Properties

Label 390.2.p.g.281.3
Level $390$
Weight $2$
Character 390.281
Analytic conductor $3.114$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,2,Mod(161,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 281.3
Root \(1.14412 + 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 390.281
Dual form 390.2.p.g.161.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-1.58114 + 0.707107i) q^{3} -1.00000i q^{4} +(0.707107 - 0.707107i) q^{5} +(-0.618034 + 1.61803i) q^{6} +(-0.707107 - 0.707107i) q^{8} +(2.00000 - 2.23607i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(-1.58114 + 0.707107i) q^{3} -1.00000i q^{4} +(0.707107 - 0.707107i) q^{5} +(-0.618034 + 1.61803i) q^{6} +(-0.707107 - 0.707107i) q^{8} +(2.00000 - 2.23607i) q^{9} -1.00000i q^{10} +(-1.41421 - 1.41421i) q^{11} +(0.707107 + 1.58114i) q^{12} +(0.418861 - 3.58114i) q^{13} +(-0.618034 + 1.61803i) q^{15} -1.00000 q^{16} +7.30056 q^{17} +(-0.166925 - 2.99535i) q^{18} +(-5.16228 - 5.16228i) q^{19} +(-0.707107 - 0.707107i) q^{20} -2.00000 q^{22} +4.47214 q^{23} +(1.61803 + 0.618034i) q^{24} -1.00000i q^{25} +(-2.23607 - 2.82843i) q^{26} +(-1.58114 + 4.94975i) q^{27} -4.47214i q^{29} +(0.707107 + 1.58114i) q^{30} +(-3.00000 - 3.00000i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(3.23607 + 1.23607i) q^{33} +(5.16228 - 5.16228i) q^{34} +(-2.23607 - 2.00000i) q^{36} +(-4.00000 + 4.00000i) q^{37} -7.30056 q^{38} +(1.86997 + 5.95846i) q^{39} -1.00000 q^{40} +(-2.23607 + 2.23607i) q^{41} -7.16228i q^{43} +(-1.41421 + 1.41421i) q^{44} +(-0.166925 - 2.99535i) q^{45} +(3.16228 - 3.16228i) q^{46} +(7.30056 + 7.30056i) q^{47} +(1.58114 - 0.707107i) q^{48} +7.00000i q^{49} +(-0.707107 - 0.707107i) q^{50} +(-11.5432 + 5.16228i) q^{51} +(-3.58114 - 0.418861i) q^{52} +1.41421i q^{53} +(2.38197 + 4.61803i) q^{54} -2.00000 q^{55} +(11.8126 + 4.51200i) q^{57} +(-3.16228 - 3.16228i) q^{58} +(5.88635 + 5.88635i) q^{59} +(1.61803 + 0.618034i) q^{60} +10.6491 q^{61} -4.24264 q^{62} +1.00000i q^{64} +(-2.23607 - 2.82843i) q^{65} +(3.16228 - 1.41421i) q^{66} +(7.16228 + 7.16228i) q^{67} -7.30056i q^{68} +(-7.07107 + 3.16228i) q^{69} +(-3.87978 + 3.87978i) q^{71} +(-2.99535 + 0.166925i) q^{72} +(-5.16228 + 5.16228i) q^{73} +5.65685i q^{74} +(0.707107 + 1.58114i) q^{75} +(-5.16228 + 5.16228i) q^{76} +(5.53553 + 2.89100i) q^{78} -10.0000 q^{79} +(-0.707107 + 0.707107i) q^{80} +(-1.00000 - 8.94427i) q^{81} +3.16228i q^{82} +(-5.65685 + 5.65685i) q^{83} +(5.16228 - 5.16228i) q^{85} +(-5.06450 - 5.06450i) q^{86} +(3.16228 + 7.07107i) q^{87} +2.00000i q^{88} +(0.592359 + 0.592359i) q^{89} +(-2.23607 - 2.00000i) q^{90} -4.47214i q^{92} +(6.86474 + 2.62210i) q^{93} +10.3246 q^{94} -7.30056 q^{95} +(0.618034 - 1.61803i) q^{96} +(-1.16228 - 1.16228i) q^{97} +(4.94975 + 4.94975i) q^{98} +(-5.99070 + 0.333851i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{6} + 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{6} + 16 q^{9} + 16 q^{13} + 4 q^{15} - 8 q^{16} - 16 q^{19} - 16 q^{22} + 4 q^{24} - 24 q^{31} + 8 q^{33} + 16 q^{34} - 32 q^{37} + 20 q^{39} - 8 q^{40} - 16 q^{52} + 28 q^{54} - 16 q^{55} + 40 q^{57} + 4 q^{60} - 16 q^{61} + 32 q^{67} - 16 q^{73} - 16 q^{76} + 16 q^{78} - 80 q^{79} - 8 q^{81} + 16 q^{85} + 32 q^{94} - 4 q^{96} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −1.58114 + 0.707107i −0.912871 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) −0.618034 + 1.61803i −0.252311 + 0.660560i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 2.00000 2.23607i 0.666667 0.745356i
\(10\) 1.00000i 0.316228i
\(11\) −1.41421 1.41421i −0.426401 0.426401i 0.460999 0.887401i \(-0.347491\pi\)
−0.887401 + 0.460999i \(0.847491\pi\)
\(12\) 0.707107 + 1.58114i 0.204124 + 0.456435i
\(13\) 0.418861 3.58114i 0.116171 0.993229i
\(14\) 0 0
\(15\) −0.618034 + 1.61803i −0.159576 + 0.417775i
\(16\) −1.00000 −0.250000
\(17\) 7.30056 1.77065 0.885323 0.464976i \(-0.153937\pi\)
0.885323 + 0.464976i \(0.153937\pi\)
\(18\) −0.166925 2.99535i −0.0393447 0.706011i
\(19\) −5.16228 5.16228i −1.18431 1.18431i −0.978617 0.205691i \(-0.934056\pi\)
−0.205691 0.978617i \(-0.565944\pi\)
\(20\) −0.707107 0.707107i −0.158114 0.158114i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 4.47214 0.932505 0.466252 0.884652i \(-0.345604\pi\)
0.466252 + 0.884652i \(0.345604\pi\)
\(24\) 1.61803 + 0.618034i 0.330280 + 0.126156i
\(25\) 1.00000i 0.200000i
\(26\) −2.23607 2.82843i −0.438529 0.554700i
\(27\) −1.58114 + 4.94975i −0.304290 + 0.952579i
\(28\) 0 0
\(29\) 4.47214i 0.830455i −0.909718 0.415227i \(-0.863702\pi\)
0.909718 0.415227i \(-0.136298\pi\)
\(30\) 0.707107 + 1.58114i 0.129099 + 0.288675i
\(31\) −3.00000 3.00000i −0.538816 0.538816i 0.384365 0.923181i \(-0.374420\pi\)
−0.923181 + 0.384365i \(0.874420\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 3.23607 + 1.23607i 0.563327 + 0.215172i
\(34\) 5.16228 5.16228i 0.885323 0.885323i
\(35\) 0 0
\(36\) −2.23607 2.00000i −0.372678 0.333333i
\(37\) −4.00000 + 4.00000i −0.657596 + 0.657596i −0.954811 0.297215i \(-0.903942\pi\)
0.297215 + 0.954811i \(0.403942\pi\)
\(38\) −7.30056 −1.18431
\(39\) 1.86997 + 5.95846i 0.299435 + 0.954117i
\(40\) −1.00000 −0.158114
\(41\) −2.23607 + 2.23607i −0.349215 + 0.349215i −0.859817 0.510602i \(-0.829423\pi\)
0.510602 + 0.859817i \(0.329423\pi\)
\(42\) 0 0
\(43\) 7.16228i 1.09224i −0.837708 0.546119i \(-0.816105\pi\)
0.837708 0.546119i \(-0.183895\pi\)
\(44\) −1.41421 + 1.41421i −0.213201 + 0.213201i
\(45\) −0.166925 2.99535i −0.0248837 0.446521i
\(46\) 3.16228 3.16228i 0.466252 0.466252i
\(47\) 7.30056 + 7.30056i 1.06490 + 1.06490i 0.997743 + 0.0671539i \(0.0213919\pi\)
0.0671539 + 0.997743i \(0.478608\pi\)
\(48\) 1.58114 0.707107i 0.228218 0.102062i
\(49\) 7.00000i 1.00000i
\(50\) −0.707107 0.707107i −0.100000 0.100000i
\(51\) −11.5432 + 5.16228i −1.61637 + 0.722863i
\(52\) −3.58114 0.418861i −0.496615 0.0580856i
\(53\) 1.41421i 0.194257i 0.995272 + 0.0971286i \(0.0309658\pi\)
−0.995272 + 0.0971286i \(0.969034\pi\)
\(54\) 2.38197 + 4.61803i 0.324145 + 0.628435i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 11.8126 + 4.51200i 1.56461 + 0.597628i
\(58\) −3.16228 3.16228i −0.415227 0.415227i
\(59\) 5.88635 + 5.88635i 0.766337 + 0.766337i 0.977460 0.211122i \(-0.0677118\pi\)
−0.211122 + 0.977460i \(0.567712\pi\)
\(60\) 1.61803 + 0.618034i 0.208887 + 0.0797878i
\(61\) 10.6491 1.36348 0.681739 0.731595i \(-0.261224\pi\)
0.681739 + 0.731595i \(0.261224\pi\)
\(62\) −4.24264 −0.538816
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −2.23607 2.82843i −0.277350 0.350823i
\(66\) 3.16228 1.41421i 0.389249 0.174078i
\(67\) 7.16228 + 7.16228i 0.875011 + 0.875011i 0.993013 0.118002i \(-0.0376489\pi\)
−0.118002 + 0.993013i \(0.537649\pi\)
\(68\) 7.30056i 0.885323i
\(69\) −7.07107 + 3.16228i −0.851257 + 0.380693i
\(70\) 0 0
\(71\) −3.87978 + 3.87978i −0.460445 + 0.460445i −0.898801 0.438356i \(-0.855561\pi\)
0.438356 + 0.898801i \(0.355561\pi\)
\(72\) −2.99535 + 0.166925i −0.353006 + 0.0196723i
\(73\) −5.16228 + 5.16228i −0.604199 + 0.604199i −0.941424 0.337225i \(-0.890512\pi\)
0.337225 + 0.941424i \(0.390512\pi\)
\(74\) 5.65685i 0.657596i
\(75\) 0.707107 + 1.58114i 0.0816497 + 0.182574i
\(76\) −5.16228 + 5.16228i −0.592154 + 0.592154i
\(77\) 0 0
\(78\) 5.53553 + 2.89100i 0.626776 + 0.327341i
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) −0.707107 + 0.707107i −0.0790569 + 0.0790569i
\(81\) −1.00000 8.94427i −0.111111 0.993808i
\(82\) 3.16228i 0.349215i
\(83\) −5.65685 + 5.65685i −0.620920 + 0.620920i −0.945767 0.324846i \(-0.894687\pi\)
0.324846 + 0.945767i \(0.394687\pi\)
\(84\) 0 0
\(85\) 5.16228 5.16228i 0.559928 0.559928i
\(86\) −5.06450 5.06450i −0.546119 0.546119i
\(87\) 3.16228 + 7.07107i 0.339032 + 0.758098i
\(88\) 2.00000i 0.213201i
\(89\) 0.592359 + 0.592359i 0.0627899 + 0.0627899i 0.737804 0.675015i \(-0.235863\pi\)
−0.675015 + 0.737804i \(0.735863\pi\)
\(90\) −2.23607 2.00000i −0.235702 0.210819i
\(91\) 0 0
\(92\) 4.47214i 0.466252i
\(93\) 6.86474 + 2.62210i 0.711840 + 0.271899i
\(94\) 10.3246 1.06490
\(95\) −7.30056 −0.749022
\(96\) 0.618034 1.61803i 0.0630778 0.165140i
\(97\) −1.16228 1.16228i −0.118011 0.118011i 0.645635 0.763646i \(-0.276593\pi\)
−0.763646 + 0.645635i \(0.776593\pi\)
\(98\) 4.94975 + 4.94975i 0.500000 + 0.500000i
\(99\) −5.99070 + 0.333851i −0.602088 + 0.0335532i
\(100\) −1.00000 −0.100000
\(101\) 6.84157 0.680762 0.340381 0.940288i \(-0.389444\pi\)
0.340381 + 0.940288i \(0.389444\pi\)
\(102\) −4.51200 + 11.8126i −0.446754 + 1.16962i
\(103\) 18.6491i 1.83755i 0.394780 + 0.918776i \(0.370821\pi\)
−0.394780 + 0.918776i \(0.629179\pi\)
\(104\) −2.82843 + 2.23607i −0.277350 + 0.219265i
\(105\) 0 0
\(106\) 1.00000 + 1.00000i 0.0971286 + 0.0971286i
\(107\) 7.53006i 0.727958i −0.931407 0.363979i \(-0.881418\pi\)
0.931407 0.363979i \(-0.118582\pi\)
\(108\) 4.94975 + 1.58114i 0.476290 + 0.152145i
\(109\) −4.83772 4.83772i −0.463370 0.463370i 0.436389 0.899758i \(-0.356257\pi\)
−0.899758 + 0.436389i \(0.856257\pi\)
\(110\) −1.41421 + 1.41421i −0.134840 + 0.134840i
\(111\) 3.49613 9.15298i 0.331838 0.868763i
\(112\) 0 0
\(113\) 16.2448i 1.52819i −0.645106 0.764093i \(-0.723187\pi\)
0.645106 0.764093i \(-0.276813\pi\)
\(114\) 11.5432 5.16228i 1.08112 0.483492i
\(115\) 3.16228 3.16228i 0.294884 0.294884i
\(116\) −4.47214 −0.415227
\(117\) −7.16995 8.09888i −0.662862 0.748742i
\(118\) 8.32456 0.766337
\(119\) 0 0
\(120\) 1.58114 0.707107i 0.144338 0.0645497i
\(121\) 7.00000i 0.636364i
\(122\) 7.53006 7.53006i 0.681739 0.681739i
\(123\) 1.95440 5.11667i 0.176222 0.461355i
\(124\) −3.00000 + 3.00000i −0.269408 + 0.269408i
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 0 0
\(127\) 16.9737i 1.50617i −0.657924 0.753085i \(-0.728565\pi\)
0.657924 0.753085i \(-0.271435\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 5.06450 + 11.3246i 0.445904 + 0.997071i
\(130\) −3.58114 0.418861i −0.314087 0.0367366i
\(131\) 0.458991i 0.0401022i 0.999799 + 0.0200511i \(0.00638289\pi\)
−0.999799 + 0.0200511i \(0.993617\pi\)
\(132\) 1.23607 3.23607i 0.107586 0.281664i
\(133\) 0 0
\(134\) 10.1290 0.875011
\(135\) 2.38197 + 4.61803i 0.205007 + 0.397457i
\(136\) −5.16228 5.16228i −0.442662 0.442662i
\(137\) 14.3716 + 14.3716i 1.22785 + 1.22785i 0.964775 + 0.263076i \(0.0847371\pi\)
0.263076 + 0.964775i \(0.415263\pi\)
\(138\) −2.76393 + 7.23607i −0.235282 + 0.615975i
\(139\) 6.32456 0.536442 0.268221 0.963357i \(-0.413564\pi\)
0.268221 + 0.963357i \(0.413564\pi\)
\(140\) 0 0
\(141\) −16.7055 6.38093i −1.40686 0.537371i
\(142\) 5.48683i 0.460445i
\(143\) −5.65685 + 4.47214i −0.473050 + 0.373979i
\(144\) −2.00000 + 2.23607i −0.166667 + 0.186339i
\(145\) −3.16228 3.16228i −0.262613 0.262613i
\(146\) 7.30056i 0.604199i
\(147\) −4.94975 11.0680i −0.408248 0.912871i
\(148\) 4.00000 + 4.00000i 0.328798 + 0.328798i
\(149\) 2.59893 2.59893i 0.212913 0.212913i −0.592591 0.805504i \(-0.701895\pi\)
0.805504 + 0.592591i \(0.201895\pi\)
\(150\) 1.61803 + 0.618034i 0.132112 + 0.0504623i
\(151\) 0.675445 0.675445i 0.0549669 0.0549669i −0.679089 0.734056i \(-0.737625\pi\)
0.734056 + 0.679089i \(0.237625\pi\)
\(152\) 7.30056i 0.592154i
\(153\) 14.6011 16.3246i 1.18043 1.31976i
\(154\) 0 0
\(155\) −4.24264 −0.340777
\(156\) 5.95846 1.86997i 0.477058 0.149717i
\(157\) 23.1623 1.84855 0.924276 0.381726i \(-0.124670\pi\)
0.924276 + 0.381726i \(0.124670\pi\)
\(158\) −7.07107 + 7.07107i −0.562544 + 0.562544i
\(159\) −1.00000 2.23607i −0.0793052 0.177332i
\(160\) 1.00000i 0.0790569i
\(161\) 0 0
\(162\) −7.03166 5.61745i −0.552460 0.441348i
\(163\) 2.32456 2.32456i 0.182073 0.182073i −0.610185 0.792259i \(-0.708905\pi\)
0.792259 + 0.610185i \(0.208905\pi\)
\(164\) 2.23607 + 2.23607i 0.174608 + 0.174608i
\(165\) 3.16228 1.41421i 0.246183 0.110096i
\(166\) 8.00000i 0.620920i
\(167\) 1.64371 + 1.64371i 0.127194 + 0.127194i 0.767838 0.640644i \(-0.221333\pi\)
−0.640644 + 0.767838i \(0.721333\pi\)
\(168\) 0 0
\(169\) −12.6491 3.00000i −0.973009 0.230769i
\(170\) 7.30056i 0.559928i
\(171\) −21.8678 + 1.21865i −1.67227 + 0.0931924i
\(172\) −7.16228 −0.546119
\(173\) −22.1312 −1.68260 −0.841301 0.540566i \(-0.818210\pi\)
−0.841301 + 0.540566i \(0.818210\pi\)
\(174\) 7.23607 + 2.76393i 0.548565 + 0.209533i
\(175\) 0 0
\(176\) 1.41421 + 1.41421i 0.106600 + 0.106600i
\(177\) −13.4694 5.14486i −1.01242 0.386711i
\(178\) 0.837722 0.0627899
\(179\) 0.458991 0.0343066 0.0171533 0.999853i \(-0.494540\pi\)
0.0171533 + 0.999853i \(0.494540\pi\)
\(180\) −2.99535 + 0.166925i −0.223260 + 0.0124419i
\(181\) 4.32456i 0.321442i 0.987000 + 0.160721i \(0.0513819\pi\)
−0.987000 + 0.160721i \(0.948618\pi\)
\(182\) 0 0
\(183\) −16.8377 + 7.53006i −1.24468 + 0.556638i
\(184\) −3.16228 3.16228i −0.233126 0.233126i
\(185\) 5.65685i 0.415900i
\(186\) 6.70820 3.00000i 0.491869 0.219971i
\(187\) −10.3246 10.3246i −0.755006 0.755006i
\(188\) 7.30056 7.30056i 0.532448 0.532448i
\(189\) 0 0
\(190\) −5.16228 + 5.16228i −0.374511 + 0.374511i
\(191\) 2.10270i 0.152146i 0.997102 + 0.0760730i \(0.0242382\pi\)
−0.997102 + 0.0760730i \(0.975762\pi\)
\(192\) −0.707107 1.58114i −0.0510310 0.114109i
\(193\) −3.48683 + 3.48683i −0.250988 + 0.250988i −0.821376 0.570388i \(-0.806793\pi\)
0.570388 + 0.821376i \(0.306793\pi\)
\(194\) −1.64371 −0.118011
\(195\) 5.53553 + 2.89100i 0.396408 + 0.207029i
\(196\) 7.00000 0.500000
\(197\) −8.94427 + 8.94427i −0.637253 + 0.637253i −0.949877 0.312624i \(-0.898792\pi\)
0.312624 + 0.949877i \(0.398792\pi\)
\(198\) −4.00000 + 4.47214i −0.284268 + 0.317821i
\(199\) 2.00000i 0.141776i −0.997484 0.0708881i \(-0.977417\pi\)
0.997484 0.0708881i \(-0.0225833\pi\)
\(200\) −0.707107 + 0.707107i −0.0500000 + 0.0500000i
\(201\) −16.3891 6.26006i −1.15599 0.441551i
\(202\) 4.83772 4.83772i 0.340381 0.340381i
\(203\) 0 0
\(204\) 5.16228 + 11.5432i 0.361432 + 0.808186i
\(205\) 3.16228i 0.220863i
\(206\) 13.1869 + 13.1869i 0.918776 + 0.918776i
\(207\) 8.94427 10.0000i 0.621670 0.695048i
\(208\) −0.418861 + 3.58114i −0.0290428 + 0.248307i
\(209\) 14.6011i 1.00998i
\(210\) 0 0
\(211\) 3.35089 0.230685 0.115342 0.993326i \(-0.463203\pi\)
0.115342 + 0.993326i \(0.463203\pi\)
\(212\) 1.41421 0.0971286
\(213\) 3.39105 8.87788i 0.232351 0.608302i
\(214\) −5.32456 5.32456i −0.363979 0.363979i
\(215\) −5.06450 5.06450i −0.345396 0.345396i
\(216\) 4.61803 2.38197i 0.314217 0.162072i
\(217\) 0 0
\(218\) −6.84157 −0.463370
\(219\) 4.51200 11.8126i 0.304892 0.798219i
\(220\) 2.00000i 0.134840i
\(221\) 3.05792 26.1443i 0.205698 1.75866i
\(222\) −4.00000 8.94427i −0.268462 0.600300i
\(223\) 16.6491 + 16.6491i 1.11491 + 1.11491i 0.992477 + 0.122430i \(0.0390686\pi\)
0.122430 + 0.992477i \(0.460931\pi\)
\(224\) 0 0
\(225\) −2.23607 2.00000i −0.149071 0.133333i
\(226\) −11.4868 11.4868i −0.764093 0.764093i
\(227\) 12.7279 12.7279i 0.844782 0.844782i −0.144695 0.989476i \(-0.546220\pi\)
0.989476 + 0.144695i \(0.0462199\pi\)
\(228\) 4.51200 11.8126i 0.298814 0.782306i
\(229\) −13.8114 + 13.8114i −0.912682 + 0.912682i −0.996483 0.0838003i \(-0.973294\pi\)
0.0838003 + 0.996483i \(0.473294\pi\)
\(230\) 4.47214i 0.294884i
\(231\) 0 0
\(232\) −3.16228 + 3.16228i −0.207614 + 0.207614i
\(233\) −4.01315 −0.262910 −0.131455 0.991322i \(-0.541965\pi\)
−0.131455 + 0.991322i \(0.541965\pi\)
\(234\) −10.7967 0.656854i −0.705802 0.0429399i
\(235\) 10.3246 0.673500
\(236\) 5.88635 5.88635i 0.383169 0.383169i
\(237\) 15.8114 7.07107i 1.02706 0.459315i
\(238\) 0 0
\(239\) 7.89292 7.89292i 0.510551 0.510551i −0.404144 0.914695i \(-0.632431\pi\)
0.914695 + 0.404144i \(0.132431\pi\)
\(240\) 0.618034 1.61803i 0.0398939 0.104444i
\(241\) 7.64911 7.64911i 0.492723 0.492723i −0.416440 0.909163i \(-0.636723\pi\)
0.909163 + 0.416440i \(0.136723\pi\)
\(242\) −4.94975 4.94975i −0.318182 0.318182i
\(243\) 7.90569 + 13.4350i 0.507151 + 0.861858i
\(244\) 10.6491i 0.681739i
\(245\) 4.94975 + 4.94975i 0.316228 + 0.316228i
\(246\) −2.23607 5.00000i −0.142566 0.318788i
\(247\) −20.6491 + 16.3246i −1.31387 + 1.03871i
\(248\) 4.24264i 0.269408i
\(249\) 4.94427 12.9443i 0.313331 0.820310i
\(250\) −1.00000 −0.0632456
\(251\) 14.6011 0.921615 0.460807 0.887500i \(-0.347560\pi\)
0.460807 + 0.887500i \(0.347560\pi\)
\(252\) 0 0
\(253\) −6.32456 6.32456i −0.397621 0.397621i
\(254\) −12.0022 12.0022i −0.753085 0.753085i
\(255\) −4.51200 + 11.8126i −0.282552 + 0.739731i
\(256\) 1.00000 0.0625000
\(257\) −1.64371 −0.102532 −0.0512659 0.998685i \(-0.516326\pi\)
−0.0512659 + 0.998685i \(0.516326\pi\)
\(258\) 11.5888 + 4.42653i 0.721488 + 0.275584i
\(259\) 0 0
\(260\) −2.82843 + 2.23607i −0.175412 + 0.138675i
\(261\) −10.0000 8.94427i −0.618984 0.553637i
\(262\) 0.324555 + 0.324555i 0.0200511 + 0.0200511i
\(263\) 1.18472i 0.0730529i 0.999333 + 0.0365264i \(0.0116293\pi\)
−0.999333 + 0.0365264i \(0.988371\pi\)
\(264\) −1.41421 3.16228i −0.0870388 0.194625i
\(265\) 1.00000 + 1.00000i 0.0614295 + 0.0614295i
\(266\) 0 0
\(267\) −1.35546 0.517741i −0.0829530 0.0316852i
\(268\) 7.16228 7.16228i 0.437506 0.437506i
\(269\) 4.47214i 0.272671i −0.990663 0.136335i \(-0.956467\pi\)
0.990663 0.136335i \(-0.0435325\pi\)
\(270\) 4.94975 + 1.58114i 0.301232 + 0.0962250i
\(271\) −7.32456 + 7.32456i −0.444935 + 0.444935i −0.893667 0.448732i \(-0.851876\pi\)
0.448732 + 0.893667i \(0.351876\pi\)
\(272\) −7.30056 −0.442662
\(273\) 0 0
\(274\) 20.3246 1.22785
\(275\) −1.41421 + 1.41421i −0.0852803 + 0.0852803i
\(276\) 3.16228 + 7.07107i 0.190347 + 0.425628i
\(277\) 3.16228i 0.190003i −0.995477 0.0950014i \(-0.969714\pi\)
0.995477 0.0950014i \(-0.0302856\pi\)
\(278\) 4.47214 4.47214i 0.268221 0.268221i
\(279\) −12.7082 + 0.708204i −0.760820 + 0.0423991i
\(280\) 0 0
\(281\) 17.5629 + 17.5629i 1.04772 + 1.04772i 0.998803 + 0.0489130i \(0.0155757\pi\)
0.0489130 + 0.998803i \(0.484424\pi\)
\(282\) −16.3246 + 7.30056i −0.972113 + 0.434742i
\(283\) 12.8377i 0.763123i 0.924343 + 0.381562i \(0.124614\pi\)
−0.924343 + 0.381562i \(0.875386\pi\)
\(284\) 3.87978 + 3.87978i 0.230222 + 0.230222i
\(285\) 11.5432 5.16228i 0.683760 0.305787i
\(286\) −0.837722 + 7.16228i −0.0495356 + 0.423514i
\(287\) 0 0
\(288\) 0.166925 + 2.99535i 0.00983617 + 0.176503i
\(289\) 36.2982 2.13519
\(290\) −4.47214 −0.262613
\(291\) 2.65958 + 1.01587i 0.155907 + 0.0595512i
\(292\) 5.16228 + 5.16228i 0.302099 + 0.302099i
\(293\) 2.82843 + 2.82843i 0.165238 + 0.165238i 0.784883 0.619644i \(-0.212723\pi\)
−0.619644 + 0.784883i \(0.712723\pi\)
\(294\) −11.3262 4.32624i −0.660560 0.252311i
\(295\) 8.32456 0.484674
\(296\) 5.65685 0.328798
\(297\) 9.23607 4.76393i 0.535931 0.276431i
\(298\) 3.67544i 0.212913i
\(299\) 1.87320 16.0153i 0.108330 0.926191i
\(300\) 1.58114 0.707107i 0.0912871 0.0408248i
\(301\) 0 0
\(302\) 0.955223i 0.0549669i
\(303\) −10.8175 + 4.83772i −0.621448 + 0.277920i
\(304\) 5.16228 + 5.16228i 0.296077 + 0.296077i
\(305\) 7.53006 7.53006i 0.431170 0.431170i
\(306\) −1.21865 21.8678i −0.0696655 1.25010i
\(307\) 7.16228 7.16228i 0.408773 0.408773i −0.472538 0.881310i \(-0.656662\pi\)
0.881310 + 0.472538i \(0.156662\pi\)
\(308\) 0 0
\(309\) −13.1869 29.4868i −0.750177 1.67745i
\(310\) −3.00000 + 3.00000i −0.170389 + 0.170389i
\(311\) 21.1760 1.20078 0.600389 0.799708i \(-0.295012\pi\)
0.600389 + 0.799708i \(0.295012\pi\)
\(312\) 2.89100 5.53553i 0.163670 0.313388i
\(313\) −18.6491 −1.05411 −0.527055 0.849831i \(-0.676704\pi\)
−0.527055 + 0.849831i \(0.676704\pi\)
\(314\) 16.3782 16.3782i 0.924276 0.924276i
\(315\) 0 0
\(316\) 10.0000i 0.562544i
\(317\) −17.8885 + 17.8885i −1.00472 + 1.00472i −0.00473191 + 0.999989i \(0.501506\pi\)
−0.999989 + 0.00473191i \(0.998494\pi\)
\(318\) −2.28825 0.874032i −0.128318 0.0490133i
\(319\) −6.32456 + 6.32456i −0.354107 + 0.354107i
\(320\) 0.707107 + 0.707107i 0.0395285 + 0.0395285i
\(321\) 5.32456 + 11.9061i 0.297188 + 0.664532i
\(322\) 0 0
\(323\) −37.6875 37.6875i −2.09699 2.09699i
\(324\) −8.94427 + 1.00000i −0.496904 + 0.0555556i
\(325\) −3.58114 0.418861i −0.198646 0.0232342i
\(326\) 3.28742i 0.182073i
\(327\) 11.0699 + 4.22832i 0.612167 + 0.233827i
\(328\) 3.16228 0.174608
\(329\) 0 0
\(330\) 1.23607 3.23607i 0.0680433 0.178140i
\(331\) −9.48683 9.48683i −0.521443 0.521443i 0.396564 0.918007i \(-0.370203\pi\)
−0.918007 + 0.396564i \(0.870203\pi\)
\(332\) 5.65685 + 5.65685i 0.310460 + 0.310460i
\(333\) 0.944272 + 16.9443i 0.0517458 + 0.928540i
\(334\) 2.32456 0.127194
\(335\) 10.1290 0.553406
\(336\) 0 0
\(337\) 30.6491i 1.66956i 0.550581 + 0.834782i \(0.314406\pi\)
−0.550581 + 0.834782i \(0.685594\pi\)
\(338\) −11.0656 + 6.82295i −0.601889 + 0.371120i
\(339\) 11.4868 + 25.6853i 0.623879 + 1.39504i
\(340\) −5.16228 5.16228i −0.279964 0.279964i
\(341\) 8.48528i 0.459504i
\(342\) −14.6011 + 16.3246i −0.789538 + 0.882731i
\(343\) 0 0
\(344\) −5.06450 + 5.06450i −0.273059 + 0.273059i
\(345\) −2.76393 + 7.23607i −0.148805 + 0.389577i
\(346\) −15.6491 + 15.6491i −0.841301 + 0.841301i
\(347\) 7.53006i 0.404235i 0.979361 + 0.202117i \(0.0647822\pi\)
−0.979361 + 0.202117i \(0.935218\pi\)
\(348\) 7.07107 3.16228i 0.379049 0.169516i
\(349\) −0.837722 + 0.837722i −0.0448422 + 0.0448422i −0.729172 0.684330i \(-0.760095\pi\)
0.684330 + 0.729172i \(0.260095\pi\)
\(350\) 0 0
\(351\) 17.0635 + 7.73553i 0.910780 + 0.412892i
\(352\) 2.00000 0.106600
\(353\) 9.17377 9.17377i 0.488270 0.488270i −0.419490 0.907760i \(-0.637791\pi\)
0.907760 + 0.419490i \(0.137791\pi\)
\(354\) −13.1623 + 5.88635i −0.699567 + 0.312856i
\(355\) 5.48683i 0.291211i
\(356\) 0.592359 0.592359i 0.0313950 0.0313950i
\(357\) 0 0
\(358\) 0.324555 0.324555i 0.0171533 0.0171533i
\(359\) −22.4940 22.4940i −1.18719 1.18719i −0.977841 0.209350i \(-0.932865\pi\)
−0.209350 0.977841i \(-0.567135\pi\)
\(360\) −2.00000 + 2.23607i −0.105409 + 0.117851i
\(361\) 34.2982i 1.80517i
\(362\) 3.05792 + 3.05792i 0.160721 + 0.160721i
\(363\) 4.94975 + 11.0680i 0.259794 + 0.580918i
\(364\) 0 0
\(365\) 7.30056i 0.382129i
\(366\) −6.58151 + 17.2306i −0.344021 + 0.900659i
\(367\) 18.6491 0.973476 0.486738 0.873548i \(-0.338187\pi\)
0.486738 + 0.873548i \(0.338187\pi\)
\(368\) −4.47214 −0.233126
\(369\) 0.527864 + 9.47214i 0.0274795 + 0.493100i
\(370\) 4.00000 + 4.00000i 0.207950 + 0.207950i
\(371\) 0 0
\(372\) 2.62210 6.86474i 0.135949 0.355920i
\(373\) 15.1623 0.785073 0.392536 0.919736i \(-0.371598\pi\)
0.392536 + 0.919736i \(0.371598\pi\)
\(374\) −14.6011 −0.755006
\(375\) 1.61803 + 0.618034i 0.0835549 + 0.0319151i
\(376\) 10.3246i 0.532448i
\(377\) −16.0153 1.87320i −0.824832 0.0964749i
\(378\) 0 0
\(379\) −13.1623 13.1623i −0.676101 0.676101i 0.283015 0.959116i \(-0.408665\pi\)
−0.959116 + 0.283015i \(0.908665\pi\)
\(380\) 7.30056i 0.374511i
\(381\) 12.0022 + 26.8377i 0.614891 + 1.37494i
\(382\) 1.48683 + 1.48683i 0.0760730 + 0.0760730i
\(383\) 4.93113 4.93113i 0.251969 0.251969i −0.569809 0.821777i \(-0.692983\pi\)
0.821777 + 0.569809i \(0.192983\pi\)
\(384\) −1.61803 0.618034i −0.0825700 0.0315389i
\(385\) 0 0
\(386\) 4.93113i 0.250988i
\(387\) −16.0153 14.3246i −0.814105 0.728158i
\(388\) −1.16228 + 1.16228i −0.0590057 + 0.0590057i
\(389\) −29.9280 −1.51741 −0.758704 0.651435i \(-0.774167\pi\)
−0.758704 + 0.651435i \(0.774167\pi\)
\(390\) 5.95846 1.86997i 0.301718 0.0946896i
\(391\) 32.6491 1.65114
\(392\) 4.94975 4.94975i 0.250000 0.250000i
\(393\) −0.324555 0.725728i −0.0163717 0.0366081i
\(394\) 12.6491i 0.637253i
\(395\) −7.07107 + 7.07107i −0.355784 + 0.355784i
\(396\) 0.333851 + 5.99070i 0.0167766 + 0.301044i
\(397\) −12.8377 + 12.8377i −0.644307 + 0.644307i −0.951611 0.307304i \(-0.900573\pi\)
0.307304 + 0.951611i \(0.400573\pi\)
\(398\) −1.41421 1.41421i −0.0708881 0.0708881i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) 15.1935 + 15.1935i 0.758726 + 0.758726i 0.976091 0.217364i \(-0.0697459\pi\)
−0.217364 + 0.976091i \(0.569746\pi\)
\(402\) −16.0153 + 7.16228i −0.798773 + 0.357222i
\(403\) −12.0000 + 9.48683i −0.597763 + 0.472573i
\(404\) 6.84157i 0.340381i
\(405\) −7.03166 5.61745i −0.349406 0.279133i
\(406\) 0 0
\(407\) 11.3137 0.560800
\(408\) 11.8126 + 4.51200i 0.584809 + 0.223377i
\(409\) 10.6754 + 10.6754i 0.527867 + 0.527867i 0.919936 0.392069i \(-0.128241\pi\)
−0.392069 + 0.919936i \(0.628241\pi\)
\(410\) 2.23607 + 2.23607i 0.110432 + 0.110432i
\(411\) −32.8858 12.5613i −1.62214 0.619602i
\(412\) 18.6491 0.918776
\(413\) 0 0
\(414\) −0.746512 13.3956i −0.0366891 0.658359i
\(415\) 8.00000i 0.392705i
\(416\) 2.23607 + 2.82843i 0.109632 + 0.138675i
\(417\) −10.0000 + 4.47214i −0.489702 + 0.219001i
\(418\) 10.3246 + 10.3246i 0.504991 + 0.504991i
\(419\) 40.5160i 1.97933i 0.143384 + 0.989667i \(0.454202\pi\)
−0.143384 + 0.989667i \(0.545798\pi\)
\(420\) 0 0
\(421\) −12.8377 12.8377i −0.625672 0.625672i 0.321304 0.946976i \(-0.395879\pi\)
−0.946976 + 0.321304i \(0.895879\pi\)
\(422\) 2.36944 2.36944i 0.115342 0.115342i
\(423\) 30.9257 1.72343i 1.50366 0.0837960i
\(424\) 1.00000 1.00000i 0.0485643 0.0485643i
\(425\) 7.30056i 0.354129i
\(426\) −3.87978 8.67544i −0.187976 0.420327i
\(427\) 0 0
\(428\) −7.53006 −0.363979
\(429\) 5.78199 11.0711i 0.279157 0.534516i
\(430\) −7.16228 −0.345396
\(431\) −1.77708 + 1.77708i −0.0855988 + 0.0855988i −0.748610 0.663011i \(-0.769278\pi\)
0.663011 + 0.748610i \(0.269278\pi\)
\(432\) 1.58114 4.94975i 0.0760726 0.238145i
\(433\) 39.2982i 1.88855i −0.329155 0.944276i \(-0.606764\pi\)
0.329155 0.944276i \(-0.393236\pi\)
\(434\) 0 0
\(435\) 7.23607 + 2.76393i 0.346943 + 0.132520i
\(436\) −4.83772 + 4.83772i −0.231685 + 0.231685i
\(437\) −23.0864 23.0864i −1.10437 1.10437i
\(438\) −5.16228 11.5432i −0.246663 0.551556i
\(439\) 3.35089i 0.159929i 0.996798 + 0.0799646i \(0.0254807\pi\)
−0.996798 + 0.0799646i \(0.974519\pi\)
\(440\) 1.41421 + 1.41421i 0.0674200 + 0.0674200i
\(441\) 15.6525 + 14.0000i 0.745356 + 0.666667i
\(442\) −16.3246 20.6491i −0.776480 0.982178i
\(443\) 10.3585i 0.492146i 0.969251 + 0.246073i \(0.0791404\pi\)
−0.969251 + 0.246073i \(0.920860\pi\)
\(444\) −9.15298 3.49613i −0.434381 0.165919i
\(445\) 0.837722 0.0397118
\(446\) 23.5454 1.11491
\(447\) −2.27155 + 5.94699i −0.107441 + 0.281283i
\(448\) 0 0
\(449\) 14.0088 + 14.0088i 0.661115 + 0.661115i 0.955643 0.294528i \(-0.0951625\pi\)
−0.294528 + 0.955643i \(0.595162\pi\)
\(450\) −2.99535 + 0.166925i −0.141202 + 0.00786893i
\(451\) 6.32456 0.297812
\(452\) −16.2448 −0.764093
\(453\) −0.590360 + 1.54558i −0.0277375 + 0.0726178i
\(454\) 18.0000i 0.844782i
\(455\) 0 0
\(456\) −5.16228 11.5432i −0.241746 0.540560i
\(457\) 3.48683 + 3.48683i 0.163107 + 0.163107i 0.783942 0.620834i \(-0.213206\pi\)
−0.620834 + 0.783942i \(0.713206\pi\)
\(458\) 19.5323i 0.912682i
\(459\) −11.5432 + 36.1359i −0.538791 + 1.68668i
\(460\) −3.16228 3.16228i −0.147442 0.147442i
\(461\) −21.6722 + 21.6722i −1.00937 + 1.00937i −0.00941906 + 0.999956i \(0.502998\pi\)
−0.999956 + 0.00941906i \(0.997002\pi\)
\(462\) 0 0
\(463\) 8.32456 8.32456i 0.386875 0.386875i −0.486696 0.873571i \(-0.661798\pi\)
0.873571 + 0.486696i \(0.161798\pi\)
\(464\) 4.47214i 0.207614i
\(465\) 6.70820 3.00000i 0.311086 0.139122i
\(466\) −2.83772 + 2.83772i −0.131455 + 0.131455i
\(467\) 33.9039 1.56888 0.784442 0.620202i \(-0.212949\pi\)
0.784442 + 0.620202i \(0.212949\pi\)
\(468\) −8.09888 + 7.16995i −0.374371 + 0.331431i
\(469\) 0 0
\(470\) 7.30056 7.30056i 0.336750 0.336750i
\(471\) −36.6228 + 16.3782i −1.68749 + 0.754668i
\(472\) 8.32456i 0.383169i
\(473\) −10.1290 + 10.1290i −0.465731 + 0.465731i
\(474\) 6.18034 16.1803i 0.283872 0.743188i
\(475\) −5.16228 + 5.16228i −0.236862 + 0.236862i
\(476\) 0 0
\(477\) 3.16228 + 2.82843i 0.144791 + 0.129505i
\(478\) 11.1623i 0.510551i
\(479\) 0.133369 + 0.133369i 0.00609377 + 0.00609377i 0.710147 0.704053i \(-0.248628\pi\)
−0.704053 + 0.710147i \(0.748628\pi\)
\(480\) −0.707107 1.58114i −0.0322749 0.0721688i
\(481\) 12.6491 + 16.0000i 0.576750 + 0.729537i
\(482\) 10.8175i 0.492723i
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) −1.64371 −0.0746370
\(486\) 15.0902 + 3.90983i 0.684504 + 0.177353i
\(487\) −18.0000 18.0000i −0.815658 0.815658i 0.169818 0.985476i \(-0.445682\pi\)
−0.985476 + 0.169818i \(0.945682\pi\)
\(488\) −7.53006 7.53006i −0.340870 0.340870i
\(489\) −2.03174 + 5.31915i −0.0918783 + 0.240540i
\(490\) 7.00000 0.316228
\(491\) 28.2843 1.27645 0.638226 0.769849i \(-0.279669\pi\)
0.638226 + 0.769849i \(0.279669\pi\)
\(492\) −5.11667 1.95440i −0.230677 0.0881109i
\(493\) 32.6491i 1.47044i
\(494\) −3.05792 + 26.1443i −0.137582 + 1.17629i
\(495\) −4.00000 + 4.47214i −0.179787 + 0.201008i
\(496\) 3.00000 + 3.00000i 0.134704 + 0.134704i
\(497\) 0 0
\(498\) −5.65685 12.6491i −0.253490 0.566820i
\(499\) −11.1623 11.1623i −0.499692 0.499692i 0.411650 0.911342i \(-0.364953\pi\)
−0.911342 + 0.411650i \(0.864953\pi\)
\(500\) −0.707107 + 0.707107i −0.0316228 + 0.0316228i
\(501\) −3.76121 1.43665i −0.168038 0.0641850i
\(502\) 10.3246 10.3246i 0.460807 0.460807i
\(503\) 25.1891i 1.12313i −0.827434 0.561563i \(-0.810200\pi\)
0.827434 0.561563i \(-0.189800\pi\)
\(504\) 0 0
\(505\) 4.83772 4.83772i 0.215276 0.215276i
\(506\) −8.94427 −0.397621
\(507\) 22.1213 4.20086i 0.982442 0.186567i
\(508\) −16.9737 −0.753085
\(509\) 14.3716 14.3716i 0.637011 0.637011i −0.312806 0.949817i \(-0.601269\pi\)
0.949817 + 0.312806i \(0.101269\pi\)
\(510\) 5.16228 + 11.5432i 0.228589 + 0.511142i
\(511\) 0 0
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 33.7142 17.3897i 1.48852 0.767774i
\(514\) −1.16228 + 1.16228i −0.0512659 + 0.0512659i
\(515\) 13.1869 + 13.1869i 0.581085 + 0.581085i
\(516\) 11.3246 5.06450i 0.498536 0.222952i
\(517\) 20.6491i 0.908147i
\(518\) 0 0
\(519\) 34.9925 15.6491i 1.53600 0.686920i
\(520\) −0.418861 + 3.58114i −0.0183683 + 0.157043i
\(521\) 2.10270i 0.0921209i −0.998939 0.0460605i \(-0.985333\pi\)
0.998939 0.0460605i \(-0.0146667\pi\)
\(522\) −13.3956 + 0.746512i −0.586310 + 0.0326740i
\(523\) −35.8114 −1.56592 −0.782961 0.622070i \(-0.786292\pi\)
−0.782961 + 0.622070i \(0.786292\pi\)
\(524\) 0.458991 0.0200511
\(525\) 0 0
\(526\) 0.837722 + 0.837722i 0.0365264 + 0.0365264i
\(527\) −21.9017 21.9017i −0.954053 0.954053i
\(528\) −3.23607 1.23607i −0.140832 0.0537930i
\(529\) −3.00000 −0.130435
\(530\) 1.41421 0.0614295
\(531\) 24.9350 1.38958i 1.08209 0.0603026i
\(532\) 0 0
\(533\) 7.07107 + 8.94427i 0.306282 + 0.387419i
\(534\) −1.32456 + 0.592359i −0.0573191 + 0.0256339i
\(535\) −5.32456 5.32456i −0.230201 0.230201i
\(536\) 10.1290i 0.437506i
\(537\) −0.725728 + 0.324555i −0.0313175 + 0.0140056i
\(538\) −3.16228 3.16228i −0.136335 0.136335i
\(539\) 9.89949 9.89949i 0.426401 0.426401i
\(540\) 4.61803 2.38197i 0.198729 0.102503i
\(541\) 29.8114 29.8114i 1.28169 1.28169i 0.341987 0.939705i \(-0.388900\pi\)
0.939705 0.341987i \(-0.111100\pi\)
\(542\) 10.3585i 0.444935i
\(543\) −3.05792 6.83772i −0.131228 0.293435i
\(544\) −5.16228 + 5.16228i −0.221331 + 0.221331i
\(545\) −6.84157 −0.293061
\(546\) 0 0
\(547\) −9.48683 −0.405628 −0.202814 0.979217i \(-0.565009\pi\)
−0.202814 + 0.979217i \(0.565009\pi\)
\(548\) 14.3716 14.3716i 0.613926 0.613926i
\(549\) 21.2982 23.8121i 0.908986 1.01628i
\(550\) 2.00000i 0.0852803i
\(551\) −23.0864 + 23.0864i −0.983514 + 0.983514i
\(552\) 7.23607 + 2.76393i 0.307988 + 0.117641i
\(553\) 0 0
\(554\) −2.23607 2.23607i −0.0950014 0.0950014i
\(555\) −4.00000 8.94427i −0.169791 0.379663i
\(556\) 6.32456i 0.268221i
\(557\) −11.7727 11.7727i −0.498825 0.498825i 0.412247 0.911072i \(-0.364744\pi\)
−0.911072 + 0.412247i \(0.864744\pi\)
\(558\) −8.48528 + 9.48683i −0.359211 + 0.401610i
\(559\) −25.6491 3.00000i −1.08484 0.126886i
\(560\) 0 0
\(561\) 23.6251 + 9.02399i 0.997453 + 0.380993i
\(562\) 24.8377 1.04772
\(563\) −11.2765 −0.475246 −0.237623 0.971357i \(-0.576368\pi\)
−0.237623 + 0.971357i \(0.576368\pi\)
\(564\) −6.38093 + 16.7055i −0.268685 + 0.703428i
\(565\) −11.4868 11.4868i −0.483255 0.483255i
\(566\) 9.07764 + 9.07764i 0.381562 + 0.381562i
\(567\) 0 0
\(568\) 5.48683 0.230222
\(569\) −2.10270 −0.0881497 −0.0440749 0.999028i \(-0.514034\pi\)
−0.0440749 + 0.999028i \(0.514034\pi\)
\(570\) 4.51200 11.8126i 0.188987 0.494774i
\(571\) 18.9737i 0.794023i 0.917814 + 0.397012i \(0.129953\pi\)
−0.917814 + 0.397012i \(0.870047\pi\)
\(572\) 4.47214 + 5.65685i 0.186989 + 0.236525i
\(573\) −1.48683 3.32466i −0.0621133 0.138890i
\(574\) 0 0
\(575\) 4.47214i 0.186501i
\(576\) 2.23607 + 2.00000i 0.0931695 + 0.0833333i
\(577\) −21.1623 21.1623i −0.880997 0.880997i 0.112639 0.993636i \(-0.464070\pi\)
−0.993636 + 0.112639i \(0.964070\pi\)
\(578\) 25.6667 25.6667i 1.06759 1.06759i
\(579\) 3.04760 7.97873i 0.126654 0.331585i
\(580\) −3.16228 + 3.16228i −0.131306 + 0.131306i
\(581\) 0 0
\(582\) 2.59893 1.16228i 0.107729 0.0481780i
\(583\) 2.00000 2.00000i 0.0828315 0.0828315i
\(584\) 7.30056 0.302099
\(585\) −10.7967 0.656854i −0.446388 0.0271576i
\(586\) 4.00000 0.165238
\(587\) −0.458991 + 0.458991i −0.0189446 + 0.0189446i −0.716516 0.697571i \(-0.754264\pi\)
0.697571 + 0.716516i \(0.254264\pi\)
\(588\) −11.0680 + 4.94975i −0.456435 + 0.204124i
\(589\) 30.9737i 1.27625i
\(590\) 5.88635 5.88635i 0.242337 0.242337i
\(591\) 7.81758 20.4667i 0.321572 0.841887i
\(592\) 4.00000 4.00000i 0.164399 0.164399i
\(593\) 31.0755 + 31.0755i 1.27612 + 1.27612i 0.942823 + 0.333293i \(0.108160\pi\)
0.333293 + 0.942823i \(0.391840\pi\)
\(594\) 3.16228 9.89949i 0.129750 0.406181i
\(595\) 0 0
\(596\) −2.59893 2.59893i −0.106456 0.106456i
\(597\) 1.41421 + 3.16228i 0.0578799 + 0.129423i
\(598\) −10.0000 12.6491i −0.408930 0.517261i
\(599\) 41.7007i 1.70384i −0.523669 0.851922i \(-0.675437\pi\)
0.523669 0.851922i \(-0.324563\pi\)
\(600\) 0.618034 1.61803i 0.0252311 0.0660560i
\(601\) −24.6491 −1.00546 −0.502729 0.864444i \(-0.667671\pi\)
−0.502729 + 0.864444i \(0.667671\pi\)
\(602\) 0 0
\(603\) 30.3399 1.69078i 1.23554 0.0688541i
\(604\) −0.675445 0.675445i −0.0274835 0.0274835i
\(605\) −4.94975 4.94975i −0.201236 0.201236i
\(606\) −4.22832 + 11.0699i −0.171764 + 0.449684i
\(607\) −21.6228 −0.877641 −0.438821 0.898575i \(-0.644604\pi\)
−0.438821 + 0.898575i \(0.644604\pi\)
\(608\) 7.30056 0.296077
\(609\) 0 0
\(610\) 10.6491i 0.431170i
\(611\) 29.2023 23.0864i 1.18140 0.933976i
\(612\) −16.3246 14.6011i −0.659881 0.590216i
\(613\) −22.3246 22.3246i −0.901680 0.901680i 0.0939012 0.995582i \(-0.470066\pi\)
−0.995582 + 0.0939012i \(0.970066\pi\)
\(614\) 10.1290i 0.408773i
\(615\) −2.23607 5.00000i −0.0901670 0.201619i
\(616\) 0 0
\(617\) −18.3848 + 18.3848i −0.740143 + 0.740143i −0.972605 0.232462i \(-0.925322\pi\)
0.232462 + 0.972605i \(0.425322\pi\)
\(618\) −30.1749 11.5258i −1.21381 0.463635i
\(619\) 29.4868 29.4868i 1.18518 1.18518i 0.206791 0.978385i \(-0.433698\pi\)
0.978385 0.206791i \(-0.0663019\pi\)
\(620\) 4.24264i 0.170389i
\(621\) −7.07107 + 22.1359i −0.283752 + 0.888285i
\(622\) 14.9737 14.9737i 0.600389 0.600389i
\(623\) 0 0
\(624\) −1.86997 5.95846i −0.0748587 0.238529i
\(625\) −1.00000 −0.0400000
\(626\) −13.1869 + 13.1869i −0.527055 + 0.527055i
\(627\) −10.3246 23.0864i −0.412323 0.921982i
\(628\) 23.1623i 0.924276i
\(629\) −29.2023 + 29.2023i −1.16437 + 1.16437i
\(630\) 0 0
\(631\) 13.3246 13.3246i 0.530442 0.530442i −0.390262 0.920704i \(-0.627615\pi\)
0.920704 + 0.390262i \(0.127615\pi\)
\(632\) 7.07107 + 7.07107i 0.281272 + 0.281272i
\(633\) −5.29822 + 2.36944i −0.210585 + 0.0941766i
\(634\) 25.2982i 1.00472i
\(635\) −12.0022 12.0022i −0.476293 0.476293i
\(636\) −2.23607 + 1.00000i −0.0886659 + 0.0396526i
\(637\) 25.0680 + 2.93203i 0.993229 + 0.116171i
\(638\) 8.94427i 0.354107i
\(639\) 0.915891 + 16.4350i 0.0362321 + 0.650158i
\(640\) 1.00000 0.0395285
\(641\) 35.7771 1.41311 0.706555 0.707658i \(-0.250248\pi\)
0.706555 + 0.707658i \(0.250248\pi\)
\(642\) 12.1839 + 4.65383i 0.480860 + 0.183672i
\(643\) 32.6491 + 32.6491i 1.28756 + 1.28756i 0.936268 + 0.351288i \(0.114256\pi\)
0.351288 + 0.936268i \(0.385744\pi\)
\(644\) 0 0
\(645\) 11.5888 + 4.42653i 0.456309 + 0.174294i
\(646\) −53.2982 −2.09699
\(647\) −46.8985 −1.84377 −0.921886 0.387461i \(-0.873352\pi\)
−0.921886 + 0.387461i \(0.873352\pi\)
\(648\) −5.61745 + 7.03166i −0.220674 + 0.276230i
\(649\) 16.6491i 0.653535i
\(650\) −2.82843 + 2.23607i −0.110940 + 0.0877058i
\(651\) 0 0
\(652\) −2.32456 2.32456i −0.0910366 0.0910366i
\(653\) 5.61961i 0.219912i 0.993936 + 0.109956i \(0.0350711\pi\)
−0.993936 + 0.109956i \(0.964929\pi\)
\(654\) 10.8175 4.83772i 0.422997 0.189170i
\(655\) 0.324555 + 0.324555i 0.0126814 + 0.0126814i
\(656\) 2.23607 2.23607i 0.0873038 0.0873038i
\(657\) 1.21865 + 21.8678i 0.0475440 + 0.853143i
\(658\) 0 0
\(659\) 8.94427i 0.348419i 0.984709 + 0.174210i \(0.0557371\pi\)
−0.984709 + 0.174210i \(0.944263\pi\)
\(660\) −1.41421 3.16228i −0.0550482 0.123091i
\(661\) −10.8377 + 10.8377i −0.421539 + 0.421539i −0.885733 0.464195i \(-0.846344\pi\)
0.464195 + 0.885733i \(0.346344\pi\)
\(662\) −13.4164 −0.521443
\(663\) 13.6518 + 43.5001i 0.530193 + 1.68940i
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) 12.6491 + 11.3137i 0.490143 + 0.438397i
\(667\) 20.0000i 0.774403i
\(668\) 1.64371 1.64371i 0.0635970 0.0635970i
\(669\) −38.0973 14.5519i −1.47292 0.562607i
\(670\) 7.16228 7.16228i 0.276703 0.276703i
\(671\) −15.0601 15.0601i −0.581389 0.581389i
\(672\) 0 0
\(673\) 19.6754i 0.758433i 0.925308 + 0.379216i \(0.123806\pi\)
−0.925308 + 0.379216i \(0.876194\pi\)
\(674\) 21.6722 + 21.6722i 0.834782 + 0.834782i
\(675\) 4.94975 + 1.58114i 0.190516 + 0.0608581i
\(676\) −3.00000 + 12.6491i −0.115385 + 0.486504i
\(677\) 4.70163i 0.180698i 0.995910 + 0.0903492i \(0.0287983\pi\)
−0.995910 + 0.0903492i \(0.971202\pi\)
\(678\) 26.2847 + 10.0399i 1.00946 + 0.385579i
\(679\) 0 0
\(680\) −7.30056 −0.279964
\(681\) −11.1246 + 29.1246i −0.426296 + 1.11606i
\(682\) 6.00000 + 6.00000i 0.229752 + 0.229752i
\(683\) 4.24264 + 4.24264i 0.162340 + 0.162340i 0.783603 0.621262i \(-0.213380\pi\)
−0.621262 + 0.783603i \(0.713380\pi\)
\(684\) 1.21865 + 21.8678i 0.0465962 + 0.836135i
\(685\) 20.3246 0.776561
\(686\) 0 0
\(687\) 12.0716 31.6038i 0.460560 1.20576i
\(688\) 7.16228i 0.273059i
\(689\) 5.06450 + 0.592359i 0.192942 + 0.0225671i
\(690\) 3.16228 + 7.07107i 0.120386 + 0.269191i
\(691\) −35.8114 35.8114i −1.36233 1.36233i −0.870940 0.491389i \(-0.836489\pi\)
−0.491389 0.870940i \(-0.663511\pi\)
\(692\) 22.1312i 0.841301i
\(693\) 0 0
\(694\) 5.32456 + 5.32456i 0.202117 + 0.202117i
\(695\) 4.47214 4.47214i 0.169638 0.169638i
\(696\) 2.76393 7.23607i 0.104767 0.274282i
\(697\) −16.3246 + 16.3246i −0.618337 + 0.618337i
\(698\) 1.18472i 0.0448422i
\(699\) 6.34534 2.83772i 0.240003 0.107333i
\(700\) 0 0
\(701\) −39.3312 −1.48552 −0.742760 0.669557i \(-0.766484\pi\)
−0.742760 + 0.669557i \(0.766484\pi\)
\(702\) 17.5355 6.59584i 0.661836 0.248944i
\(703\) 41.2982 1.55759
\(704\) 1.41421 1.41421i 0.0533002 0.0533002i
\(705\) −16.3246 + 7.30056i −0.614818 + 0.274955i
\(706\) 12.9737i 0.488270i
\(707\) 0 0
\(708\) −5.14486 + 13.4694i −0.193356 + 0.506212i
\(709\) −15.4868 + 15.4868i −0.581620 + 0.581620i −0.935348 0.353728i \(-0.884914\pi\)
0.353728 + 0.935348i \(0.384914\pi\)
\(710\) 3.87978 + 3.87978i 0.145605 + 0.145605i
\(711\) −20.0000 + 22.3607i −0.750059 + 0.838591i
\(712\) 0.837722i 0.0313950i
\(713\) −13.4164 13.4164i −0.502448 0.502448i
\(714\) 0 0
\(715\) −0.837722 + 7.16228i −0.0313290 + 0.267854i
\(716\) 0.458991i 0.0171533i
\(717\) −6.89867 + 18.0609i −0.257635 + 0.674498i
\(718\) −31.8114 −1.18719
\(719\) −2.10270 −0.0784175 −0.0392087 0.999231i \(-0.512484\pi\)
−0.0392087 + 0.999231i \(0.512484\pi\)
\(720\) 0.166925 + 2.99535i 0.00622094 + 0.111630i
\(721\) 0 0
\(722\) 24.2525 + 24.2525i 0.902585 + 0.902585i
\(723\) −6.68557 + 17.5030i −0.248639 + 0.650945i
\(724\) 4.32456 0.160721
\(725\) −4.47214 −0.166091
\(726\) 11.3262 + 4.32624i 0.420356 + 0.160562i
\(727\) 4.97367i 0.184463i −0.995738 0.0922315i \(-0.970600\pi\)
0.995738 0.0922315i \(-0.0294000\pi\)
\(728\) 0 0
\(729\) −22.0000 15.6525i −0.814815 0.579721i
\(730\) 5.16228 + 5.16228i 0.191064 + 0.191064i
\(731\) 52.2887i 1.93397i
\(732\) 7.53006 + 16.8377i 0.278319 + 0.622340i
\(733\) −33.4868 33.4868i −1.23686 1.23686i −0.961276 0.275589i \(-0.911127\pi\)
−0.275589 0.961276i \(-0.588873\pi\)
\(734\) 13.1869 13.1869i 0.486738 0.486738i
\(735\) −11.3262 4.32624i −0.417775 0.159576i
\(736\) −3.16228 + 3.16228i −0.116563 + 0.116563i
\(737\) 20.2580i 0.746212i
\(738\) 7.07107 + 6.32456i 0.260290 + 0.232810i
\(739\) 12.1359 12.1359i 0.446428 0.446428i −0.447737 0.894165i \(-0.647770\pi\)
0.894165 + 0.447737i \(0.147770\pi\)
\(740\) 5.65685 0.207950
\(741\) 21.1059 40.4125i 0.775345 1.48459i
\(742\) 0 0
\(743\) −27.5585 + 27.5585i −1.01102 + 1.01102i −0.0110864 + 0.999939i \(0.503529\pi\)
−0.999939 + 0.0110864i \(0.996471\pi\)
\(744\) −3.00000 6.70820i −0.109985 0.245935i
\(745\) 3.67544i 0.134658i
\(746\) 10.7213 10.7213i 0.392536 0.392536i
\(747\) 1.33540 + 23.9628i 0.0488598 + 0.876754i
\(748\) −10.3246 + 10.3246i −0.377503 + 0.377503i
\(749\) 0 0
\(750\) 1.58114 0.707107i 0.0577350 0.0258199i
\(751\) 28.0000i 1.02173i −0.859660 0.510867i \(-0.829324\pi\)
0.859660 0.510867i \(-0.170676\pi\)
\(752\) −7.30056 7.30056i −0.266224 0.266224i
\(753\) −23.0864 + 10.3246i −0.841315 + 0.376248i
\(754\) −12.6491 + 10.0000i −0.460653 + 0.364179i
\(755\) 0.955223i 0.0347641i
\(756\) 0 0
\(757\) 7.81139 0.283910 0.141955 0.989873i \(-0.454661\pi\)
0.141955 + 0.989873i \(0.454661\pi\)
\(758\) −18.6143 −0.676101
\(759\) 14.4721 + 5.52786i 0.525305 + 0.200649i
\(760\) 5.16228 + 5.16228i 0.187255 + 0.187255i
\(761\) 1.51034 + 1.51034i 0.0547498 + 0.0547498i 0.733952 0.679202i \(-0.237674\pi\)
−0.679202 + 0.733952i \(0.737674\pi\)
\(762\) 27.4640 + 10.4903i 0.994915 + 0.380024i
\(763\) 0 0
\(764\) 2.10270 0.0760730
\(765\) −1.21865 21.8678i −0.0440603 0.790630i
\(766\) 6.97367i 0.251969i
\(767\) 23.5454 18.6143i 0.850175 0.672122i
\(768\) −1.58114 + 0.707107i −0.0570544 + 0.0255155i
\(769\) 6.35089 + 6.35089i 0.229019 + 0.229019i 0.812283 0.583264i \(-0.198225\pi\)
−0.583264 + 0.812283i \(0.698225\pi\)
\(770\) 0 0
\(771\) 2.59893 1.16228i 0.0935982 0.0418584i
\(772\) 3.48683 + 3.48683i 0.125494 + 0.125494i
\(773\) −16.9706 + 16.9706i −0.610389 + 0.610389i −0.943047 0.332659i \(-0.892054\pi\)
0.332659 + 0.943047i \(0.392054\pi\)
\(774\) −21.4535 + 1.19557i −0.771132 + 0.0429737i