Defining parameters
Level: | \( N \) | \(=\) | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 390.x (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 65 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(390, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 24 | 160 |
Cusp forms | 152 | 24 | 128 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(390, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
390.2.x.a | $12$ | $3.114$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-6\) | \(0\) | \(-2\) | \(-2\) | \(q+(-1-\beta _{6})q^{2}+\beta _{4}q^{3}+\beta _{6}q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\) |
390.2.x.b | $12$ | $3.114$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(6\) | \(0\) | \(2\) | \(2\) | \(q+(1+\beta _{6})q^{2}-\beta _{4}q^{3}+\beta _{6}q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(390, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(390, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)