Properties

Label 390.2.x
Level $390$
Weight $2$
Character orbit 390.x
Rep. character $\chi_{390}(49,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $24$
Newform subspaces $2$
Sturm bound $168$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.x (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(168\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(390, [\chi])\).

Total New Old
Modular forms 184 24 160
Cusp forms 152 24 128
Eisenstein series 32 0 32

Trace form

\( 24q - 12q^{4} + 12q^{9} + O(q^{10}) \) \( 24q - 12q^{4} + 12q^{9} + 2q^{10} + 12q^{11} + 8q^{14} + 12q^{15} - 12q^{16} - 12q^{19} + 6q^{20} - 20q^{25} - 4q^{26} + 28q^{29} + 4q^{35} + 12q^{36} - 4q^{39} - 4q^{40} - 36q^{41} - 6q^{45} - 12q^{46} + 16q^{49} - 30q^{50} + 32q^{51} - 20q^{55} - 4q^{56} - 72q^{59} + 20q^{61} + 24q^{64} - 38q^{65} - 24q^{66} + 32q^{69} - 24q^{71} - 24q^{74} + 8q^{75} + 12q^{76} + 8q^{79} - 6q^{80} - 12q^{81} + 24q^{84} + 66q^{85} + 36q^{89} + 4q^{90} + 4q^{91} - 16q^{94} - 24q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(390, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
390.2.x.a \(12\) \(3.114\) \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(-6\) \(0\) \(-2\) \(-2\) \(q+(-1-\beta _{6})q^{2}+\beta _{4}q^{3}+\beta _{6}q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\)
390.2.x.b \(12\) \(3.114\) \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(6\) \(0\) \(2\) \(2\) \(q+(1+\beta _{6})q^{2}-\beta _{4}q^{3}+\beta _{6}q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(390, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(390, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)