.81618i −0.756909 + 0.437002i
\(408\) −3.00874 −0.148955
\(409\) 21.3140 12.3056i 1.05391 0.608475i 0.130168 0.991492i \(-0.458448\pi\)
0.923741 + 0.383017i \(0.125115\pi\)
\(410\) 6.07583 + 2.88908i 0.300064 + 0.142682i
\(411\) 12.4138i 0.612326i
\(412\) 3.24884 1.87572i 0.160059 0.0924100i
\(413\) 19.8320 + 11.4500i 0.975868 + 0.563418i
\(414\) 5.58405 + 3.22396i 0.274441 + 0.158449i
\(415\) 13.1386 + 19.0677i 0.644947 + 0.935996i
\(416\) 0.127265 + 3.60330i 0.00623968 + 0.176667i
\(417\) 15.6183i 0.764831i
\(418\) 0.797003 1.38045i 0.0389827 0.0675200i
\(419\) −13.5527 + 23.4739i −0.662091 + 1.14678i 0.317974 + 0.948099i \(0.396998\pi\)
−0.980065 + 0.198676i \(0.936336\pi\)
\(420\) 8.77559 + 4.17283i 0.428205 + 0.203613i
\(421\) 32.9996i 1.60830i −0.594425 0.804151i \(-0.702620\pi\)
0.594425 0.804151i \(-0.297380\pi\)
\(422\) 12.1905 + 21.1145i 0.593422 + 1.02784i
\(423\) 2.80764 + 4.86298i 0.136512 + 0.236446i
\(424\) 9.43400i 0.458156i
\(425\) 2.38900 + 14.8528i 0.115883 + 0.720466i
\(426\) 1.45793 2.52520i 0.0706367 0.122346i
\(427\) 9.37121 16.2314i 0.453505 0.785493i
\(428\) 16.6166i 0.803194i
\(429\) −0.299865 8.49021i −0.0144776 0.409911i
\(430\) 12.5805 8.66858i 0.606686 0.418036i
\(431\) 7.45678 + 4.30517i 0.359180 + 0.207373i 0.668721 0.743513i \(-0.266842\pi\)
−0.309541 + 0.950886i \(0.600175\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) −2.99201 + 1.72744i −0.143787 + 0.0830155i −0.570168 0.821528i \(-0.693122\pi\)
0.426381 + 0.904544i \(0.359788\pi\)
\(434\) 30.9190i 1.48416i
\(435\) −19.4920 9.26852i −0.934570 0.444391i
\(436\) −9.62290 + 5.55578i −0.460853 + 0.266074i
\(437\) −4.36206 −0.208666
\(438\) −6.64938 + 3.83902i −0.317720 + 0.183436i
\(439\) −12.1229 + 20.9974i −0.578593 + 1.00215i 0.417049 + 0.908884i \(0.363064\pi\)
−0.995641 + 0.0932675i \(0.970269\pi\)
\(440\) −0.419677 5.25194i −0.0200073 0.250377i
\(441\) −11.8847 −0.565937
\(442\) 5.08909 9.58038i 0.242064 0.455692i
\(443\) 13.1629i 0.625390i −0.949854 0.312695i \(-0.898768\pi\)
0.949854 0.312695i \(-0.101232\pi\)
\(444\) 6.48073 + 3.74165i 0.307562 + 0.177571i
\(445\) 0.853950 + 10.6865i 0.0404811 + 0.506591i
\(446\) 2.31792 + 4.01476i 0.109757 + 0.190104i
\(447\) −19.5265 −0.923571
\(448\) −2.17283 3.76344i −0.102656 0.177806i
\(449\) 2.17774 1.25732i 0.102774 0.0593365i −0.447732 0.894168i \(-0.647768\pi\)
0.550506 + 0.834831i \(0.314435\pi\)
\(450\) 1.78064 4.67219i 0.0839399 0.220249i
\(451\) 3.54464 + 6.13949i 0.166910 + 0.289097i
\(452\) 13.5620 + 7.83002i 0.637903 + 0.368293i
\(453\) 5.75137 9.96166i 0.270223 0.468040i
\(454\) 17.7843 0.834657
\(455\) −28.1304 + 20.8850i −1.31877 + 0.979105i
\(456\) −0.676507 −0.0316804
\(457\) 5.38493 9.32698i 0.251897 0.436298i −0.712151 0.702026i \(-0.752279\pi\)
0.964048 + 0.265728i \(0.0856124\pi\)
\(458\) 13.2815 + 7.66806i 0.620602 + 0.358305i
\(459\) −1.50437 2.60564i −0.0702180 0.121621i
\(460\) −11.8724 + 8.18068i −0.553554 + 0.381426i
\(461\) 10.2984 5.94576i 0.479642 0.276922i −0.240625 0.970618i \(-0.577352\pi\)
0.720267 + 0.693697i \(0.244019\pi\)
\(462\) 5.11967 + 8.86753i 0.238189 + 0.412555i
\(463\) 29.9462 1.39172 0.695860 0.718178i \(-0.255024\pi\)
0.695860 + 0.718178i \(0.255024\pi\)
\(464\) 4.82620 + 8.35922i 0.224051 + 0.388067i
\(465\) −15.8589 + 1.26727i −0.735439 + 0.0587681i
\(466\) 6.71645 + 3.87774i 0.311133 + 0.179633i
\(467\) 21.8940i 1.01313i −0.862201 0.506566i \(-0.830915\pi\)
0.862201 0.506566i \(-0.169085\pi\)
\(468\) −3.05692 + 1.91187i −0.141306 + 0.0883761i
\(469\) 25.3203 1.16918
\(470\) −12.5163 + 1.00016i −0.577332 + 0.0461340i
\(471\) 2.23798 3.87629i 0.103121 0.178610i
\(472\) −4.56364 + 2.63482i −0.210059 + 0.121277i
\(473\) 16.0989 0.740227
\(474\) −3.24343 + 1.87260i −0.148976 + 0.0860112i
\(475\) 0.537159 + 3.33961i 0.0246466 + 0.153232i
\(476\) 13.0749i 0.599288i
\(477\) −8.17008 + 4.71700i −0.374082 + 0.215977i
\(478\) −16.1435 9.32045i −0.738386 0.426307i
\(479\) −7.90106 4.56168i −0.361009 0.208429i 0.308514 0.951220i \(-0.400168\pi\)
−0.669523 + 0.742791i \(0.733502\pi\)
\(480\) −1.84128 + 1.26873i −0.0840426 + 0.0579095i
\(481\) −22.8758 + 14.3071i −1.04305 + 0.652346i
\(482\) 3.07016i 0.139842i
\(483\) 14.0102 24.2664i 0.637486 1.10416i
\(484\) −2.72410 + 4.71827i −0.123823 + 0.214467i
\(485\) 15.6914 32.9996i 0.712511 1.49843i
\(486\) 1.00000i 0.0453609i
\(487\) −10.8587 18.8079i −0.492056 0.852265i 0.507902 0.861415i \(-0.330421\pi\)
−0.999958 + 0.00914916i \(0.997088\pi\)
\(488\) 2.15646 + 3.73509i 0.0976183 + 0.169080i
\(489\) 7.75548i 0.350715i
\(490\) 11.4120 23.9999i 0.515543 1.08420i
\(491\) 16.5438 28.6548i 0.746613 1.29317i −0.202824 0.979215i \(-0.565012\pi\)
0.949437 0.313957i \(-0.101655\pi\)
\(492\) 1.50437 2.60564i 0.0678222 0.117472i
\(493\) 29.0415i 1.30796i
\(494\) 1.14427 2.15412i 0.0514831 0.0969187i
\(495\) 4.33848 2.98942i 0.195000 0.134365i
\(496\) 6.16171 + 3.55746i 0.276669 + 0.159735i
\(497\) −10.9736 6.33564i −0.492235 0.284192i
\(498\) 8.96827 5.17783i 0.401878 0.232024i
\(499\) 10.4889i 0.469546i 0.972050 + 0.234773i \(0.0754347\pi\)
−0.972050 + 0.234773i \(0.924565\pi\)
\(500\) 7.72518 + 8.08218i 0.345480 + 0.361446i
\(501\) −0.587202 + 0.339021i −0.0262342 + 0.0151463i
\(502\) 7.12807 0.318142
\(503\) 7.14818 4.12700i 0.318722 0.184014i −0.332101 0.943244i \(-0.607757\pi\)
0.650823 + 0.759230i \(0.274424\pi\)
\(504\) 2.17283 3.76344i 0.0967853 0.167637i
\(505\) −27.2786 + 2.17980i −1.21388 + 0.0969998i
\(506\) −15.1927 −0.675400
\(507\) −0.917149 12.9676i −0.0407320 0.575912i
\(508\) 13.6047i 0.603611i
\(509\) 5.84526 + 3.37476i 0.259087 + 0.149584i 0.623918 0.781490i \(-0.285540\pi\)
−0.364831 + 0.931074i \(0.618873\pi\)
\(510\) 6.70637 0.535898i 0.296963 0.0237300i
\(511\) 16.6830 + 28.8959i 0.738014 + 1.27828i
\(512\) 1.00000 0.0441942
\(513\) −0.338254 0.585872i −0.0149343 0.0258669i
\(514\) −12.3353 + 7.12178i −0.544086 + 0.314128i
\(515\) −6.90745 + 4.75957i −0.304379 + 0.209732i
\(516\) −3.41624 5.91710i −0.150391 0.260486i
\(517\) −11.4583 6.61545i −0.503935 0.290947i
\(518\) 16.2599 28.1630i 0.714419 1.23741i
\(519\) −0.721948 −0.0316900
\(520\) −0.925468 8.00896i −0.0405844 0.351216i
\(521\) −30.4048 −1.33206 −0.666029 0.745926i \(-0.732007\pi\)
−0.666029 + 0.745926i \(0.732007\pi\)
\(522\) −4.82620 + 8.35922i −0.211237 + 0.365873i
\(523\) 2.72235 + 1.57175i 0.119040 + 0.0687279i 0.558338 0.829614i \(-0.311439\pi\)
−0.439298 + 0.898342i \(0.644773\pi\)
\(524\) −5.10611 8.84404i −0.223062 0.386354i
\(525\) −20.3037 7.73802i −0.886126 0.337715i
\(526\) −13.3385 + 7.70101i −0.581588 + 0.335780i
\(527\) −10.7035 18.5390i −0.466251 0.807570i
\(528\) −2.35623 −0.102542
\(529\) 9.28778 + 16.0869i 0.403816 + 0.699431i
\(530\) −1.68033 21.0280i −0.0729887 0.913400i
\(531\) −4.56364 2.63482i −0.198045 0.114341i
\(532\) 2.93986i 0.127459i
\(533\) 5.75231 + 9.19748i 0.249160 + 0.398387i
\(534\) 4.79440 0.207474
\(535\) 2.95965 + 37.0378i 0.127957 + 1.60128i
\(536\) −2.91329 + 5.04596i −0.125835 + 0.217952i
\(537\) −5.51958 + 3.18673i −0.238187 + 0.137518i
\(538\) −26.6268 −1.14796
\(539\) 24.2513 14.0015i 1.04458 0.603088i
\(540\) −2.01940 0.960230i −0.0869009 0.0413217i
\(541\) 17.6144i 0.757301i −0.925540 0.378650i \(-0.876388\pi\)
0.925540 0.378650i \(-0.123612\pi\)
\(542\) 6.66899 3.85034i 0.286458 0.165386i
\(543\) −19.0711 11.0107i −0.818417 0.472513i
\(544\) −2.60564 1.50437i −0.111716 0.0644993i
\(545\) 20.4595 14.0976i 0.876390 0.603875i
\(546\) 8.30831 + 13.2843i 0.355563 + 0.568516i
\(547\) 40.8067i 1.74477i 0.488820 + 0.872385i \(0.337428\pi\)
−0.488820 + 0.872385i \(0.662572\pi\)
\(548\) −6.20689 + 10.7506i −0.265145 + 0.459245i
\(549\) −2.15646 + 3.73509i −0.0920354 + 0.159410i
\(550\) 1.87089 + 11.6316i 0.0797750 + 0.495975i
\(551\) 6.52991i 0.278184i
\(552\) 3.22396 + 5.58405i 0.137221 + 0.237673i
\(553\) 8.13765 + 14.0948i 0.346048 + 0.599373i
\(554\) 14.3023i 0.607646i
\(555\) −15.1117 7.18569i −0.641457 0.305015i
\(556\) −7.80915 + 13.5258i −0.331182 + 0.573623i
\(557\) 12.6109 21.8427i 0.534340 0.925504i −0.464855 0.885387i \(-0.653894\pi\)
0.999195 0.0401170i \(-0.0127731\pi\)
\(558\) 7.11493i 0.301199i
\(559\) 24.6195 0.869535i 1.04129 0.0367774i
\(560\) 5.51347 + 8.00157i 0.232987 + 0.338128i
\(561\) 6.13949 + 3.54464i 0.259210 + 0.149655i
\(562\) −6.90002 3.98373i −0.291060 0.168043i
\(563\) −31.5356 + 18.2071i −1.32907 + 0.767337i −0.985155 0.171664i \(-0.945086\pi\)
−0.343912 + 0.939002i \(0.611752\pi\)
\(564\) 5.61529i 0.236446i
\(565\) −31.6238 15.0372i −1.33042 0.632622i
\(566\) 12.7095 7.33785i 0.534222 0.308433i
\(567\) 4.34565 0.182500
\(568\) 2.52520 1.45793i 0.105955 0.0611732i
\(569\) −13.6768 + 23.6888i −0.573360 + 0.993088i 0.422858 + 0.906196i \(0.361027\pi\)
−0.996218 + 0.0868922i \(0.972306\pi\)
\(570\) 1.50791 0.120495i 0.0631594 0.00504700i
\(571\) 45.7020 1.91257 0.956285 0.292438i \(-0.0944664\pi\)
0.956285 + 0.292438i \(0.0944664\pi\)
\(572\) 3.98541 7.50267i 0.166638 0.313702i
\(573\) 0.586882i 0.0245174i
\(574\) −11.3232 6.53747i −0.472622 0.272869i
\(575\) 25.0061 20.3491i 1.04283 0.848615i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 31.1697 1.29761 0.648806 0.760954i \(-0.275269\pi\)
0.648806 + 0.760954i \(0.275269\pi\)
\(578\) −3.97374 6.88273i −0.165286 0.286284i
\(579\) −19.5955 + 11.3135i −0.814363 + 0.470173i
\(580\) −12.2463 17.7728i −0.508500 0.737974i
\(581\) −22.5011 38.9730i −0.933501 1.61687i
\(582\) −14.1520 8.17066i −0.586619 0.338685i
\(583\) 11.1143 19.2506i 0.460308 0.797278i
\(584\) −7.67804 −0.317720
\(585\) 6.47323 4.80596i 0.267635 0.198702i
\(586\) 6.86396 0.283547
\(587\) 7.61411 13.1880i 0.314268 0.544328i −0.665014 0.746831i \(-0.731574\pi\)
0.979282 + 0.202503i \(0.0649076\pi\)
\(588\) −10.2924 5.94234i −0.424453 0.245058i
\(589\) −2.40665 4.16844i −0.0991643 0.171758i
\(590\) 9.70288 6.68576i 0.399461 0.275248i
\(591\) 1.42681 0.823770i 0.0586912 0.0338854i
\(592\) 3.74165 + 6.48073i 0.153781 + 0.266356i
\(593\) −15.1921 −0.623865 −0.311933 0.950104i \(-0.600976\pi\)
−0.311933 + 0.950104i \(0.600976\pi\)
\(594\) −1.17811 2.04055i −0.0483386 0.0837249i
\(595\) −2.32883 29.1435i −0.0954726 1.19477i
\(596\) −16.9104 9.76324i −0.692678 0.399918i
\(597\) 10.2733i 0.420458i
\(598\) −23.2338 + 0.820594i −0.950100 + 0.0335566i
\(599\) 4.34655 0.177595 0.0887975 0.996050i \(-0.471698\pi\)
0.0887975 + 0.996050i \(0.471698\pi\)
\(600\) 3.87817 3.15592i 0.158326 0.128840i
\(601\) −5.14622 + 8.91351i −0.209918 + 0.363590i −0.951689 0.307065i \(-0.900653\pi\)
0.741770 + 0.670654i \(0.233987\pi\)
\(602\) −25.7136 + 14.8458i −1.04801 + 0.605069i
\(603\) −5.82658 −0.237277
\(604\) 9.96166 5.75137i 0.405334 0.234020i
\(605\) 5.23152 11.0021i 0.212691 0.447297i
\(606\) 12.2382i 0.497144i
\(607\) −37.6094 + 21.7138i −1.52652 + 0.881335i −0.527012 + 0.849858i \(0.676688\pi\)
−0.999504 + 0.0314772i \(0.989979\pi\)
\(608\) −0.585872 0.338254i −0.0237603 0.0137180i
\(609\) 36.3262 + 20.9730i 1.47201 + 0.849867i
\(610\) −5.47194 7.94129i −0.221552 0.321534i
\(611\) −17.8801 9.49791i −0.723352 0.384244i
\(612\) 3.00874i 0.121621i
\(613\) 16.3258 28.2771i 0.659392 1.14210i −0.321382 0.946950i \(-0.604147\pi\)
0.980773 0.195150i \(-0.0625194\pi\)
\(614\) −5.49584 + 9.51907i −0.221794 + 0.384159i
\(615\) −2.88908 + 6.07583i −0.116499 + 0.245001i
\(616\) 10.2393i 0.412555i
\(617\) −4.83488 8.37426i −0.194645 0.337135i 0.752139 0.659004i \(-0.229022\pi\)
−0.946784 + 0.321869i \(0.895689\pi\)
\(618\) 1.87572 + 3.24884i 0.0754525 + 0.130688i
\(619\) 5.20064i 0.209031i 0.994523 + 0.104516i \(0.0333292\pi\)
−0.994523 + 0.104516i \(0.966671\pi\)
\(620\) −14.3678 6.83197i −0.577027 0.274378i
\(621\) −3.22396 + 5.58405i −0.129373 + 0.224080i
\(622\) 6.95220 12.0416i 0.278758 0.482823i
\(623\) 20.8348i 0.834729i
\(624\) −3.60330 + 0.127265i −0.144248 + 0.00509468i
\(625\) −18.6587 16.6389i −0.746347 0.665557i
\(626\) 12.2746 + 7.08672i 0.490590 + 0.283242i
\(627\) 1.38045 + 0.797003i 0.0551298 + 0.0318292i
\(628\) 3.87629 2.23798i 0.154681 0.0893050i
\(629\) 22.5153i 0.897743i
\(630\) −4.17283 + 8.77559i −0.166249 + 0.349628i
\(631\) −6.86811 + 3.96531i −0.273415 + 0.157856i −0.630439 0.776239i \(-0.717125\pi\)
0.357023 + 0.934095i \(0.383792\pi\)
\(632\) −3.74519 −0.148976
\(633\) −21.1145 + 12.1905i −0.839226 + 0.484527i
\(634\) 1.60404 2.77828i 0.0637046 0.110340i
\(635\) 2.42319 + 30.3244i 0.0961613 + 1.20339i
\(636\) −9.43400 −0.374082
\(637\) 36.3305 22.7219i 1.43947 0.900276i
\(638\) 22.7432i 0.900413i
\(639\) 2.52520 + 1.45793i 0.0998954 + 0.0576746i
\(640\) −2.22896 + 0.178114i −0.0881075 + 0.00704057i
\(641\) −1.69937 2.94340i −0.0671212 0.116257i 0.830512 0.557001i \(-0.188048\pi\)
−0.897633 + 0.440744i \(0.854715\pi\)
\(642\) 16.6166 0.655805
\(643\) 4.69916 + 8.13918i 0.185317 + 0.320978i 0.943683 0.330851i \(-0.107336\pi\)
−0.758367 + 0.651828i \(0.774002\pi\)
\(644\) 24.2664 14.0102i 0.956228 0.552079i
\(645\) 8.66858 + 12.5805i 0.341325 + 0.495357i
\(646\) 1.01772 + 1.76274i 0.0400415 + 0.0693540i
\(647\) −34.6972 20.0324i −1.36409 0.787555i −0.373921 0.927461i \(-0.621987\pi\)
−0.990165 + 0.139905i \(0.955320\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) 12.4165 0.487389
\(650\) 3.48934 + 17.6868i 0.136863 + 0.693735i
\(651\) 30.9190 1.21181
\(652\) 3.87774 6.71645i 0.151864 0.263036i
\(653\) 27.1900 + 15.6981i 1.06403 + 0.614316i 0.926543 0.376189i \(-0.122766\pi\)
0.137483 + 0.990504i \(0.456099\pi\)
\(654\) −5.55578 9.62290i −0.217248 0.376285i
\(655\) 12.9566 + 18.8036i 0.506255 + 0.734717i
\(656\) 2.60564 1.50437i 0.101733 0.0587358i
\(657\) −3.83902 6.64938i −0.149774 0.259417i
\(658\) 24.4021 0.951292
\(659\) 9.48950 + 16.4363i 0.369659 + 0.640268i 0.989512 0.144450i \(-0.0461413\pi\)
−0.619853 + 0.784718i \(0.712808\pi\)
\(660\) 5.25194 0.419677i 0.204432 0.0163359i
\(661\) 11.4484 + 6.60972i 0.445290 + 0.257088i 0.705839 0.708372i \(-0.250570\pi\)
−0.260549 + 0.965461i \(0.583904\pi\)
\(662\) 25.7574i 1.00109i
\(663\) 9.58038 + 5.08909i 0.372071 + 0.197644i
\(664\) 10.3557 0.401878
\(665\) −0.523631 6.55285i −0.0203055 0.254109i
\(666\) −3.74165 + 6.48073i −0.144986 + 0.251123i
\(667\) −53.8995 + 31.1189i −2.08700 + 1.20493i
\(668\) −0.678042 −0.0262342
\(669\) −4.01476 + 2.31792i −0.155220 + 0.0896161i
\(670\) 5.59485 11.7662i 0.216148 0.454566i
\(671\) 10.1622i 0.392308i
\(672\) 3.76344 2.17283i 0.145178 0.0838186i
\(673\) 7.44817 + 4.30020i 0.287106 + 0.165761i 0.636636 0.771164i \(-0.280325\pi\)
−0.349530 + 0.936925i \(0.613659\pi\)
\(674\) 0.668639 + 0.386039i 0.0257550 + 0.0148697i
\(675\) 4.67219 + 1.78064i 0.179833 + 0.0685367i
\(676\) 5.68953 11.6889i 0.218828 0.449571i
\(677\) 25.8539i 0.993646i 0.867852 + 0.496823i \(0.165500\pi\)
−0.867852 + 0.496823i \(0.834500\pi\)
\(678\) −7.83002 + 13.5620i −0.300710 + 0.520845i
\(679\) −35.5068 + 61.4997i −1.36263 + 2.36014i
\(680\) 6.07583 + 2.88908i 0.232998 + 0.110791i
\(681\) 17.7843i 0.681495i
\(682\) −8.38219 14.5184i −0.320971 0.555938i
\(683\) 10.4524 + 18.1041i 0.399950 + 0.692734i 0.993719 0.111901i \(-0.0356941\pi\)
−0.593769 + 0.804636i \(0.702361\pi\)
\(684\) 0.676507i 0.0258669i
\(685\) 11.9201 25.0683i 0.455443 0.957811i
\(686\) −10.6136 + 18.3832i −0.405228 + 0.701875i
\(687\) −7.66806 + 13.2815i −0.292555 + 0.506720i
\(688\) 6.83247i 0.260486i
\(689\) 15.9570 30.0396i 0.607914 1.14442i
\(690\) −8.18068 11.8724i −0.311433 0.451975i
\(691\) −42.3440 24.4473i −1.61084 0.930019i −0.989176 0.146736i \(-0.953123\pi\)
−0.621665 0.783283i \(-0.713543\pi\)
\(692\) −0.625226 0.360974i −0.0237675 0.0137222i
\(693\) −8.86753 + 5.11967i −0.336850 + 0.194480i
\(694\) 25.1558i 0.954902i
\(695\) 14.9972 31.5395i 0.568875 1.19636i
\(696\) −8.35922 + 4.82620i −0.316855 + 0.182936i
\(697\) −9.05251 −0.342888
\(698\) 23.6602 13.6602i 0.895551 0.517046i
\(699\) −3.87774 + 6.71645i −0.146670 + 0.254039i
\(700\) −13.7145 16.8532i −0.518360 0.636990i
\(701\) 31.9805 1.20789 0.603944 0.797027i \(-0.293595\pi\)
0.603944 + 0.797027i \(0.293595\pi\)
\(702\) −1.91187 3.05692i −0.0721588 0.115376i
\(703\) 5.06250i 0.190936i
\(704\) −2.04055 1.17811i −0.0769062 0.0444018i
\(705\) −1.00016 12.5163i −0.0376682 0.471390i
\(706\) 3.75948 + 6.51161i 0.141490 + 0.245068i
\(707\) 53.1831 2.00016
\(708\) −2.63482 4.56364i −0.0990225 0.171512i
\(709\) −5.42026 + 3.12939i −0.203562 + 0.117527i −0.598316 0.801260i \(-0.704163\pi\)
0.394754 + 0.918787i \(0.370830\pi\)
\(710\) −5.36890 + 3.69944i −0.201491 + 0.138837i
\(711\) −1.87260 3.24343i −0.0702278 0.121638i
\(712\) 4.15208 + 2.39720i 0.155606 + 0.0898389i
\(713\) −22.9382 + 39.7301i −0.859043 + 1.48791i
\(714\) −13.0749 −0.489317
\(715\) −7.54701 + 17.4330i −0.282242 + 0.651958i
\(716\) −6.37346 −0.238187
\(717\) 9.32045 16.1435i 0.348079 0.602890i
\(718\) 9.38789 + 5.42010i 0.350353 + 0.202276i
\(719\) −9.52308 16.4945i −0.355151 0.615140i 0.631993 0.774974i \(-0.282237\pi\)
−0.987144 + 0.159835i \(0.948904\pi\)
\(720\) −1.26873 1.84128i −0.0472829 0.0686205i
\(721\) 14.1183 8.15122i 0.525794 0.303567i
\(722\) −9.27117 16.0581i −0.345037 0.597622i
\(723\) 3.07016 0.114181
\(724\) −11.0107 19.0711i −0.409209 0.708770i
\(725\) 30.4621 + 37.4336i 1.13134 + 1.39025i
\(726\) −4.71827 2.72410i −0.175111 0.101101i
\(727\) 28.2602i 1.04811i −0.851684 0.524056i \(-0.824418\pi\)
0.851684 0.524056i \(-0.175582\pi\)
\(728\) 0.553049 + 15.6587i 0.0204974 + 0.580350i
\(729\) −1.00000 −0.0370370
\(730\) 17.1141 1.36757i 0.633420 0.0506159i
\(731\) −10.2786 + 17.8030i −0.380166 + 0.658468i
\(732\) −3.73509 + 2.15646i −0.138053 + 0.0797050i
\(733\) −5.28165 −0.195082 −0.0975410 0.995232i \(-0.531098\pi\)
−0.0975410 + 0.995232i \(0.531098\pi\)
\(734\) −6.50838 + 3.75761i −0.240229 + 0.138696i
\(735\) 23.9999 + 11.4120i 0.885249 + 0.420939i
\(736\) 6.44791i 0.237673i
\(737\) 11.8894 6.86437i 0.437953 0.252852i
\(738\) 2.60564 + 1.50437i 0.0959151 + 0.0553766i
\(739\) 34.5736 + 19.9611i 1.27181 + 0.734280i 0.975329 0.220758i \(-0.0708533\pi\)
0.296482 + 0.955038i \(0.404187\pi\)
\(740\) −9.49430 13.7789i −0.349018 0.506521i
\(741\) 2.15412 + 1.14427i 0.0791337 + 0.0420358i
\(742\) 40.9969i 1.50504i
\(743\) −9.28543 + 16.0828i −0.340650 + 0.590022i −0.984553 0.175084i \(-0.943980\pi\)
0.643904 + 0.765106i \(0.277314\pi\)
\(744\) −3.55746 + 6.16171i −0.130423 + 0.225899i
\(745\) 39.4317 + 18.7499i 1.44467 + 0.686944i
\(746\) 22.8786i 0.837646i
\(747\) 5.17783 + 8.96827i 0.189447 + 0.328132i
\(748\) 3.54464 + 6.13949i 0.129605 + 0.224482i
\(749\) 72.2100i 2.63850i
\(750\) −8.08218 + 7.72518i −0.295120 + 0.282084i
\(751\) 15.1001 26.1541i 0.551010 0.954377i −0.447192 0.894438i \(-0.647576\pi\)
0.998202 0.0599394i \(-0.0190907\pi\)
\(752\) −2.80764 + 4.86298i −0.102384 + 0.177335i
\(753\) 7.12807i 0.259761i
\(754\) −1.22841 34.7805i −0.0447361 1.26663i
\(755\) −21.1798 + 14.5939i −0.770811 + 0.531126i
\(756\) 3.76344 + 2.17283i 0.136875 + 0.0790249i
\(757\) −4.85341 2.80211i −0.176400 0.101845i 0.409200 0.912445i \(-0.365808\pi\)
−0.585600 + 0.810600i \(0.699141\pi\)
\(758\) 22.6152 13.0569i 0.821421 0.474247i
\(759\) 15.1927i 0.551462i
\(760\) 1.36614 + 0.649603i 0.0495549 + 0.0235636i
\(761\) −5.77640 + 3.33501i −0.209394 + 0.120894i −0.601030 0.799227i \(-0.705243\pi\)
0.391635 + 0.920120i \(0.371909\pi\)
\(762\) 13.6047 0.492847
\(763\) −41.8178 + 24.1435i −1.51391 + 0.874053i
\(764\) −0.293441 + 0.508255i −0.0106163 + 0.0183880i
\(765\) 0.535898 + 6.70637i 0.0193754 + 0.242469i
\(766\) −13.6930 −0.494750
\(767\) 18.9881 0.670640i 0.685621 0.0242154i
\(768\) 1.00000i