Properties

Label 390.2.x.a.199.1
Level $390$
Weight $2$
Character 390.199
Analytic conductor $3.114$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,2,Mod(49,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.x (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + \cdots + 2197 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.1
Root \(-2.39378 - 0.0429626i\) of defining polynomial
Character \(\chi\) \(=\) 390.199
Dual form 390.2.x.a.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.10012 + 0.767774i) q^{5} +(0.866025 - 0.500000i) q^{6} +(-0.823063 - 1.42559i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.10012 + 0.767774i) q^{5} +(0.866025 - 0.500000i) q^{6} +(-0.823063 - 1.42559i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(0.385150 - 2.20265i) q^{10} +(2.08305 + 1.20265i) q^{11} +1.00000i q^{12} +(3.59643 - 0.256262i) q^{13} +1.64613 q^{14} +(2.20265 + 0.385150i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.210702 + 0.121649i) q^{17} -1.00000 q^{18} +(3.82681 - 2.20941i) q^{19} +(1.71497 + 1.43487i) q^{20} +1.64613i q^{21} +(-2.08305 + 1.20265i) q^{22} +(7.46758 + 4.31141i) q^{23} +(-0.866025 - 0.500000i) q^{24} +(3.82105 - 3.22484i) q^{25} +(-1.57629 + 3.24273i) q^{26} -1.00000i q^{27} +(-0.823063 + 1.42559i) q^{28} +(0.0221633 - 0.0383880i) q^{29} +(-1.43487 + 1.71497i) q^{30} -4.24458i q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.20265 - 2.08305i) q^{33} -0.243297i q^{34} +(2.82306 + 2.36198i) q^{35} +(0.500000 - 0.866025i) q^{36} +(-4.47415 + 7.74945i) q^{37} +4.41882i q^{38} +(-3.24273 - 1.57629i) q^{39} +(-2.10012 + 0.767774i) q^{40} +(0.210702 + 0.121649i) q^{41} +(-1.42559 - 0.823063i) q^{42} +(5.82728 - 3.36438i) q^{43} -2.40530i q^{44} +(-1.71497 - 1.43487i) q^{45} +(-7.46758 + 4.31141i) q^{46} +7.29560 q^{47} +(0.866025 - 0.500000i) q^{48} +(2.14514 - 3.71548i) q^{49} +(0.882273 + 4.92154i) q^{50} +0.243297 q^{51} +(-2.02015 - 2.98647i) q^{52} -2.44613i q^{53} +(0.866025 + 0.500000i) q^{54} +(-5.29802 - 0.926401i) q^{55} +(-0.823063 - 1.42559i) q^{56} -4.41882 q^{57} +(0.0221633 + 0.0383880i) q^{58} +(-8.35669 + 4.82474i) q^{59} +(-0.767774 - 2.10012i) q^{60} +(1.31630 + 2.27990i) q^{61} +(3.67591 + 2.12229i) q^{62} +(0.823063 - 1.42559i) q^{63} +1.00000 q^{64} +(-7.35621 + 3.29943i) q^{65} +2.40530 q^{66} +(-0.937098 + 1.62310i) q^{67} +(0.210702 + 0.121649i) q^{68} +(-4.31141 - 7.46758i) q^{69} +(-3.45707 + 1.26385i) q^{70} +(-6.53035 + 3.77030i) q^{71} +(0.500000 + 0.866025i) q^{72} -1.70370 q^{73} +(-4.47415 - 7.74945i) q^{74} +(-4.92154 + 0.882273i) q^{75} +(-3.82681 - 2.20941i) q^{76} -3.95942i q^{77} +(2.98647 - 2.02015i) q^{78} +6.79707 q^{79} +(0.385150 - 2.20265i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-0.210702 + 0.121649i) q^{82} +17.4986 q^{83} +(1.42559 - 0.823063i) q^{84} +(0.349101 - 0.417249i) q^{85} +6.72876i q^{86} +(-0.0383880 + 0.0221633i) q^{87} +(2.08305 + 1.20265i) q^{88} +(-8.69772 - 5.02163i) q^{89} +(2.10012 - 0.767774i) q^{90} +(-3.32541 - 4.91611i) q^{91} -8.62281i q^{92} +(-2.12229 + 3.67591i) q^{93} +(-3.64780 + 6.31817i) q^{94} +(-6.34045 + 7.57816i) q^{95} +1.00000i q^{96} +(-8.25647 - 14.3006i) q^{97} +(2.14514 + 3.71548i) q^{98} +2.40530i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9} - 2 q^{10} + 6 q^{11} - 8 q^{13} + 4 q^{14} + 6 q^{15} - 6 q^{16} + 18 q^{17} - 12 q^{18} - 6 q^{19} + 4 q^{20} - 6 q^{22} + 6 q^{23} - 10 q^{25} - 2 q^{26} - 2 q^{28} + 14 q^{29} - 6 q^{30} - 6 q^{32} + 6 q^{33} + 26 q^{35} + 6 q^{36} - 12 q^{37} - 2 q^{39} - 2 q^{40} - 18 q^{41} - 12 q^{42} - 36 q^{43} - 4 q^{45} - 6 q^{46} + 16 q^{47} + 8 q^{49} - 10 q^{50} + 16 q^{51} + 10 q^{52} - 28 q^{55} - 2 q^{56} - 8 q^{57} + 14 q^{58} - 36 q^{59} + 10 q^{61} + 6 q^{62} + 2 q^{63} + 12 q^{64} + 6 q^{65} - 12 q^{66} + 4 q^{67} - 18 q^{68} + 16 q^{69} - 4 q^{70} - 12 q^{71} + 6 q^{72} + 28 q^{73} - 12 q^{74} - 8 q^{75} + 6 q^{76} - 2 q^{78} + 4 q^{79} - 2 q^{80} - 6 q^{81} + 18 q^{82} + 72 q^{83} + 12 q^{84} + 18 q^{85} + 6 q^{87} + 6 q^{88} + 18 q^{89} + 2 q^{90} + 2 q^{91} - 16 q^{93} - 8 q^{94} - 42 q^{95} - 48 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.10012 + 0.767774i −0.939204 + 0.343359i
\(6\) 0.866025 0.500000i 0.353553 0.204124i
\(7\) −0.823063 1.42559i −0.311088 0.538821i 0.667510 0.744601i \(-0.267360\pi\)
−0.978598 + 0.205780i \(0.934027\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0.385150 2.20265i 0.121795 0.696539i
\(11\) 2.08305 + 1.20265i 0.628063 + 0.362612i 0.780001 0.625778i \(-0.215218\pi\)
−0.151939 + 0.988390i \(0.548552\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 3.59643 0.256262i 0.997471 0.0710744i
\(14\) 1.64613 0.439946
\(15\) 2.20265 + 0.385150i 0.568721 + 0.0994454i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.210702 + 0.121649i −0.0511027 + 0.0295041i −0.525334 0.850896i \(-0.676059\pi\)
0.474231 + 0.880400i \(0.342726\pi\)
\(18\) −1.00000 −0.235702
\(19\) 3.82681 2.20941i 0.877930 0.506873i 0.00795483 0.999968i \(-0.497468\pi\)
0.869975 + 0.493095i \(0.164135\pi\)
\(20\) 1.71497 + 1.43487i 0.383480 + 0.320848i
\(21\) 1.64613i 0.359214i
\(22\) −2.08305 + 1.20265i −0.444107 + 0.256405i
\(23\) 7.46758 + 4.31141i 1.55710 + 0.898991i 0.997533 + 0.0702038i \(0.0223650\pi\)
0.559565 + 0.828787i \(0.310968\pi\)
\(24\) −0.866025 0.500000i −0.176777 0.102062i
\(25\) 3.82105 3.22484i 0.764209 0.644969i
\(26\) −1.57629 + 3.24273i −0.309135 + 0.635952i
\(27\) 1.00000i 0.192450i
\(28\) −0.823063 + 1.42559i −0.155544 + 0.269411i
\(29\) 0.0221633 0.0383880i 0.00411562 0.00712846i −0.863960 0.503560i \(-0.832023\pi\)
0.868076 + 0.496432i \(0.165357\pi\)
\(30\) −1.43487 + 1.71497i −0.261971 + 0.313110i
\(31\) 4.24458i 0.762348i −0.924503 0.381174i \(-0.875520\pi\)
0.924503 0.381174i \(-0.124480\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −1.20265 2.08305i −0.209354 0.362612i
\(34\) 0.243297i 0.0417251i
\(35\) 2.82306 + 2.36198i 0.477185 + 0.399248i
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) −4.47415 + 7.74945i −0.735545 + 1.27400i 0.218939 + 0.975739i \(0.429740\pi\)
−0.954484 + 0.298263i \(0.903593\pi\)
\(38\) 4.41882i 0.716827i
\(39\) −3.24273 1.57629i −0.519253 0.252408i
\(40\) −2.10012 + 0.767774i −0.332059 + 0.121396i
\(41\) 0.210702 + 0.121649i 0.0329061 + 0.0189983i 0.516363 0.856370i \(-0.327286\pi\)
−0.483457 + 0.875368i \(0.660619\pi\)
\(42\) −1.42559 0.823063i −0.219973 0.127001i
\(43\) 5.82728 3.36438i 0.888652 0.513063i 0.0151507 0.999885i \(-0.495177\pi\)
0.873501 + 0.486822i \(0.161844\pi\)
\(44\) 2.40530i 0.362612i
\(45\) −1.71497 1.43487i −0.255653 0.213898i
\(46\) −7.46758 + 4.31141i −1.10103 + 0.635682i
\(47\) 7.29560 1.06417 0.532086 0.846690i \(-0.321408\pi\)
0.532086 + 0.846690i \(0.321408\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) 2.14514 3.71548i 0.306448 0.530783i
\(50\) 0.882273 + 4.92154i 0.124772 + 0.696011i
\(51\) 0.243297 0.0340684
\(52\) −2.02015 2.98647i −0.280144 0.414149i
\(53\) 2.44613i 0.336002i −0.985787 0.168001i \(-0.946269\pi\)
0.985787 0.168001i \(-0.0537312\pi\)
\(54\) 0.866025 + 0.500000i 0.117851 + 0.0680414i
\(55\) −5.29802 0.926401i −0.714385 0.124916i
\(56\) −0.823063 1.42559i −0.109986 0.190502i
\(57\) −4.41882 −0.585287
\(58\) 0.0221633 + 0.0383880i 0.00291018 + 0.00504059i
\(59\) −8.35669 + 4.82474i −1.08795 + 0.628127i −0.933029 0.359800i \(-0.882845\pi\)
−0.154919 + 0.987927i \(0.549512\pi\)
\(60\) −0.767774 2.10012i −0.0991192 0.271125i
\(61\) 1.31630 + 2.27990i 0.168535 + 0.291911i 0.937905 0.346892i \(-0.112763\pi\)
−0.769370 + 0.638804i \(0.779430\pi\)
\(62\) 3.67591 + 2.12229i 0.466841 + 0.269531i
\(63\) 0.823063 1.42559i 0.103696 0.179607i
\(64\) 1.00000 0.125000
\(65\) −7.35621 + 3.29943i −0.912425 + 0.409244i
\(66\) 2.40530 0.296072
\(67\) −0.937098 + 1.62310i −0.114485 + 0.198293i −0.917574 0.397566i \(-0.869855\pi\)
0.803089 + 0.595859i \(0.203188\pi\)
\(68\) 0.210702 + 0.121649i 0.0255513 + 0.0147521i
\(69\) −4.31141 7.46758i −0.519032 0.898991i
\(70\) −3.45707 + 1.26385i −0.413199 + 0.151059i
\(71\) −6.53035 + 3.77030i −0.775010 + 0.447452i −0.834659 0.550767i \(-0.814335\pi\)
0.0596488 + 0.998219i \(0.481002\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) −1.70370 −0.199403 −0.0997015 0.995017i \(-0.531789\pi\)
−0.0997015 + 0.995017i \(0.531789\pi\)
\(74\) −4.47415 7.74945i −0.520109 0.900855i
\(75\) −4.92154 + 0.882273i −0.568291 + 0.101876i
\(76\) −3.82681 2.20941i −0.438965 0.253437i
\(77\) 3.95942i 0.451218i
\(78\) 2.98647 2.02015i 0.338151 0.228737i
\(79\) 6.79707 0.764730 0.382365 0.924011i \(-0.375110\pi\)
0.382365 + 0.924011i \(0.375110\pi\)
\(80\) 0.385150 2.20265i 0.0430611 0.246264i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −0.210702 + 0.121649i −0.0232681 + 0.0134338i
\(83\) 17.4986 1.92073 0.960363 0.278754i \(-0.0899214\pi\)
0.960363 + 0.278754i \(0.0899214\pi\)
\(84\) 1.42559 0.823063i 0.155544 0.0898035i
\(85\) 0.349101 0.417249i 0.0378653 0.0452570i
\(86\) 6.72876i 0.725581i
\(87\) −0.0383880 + 0.0221633i −0.00411562 + 0.00237615i
\(88\) 2.08305 + 1.20265i 0.222054 + 0.128203i
\(89\) −8.69772 5.02163i −0.921956 0.532292i −0.0376977 0.999289i \(-0.512002\pi\)
−0.884259 + 0.466997i \(0.845336\pi\)
\(90\) 2.10012 0.767774i 0.221373 0.0809305i
\(91\) −3.32541 4.91611i −0.348598 0.515348i
\(92\) 8.62281i 0.898991i
\(93\) −2.12229 + 3.67591i −0.220071 + 0.381174i
\(94\) −3.64780 + 6.31817i −0.376242 + 0.651670i
\(95\) −6.34045 + 7.57816i −0.650516 + 0.777503i
\(96\) 1.00000i 0.102062i
\(97\) −8.25647 14.3006i −0.838317 1.45201i −0.891301 0.453413i \(-0.850206\pi\)
0.0529831 0.998595i \(-0.483127\pi\)
\(98\) 2.14514 + 3.71548i 0.216691 + 0.375321i
\(99\) 2.40530i 0.241741i
\(100\) −4.70332 1.69670i −0.470332 0.169670i
\(101\) 5.66777 9.81687i 0.563964 0.976815i −0.433181 0.901307i \(-0.642609\pi\)
0.997145 0.0755077i \(-0.0240577\pi\)
\(102\) −0.121649 + 0.210702i −0.0120450 + 0.0208626i
\(103\) 5.98168i 0.589392i −0.955591 0.294696i \(-0.904782\pi\)
0.955591 0.294696i \(-0.0952184\pi\)
\(104\) 3.59643 0.256262i 0.352659 0.0251286i
\(105\) −1.26385 3.45707i −0.123339 0.337375i
\(106\) 2.11841 + 1.22307i 0.205758 + 0.118795i
\(107\) −9.24559 5.33795i −0.893805 0.516039i −0.0186200 0.999827i \(-0.505927\pi\)
−0.875185 + 0.483788i \(0.839261\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 9.50683i 0.910589i 0.890341 + 0.455295i \(0.150466\pi\)
−0.890341 + 0.455295i \(0.849534\pi\)
\(110\) 3.45130 4.12502i 0.329068 0.393305i
\(111\) 7.74945 4.47415i 0.735545 0.424667i
\(112\) 1.64613 0.155544
\(113\) 3.11433 1.79806i 0.292972 0.169147i −0.346310 0.938120i \(-0.612565\pi\)
0.639281 + 0.768973i \(0.279232\pi\)
\(114\) 2.20941 3.82681i 0.206930 0.358414i
\(115\) −18.9930 3.32108i −1.77111 0.309692i
\(116\) −0.0443266 −0.00411562
\(117\) 2.02015 + 2.98647i 0.186763 + 0.276099i
\(118\) 9.64947i 0.888306i
\(119\) 0.346841 + 0.200249i 0.0317949 + 0.0183568i
\(120\) 2.20265 + 0.385150i 0.201073 + 0.0351593i
\(121\) −2.60727 4.51593i −0.237025 0.410539i
\(122\) −2.63260 −0.238345
\(123\) −0.121649 0.210702i −0.0109687 0.0189983i
\(124\) −3.67591 + 2.12229i −0.330106 + 0.190587i
\(125\) −5.54872 + 9.70627i −0.496293 + 0.868155i
\(126\) 0.823063 + 1.42559i 0.0733243 + 0.127001i
\(127\) 15.0230 + 8.67351i 1.33307 + 0.769650i 0.985769 0.168103i \(-0.0537642\pi\)
0.347303 + 0.937753i \(0.387098\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −6.72876 −0.592435
\(130\) 0.820711 8.02038i 0.0719811 0.703434i
\(131\) 14.1654 1.23764 0.618818 0.785534i \(-0.287612\pi\)
0.618818 + 0.785534i \(0.287612\pi\)
\(132\) −1.20265 + 2.08305i −0.104677 + 0.181306i
\(133\) −6.29941 3.63697i −0.546228 0.315365i
\(134\) −0.937098 1.62310i −0.0809530 0.140215i
\(135\) 0.767774 + 2.10012i 0.0660795 + 0.180750i
\(136\) −0.210702 + 0.121649i −0.0180675 + 0.0104313i
\(137\) −3.66709 6.35158i −0.313300 0.542652i 0.665774 0.746153i \(-0.268101\pi\)
−0.979075 + 0.203501i \(0.934768\pi\)
\(138\) 8.62281 0.734023
\(139\) 7.10185 + 12.3008i 0.602371 + 1.04334i 0.992461 + 0.122561i \(0.0391107\pi\)
−0.390090 + 0.920777i \(0.627556\pi\)
\(140\) 0.634006 3.62584i 0.0535833 0.306439i
\(141\) −6.31817 3.64780i −0.532086 0.307200i
\(142\) 7.54060i 0.632793i
\(143\) 7.79974 + 3.79144i 0.652247 + 0.317056i
\(144\) −1.00000 −0.0833333
\(145\) −0.0170724 + 0.0976359i −0.00141779 + 0.00810822i
\(146\) 0.851850 1.47545i 0.0704996 0.122109i
\(147\) −3.71548 + 2.14514i −0.306448 + 0.176928i
\(148\) 8.94829 0.735545
\(149\) −9.61623 + 5.55193i −0.787792 + 0.454832i −0.839185 0.543847i \(-0.816967\pi\)
0.0513926 + 0.998679i \(0.483634\pi\)
\(150\) 1.69670 4.70332i 0.138535 0.384024i
\(151\) 0.874663i 0.0711791i 0.999366 + 0.0355895i \(0.0113309\pi\)
−0.999366 + 0.0355895i \(0.988669\pi\)
\(152\) 3.82681 2.20941i 0.310395 0.179207i
\(153\) −0.210702 0.121649i −0.0170342 0.00983471i
\(154\) 3.42896 + 1.97971i 0.276313 + 0.159530i
\(155\) 3.25888 + 8.91414i 0.261759 + 0.716001i
\(156\) 0.256262 + 3.59643i 0.0205174 + 0.287945i
\(157\) 15.5085i 1.23771i 0.785504 + 0.618856i \(0.212404\pi\)
−0.785504 + 0.618856i \(0.787596\pi\)
\(158\) −3.39854 + 5.88644i −0.270373 + 0.468300i
\(159\) −1.22307 + 2.11841i −0.0969954 + 0.168001i
\(160\) 1.71497 + 1.43487i 0.135581 + 0.113437i
\(161\) 14.1942i 1.11866i
\(162\) −0.500000 0.866025i −0.0392837 0.0680414i
\(163\) 10.9464 + 18.9597i 0.857388 + 1.48504i 0.874411 + 0.485185i \(0.161248\pi\)
−0.0170229 + 0.999855i \(0.505419\pi\)
\(164\) 0.243297i 0.0189983i
\(165\) 4.12502 + 3.45130i 0.321132 + 0.268683i
\(166\) −8.74932 + 15.1543i −0.679079 + 1.17620i
\(167\) −2.64815 + 4.58673i −0.204920 + 0.354932i −0.950107 0.311923i \(-0.899027\pi\)
0.745187 + 0.666855i \(0.232360\pi\)
\(168\) 1.64613i 0.127001i
\(169\) 12.8687 1.84326i 0.989897 0.141789i
\(170\) 0.186797 + 0.510955i 0.0143267 + 0.0391884i
\(171\) 3.82681 + 2.20941i 0.292643 + 0.168958i
\(172\) −5.82728 3.36438i −0.444326 0.256532i
\(173\) −14.9469 + 8.62958i −1.13639 + 0.656095i −0.945534 0.325523i \(-0.894460\pi\)
−0.190856 + 0.981618i \(0.561126\pi\)
\(174\) 0.0443266i 0.00336039i
\(175\) −7.74225 2.79298i −0.585259 0.211130i
\(176\) −2.08305 + 1.20265i −0.157016 + 0.0906530i
\(177\) 9.64947 0.725299
\(178\) 8.69772 5.02163i 0.651922 0.376387i
\(179\) −4.17781 + 7.23617i −0.312264 + 0.540857i −0.978852 0.204569i \(-0.934421\pi\)
0.666588 + 0.745426i \(0.267754\pi\)
\(180\) −0.385150 + 2.20265i −0.0287074 + 0.164176i
\(181\) 12.7335 0.946476 0.473238 0.880935i \(-0.343085\pi\)
0.473238 + 0.880935i \(0.343085\pi\)
\(182\) 5.92018 0.421840i 0.438833 0.0312689i
\(183\) 2.63260i 0.194608i
\(184\) 7.46758 + 4.31141i 0.550517 + 0.317841i
\(185\) 3.44644 19.7099i 0.253387 1.44910i
\(186\) −2.12229 3.67591i −0.155614 0.269531i
\(187\) −0.585202 −0.0427942
\(188\) −3.64780 6.31817i −0.266043 0.460800i
\(189\) −1.42559 + 0.823063i −0.103696 + 0.0598690i
\(190\) −3.39265 9.28007i −0.246129 0.673247i
\(191\) −0.207632 0.359629i −0.0150237 0.0260219i 0.858416 0.512955i \(-0.171449\pi\)
−0.873440 + 0.486933i \(0.838116\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) −12.9918 + 22.5025i −0.935173 + 1.61977i −0.160849 + 0.986979i \(0.551423\pi\)
−0.774324 + 0.632789i \(0.781910\pi\)
\(194\) 16.5129 1.18556
\(195\) 8.02038 + 0.820711i 0.574351 + 0.0587724i
\(196\) −4.29027 −0.306448
\(197\) −7.72121 + 13.3735i −0.550113 + 0.952824i 0.448152 + 0.893957i \(0.352082\pi\)
−0.998266 + 0.0588672i \(0.981251\pi\)
\(198\) −2.08305 1.20265i −0.148036 0.0854685i
\(199\) 6.85286 + 11.8695i 0.485787 + 0.841407i 0.999867 0.0163352i \(-0.00519988\pi\)
−0.514080 + 0.857742i \(0.671867\pi\)
\(200\) 3.82105 3.22484i 0.270189 0.228031i
\(201\) 1.62310 0.937098i 0.114485 0.0660978i
\(202\) 5.66777 + 9.81687i 0.398783 + 0.690712i
\(203\) −0.0729671 −0.00512129
\(204\) −0.121649 0.210702i −0.00851711 0.0147521i
\(205\) −0.535898 0.0937060i −0.0374288 0.00654471i
\(206\) 5.18029 + 2.99084i 0.360928 + 0.208382i
\(207\) 8.62281i 0.599327i
\(208\) −1.57629 + 3.24273i −0.109296 + 0.224843i
\(209\) 10.6286 0.735193
\(210\) 3.62584 + 0.634006i 0.250206 + 0.0437506i
\(211\) 8.05616 13.9537i 0.554609 0.960611i −0.443325 0.896361i \(-0.646201\pi\)
0.997934 0.0642497i \(-0.0204654\pi\)
\(212\) −2.11841 + 1.22307i −0.145493 + 0.0840005i
\(213\) 7.54060 0.516673
\(214\) 9.24559 5.33795i 0.632016 0.364894i
\(215\) −9.65493 + 11.5397i −0.658461 + 0.786998i
\(216\) 1.00000i 0.0680414i
\(217\) −6.05101 + 3.49355i −0.410769 + 0.237158i
\(218\) −8.23316 4.75342i −0.557620 0.321942i
\(219\) 1.47545 + 0.851850i 0.0997015 + 0.0575627i
\(220\) 1.84672 + 5.05142i 0.124506 + 0.340567i
\(221\) −0.726600 + 0.491496i −0.0488764 + 0.0330616i
\(222\) 8.94829i 0.600570i
\(223\) 5.55886 9.62823i 0.372249 0.644754i −0.617662 0.786443i \(-0.711920\pi\)
0.989911 + 0.141690i \(0.0452535\pi\)
\(224\) −0.823063 + 1.42559i −0.0549932 + 0.0952510i
\(225\) 4.70332 + 1.69670i 0.313555 + 0.113113i
\(226\) 3.59612i 0.239210i
\(227\) −11.0399 19.1217i −0.732747 1.26915i −0.955705 0.294327i \(-0.904905\pi\)
0.222958 0.974828i \(-0.428429\pi\)
\(228\) 2.20941 + 3.82681i 0.146322 + 0.253437i
\(229\) 10.3397i 0.683266i 0.939834 + 0.341633i \(0.110980\pi\)
−0.939834 + 0.341633i \(0.889020\pi\)
\(230\) 12.3727 14.7879i 0.815829 0.975085i
\(231\) −1.97971 + 3.42896i −0.130255 + 0.225609i
\(232\) 0.0221633 0.0383880i 0.00145509 0.00252029i
\(233\) 21.8928i 1.43425i −0.696947 0.717123i \(-0.745459\pi\)
0.696947 0.717123i \(-0.254541\pi\)
\(234\) −3.59643 + 0.256262i −0.235106 + 0.0167524i
\(235\) −15.3217 + 5.60137i −0.999475 + 0.365393i
\(236\) 8.35669 + 4.82474i 0.543974 + 0.314064i
\(237\) −5.88644 3.39854i −0.382365 0.220759i
\(238\) −0.346841 + 0.200249i −0.0224824 + 0.0129802i
\(239\) 26.2510i 1.69804i −0.528362 0.849019i \(-0.677194\pi\)
0.528362 0.849019i \(-0.322806\pi\)
\(240\) −1.43487 + 1.71497i −0.0926207 + 0.110701i
\(241\) 22.5952 13.0454i 1.45549 0.840326i 0.456703 0.889619i \(-0.349030\pi\)
0.998784 + 0.0492931i \(0.0156968\pi\)
\(242\) 5.21455 0.335204
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 1.31630 2.27990i 0.0842676 0.145956i
\(245\) −1.65240 + 9.44996i −0.105568 + 0.603736i
\(246\) 0.243297 0.0155121
\(247\) 13.1967 8.92666i 0.839684 0.567990i
\(248\) 4.24458i 0.269531i
\(249\) −15.1543 8.74932i −0.960363 0.554466i
\(250\) −5.63152 9.65847i −0.356168 0.610855i
\(251\) −0.312397 0.541088i −0.0197183 0.0341532i 0.855998 0.516979i \(-0.172944\pi\)
−0.875716 + 0.482826i \(0.839610\pi\)
\(252\) −1.64613 −0.103696
\(253\) 10.3702 + 17.9617i 0.651970 + 1.12924i
\(254\) −15.0230 + 8.67351i −0.942624 + 0.544224i
\(255\) −0.510955 + 0.186797i −0.0319972 + 0.0116977i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −12.0758 6.97195i −0.753266 0.434898i 0.0736066 0.997287i \(-0.476549\pi\)
−0.826873 + 0.562389i \(0.809882\pi\)
\(258\) 3.36438 5.82728i 0.209457 0.362791i
\(259\) 14.7300 0.915278
\(260\) 6.53549 + 4.72094i 0.405314 + 0.292781i
\(261\) 0.0443266 0.00274375
\(262\) −7.08270 + 12.2676i −0.437571 + 0.757894i
\(263\) −16.8325 9.71828i −1.03794 0.599255i −0.118690 0.992931i \(-0.537870\pi\)
−0.919249 + 0.393677i \(0.871203\pi\)
\(264\) −1.20265 2.08305i −0.0740179 0.128203i
\(265\) 1.87808 + 5.13718i 0.115369 + 0.315574i
\(266\) 6.29941 3.63697i 0.386242 0.222997i
\(267\) 5.02163 + 8.69772i 0.307319 + 0.532292i
\(268\) 1.87420 0.114485
\(269\) −1.50069 2.59928i −0.0914989 0.158481i 0.816643 0.577143i \(-0.195832\pi\)
−0.908142 + 0.418662i \(0.862499\pi\)
\(270\) −2.20265 0.385150i −0.134049 0.0234395i
\(271\) −24.6538 14.2339i −1.49761 0.864645i −0.497613 0.867399i \(-0.665790\pi\)
−0.999996 + 0.00275396i \(0.999123\pi\)
\(272\) 0.243297i 0.0147521i
\(273\) 0.421840 + 5.92018i 0.0255309 + 0.358306i
\(274\) 7.33417 0.443074
\(275\) 11.8378 2.12213i 0.713845 0.127969i
\(276\) −4.31141 + 7.46758i −0.259516 + 0.449495i
\(277\) −0.738423 + 0.426329i −0.0443676 + 0.0256156i −0.522020 0.852933i \(-0.674821\pi\)
0.477652 + 0.878549i \(0.341488\pi\)
\(278\) −14.2037 −0.851882
\(279\) 3.67591 2.12229i 0.220071 0.127058i
\(280\) 2.82306 + 2.36198i 0.168710 + 0.141155i
\(281\) 15.6851i 0.935697i 0.883809 + 0.467848i \(0.154971\pi\)
−0.883809 + 0.467848i \(0.845029\pi\)
\(282\) 6.31817 3.64780i 0.376242 0.217223i
\(283\) −7.00390 4.04370i −0.416339 0.240373i 0.277171 0.960821i \(-0.410603\pi\)
−0.693510 + 0.720447i \(0.743937\pi\)
\(284\) 6.53035 + 3.77030i 0.387505 + 0.223726i
\(285\) 9.28007 3.39265i 0.549704 0.200964i
\(286\) −7.18335 + 4.85905i −0.424760 + 0.287322i
\(287\) 0.400498i 0.0236406i
\(288\) 0.500000 0.866025i 0.0294628 0.0510310i
\(289\) −8.47040 + 14.6712i −0.498259 + 0.863010i
\(290\) −0.0760190 0.0636031i −0.00446399 0.00373490i
\(291\) 16.5129i 0.968006i
\(292\) 0.851850 + 1.47545i 0.0498508 + 0.0863440i
\(293\) 0.967192 + 1.67523i 0.0565040 + 0.0978677i 0.892894 0.450267i \(-0.148671\pi\)
−0.836390 + 0.548135i \(0.815338\pi\)
\(294\) 4.29027i 0.250214i
\(295\) 13.8458 16.5486i 0.806133 0.963497i
\(296\) −4.47415 + 7.74945i −0.260054 + 0.450427i
\(297\) 1.20265 2.08305i 0.0697847 0.120871i
\(298\) 11.1039i 0.643229i
\(299\) 27.9615 + 13.5920i 1.61705 + 0.786047i
\(300\) 3.22484 + 3.82105i 0.186186 + 0.220608i
\(301\) −9.59244 5.53820i −0.552899 0.319216i
\(302\) −0.757480 0.437332i −0.0435881 0.0251656i
\(303\) −9.81687 + 5.66777i −0.563964 + 0.325605i
\(304\) 4.41882i 0.253437i
\(305\) −4.51485 3.77745i −0.258519 0.216296i
\(306\) 0.210702 0.121649i 0.0120450 0.00695419i
\(307\) 12.4384 0.709894 0.354947 0.934886i \(-0.384499\pi\)
0.354947 + 0.934886i \(0.384499\pi\)
\(308\) −3.42896 + 1.97971i −0.195383 + 0.112804i
\(309\) −2.99084 + 5.18029i −0.170143 + 0.294696i
\(310\) −9.34931 1.63480i −0.531005 0.0928504i
\(311\) −18.3700 −1.04167 −0.520835 0.853657i \(-0.674379\pi\)
−0.520835 + 0.853657i \(0.674379\pi\)
\(312\) −3.24273 1.57629i −0.183584 0.0892397i
\(313\) 31.9445i 1.80561i −0.430051 0.902804i \(-0.641504\pi\)
0.430051 0.902804i \(-0.358496\pi\)
\(314\) −13.4307 7.75425i −0.757941 0.437597i
\(315\) −0.634006 + 3.62584i −0.0357222 + 0.204293i
\(316\) −3.39854 5.88644i −0.191183 0.331138i
\(317\) 23.3625 1.31217 0.656083 0.754689i \(-0.272212\pi\)
0.656083 + 0.754689i \(0.272212\pi\)
\(318\) −1.22307 2.11841i −0.0685861 0.118795i
\(319\) 0.0923344 0.0533093i 0.00516973 0.00298475i
\(320\) −2.10012 + 0.767774i −0.117401 + 0.0429199i
\(321\) 5.33795 + 9.24559i 0.297935 + 0.516039i
\(322\) 12.2926 + 7.09712i 0.685038 + 0.395507i
\(323\) −0.537543 + 0.931052i −0.0299097 + 0.0518051i
\(324\) 1.00000 0.0555556
\(325\) 12.9157 12.5771i 0.716436 0.697653i
\(326\) −21.8928 −1.21253
\(327\) 4.75342 8.23316i 0.262865 0.455295i
\(328\) 0.210702 + 0.121649i 0.0116341 + 0.00671692i
\(329\) −6.00474 10.4005i −0.331052 0.573399i
\(330\) −5.05142 + 1.84672i −0.278072 + 0.101659i
\(331\) −18.5879 + 10.7317i −1.02168 + 0.589868i −0.914590 0.404382i \(-0.867487\pi\)
−0.107090 + 0.994249i \(0.534153\pi\)
\(332\) −8.74932 15.1543i −0.480181 0.831698i
\(333\) −8.94829 −0.490363
\(334\) −2.64815 4.58673i −0.144900 0.250975i
\(335\) 0.721847 4.12820i 0.0394387 0.225547i
\(336\) −1.42559 0.823063i −0.0777721 0.0449018i
\(337\) 14.3561i 0.782026i −0.920385 0.391013i \(-0.872125\pi\)
0.920385 0.391013i \(-0.127875\pi\)
\(338\) −4.83802 + 12.0662i −0.263154 + 0.656316i
\(339\) −3.59612 −0.195314
\(340\) −0.535898 0.0937060i −0.0290632 0.00508192i
\(341\) 5.10473 8.84165i 0.276437 0.478802i
\(342\) −3.82681 + 2.20941i −0.206930 + 0.119471i
\(343\) −18.5852 −1.00351
\(344\) 5.82728 3.36438i 0.314186 0.181395i
\(345\) 14.7879 + 12.3727i 0.796154 + 0.666121i
\(346\) 17.2592i 0.927858i
\(347\) 0.576005 0.332557i 0.0309216 0.0178526i −0.484460 0.874814i \(-0.660984\pi\)
0.515381 + 0.856961i \(0.327650\pi\)
\(348\) 0.0383880 + 0.0221633i 0.00205781 + 0.00118808i
\(349\) 3.25007 + 1.87643i 0.173972 + 0.100443i 0.584458 0.811424i \(-0.301307\pi\)
−0.410485 + 0.911867i \(0.634641\pi\)
\(350\) 6.28992 5.30850i 0.336210 0.283751i
\(351\) −0.256262 3.59643i −0.0136783 0.191963i
\(352\) 2.40530i 0.128203i
\(353\) 2.28180 3.95219i 0.121448 0.210354i −0.798891 0.601476i \(-0.794580\pi\)
0.920339 + 0.391122i \(0.127913\pi\)
\(354\) −4.82474 + 8.35669i −0.256432 + 0.444153i
\(355\) 10.8198 12.9319i 0.574256 0.686356i
\(356\) 10.0433i 0.532292i
\(357\) −0.200249 0.346841i −0.0105983 0.0183568i
\(358\) −4.17781 7.23617i −0.220804 0.382444i
\(359\) 4.75785i 0.251110i −0.992087 0.125555i \(-0.959929\pi\)
0.992087 0.125555i \(-0.0400711\pi\)
\(360\) −1.71497 1.43487i −0.0903871 0.0756245i
\(361\) 0.262979 0.455494i 0.0138410 0.0239733i
\(362\) −6.36677 + 11.0276i −0.334630 + 0.579596i
\(363\) 5.21455i 0.273693i
\(364\) −2.59477 + 5.33795i −0.136003 + 0.279784i
\(365\) 3.57798 1.30806i 0.187280 0.0684668i
\(366\) 2.27990 + 1.31630i 0.119172 + 0.0688042i
\(367\) −1.29432 0.747277i −0.0675630 0.0390075i 0.465838 0.884870i \(-0.345753\pi\)
−0.533401 + 0.845863i \(0.679086\pi\)
\(368\) −7.46758 + 4.31141i −0.389274 + 0.224748i
\(369\) 0.243297i 0.0126656i
\(370\) 15.3461 + 12.8397i 0.797805 + 0.667503i
\(371\) −3.48717 + 2.01332i −0.181045 + 0.104526i
\(372\) 4.24458 0.220071
\(373\) −17.8323 + 10.2955i −0.923323 + 0.533081i −0.884694 0.466173i \(-0.845632\pi\)
−0.0386291 + 0.999254i \(0.512299\pi\)
\(374\) 0.292601 0.506800i 0.0151300 0.0262060i
\(375\) 9.65847 5.63152i 0.498761 0.290810i
\(376\) 7.29560 0.376242
\(377\) 0.0698714 0.143739i 0.00359856 0.00740295i
\(378\) 1.64613i 0.0846676i
\(379\) −18.4173 10.6332i −0.946032 0.546192i −0.0541858 0.998531i \(-0.517256\pi\)
−0.891846 + 0.452339i \(0.850590\pi\)
\(380\) 9.73310 + 1.70191i 0.499298 + 0.0873061i
\(381\) −8.67351 15.0230i −0.444357 0.769650i
\(382\) 0.415264 0.0212468
\(383\) −5.31095 9.19884i −0.271377 0.470039i 0.697838 0.716256i \(-0.254146\pi\)
−0.969215 + 0.246217i \(0.920812\pi\)
\(384\) 0.866025 0.500000i 0.0441942 0.0255155i
\(385\) 3.03994 + 8.31527i 0.154930 + 0.423786i
\(386\) −12.9918 22.5025i −0.661267 1.14535i
\(387\) 5.82728 + 3.36438i 0.296217 + 0.171021i
\(388\) −8.25647 + 14.3006i −0.419159 + 0.726004i
\(389\) −37.0443 −1.87822 −0.939111 0.343613i \(-0.888349\pi\)
−0.939111 + 0.343613i \(0.888349\pi\)
\(390\) −4.72094 + 6.53549i −0.239054 + 0.330938i
\(391\) −2.09791 −0.106096
\(392\) 2.14514 3.71548i 0.108346 0.187660i
\(393\) −12.2676 7.08270i −0.618818 0.357275i
\(394\) −7.72121 13.3735i −0.388989 0.673749i
\(395\) −14.2747 + 5.21862i −0.718238 + 0.262577i
\(396\) 2.08305 1.20265i 0.104677 0.0604353i
\(397\) 0.843593 + 1.46115i 0.0423387 + 0.0733328i 0.886418 0.462885i \(-0.153186\pi\)
−0.844079 + 0.536218i \(0.819852\pi\)
\(398\) −13.7057 −0.687006
\(399\) 3.63697 + 6.29941i 0.182076 + 0.315365i
\(400\) 0.882273 + 4.92154i 0.0441136 + 0.246077i
\(401\) 17.2949 + 9.98524i 0.863668 + 0.498639i 0.865239 0.501360i \(-0.167167\pi\)
−0.00157101 + 0.999999i \(0.500500\pi\)
\(402\) 1.87420i 0.0934764i
\(403\) −1.08772 15.2653i −0.0541834 0.760420i
\(404\) −11.3355 −0.563964
\(405\) 0.385150 2.20265i 0.0191383 0.109450i
\(406\) 0.0364836 0.0631914i 0.00181065 0.00313614i
\(407\) −18.6397 + 10.7616i −0.923936 + 0.533435i
\(408\) 0.243297 0.0120450
\(409\) 10.6603 6.15471i 0.527117 0.304331i −0.212725 0.977112i \(-0.568234\pi\)
0.739842 + 0.672781i \(0.234900\pi\)
\(410\) 0.349101 0.417249i 0.0172409 0.0206064i
\(411\) 7.33417i 0.361768i
\(412\) −5.18029 + 2.99084i −0.255214 + 0.147348i
\(413\) 13.7562 + 7.94212i 0.676896 + 0.390806i
\(414\) −7.46758 4.31141i −0.367011 0.211894i
\(415\) −36.7493 + 13.4350i −1.80395 + 0.659498i
\(416\) −2.02015 2.98647i −0.0990458 0.146424i
\(417\) 14.2037i 0.695559i
\(418\) −5.31428 + 9.20461i −0.259930 + 0.450212i
\(419\) 11.0411 19.1238i 0.539393 0.934256i −0.459544 0.888155i \(-0.651987\pi\)
0.998937 0.0461011i \(-0.0146796\pi\)
\(420\) −2.36198 + 2.82306i −0.115253 + 0.137751i
\(421\) 8.98036i 0.437676i 0.975761 + 0.218838i \(0.0702266\pi\)
−0.975761 + 0.218838i \(0.929773\pi\)
\(422\) 8.05616 + 13.9537i 0.392168 + 0.679254i
\(423\) 3.64780 + 6.31817i 0.177362 + 0.307200i
\(424\) 2.44613i 0.118795i
\(425\) −0.412803 + 1.14430i −0.0200239 + 0.0555069i
\(426\) −3.77030 + 6.53035i −0.182672 + 0.316397i
\(427\) 2.16680 3.75300i 0.104859 0.181621i
\(428\) 10.6759i 0.516039i
\(429\) −4.85905 7.18335i −0.234597 0.346815i
\(430\) −5.16617 14.1312i −0.249135 0.681469i
\(431\) 7.16090 + 4.13435i 0.344928 + 0.199145i 0.662449 0.749107i \(-0.269517\pi\)
−0.317521 + 0.948251i \(0.602850\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) −17.1825 + 9.92035i −0.825740 + 0.476741i −0.852392 0.522903i \(-0.824849\pi\)
0.0266515 + 0.999645i \(0.491516\pi\)
\(434\) 6.98710i 0.335392i
\(435\) 0.0636031 0.0760190i 0.00304953 0.00364483i
\(436\) 8.23316 4.75342i 0.394297 0.227647i
\(437\) 38.1027 1.82270
\(438\) −1.47545 + 0.851850i −0.0704996 + 0.0407030i
\(439\) −14.4415 + 25.0134i −0.689255 + 1.19382i 0.282824 + 0.959172i \(0.408729\pi\)
−0.972079 + 0.234653i \(0.924605\pi\)
\(440\) −5.29802 0.926401i −0.252573 0.0441644i
\(441\) 4.29027 0.204299
\(442\) −0.0623479 0.875002i −0.00296559 0.0416196i
\(443\) 5.76986i 0.274134i −0.990562 0.137067i \(-0.956232\pi\)
0.990562 0.137067i \(-0.0437676\pi\)
\(444\) −7.74945 4.47415i −0.367772 0.212334i
\(445\) 22.1218 + 3.86817i 1.04867 + 0.183369i
\(446\) 5.55886 + 9.62823i 0.263220 + 0.455910i
\(447\) 11.1039 0.525195
\(448\) −0.823063 1.42559i −0.0388861 0.0673526i
\(449\) −33.9034 + 19.5741i −1.60000 + 0.923760i −0.608514 + 0.793543i \(0.708234\pi\)
−0.991486 + 0.130217i \(0.958433\pi\)
\(450\) −3.82105 + 3.22484i −0.180126 + 0.152021i
\(451\) 0.292601 + 0.506800i 0.0137780 + 0.0238643i
\(452\) −3.11433 1.79806i −0.146486 0.0845736i
\(453\) 0.437332 0.757480i 0.0205476 0.0355895i
\(454\) 22.0799 1.03626
\(455\) 10.7582 + 7.77127i 0.504354 + 0.364323i
\(456\) −4.41882 −0.206930
\(457\) 12.2403 21.2008i 0.572575 0.991730i −0.423725 0.905791i \(-0.639278\pi\)
0.996300 0.0859387i \(-0.0273889\pi\)
\(458\) −8.95443 5.16984i −0.418413 0.241571i
\(459\) 0.121649 + 0.210702i 0.00567807 + 0.00983471i
\(460\) 6.62037 + 18.1090i 0.308677 + 0.844336i
\(461\) 3.02923 1.74893i 0.141085 0.0814557i −0.427796 0.903875i \(-0.640710\pi\)
0.568881 + 0.822420i \(0.307376\pi\)
\(462\) −1.97971 3.42896i −0.0921044 0.159530i
\(463\) −18.3063 −0.850767 −0.425384 0.905013i \(-0.639861\pi\)
−0.425384 + 0.905013i \(0.639861\pi\)
\(464\) 0.0221633 + 0.0383880i 0.00102891 + 0.00178212i
\(465\) 1.63480 9.34931i 0.0758120 0.433564i
\(466\) 18.9597 + 10.9464i 0.878292 + 0.507082i
\(467\) 6.46019i 0.298942i −0.988766 0.149471i \(-0.952243\pi\)
0.988766 0.149471i \(-0.0477571\pi\)
\(468\) 1.57629 3.24273i 0.0728639 0.149895i
\(469\) 3.08516 0.142460
\(470\) 2.80990 16.0696i 0.129611 0.741237i
\(471\) 7.75425 13.4307i 0.357297 0.618856i
\(472\) −8.35669 + 4.82474i −0.384648 + 0.222077i
\(473\) 16.1847 0.744172
\(474\) 5.88644 3.39854i 0.270373 0.156100i
\(475\) 7.49742 20.7831i 0.344005 0.953595i
\(476\) 0.400498i 0.0183568i
\(477\) 2.11841 1.22307i 0.0969954 0.0560003i
\(478\) 22.7341 + 13.1255i 1.03983 + 0.600347i
\(479\) 26.5980 + 15.3564i 1.21529 + 0.701651i 0.963908 0.266236i \(-0.0857800\pi\)
0.251387 + 0.967887i \(0.419113\pi\)
\(480\) −0.767774 2.10012i −0.0350439 0.0958571i
\(481\) −14.1051 + 29.0169i −0.643136 + 1.32306i
\(482\) 26.0907i 1.18840i
\(483\) −7.09712 + 12.2926i −0.322930 + 0.559331i
\(484\) −2.60727 + 4.51593i −0.118512 + 0.205270i
\(485\) 28.3193 + 23.6940i 1.28591 + 1.07589i
\(486\) 1.00000i 0.0453609i
\(487\) −6.23335 10.7965i −0.282460 0.489235i 0.689530 0.724257i \(-0.257817\pi\)
−0.971990 + 0.235022i \(0.924484\pi\)
\(488\) 1.31630 + 2.27990i 0.0595862 + 0.103206i
\(489\) 21.8928i 0.990027i
\(490\) −7.35770 6.15600i −0.332387 0.278100i
\(491\) 1.29120 2.23642i 0.0582710 0.100928i −0.835418 0.549615i \(-0.814775\pi\)
0.893689 + 0.448686i \(0.148108\pi\)
\(492\) −0.121649 + 0.210702i −0.00548434 + 0.00949916i
\(493\) 0.0107845i 0.000485711i
\(494\) 1.13238 + 15.8920i 0.0509480 + 0.715014i
\(495\) −1.84672 5.05142i −0.0830041 0.227045i
\(496\) 3.67591 + 2.12229i 0.165053 + 0.0952935i
\(497\) 10.7498 + 6.20639i 0.482194 + 0.278395i
\(498\) 15.1543 8.74932i 0.679079 0.392066i
\(499\) 20.2443i 0.906261i −0.891444 0.453130i \(-0.850307\pi\)
0.891444 0.453130i \(-0.149693\pi\)
\(500\) 11.1802 0.0478026i 0.499995 0.00213780i
\(501\) 4.58673 2.64815i 0.204920 0.118311i
\(502\) 0.624794 0.0278859
\(503\) 7.33148 4.23283i 0.326894 0.188733i −0.327567 0.944828i \(-0.606229\pi\)
0.654461 + 0.756095i \(0.272895\pi\)
\(504\) 0.823063 1.42559i 0.0366621 0.0635007i
\(505\) −4.36589 + 24.9682i −0.194279 + 1.11107i
\(506\) −20.7404 −0.922024
\(507\) −12.0662 4.83802i −0.535879 0.214864i
\(508\) 17.3470i 0.769650i
\(509\) −33.4172 19.2935i −1.48119 0.855167i −0.481421 0.876490i \(-0.659879\pi\)
−0.999773 + 0.0213225i \(0.993212\pi\)
\(510\) 0.0937060 0.535898i 0.00414937 0.0237300i
\(511\) 1.40225 + 2.42877i 0.0620320 + 0.107443i
\(512\) 1.00000 0.0441942
\(513\) −2.20941 3.82681i −0.0975478 0.168958i
\(514\) 12.0758 6.97195i 0.532640 0.307520i
\(515\) 4.59258 + 12.5623i 0.202373 + 0.553560i
\(516\) 3.36438 + 5.82728i 0.148109 + 0.256532i
\(517\) 15.1971 + 8.77404i 0.668367 + 0.385882i
\(518\) −7.36500 + 12.7566i −0.323600 + 0.560491i
\(519\) 17.2592 0.757593
\(520\) −7.35621 + 3.29943i −0.322591 + 0.144690i
\(521\) 12.5345 0.549148 0.274574 0.961566i \(-0.411463\pi\)
0.274574 + 0.961566i \(0.411463\pi\)
\(522\) −0.0221633 + 0.0383880i −0.000970061 + 0.00168020i
\(523\) −11.0846 6.39970i −0.484696 0.279839i 0.237676 0.971345i \(-0.423614\pi\)
−0.722371 + 0.691505i \(0.756948\pi\)
\(524\) −7.08270 12.2676i −0.309409 0.535912i
\(525\) 5.30850 + 6.28992i 0.231682 + 0.274515i
\(526\) 16.8325 9.71828i 0.733934 0.423737i
\(527\) 0.516347 + 0.894339i 0.0224924 + 0.0389580i
\(528\) 2.40530 0.104677
\(529\) 25.6765 + 44.4729i 1.11637 + 1.93361i
\(530\) −5.38797 0.942128i −0.234038 0.0409234i
\(531\) −8.35669 4.82474i −0.362649 0.209376i
\(532\) 7.27393i 0.315365i
\(533\) 0.788948 + 0.383506i 0.0341731 + 0.0166115i
\(534\) −10.0433 −0.434614
\(535\) 23.5152 + 4.11182i 1.01665 + 0.177770i
\(536\) −0.937098 + 1.62310i −0.0404765 + 0.0701073i
\(537\) 7.23617 4.17781i 0.312264 0.180286i
\(538\) 3.00139 0.129399
\(539\) 8.93684 5.15969i 0.384937 0.222243i
\(540\) 1.43487 1.71497i 0.0617471 0.0738007i
\(541\) 24.9605i 1.07314i 0.843857 + 0.536568i \(0.180280\pi\)
−0.843857 + 0.536568i \(0.819720\pi\)
\(542\) 24.6538 14.2339i 1.05897 0.611396i
\(543\) −11.0276 6.36677i −0.473238 0.273224i
\(544\) 0.210702 + 0.121649i 0.00903376 + 0.00521564i
\(545\) −7.29910 19.9655i −0.312659 0.855229i
\(546\) −5.33795 2.59477i −0.228443 0.111046i
\(547\) 10.4152i 0.445321i 0.974896 + 0.222660i \(0.0714741\pi\)
−0.974896 + 0.222660i \(0.928526\pi\)
\(548\) −3.66709 + 6.35158i −0.156650 + 0.271326i
\(549\) −1.31630 + 2.27990i −0.0561784 + 0.0973038i
\(550\) −4.08107 + 11.3129i −0.174017 + 0.482383i
\(551\) 0.195871i 0.00834439i
\(552\) −4.31141 7.46758i −0.183506 0.317841i
\(553\) −5.59442 9.68981i −0.237899 0.412053i
\(554\) 0.852658i 0.0362260i
\(555\) −12.8397 + 15.3461i −0.545014 + 0.651405i
\(556\) 7.10185 12.3008i 0.301186 0.521669i
\(557\) −0.697392 + 1.20792i −0.0295495 + 0.0511812i −0.880422 0.474191i \(-0.842741\pi\)
0.850872 + 0.525372i \(0.176074\pi\)
\(558\) 4.24458i 0.179687i
\(559\) 20.0953 13.5931i 0.849939 0.574926i
\(560\) −3.45707 + 1.26385i −0.146088 + 0.0534075i
\(561\) 0.506800 + 0.292601i 0.0213971 + 0.0123536i
\(562\) −13.5837 7.84257i −0.572995 0.330819i
\(563\) 14.0404 8.10624i 0.591733 0.341637i −0.174049 0.984737i \(-0.555685\pi\)
0.765782 + 0.643100i \(0.222352\pi\)
\(564\) 7.29560i 0.307200i
\(565\) −5.15998 + 6.16725i −0.217082 + 0.259458i
\(566\) 7.00390 4.04370i 0.294396 0.169970i
\(567\) 1.64613 0.0691308
\(568\) −6.53035 + 3.77030i −0.274007 + 0.158198i
\(569\) 19.6198 33.9825i 0.822505 1.42462i −0.0813055 0.996689i \(-0.525909\pi\)
0.903811 0.427932i \(-0.140758\pi\)
\(570\) −1.70191 + 9.73310i −0.0712851 + 0.407675i
\(571\) −16.0498 −0.671662 −0.335831 0.941922i \(-0.609017\pi\)
−0.335831 + 0.941922i \(0.609017\pi\)
\(572\) −0.616387 8.65049i −0.0257724 0.361695i
\(573\) 0.415264i 0.0173479i
\(574\) 0.346841 + 0.200249i 0.0144769 + 0.00835823i
\(575\) 42.4376 7.60767i 1.76977 0.317262i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −28.5363 −1.18798 −0.593992 0.804471i \(-0.702449\pi\)
−0.593992 + 0.804471i \(0.702449\pi\)
\(578\) −8.47040 14.6712i −0.352322 0.610240i
\(579\) 22.5025 12.9918i 0.935173 0.539923i
\(580\) 0.0930914 0.0340328i 0.00386541 0.00141314i
\(581\) −14.4025 24.9458i −0.597515 1.03493i
\(582\) −14.3006 8.25647i −0.592780 0.342242i
\(583\) 2.94183 5.09541i 0.121838 0.211030i
\(584\) −1.70370 −0.0704996
\(585\) −6.53549 4.72094i −0.270209 0.195187i
\(586\) −1.93438 −0.0799087
\(587\) −22.5265 + 39.0171i −0.929770 + 1.61041i −0.146066 + 0.989275i \(0.546661\pi\)
−0.783704 + 0.621134i \(0.786672\pi\)
\(588\) 3.71548 + 2.14514i 0.153224 + 0.0884639i
\(589\) −9.37800 16.2432i −0.386414 0.669289i
\(590\) 7.40862 + 20.2651i 0.305008 + 0.834301i
\(591\) 13.3735 7.72121i 0.550113 0.317608i
\(592\) −4.47415 7.74945i −0.183886 0.318500i
\(593\) −37.0634 −1.52201 −0.761005 0.648746i \(-0.775294\pi\)
−0.761005 + 0.648746i \(0.775294\pi\)
\(594\) 1.20265 + 2.08305i 0.0493453 + 0.0854685i
\(595\) −0.882156 0.154252i −0.0361649 0.00632371i
\(596\) 9.61623 + 5.55193i 0.393896 + 0.227416i
\(597\) 13.7057i 0.560938i
\(598\) −25.7518 + 17.4193i −1.05307 + 0.712330i
\(599\) 18.6309 0.761238 0.380619 0.924732i \(-0.375711\pi\)
0.380619 + 0.924732i \(0.375711\pi\)
\(600\) −4.92154 + 0.882273i −0.200921 + 0.0360186i
\(601\) 9.69008 16.7837i 0.395266 0.684622i −0.597869 0.801594i \(-0.703986\pi\)
0.993135 + 0.116972i \(0.0373189\pi\)
\(602\) 9.59244 5.53820i 0.390958 0.225720i
\(603\) −1.87420 −0.0763232
\(604\) 0.757480 0.437332i 0.0308214 0.0177948i
\(605\) 8.94282 + 7.48222i 0.363577 + 0.304196i
\(606\) 11.3355i 0.460475i
\(607\) −30.2066 + 17.4398i −1.22605 + 0.707858i −0.966200 0.257792i \(-0.917005\pi\)
−0.259846 + 0.965650i \(0.583672\pi\)
\(608\) −3.82681 2.20941i −0.155198 0.0896034i
\(609\) 0.0631914 + 0.0364836i 0.00256064 + 0.00147839i
\(610\) 5.52879 2.02124i 0.223854 0.0818378i
\(611\) 26.2381 1.86959i 1.06148 0.0756354i
\(612\) 0.243297i 0.00983471i
\(613\) 4.07179 7.05254i 0.164458 0.284849i −0.772005 0.635617i \(-0.780746\pi\)
0.936463 + 0.350767i \(0.114079\pi\)
\(614\) −6.21918 + 10.7719i −0.250986 + 0.434720i
\(615\) 0.417249 + 0.349101i 0.0168251 + 0.0140771i
\(616\) 3.95942i 0.159530i
\(617\) 16.7288 + 28.9752i 0.673477 + 1.16650i 0.976912 + 0.213644i \(0.0685332\pi\)
−0.303435 + 0.952852i \(0.598133\pi\)
\(618\) −2.99084 5.18029i −0.120309 0.208382i
\(619\) 41.1780i 1.65508i −0.561404 0.827542i \(-0.689739\pi\)
0.561404 0.827542i \(-0.310261\pi\)
\(620\) 6.09043 7.27934i 0.244598 0.292345i
\(621\) 4.31141 7.46758i 0.173011 0.299664i
\(622\) 9.18502 15.9089i 0.368286 0.637890i
\(623\) 16.5325i 0.662359i
\(624\) 2.98647 2.02015i 0.119555 0.0808706i
\(625\) 4.20078 24.6445i 0.168031 0.985782i
\(626\) 27.6647 + 15.9722i 1.10571 + 0.638379i
\(627\) −9.20461 5.31428i −0.367597 0.212232i
\(628\) 13.4307 7.75425i 0.535945 0.309428i
\(629\) 2.17709i 0.0868065i
\(630\) −2.82306 2.36198i −0.112474 0.0941036i
\(631\) 12.6839 7.32307i 0.504939 0.291527i −0.225812 0.974171i \(-0.572503\pi\)
0.730751 + 0.682644i \(0.239170\pi\)
\(632\) 6.79707 0.270373
\(633\) −13.9537 + 8.05616i −0.554609 + 0.320204i
\(634\) −11.6812 + 20.2325i −0.463921 + 0.803535i
\(635\) −38.2094 6.68121i −1.51629 0.265136i
\(636\) 2.44613 0.0969954
\(637\) 6.76270 13.9122i 0.267948 0.551222i
\(638\) 0.106619i 0.00422107i
\(639\) −6.53035 3.77030i −0.258337 0.149151i
\(640\) 0.385150 2.20265i 0.0152244 0.0870673i
\(641\) 23.9793 + 41.5334i 0.947125 + 1.64047i 0.751439 + 0.659803i \(0.229360\pi\)
0.195686 + 0.980667i \(0.437307\pi\)
\(642\) −10.6759 −0.421344
\(643\) 1.99884 + 3.46209i 0.0788265 + 0.136531i 0.902744 0.430178i \(-0.141549\pi\)
−0.823917 + 0.566710i \(0.808216\pi\)
\(644\) −12.2926 + 7.09712i −0.484395 + 0.279666i
\(645\) 14.1312 5.16617i 0.556417 0.203418i
\(646\) −0.537543 0.931052i −0.0211494 0.0366318i
\(647\) 20.4521 + 11.8080i 0.804053 + 0.464220i 0.844886 0.534946i \(-0.179668\pi\)
−0.0408333 + 0.999166i \(0.513001\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −23.2098 −0.911066
\(650\) 4.43424 + 17.4739i 0.173925 + 0.685383i
\(651\) 6.98710 0.273846
\(652\) 10.9464 18.9597i 0.428694 0.742520i
\(653\) 30.5411 + 17.6329i 1.19516 + 0.690029i 0.959473 0.281799i \(-0.0909312\pi\)
0.235692 + 0.971828i \(0.424265\pi\)
\(654\) 4.75342 + 8.23316i 0.185873 + 0.321942i
\(655\) −29.7491 + 10.8758i −1.16239 + 0.424954i
\(656\) −0.210702 + 0.121649i −0.00822652 + 0.00474958i
\(657\) −0.851850 1.47545i −0.0332338 0.0575627i
\(658\) 12.0095 0.468178
\(659\) 12.6686 + 21.9427i 0.493499 + 0.854765i 0.999972 0.00749088i \(-0.00238444\pi\)
−0.506473 + 0.862256i \(0.669051\pi\)
\(660\) 0.926401 5.29802i 0.0360601 0.206225i
\(661\) 4.21373 + 2.43280i 0.163895 + 0.0946248i 0.579704 0.814827i \(-0.303168\pi\)
−0.415809 + 0.909452i \(0.636502\pi\)
\(662\) 21.4634i 0.834199i
\(663\) 0.875002 0.0623479i 0.0339823 0.00242139i
\(664\) 17.4986 0.679079
\(665\) 16.0219 + 2.80156i 0.621303 + 0.108640i
\(666\) 4.47415 7.74945i 0.173370 0.300285i
\(667\) 0.331012 0.191110i 0.0128168 0.00739981i
\(668\) 5.29630 0.204920
\(669\) −9.62823 + 5.55886i −0.372249 + 0.214918i
\(670\) 3.21420 + 2.68924i 0.124175 + 0.103894i
\(671\) 6.33219i 0.244452i
\(672\) 1.42559 0.823063i 0.0549932 0.0317503i
\(673\) −6.48493 3.74408i −0.249976 0.144324i 0.369777 0.929120i \(-0.379434\pi\)
−0.619753 + 0.784797i \(0.712767\pi\)
\(674\) 12.4327 + 7.17805i 0.478891 + 0.276488i
\(675\) −3.22484 3.82105i −0.124124 0.147072i
\(676\) −8.03064 10.2230i −0.308871 0.393191i
\(677\) 37.4181i 1.43810i 0.694961 + 0.719048i \(0.255422\pi\)
−0.694961 + 0.719048i \(0.744578\pi\)
\(678\) 1.79806 3.11433i 0.0690541 0.119605i
\(679\) −13.5912 + 23.5406i −0.521582 + 0.903406i
\(680\) 0.349101 0.417249i 0.0133874 0.0160008i
\(681\) 22.0799i 0.846103i
\(682\) 5.10473 + 8.84165i 0.195470 + 0.338564i
\(683\) 3.13940 + 5.43761i 0.120126 + 0.208064i 0.919817 0.392347i \(-0.128337\pi\)
−0.799691 + 0.600411i \(0.795003\pi\)
\(684\) 4.41882i 0.168958i
\(685\) 12.5779 + 10.5236i 0.480577 + 0.402087i
\(686\) 9.29260 16.0953i 0.354793 0.614520i
\(687\) 5.16984 8.95443i 0.197242 0.341633i
\(688\) 6.72876i 0.256532i
\(689\) −0.626851 8.79735i −0.0238811 0.335152i
\(690\) −18.1090 + 6.62037i −0.689397 + 0.252033i
\(691\) −9.17461 5.29696i −0.349019 0.201506i 0.315234 0.949014i \(-0.397917\pi\)
−0.664253 + 0.747508i \(0.731250\pi\)
\(692\) 14.9469 + 8.62958i 0.568195 + 0.328047i
\(693\) 3.42896 1.97971i 0.130255 0.0752030i
\(694\) 0.665114i 0.0252474i
\(695\) −24.3590 20.3805i −0.923989 0.773078i
\(696\) −0.0383880 + 0.0221633i −0.00145509 + 0.000840098i
\(697\) −0.0591936 −0.00224212
\(698\) −3.25007 + 1.87643i −0.123017 + 0.0710239i
\(699\) −10.9464 + 18.9597i −0.414031 + 0.717123i
\(700\) 1.45233 + 8.10148i 0.0548930 + 0.306207i
\(701\) −29.6773 −1.12090 −0.560449 0.828189i \(-0.689371\pi\)
−0.560449 + 0.828189i \(0.689371\pi\)
\(702\) 3.24273 + 1.57629i 0.122389 + 0.0594931i
\(703\) 39.5409i 1.49131i
\(704\) 2.08305 + 1.20265i 0.0785078 + 0.0453265i
\(705\) 16.0696 + 2.80990i 0.605218 + 0.105827i
\(706\) 2.28180 + 3.95219i 0.0858766 + 0.148743i
\(707\) −18.6597 −0.701771
\(708\) −4.82474 8.35669i −0.181325 0.314064i
\(709\) 0.563901 0.325568i 0.0211777 0.0122270i −0.489374 0.872074i \(-0.662775\pi\)
0.510551 + 0.859847i \(0.329441\pi\)
\(710\) 5.78948 + 15.8362i 0.217275 + 0.594322i
\(711\) 3.39854 + 5.88644i 0.127455 + 0.220759i
\(712\) −8.69772 5.02163i −0.325961 0.188194i
\(713\) 18.3001 31.6967i 0.685344 1.18705i
\(714\) 0.400498 0.0149883
\(715\) −19.2914 1.97405i −0.721457 0.0738254i
\(716\) 8.35561 0.312264
\(717\) −13.1255 + 22.7341i −0.490181 + 0.849019i
\(718\) 4.12042 + 2.37892i 0.153773 + 0.0887807i
\(719\) −3.21203 5.56340i −0.119789 0.207480i 0.799895 0.600140i \(-0.204888\pi\)
−0.919684 + 0.392660i \(0.871555\pi\)
\(720\) 2.10012 0.767774i 0.0782670 0.0286133i
\(721\) −8.52740 + 4.92330i −0.317577 + 0.183353i
\(722\) 0.262979 + 0.455494i 0.00978708 + 0.0169517i
\(723\) −26.0907 −0.970325
\(724\) −6.36677 11.0276i −0.236619 0.409836i
\(725\) −0.0391081 0.218155i −0.00145244 0.00810208i
\(726\) −4.51593 2.60727i −0.167602 0.0967650i
\(727\) 16.3170i 0.605165i −0.953123 0.302583i \(-0.902151\pi\)
0.953123 0.302583i \(-0.0978488\pi\)
\(728\) −3.32541 4.91611i −0.123248 0.182203i
\(729\) −1.00000 −0.0370370
\(730\) −0.656181 + 3.75265i −0.0242863 + 0.138892i
\(731\) −0.818545 + 1.41776i −0.0302750 + 0.0524378i
\(732\) −2.27990 + 1.31630i −0.0842676 + 0.0486519i
\(733\) −24.4136 −0.901735 −0.450868 0.892591i \(-0.648885\pi\)
−0.450868 + 0.892591i \(0.648885\pi\)
\(734\) 1.29432 0.747277i 0.0477743 0.0275825i
\(735\) 6.15600 7.35770i 0.227067 0.271393i
\(736\) 8.62281i 0.317841i
\(737\) −3.90404 + 2.25400i −0.143807 + 0.0830271i
\(738\) −0.210702 0.121649i −0.00775603 0.00447795i
\(739\) 4.75775 + 2.74689i 0.175017 + 0.101046i 0.584949 0.811070i \(-0.301114\pi\)
−0.409932 + 0.912116i \(0.634448\pi\)
\(740\) −18.7925 + 6.87027i −0.690827 + 0.252556i
\(741\) −15.8920 + 1.13238i −0.583807 + 0.0415989i
\(742\) 4.02664i 0.147823i
\(743\) 10.6512 18.4484i 0.390753 0.676804i −0.601796 0.798650i \(-0.705548\pi\)
0.992549 + 0.121845i \(0.0388812\pi\)
\(744\) −2.12229 + 3.67591i −0.0778068 + 0.134765i
\(745\) 15.9326 19.0428i 0.583727 0.697676i
\(746\) 20.5910i 0.753890i
\(747\) 8.74932 + 15.1543i 0.320121 + 0.554466i
\(748\) 0.292601 + 0.506800i 0.0106986 + 0.0185304i
\(749\) 17.5739i 0.642135i
\(750\) 0.0478026 + 11.1802i 0.00174551 + 0.408245i
\(751\) −15.4023 + 26.6776i −0.562040 + 0.973481i 0.435279 + 0.900296i \(0.356650\pi\)
−0.997318 + 0.0731853i \(0.976684\pi\)
\(752\) −3.64780 + 6.31817i −0.133022 + 0.230400i
\(753\) 0.624794i 0.0227688i
\(754\) 0.0895462 + 0.132380i 0.00326108 + 0.00482100i
\(755\) −0.671544 1.83690i −0.0244400 0.0668517i
\(756\) 1.42559 + 0.823063i 0.0518481 + 0.0299345i
\(757\) 30.4180 + 17.5618i 1.10556 + 0.638296i 0.937676 0.347511i \(-0.112973\pi\)
0.167885 + 0.985807i \(0.446306\pi\)
\(758\) 18.4173 10.6332i 0.668946 0.386216i
\(759\) 20.7404i 0.752830i
\(760\) −6.34045 + 7.57816i −0.229992 + 0.274889i
\(761\) −25.0686 + 14.4734i −0.908737 + 0.524659i −0.880024 0.474928i \(-0.842474\pi\)
−0.0287122 + 0.999588i \(0.509141\pi\)
\(762\) 17.3470 0.628416
\(763\) 13.5528 7.82472i 0.490645 0.283274i
\(764\) −0.207632 + 0.359629i −0.00751187 + 0.0130109i
\(765\) 0.535898 + 0.0937060i 0.0193754 + 0.00338795i
\(766\) 10.6219 0.383785
\(767\) −28.8179 + 19.4933i −1.04055 + 0.703864i