Properties

Label 390.2.p.g.161.4
Level $390$
Weight $2$
Character 390.161
Analytic conductor $3.114$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(161,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.40960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.4
Root \(-0.437016 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 390.161
Dual form 390.2.p.g.281.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(1.58114 - 0.707107i) q^{3} +1.00000i q^{4} +(0.707107 + 0.707107i) q^{5} +(1.61803 + 0.618034i) q^{6} +(-0.707107 + 0.707107i) q^{8} +(2.00000 - 2.23607i) q^{9} +1.00000i q^{10} +(-1.41421 + 1.41421i) q^{11} +(0.707107 + 1.58114i) q^{12} +(3.58114 + 0.418861i) q^{13} +(1.61803 + 0.618034i) q^{15} -1.00000 q^{16} -1.64371 q^{17} +(2.99535 - 0.166925i) q^{18} +(1.16228 - 1.16228i) q^{19} +(-0.707107 + 0.707107i) q^{20} -2.00000 q^{22} -4.47214 q^{23} +(-0.618034 + 1.61803i) q^{24} +1.00000i q^{25} +(2.23607 + 2.82843i) q^{26} +(1.58114 - 4.94975i) q^{27} -4.47214i q^{29} +(0.707107 + 1.58114i) q^{30} +(-3.00000 + 3.00000i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-1.23607 + 3.23607i) q^{33} +(-1.16228 - 1.16228i) q^{34} +(2.23607 + 2.00000i) q^{36} +(-4.00000 - 4.00000i) q^{37} +1.64371 q^{38} +(5.95846 - 1.86997i) q^{39} -1.00000 q^{40} +(2.23607 + 2.23607i) q^{41} +0.837722i q^{43} +(-1.41421 - 1.41421i) q^{44} +(2.99535 - 0.166925i) q^{45} +(-3.16228 - 3.16228i) q^{46} +(-1.64371 + 1.64371i) q^{47} +(-1.58114 + 0.707107i) q^{48} -7.00000i q^{49} +(-0.707107 + 0.707107i) q^{50} +(-2.59893 + 1.16228i) q^{51} +(-0.418861 + 3.58114i) q^{52} -1.41421i q^{53} +(4.61803 - 2.38197i) q^{54} -2.00000 q^{55} +(1.01587 - 2.65958i) q^{57} +(3.16228 - 3.16228i) q^{58} +(-3.05792 + 3.05792i) q^{59} +(-0.618034 + 1.61803i) q^{60} -14.6491 q^{61} -4.24264 q^{62} -1.00000i q^{64} +(2.23607 + 2.82843i) q^{65} +(-3.16228 + 1.41421i) q^{66} +(0.837722 - 0.837722i) q^{67} -1.64371i q^{68} +(-7.07107 + 3.16228i) q^{69} +(9.53663 + 9.53663i) q^{71} +(0.166925 + 2.99535i) q^{72} +(1.16228 + 1.16228i) q^{73} -5.65685i q^{74} +(0.707107 + 1.58114i) q^{75} +(1.16228 + 1.16228i) q^{76} +(5.53553 + 2.89100i) q^{78} -10.0000 q^{79} +(-0.707107 - 0.707107i) q^{80} +(-1.00000 - 8.94427i) q^{81} +3.16228i q^{82} +(-5.65685 - 5.65685i) q^{83} +(-1.16228 - 1.16228i) q^{85} +(-0.592359 + 0.592359i) q^{86} +(-3.16228 - 7.07107i) q^{87} -2.00000i q^{88} +(5.06450 - 5.06450i) q^{89} +(2.23607 + 2.00000i) q^{90} -4.47214i q^{92} +(-2.62210 + 6.86474i) q^{93} -2.32456 q^{94} +1.64371 q^{95} +(-1.61803 - 0.618034i) q^{96} +(5.16228 - 5.16228i) q^{97} +(4.94975 - 4.94975i) q^{98} +(0.333851 + 5.99070i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{6} + 16 q^{9} + 16 q^{13} + 4 q^{15} - 8 q^{16} - 16 q^{19} - 16 q^{22} + 4 q^{24} - 24 q^{31} + 8 q^{33} + 16 q^{34} - 32 q^{37} + 20 q^{39} - 8 q^{40} - 16 q^{52} + 28 q^{54} - 16 q^{55} + 40 q^{57}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 1.58114 0.707107i 0.912871 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 1.61803 + 0.618034i 0.660560 + 0.252311i
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 2.00000 2.23607i 0.666667 0.745356i
\(10\) 1.00000i 0.316228i
\(11\) −1.41421 + 1.41421i −0.426401 + 0.426401i −0.887401 0.460999i \(-0.847491\pi\)
0.460999 + 0.887401i \(0.347491\pi\)
\(12\) 0.707107 + 1.58114i 0.204124 + 0.456435i
\(13\) 3.58114 + 0.418861i 0.993229 + 0.116171i
\(14\) 0 0
\(15\) 1.61803 + 0.618034i 0.417775 + 0.159576i
\(16\) −1.00000 −0.250000
\(17\) −1.64371 −0.398658 −0.199329 0.979933i \(-0.563876\pi\)
−0.199329 + 0.979933i \(0.563876\pi\)
\(18\) 2.99535 0.166925i 0.706011 0.0393447i
\(19\) 1.16228 1.16228i 0.266645 0.266645i −0.561102 0.827747i \(-0.689622\pi\)
0.827747 + 0.561102i \(0.189622\pi\)
\(20\) −0.707107 + 0.707107i −0.158114 + 0.158114i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −4.47214 −0.932505 −0.466252 0.884652i \(-0.654396\pi\)
−0.466252 + 0.884652i \(0.654396\pi\)
\(24\) −0.618034 + 1.61803i −0.126156 + 0.330280i
\(25\) 1.00000i 0.200000i
\(26\) 2.23607 + 2.82843i 0.438529 + 0.554700i
\(27\) 1.58114 4.94975i 0.304290 0.952579i
\(28\) 0 0
\(29\) 4.47214i 0.830455i −0.909718 0.415227i \(-0.863702\pi\)
0.909718 0.415227i \(-0.136298\pi\)
\(30\) 0.707107 + 1.58114i 0.129099 + 0.288675i
\(31\) −3.00000 + 3.00000i −0.538816 + 0.538816i −0.923181 0.384365i \(-0.874420\pi\)
0.384365 + 0.923181i \(0.374420\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) −1.23607 + 3.23607i −0.215172 + 0.563327i
\(34\) −1.16228 1.16228i −0.199329 0.199329i
\(35\) 0 0
\(36\) 2.23607 + 2.00000i 0.372678 + 0.333333i
\(37\) −4.00000 4.00000i −0.657596 0.657596i 0.297215 0.954811i \(-0.403942\pi\)
−0.954811 + 0.297215i \(0.903942\pi\)
\(38\) 1.64371 0.266645
\(39\) 5.95846 1.86997i 0.954117 0.299435i
\(40\) −1.00000 −0.158114
\(41\) 2.23607 + 2.23607i 0.349215 + 0.349215i 0.859817 0.510602i \(-0.170577\pi\)
−0.510602 + 0.859817i \(0.670577\pi\)
\(42\) 0 0
\(43\) 0.837722i 0.127751i 0.997958 + 0.0638757i \(0.0203461\pi\)
−0.997958 + 0.0638757i \(0.979654\pi\)
\(44\) −1.41421 1.41421i −0.213201 0.213201i
\(45\) 2.99535 0.166925i 0.446521 0.0248837i
\(46\) −3.16228 3.16228i −0.466252 0.466252i
\(47\) −1.64371 + 1.64371i −0.239760 + 0.239760i −0.816751 0.576991i \(-0.804227\pi\)
0.576991 + 0.816751i \(0.304227\pi\)
\(48\) −1.58114 + 0.707107i −0.228218 + 0.102062i
\(49\) 7.00000i 1.00000i
\(50\) −0.707107 + 0.707107i −0.100000 + 0.100000i
\(51\) −2.59893 + 1.16228i −0.363923 + 0.162751i
\(52\) −0.418861 + 3.58114i −0.0580856 + 0.496615i
\(53\) 1.41421i 0.194257i −0.995272 0.0971286i \(-0.969034\pi\)
0.995272 0.0971286i \(-0.0309658\pi\)
\(54\) 4.61803 2.38197i 0.628435 0.324145i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 1.01587 2.65958i 0.134555 0.352270i
\(58\) 3.16228 3.16228i 0.415227 0.415227i
\(59\) −3.05792 + 3.05792i −0.398108 + 0.398108i −0.877565 0.479458i \(-0.840833\pi\)
0.479458 + 0.877565i \(0.340833\pi\)
\(60\) −0.618034 + 1.61803i −0.0797878 + 0.208887i
\(61\) −14.6491 −1.87563 −0.937813 0.347140i \(-0.887153\pi\)
−0.937813 + 0.347140i \(0.887153\pi\)
\(62\) −4.24264 −0.538816
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 2.23607 + 2.82843i 0.277350 + 0.350823i
\(66\) −3.16228 + 1.41421i −0.389249 + 0.174078i
\(67\) 0.837722 0.837722i 0.102344 0.102344i −0.654081 0.756425i \(-0.726944\pi\)
0.756425 + 0.654081i \(0.226944\pi\)
\(68\) 1.64371i 0.199329i
\(69\) −7.07107 + 3.16228i −0.851257 + 0.380693i
\(70\) 0 0
\(71\) 9.53663 + 9.53663i 1.13179 + 1.13179i 0.989880 + 0.141910i \(0.0453245\pi\)
0.141910 + 0.989880i \(0.454676\pi\)
\(72\) 0.166925 + 2.99535i 0.0196723 + 0.353006i
\(73\) 1.16228 + 1.16228i 0.136034 + 0.136034i 0.771845 0.635811i \(-0.219334\pi\)
−0.635811 + 0.771845i \(0.719334\pi\)
\(74\) 5.65685i 0.657596i
\(75\) 0.707107 + 1.58114i 0.0816497 + 0.182574i
\(76\) 1.16228 + 1.16228i 0.133322 + 0.133322i
\(77\) 0 0
\(78\) 5.53553 + 2.89100i 0.626776 + 0.327341i
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) −0.707107 0.707107i −0.0790569 0.0790569i
\(81\) −1.00000 8.94427i −0.111111 0.993808i
\(82\) 3.16228i 0.349215i
\(83\) −5.65685 5.65685i −0.620920 0.620920i 0.324846 0.945767i \(-0.394687\pi\)
−0.945767 + 0.324846i \(0.894687\pi\)
\(84\) 0 0
\(85\) −1.16228 1.16228i −0.126067 0.126067i
\(86\) −0.592359 + 0.592359i −0.0638757 + 0.0638757i
\(87\) −3.16228 7.07107i −0.339032 0.758098i
\(88\) 2.00000i 0.213201i
\(89\) 5.06450 5.06450i 0.536835 0.536835i −0.385763 0.922598i \(-0.626062\pi\)
0.922598 + 0.385763i \(0.126062\pi\)
\(90\) 2.23607 + 2.00000i 0.235702 + 0.210819i
\(91\) 0 0
\(92\) 4.47214i 0.466252i
\(93\) −2.62210 + 6.86474i −0.271899 + 0.711840i
\(94\) −2.32456 −0.239760
\(95\) 1.64371 0.168641
\(96\) −1.61803 0.618034i −0.165140 0.0630778i
\(97\) 5.16228 5.16228i 0.524150 0.524150i −0.394672 0.918822i \(-0.629142\pi\)
0.918822 + 0.394672i \(0.129142\pi\)
\(98\) 4.94975 4.94975i 0.500000 0.500000i
\(99\) 0.333851 + 5.99070i 0.0335532 + 0.602088i
\(100\) −1.00000 −0.100000
\(101\) 15.7858 1.57075 0.785375 0.619020i \(-0.212470\pi\)
0.785375 + 0.619020i \(0.212470\pi\)
\(102\) −2.65958 1.01587i −0.263337 0.100586i
\(103\) 6.64911i 0.655156i 0.944824 + 0.327578i \(0.106232\pi\)
−0.944824 + 0.327578i \(0.893768\pi\)
\(104\) −2.82843 + 2.23607i −0.277350 + 0.219265i
\(105\) 0 0
\(106\) 1.00000 1.00000i 0.0971286 0.0971286i
\(107\) 10.3585i 1.00139i −0.865623 0.500696i \(-0.833077\pi\)
0.865623 0.500696i \(-0.166923\pi\)
\(108\) 4.94975 + 1.58114i 0.476290 + 0.152145i
\(109\) −11.1623 + 11.1623i −1.06915 + 1.06915i −0.0717281 + 0.997424i \(0.522851\pi\)
−0.997424 + 0.0717281i \(0.977149\pi\)
\(110\) −1.41421 1.41421i −0.134840 0.134840i
\(111\) −9.15298 3.49613i −0.868763 0.331838i
\(112\) 0 0
\(113\) 10.5880i 0.996033i −0.867167 0.498017i \(-0.834062\pi\)
0.867167 0.498017i \(-0.165938\pi\)
\(114\) 2.59893 1.16228i 0.243412 0.108857i
\(115\) −3.16228 3.16228i −0.294884 0.294884i
\(116\) 4.47214 0.415227
\(117\) 8.09888 7.16995i 0.748742 0.662862i
\(118\) −4.32456 −0.398108
\(119\) 0 0
\(120\) −1.58114 + 0.707107i −0.144338 + 0.0645497i
\(121\) 7.00000i 0.636364i
\(122\) −10.3585 10.3585i −0.937813 0.937813i
\(123\) 5.11667 + 1.95440i 0.461355 + 0.176222i
\(124\) −3.00000 3.00000i −0.269408 0.269408i
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 20.9737i 1.86111i −0.366150 0.930556i \(-0.619324\pi\)
0.366150 0.930556i \(-0.380676\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0.592359 + 1.32456i 0.0521543 + 0.116621i
\(130\) −0.418861 + 3.58114i −0.0367366 + 0.314087i
\(131\) 17.4296i 1.52283i 0.648266 + 0.761414i \(0.275494\pi\)
−0.648266 + 0.761414i \(0.724506\pi\)
\(132\) −3.23607 1.23607i −0.281664 0.107586i
\(133\) 0 0
\(134\) 1.18472 0.102344
\(135\) 4.61803 2.38197i 0.397457 0.205007i
\(136\) 1.16228 1.16228i 0.0996645 0.0996645i
\(137\) 5.42736 5.42736i 0.463691 0.463691i −0.436173 0.899863i \(-0.643666\pi\)
0.899863 + 0.436173i \(0.143666\pi\)
\(138\) −7.23607 2.76393i −0.615975 0.235282i
\(139\) −6.32456 −0.536442 −0.268221 0.963357i \(-0.586436\pi\)
−0.268221 + 0.963357i \(0.586436\pi\)
\(140\) 0 0
\(141\) −1.43665 + 3.76121i −0.120988 + 0.316751i
\(142\) 13.4868i 1.13179i
\(143\) −5.65685 + 4.47214i −0.473050 + 0.373979i
\(144\) −2.00000 + 2.23607i −0.166667 + 0.186339i
\(145\) 3.16228 3.16228i 0.262613 0.262613i
\(146\) 1.64371i 0.136034i
\(147\) −4.94975 11.0680i −0.408248 0.912871i
\(148\) 4.00000 4.00000i 0.328798 0.328798i
\(149\) 11.5432 + 11.5432i 0.945656 + 0.945656i 0.998598 0.0529415i \(-0.0168597\pi\)
−0.0529415 + 0.998598i \(0.516860\pi\)
\(150\) −0.618034 + 1.61803i −0.0504623 + 0.132112i
\(151\) 13.3246 + 13.3246i 1.08434 + 1.08434i 0.996099 + 0.0882375i \(0.0281234\pi\)
0.0882375 + 0.996099i \(0.471877\pi\)
\(152\) 1.64371i 0.133322i
\(153\) −3.28742 + 3.67544i −0.265772 + 0.297142i
\(154\) 0 0
\(155\) −4.24264 −0.340777
\(156\) 1.86997 + 5.95846i 0.149717 + 0.477058i
\(157\) 16.8377 1.34380 0.671898 0.740643i \(-0.265479\pi\)
0.671898 + 0.740643i \(0.265479\pi\)
\(158\) −7.07107 7.07107i −0.562544 0.562544i
\(159\) −1.00000 2.23607i −0.0793052 0.177332i
\(160\) 1.00000i 0.0790569i
\(161\) 0 0
\(162\) 5.61745 7.03166i 0.441348 0.552460i
\(163\) −10.3246 10.3246i −0.808682 0.808682i 0.175753 0.984434i \(-0.443764\pi\)
−0.984434 + 0.175753i \(0.943764\pi\)
\(164\) −2.23607 + 2.23607i −0.174608 + 0.174608i
\(165\) −3.16228 + 1.41421i −0.246183 + 0.110096i
\(166\) 8.00000i 0.620920i
\(167\) −7.30056 + 7.30056i −0.564935 + 0.564935i −0.930705 0.365771i \(-0.880805\pi\)
0.365771 + 0.930705i \(0.380805\pi\)
\(168\) 0 0
\(169\) 12.6491 + 3.00000i 0.973009 + 0.230769i
\(170\) 1.64371i 0.126067i
\(171\) −0.274377 4.92349i −0.0209821 0.376508i
\(172\) −0.837722 −0.0638757
\(173\) 13.6459 1.03748 0.518739 0.854932i \(-0.326401\pi\)
0.518739 + 0.854932i \(0.326401\pi\)
\(174\) 2.76393 7.23607i 0.209533 0.548565i
\(175\) 0 0
\(176\) 1.41421 1.41421i 0.106600 0.106600i
\(177\) −2.67272 + 6.99728i −0.200894 + 0.525948i
\(178\) 7.16228 0.536835
\(179\) −17.4296 −1.30275 −0.651373 0.758758i \(-0.725807\pi\)
−0.651373 + 0.758758i \(0.725807\pi\)
\(180\) 0.166925 + 2.99535i 0.0124419 + 0.223260i
\(181\) 8.32456i 0.618759i 0.950939 + 0.309380i \(0.100121\pi\)
−0.950939 + 0.309380i \(0.899879\pi\)
\(182\) 0 0
\(183\) −23.1623 + 10.3585i −1.71220 + 0.765721i
\(184\) 3.16228 3.16228i 0.233126 0.233126i
\(185\) 5.65685i 0.415900i
\(186\) −6.70820 + 3.00000i −0.491869 + 0.219971i
\(187\) 2.32456 2.32456i 0.169988 0.169988i
\(188\) −1.64371 1.64371i −0.119880 0.119880i
\(189\) 0 0
\(190\) 1.16228 + 1.16228i 0.0843205 + 0.0843205i
\(191\) 24.7301i 1.78941i 0.446659 + 0.894704i \(0.352614\pi\)
−0.446659 + 0.894704i \(0.647386\pi\)
\(192\) −0.707107 1.58114i −0.0510310 0.114109i
\(193\) 15.4868 + 15.4868i 1.11477 + 1.11477i 0.992497 + 0.122270i \(0.0390173\pi\)
0.122270 + 0.992497i \(0.460983\pi\)
\(194\) 7.30056 0.524150
\(195\) 5.53553 + 2.89100i 0.396408 + 0.207029i
\(196\) 7.00000 0.500000
\(197\) 8.94427 + 8.94427i 0.637253 + 0.637253i 0.949877 0.312624i \(-0.101208\pi\)
−0.312624 + 0.949877i \(0.601208\pi\)
\(198\) −4.00000 + 4.47214i −0.284268 + 0.317821i
\(199\) 2.00000i 0.141776i 0.997484 + 0.0708881i \(0.0225833\pi\)
−0.997484 + 0.0708881i \(0.977417\pi\)
\(200\) −0.707107 0.707107i −0.0500000 0.0500000i
\(201\) 0.732196 1.91691i 0.0516451 0.135209i
\(202\) 11.1623 + 11.1623i 0.785375 + 0.785375i
\(203\) 0 0
\(204\) −1.16228 2.59893i −0.0813757 0.181962i
\(205\) 3.16228i 0.220863i
\(206\) −4.70163 + 4.70163i −0.327578 + 0.327578i
\(207\) −8.94427 + 10.0000i −0.621670 + 0.695048i
\(208\) −3.58114 0.418861i −0.248307 0.0290428i
\(209\) 3.28742i 0.227395i
\(210\) 0 0
\(211\) 28.6491 1.97229 0.986143 0.165897i \(-0.0530520\pi\)
0.986143 + 0.165897i \(0.0530520\pi\)
\(212\) 1.41421 0.0971286
\(213\) 21.8222 + 8.33532i 1.49523 + 0.571127i
\(214\) 7.32456 7.32456i 0.500696 0.500696i
\(215\) −0.592359 + 0.592359i −0.0403986 + 0.0403986i
\(216\) 2.38197 + 4.61803i 0.162072 + 0.314217i
\(217\) 0 0
\(218\) −15.7858 −1.06915
\(219\) 2.65958 + 1.01587i 0.179718 + 0.0686460i
\(220\) 2.00000i 0.134840i
\(221\) −5.88635 0.688486i −0.395959 0.0463126i
\(222\) −4.00000 8.94427i −0.268462 0.600300i
\(223\) −8.64911 + 8.64911i −0.579187 + 0.579187i −0.934679 0.355492i \(-0.884313\pi\)
0.355492 + 0.934679i \(0.384313\pi\)
\(224\) 0 0
\(225\) 2.23607 + 2.00000i 0.149071 + 0.133333i
\(226\) 7.48683 7.48683i 0.498017 0.498017i
\(227\) 12.7279 + 12.7279i 0.844782 + 0.844782i 0.989476 0.144695i \(-0.0462199\pi\)
−0.144695 + 0.989476i \(0.546220\pi\)
\(228\) 2.65958 + 1.01587i 0.176135 + 0.0672775i
\(229\) 17.8114 + 17.8114i 1.17701 + 1.17701i 0.980502 + 0.196507i \(0.0629599\pi\)
0.196507 + 0.980502i \(0.437040\pi\)
\(230\) 4.47214i 0.294884i
\(231\) 0 0
\(232\) 3.16228 + 3.16228i 0.207614 + 0.207614i
\(233\) −12.9574 −0.848869 −0.424434 0.905459i \(-0.639527\pi\)
−0.424434 + 0.905459i \(0.639527\pi\)
\(234\) 10.7967 + 0.656854i 0.705802 + 0.0429399i
\(235\) −2.32456 −0.151637
\(236\) −3.05792 3.05792i −0.199054 0.199054i
\(237\) −15.8114 + 7.07107i −1.02706 + 0.459315i
\(238\) 0 0
\(239\) 3.42079 + 3.42079i 0.221272 + 0.221272i 0.809034 0.587762i \(-0.199991\pi\)
−0.587762 + 0.809034i \(0.699991\pi\)
\(240\) −1.61803 0.618034i −0.104444 0.0398939i
\(241\) −17.6491 17.6491i −1.13688 1.13688i −0.989006 0.147873i \(-0.952757\pi\)
−0.147873 0.989006i \(-0.547243\pi\)
\(242\) −4.94975 + 4.94975i −0.318182 + 0.318182i
\(243\) −7.90569 13.4350i −0.507151 0.861858i
\(244\) 14.6491i 0.937813i
\(245\) 4.94975 4.94975i 0.316228 0.316228i
\(246\) 2.23607 + 5.00000i 0.142566 + 0.318788i
\(247\) 4.64911 3.67544i 0.295816 0.233863i
\(248\) 4.24264i 0.269408i
\(249\) −12.9443 4.94427i −0.820310 0.313331i
\(250\) −1.00000 −0.0632456
\(251\) −3.28742 −0.207500 −0.103750 0.994603i \(-0.533084\pi\)
−0.103750 + 0.994603i \(0.533084\pi\)
\(252\) 0 0
\(253\) 6.32456 6.32456i 0.397621 0.397621i
\(254\) 14.8306 14.8306i 0.930556 0.930556i
\(255\) −2.65958 1.01587i −0.166549 0.0636161i
\(256\) 1.00000 0.0625000
\(257\) 7.30056 0.455397 0.227698 0.973732i \(-0.426880\pi\)
0.227698 + 0.973732i \(0.426880\pi\)
\(258\) −0.517741 + 1.35546i −0.0322331 + 0.0843875i
\(259\) 0 0
\(260\) −2.82843 + 2.23607i −0.175412 + 0.138675i
\(261\) −10.0000 8.94427i −0.618984 0.553637i
\(262\) −12.3246 + 12.3246i −0.761414 + 0.761414i
\(263\) 10.1290i 0.624580i −0.949987 0.312290i \(-0.898904\pi\)
0.949987 0.312290i \(-0.101096\pi\)
\(264\) −1.41421 3.16228i −0.0870388 0.194625i
\(265\) 1.00000 1.00000i 0.0614295 0.0614295i
\(266\) 0 0
\(267\) 4.42653 11.5888i 0.270899 0.709224i
\(268\) 0.837722 + 0.837722i 0.0511720 + 0.0511720i
\(269\) 4.47214i 0.272671i −0.990663 0.136335i \(-0.956467\pi\)
0.990663 0.136335i \(-0.0435325\pi\)
\(270\) 4.94975 + 1.58114i 0.301232 + 0.0962250i
\(271\) 5.32456 + 5.32456i 0.323444 + 0.323444i 0.850087 0.526643i \(-0.176549\pi\)
−0.526643 + 0.850087i \(0.676549\pi\)
\(272\) 1.64371 0.0996645
\(273\) 0 0
\(274\) 7.67544 0.463691
\(275\) −1.41421 1.41421i −0.0852803 0.0852803i
\(276\) −3.16228 7.07107i −0.190347 0.425628i
\(277\) 3.16228i 0.190003i −0.995477 0.0950014i \(-0.969714\pi\)
0.995477 0.0950014i \(-0.0302856\pi\)
\(278\) −4.47214 4.47214i −0.268221 0.268221i
\(279\) 0.708204 + 12.7082i 0.0423991 + 0.760820i
\(280\) 0 0
\(281\) 22.0351 22.0351i 1.31450 1.31450i 0.396441 0.918060i \(-0.370245\pi\)
0.918060 0.396441i \(-0.129755\pi\)
\(282\) −3.67544 + 1.64371i −0.218870 + 0.0978814i
\(283\) 19.1623i 1.13908i −0.821964 0.569540i \(-0.807122\pi\)
0.821964 0.569540i \(-0.192878\pi\)
\(284\) −9.53663 + 9.53663i −0.565895 + 0.565895i
\(285\) 2.59893 1.16228i 0.153947 0.0688474i
\(286\) −7.16228 0.837722i −0.423514 0.0495356i
\(287\) 0 0
\(288\) −2.99535 + 0.166925i −0.176503 + 0.00983617i
\(289\) −14.2982 −0.841072
\(290\) 4.47214 0.262613
\(291\) 4.51200 11.8126i 0.264498 0.692464i
\(292\) −1.16228 + 1.16228i −0.0680172 + 0.0680172i
\(293\) 2.82843 2.82843i 0.165238 0.165238i −0.619644 0.784883i \(-0.712723\pi\)
0.784883 + 0.619644i \(0.212723\pi\)
\(294\) 4.32624 11.3262i 0.252311 0.660560i
\(295\) −4.32456 −0.251785
\(296\) 5.65685 0.328798
\(297\) 4.76393 + 9.23607i 0.276431 + 0.535931i
\(298\) 16.3246i 0.945656i
\(299\) −16.0153 1.87320i −0.926191 0.108330i
\(300\) −1.58114 + 0.707107i −0.0912871 + 0.0408248i
\(301\) 0 0
\(302\) 18.8438i 1.08434i
\(303\) 24.9596 11.1623i 1.43389 0.641256i
\(304\) −1.16228 + 1.16228i −0.0666612 + 0.0666612i
\(305\) −10.3585 10.3585i −0.593125 0.593125i
\(306\) −4.92349 + 0.274377i −0.281457 + 0.0156851i
\(307\) 0.837722 + 0.837722i 0.0478113 + 0.0478113i 0.730608 0.682797i \(-0.239237\pi\)
−0.682797 + 0.730608i \(0.739237\pi\)
\(308\) 0 0
\(309\) 4.70163 + 10.5132i 0.267466 + 0.598073i
\(310\) −3.00000 3.00000i −0.170389 0.170389i
\(311\) −32.4897 −1.84232 −0.921160 0.389184i \(-0.872757\pi\)
−0.921160 + 0.389184i \(0.872757\pi\)
\(312\) −2.89100 + 5.53553i −0.163670 + 0.313388i
\(313\) 6.64911 0.375830 0.187915 0.982185i \(-0.439827\pi\)
0.187915 + 0.982185i \(0.439827\pi\)
\(314\) 11.9061 + 11.9061i 0.671898 + 0.671898i
\(315\) 0 0
\(316\) 10.0000i 0.562544i
\(317\) 17.8885 + 17.8885i 1.00472 + 1.00472i 0.999989 + 0.00473191i \(0.00150622\pi\)
0.00473191 + 0.999989i \(0.498494\pi\)
\(318\) 0.874032 2.28825i 0.0490133 0.128318i
\(319\) 6.32456 + 6.32456i 0.354107 + 0.354107i
\(320\) 0.707107 0.707107i 0.0395285 0.0395285i
\(321\) −7.32456 16.3782i −0.408817 0.914142i
\(322\) 0 0
\(323\) −1.91045 + 1.91045i −0.106300 + 0.106300i
\(324\) 8.94427 1.00000i 0.496904 0.0555556i
\(325\) −0.418861 + 3.58114i −0.0232342 + 0.198646i
\(326\) 14.6011i 0.808682i
\(327\) −9.75619 + 25.5420i −0.539518 + 1.41248i
\(328\) −3.16228 −0.174608
\(329\) 0 0
\(330\) −3.23607 1.23607i −0.178140 0.0680433i
\(331\) 9.48683 9.48683i 0.521443 0.521443i −0.396564 0.918007i \(-0.629797\pi\)
0.918007 + 0.396564i \(0.129797\pi\)
\(332\) 5.65685 5.65685i 0.310460 0.310460i
\(333\) −16.9443 + 0.944272i −0.928540 + 0.0517458i
\(334\) −10.3246 −0.564935
\(335\) 1.18472 0.0647281
\(336\) 0 0
\(337\) 5.35089i 0.291482i −0.989323 0.145741i \(-0.953443\pi\)
0.989323 0.145741i \(-0.0465565\pi\)
\(338\) 6.82295 + 11.0656i 0.371120 + 0.601889i
\(339\) −7.48683 16.7411i −0.406629 0.909250i
\(340\) 1.16228 1.16228i 0.0630334 0.0630334i
\(341\) 8.48528i 0.459504i
\(342\) 3.28742 3.67544i 0.177763 0.198745i
\(343\) 0 0
\(344\) −0.592359 0.592359i −0.0319379 0.0319379i
\(345\) −7.23607 2.76393i −0.389577 0.148805i
\(346\) 9.64911 + 9.64911i 0.518739 + 0.518739i
\(347\) 10.3585i 0.556073i 0.960571 + 0.278036i \(0.0896836\pi\)
−0.960571 + 0.278036i \(0.910316\pi\)
\(348\) 7.07107 3.16228i 0.379049 0.169516i
\(349\) −7.16228 7.16228i −0.383388 0.383388i 0.488933 0.872321i \(-0.337386\pi\)
−0.872321 + 0.488933i \(0.837386\pi\)
\(350\) 0 0
\(351\) 7.73553 17.0635i 0.412892 0.910780i
\(352\) 2.00000 0.106600
\(353\) −17.6590 17.6590i −0.939896 0.939896i 0.0583971 0.998293i \(-0.481401\pi\)
−0.998293 + 0.0583971i \(0.981401\pi\)
\(354\) −6.83772 + 3.05792i −0.363421 + 0.162527i
\(355\) 13.4868i 0.715807i
\(356\) 5.06450 + 5.06450i 0.268418 + 0.268418i
\(357\) 0 0
\(358\) −12.3246 12.3246i −0.651373 0.651373i
\(359\) −0.133369 + 0.133369i −0.00703893 + 0.00703893i −0.710617 0.703579i \(-0.751584\pi\)
0.703579 + 0.710617i \(0.251584\pi\)
\(360\) −2.00000 + 2.23607i −0.105409 + 0.117851i
\(361\) 16.2982i 0.857801i
\(362\) −5.88635 + 5.88635i −0.309380 + 0.309380i
\(363\) 4.94975 + 11.0680i 0.259794 + 0.580918i
\(364\) 0 0
\(365\) 1.64371i 0.0860357i
\(366\) −23.7028 9.05365i −1.23896 0.473242i
\(367\) −6.64911 −0.347081 −0.173540 0.984827i \(-0.555521\pi\)
−0.173540 + 0.984827i \(0.555521\pi\)
\(368\) 4.47214 0.233126
\(369\) 9.47214 0.527864i 0.493100 0.0274795i
\(370\) 4.00000 4.00000i 0.207950 0.207950i
\(371\) 0 0
\(372\) −6.86474 2.62210i −0.355920 0.135949i
\(373\) 8.83772 0.457600 0.228800 0.973473i \(-0.426520\pi\)
0.228800 + 0.973473i \(0.426520\pi\)
\(374\) 3.28742 0.169988
\(375\) −0.618034 + 1.61803i −0.0319151 + 0.0835549i
\(376\) 2.32456i 0.119880i
\(377\) 1.87320 16.0153i 0.0964749 0.824832i
\(378\) 0 0
\(379\) −6.83772 + 6.83772i −0.351230 + 0.351230i −0.860567 0.509337i \(-0.829891\pi\)
0.509337 + 0.860567i \(0.329891\pi\)
\(380\) 1.64371i 0.0843205i
\(381\) −14.8306 33.1623i −0.759796 1.69895i
\(382\) −17.4868 + 17.4868i −0.894704 + 0.894704i
\(383\) −21.9017 21.9017i −1.11912 1.11912i −0.991870 0.127254i \(-0.959384\pi\)
−0.127254 0.991870i \(-0.540616\pi\)
\(384\) 0.618034 1.61803i 0.0315389 0.0825700i
\(385\) 0 0
\(386\) 21.9017i 1.11477i
\(387\) 1.87320 + 1.67544i 0.0952203 + 0.0851676i
\(388\) 5.16228 + 5.16228i 0.262075 + 0.262075i
\(389\) −20.9837 −1.06392 −0.531958 0.846771i \(-0.678544\pi\)
−0.531958 + 0.846771i \(0.678544\pi\)
\(390\) 1.86997 + 5.95846i 0.0946896 + 0.301718i
\(391\) 7.35089 0.371750
\(392\) 4.94975 + 4.94975i 0.250000 + 0.250000i
\(393\) 12.3246 + 27.5585i 0.621692 + 1.39014i
\(394\) 12.6491i 0.637253i
\(395\) −7.07107 7.07107i −0.355784 0.355784i
\(396\) −5.99070 + 0.333851i −0.301044 + 0.0167766i
\(397\) −19.1623 19.1623i −0.961727 0.961727i 0.0375670 0.999294i \(-0.488039\pi\)
−0.999294 + 0.0375670i \(0.988039\pi\)
\(398\) −1.41421 + 1.41421i −0.0708881 + 0.0708881i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) 1.77708 1.77708i 0.0887430 0.0887430i −0.661342 0.750085i \(-0.730013\pi\)
0.750085 + 0.661342i \(0.230013\pi\)
\(402\) 1.87320 0.837722i 0.0934269 0.0417818i
\(403\) −12.0000 + 9.48683i −0.597763 + 0.472573i
\(404\) 15.7858i 0.785375i
\(405\) 5.61745 7.03166i 0.279133 0.349406i
\(406\) 0 0
\(407\) 11.3137 0.560800
\(408\) 1.01587 2.65958i 0.0502930 0.131669i
\(409\) 23.3246 23.3246i 1.15333 1.15333i 0.167443 0.985882i \(-0.446449\pi\)
0.985882 0.167443i \(-0.0535511\pi\)
\(410\) −2.23607 + 2.23607i −0.110432 + 0.110432i
\(411\) 4.74369 12.4191i 0.233989 0.612591i
\(412\) −6.64911 −0.327578
\(413\) 0 0
\(414\) −13.3956 + 0.746512i −0.658359 + 0.0366891i
\(415\) 8.00000i 0.392705i
\(416\) −2.23607 2.82843i −0.109632 0.138675i
\(417\) −10.0000 + 4.47214i −0.489702 + 0.219001i
\(418\) −2.32456 + 2.32456i −0.113698 + 0.113698i
\(419\) 4.73887i 0.231509i −0.993278 0.115755i \(-0.963071\pi\)
0.993278 0.115755i \(-0.0369286\pi\)
\(420\) 0 0
\(421\) −19.1623 + 19.1623i −0.933912 + 0.933912i −0.997948 0.0640354i \(-0.979603\pi\)
0.0640354 + 0.997948i \(0.479603\pi\)
\(422\) 20.2580 + 20.2580i 0.986143 + 0.986143i
\(423\) 0.388027 + 6.96286i 0.0188665 + 0.338546i
\(424\) 1.00000 + 1.00000i 0.0485643 + 0.0485643i
\(425\) 1.64371i 0.0797316i
\(426\) 9.53663 + 21.3246i 0.462051 + 1.03318i
\(427\) 0 0
\(428\) 10.3585 0.500696
\(429\) −5.78199 + 11.0711i −0.279157 + 0.534516i
\(430\) −0.837722 −0.0403986
\(431\) −15.1935 15.1935i −0.731844 0.731844i 0.239141 0.970985i \(-0.423134\pi\)
−0.970985 + 0.239141i \(0.923134\pi\)
\(432\) −1.58114 + 4.94975i −0.0760726 + 0.238145i
\(433\) 11.2982i 0.542958i −0.962444 0.271479i \(-0.912487\pi\)
0.962444 0.271479i \(-0.0875127\pi\)
\(434\) 0 0
\(435\) 2.76393 7.23607i 0.132520 0.346943i
\(436\) −11.1623 11.1623i −0.534576 0.534576i
\(437\) −5.19786 + 5.19786i −0.248648 + 0.248648i
\(438\) 1.16228 + 2.59893i 0.0555358 + 0.124182i
\(439\) 28.6491i 1.36735i −0.729788 0.683674i \(-0.760381\pi\)
0.729788 0.683674i \(-0.239619\pi\)
\(440\) 1.41421 1.41421i 0.0674200 0.0674200i
\(441\) −15.6525 14.0000i −0.745356 0.666667i
\(442\) −3.67544 4.64911i −0.174823 0.221136i
\(443\) 7.53006i 0.357764i 0.983871 + 0.178882i \(0.0572480\pi\)
−0.983871 + 0.178882i \(0.942752\pi\)
\(444\) 3.49613 9.15298i 0.165919 0.434381i
\(445\) 7.16228 0.339525
\(446\) −12.2317 −0.579187
\(447\) 26.4137 + 10.0891i 1.24932 + 0.477199i
\(448\) 0 0
\(449\) −8.35191 + 8.35191i −0.394151 + 0.394151i −0.876164 0.482013i \(-0.839906\pi\)
0.482013 + 0.876164i \(0.339906\pi\)
\(450\) 0.166925 + 2.99535i 0.00786893 + 0.141202i
\(451\) −6.32456 −0.297812
\(452\) 10.5880 0.498017
\(453\) 30.4899 + 11.6461i 1.43254 + 0.547181i
\(454\) 18.0000i 0.844782i
\(455\) 0 0
\(456\) 1.16228 + 2.59893i 0.0544286 + 0.121706i
\(457\) −15.4868 + 15.4868i −0.724443 + 0.724443i −0.969507 0.245064i \(-0.921191\pi\)
0.245064 + 0.969507i \(0.421191\pi\)
\(458\) 25.1891i 1.17701i
\(459\) −2.59893 + 8.13594i −0.121308 + 0.379753i
\(460\) 3.16228 3.16228i 0.147442 0.147442i
\(461\) −3.78365 3.78365i −0.176222 0.176222i 0.613485 0.789707i \(-0.289767\pi\)
−0.789707 + 0.613485i \(0.789767\pi\)
\(462\) 0 0
\(463\) −4.32456 4.32456i −0.200979 0.200979i 0.599440 0.800419i \(-0.295390\pi\)
−0.800419 + 0.599440i \(0.795390\pi\)
\(464\) 4.47214i 0.207614i
\(465\) −6.70820 + 3.00000i −0.311086 + 0.139122i
\(466\) −9.16228 9.16228i −0.424434 0.424434i
\(467\) −19.7617 −0.914465 −0.457232 0.889347i \(-0.651159\pi\)
−0.457232 + 0.889347i \(0.651159\pi\)
\(468\) 7.16995 + 8.09888i 0.331431 + 0.374371i
\(469\) 0 0
\(470\) −1.64371 1.64371i −0.0758186 0.0758186i
\(471\) 26.6228 11.9061i 1.22671 0.548603i
\(472\) 4.32456i 0.199054i
\(473\) −1.18472 1.18472i −0.0544734 0.0544734i
\(474\) −16.1803 6.18034i −0.743188 0.283872i
\(475\) 1.16228 + 1.16228i 0.0533290 + 0.0533290i
\(476\) 0 0
\(477\) −3.16228 2.82843i −0.144791 0.129505i
\(478\) 4.83772i 0.221272i
\(479\) 22.4940 22.4940i 1.02778 1.02778i 0.0281763 0.999603i \(-0.491030\pi\)
0.999603 0.0281763i \(-0.00896999\pi\)
\(480\) −0.707107 1.58114i −0.0322749 0.0721688i
\(481\) −12.6491 16.0000i −0.576750 0.729537i
\(482\) 24.9596i 1.13688i
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 7.30056 0.331501
\(486\) 3.90983 15.0902i 0.177353 0.684504i
\(487\) −18.0000 + 18.0000i −0.815658 + 0.815658i −0.985476 0.169818i \(-0.945682\pi\)
0.169818 + 0.985476i \(0.445682\pi\)
\(488\) 10.3585 10.3585i 0.468907 0.468907i
\(489\) −23.6251 9.02399i −1.06836 0.408079i
\(490\) 7.00000 0.316228
\(491\) 28.2843 1.27645 0.638226 0.769849i \(-0.279669\pi\)
0.638226 + 0.769849i \(0.279669\pi\)
\(492\) −1.95440 + 5.11667i −0.0881109 + 0.230677i
\(493\) 7.35089i 0.331067i
\(494\) 5.88635 + 0.688486i 0.264839 + 0.0309764i
\(495\) −4.00000 + 4.47214i −0.179787 + 0.201008i
\(496\) 3.00000 3.00000i 0.134704 0.134704i
\(497\) 0 0
\(498\) −5.65685 12.6491i −0.253490 0.566820i
\(499\) −4.83772 + 4.83772i −0.216566 + 0.216566i −0.807050 0.590484i \(-0.798937\pi\)
0.590484 + 0.807050i \(0.298937\pi\)
\(500\) −0.707107 0.707107i −0.0316228 0.0316228i
\(501\) −6.38093 + 16.7055i −0.285079 + 0.746346i
\(502\) −2.32456 2.32456i −0.103750 0.103750i
\(503\) 19.5323i 0.870900i −0.900213 0.435450i \(-0.856589\pi\)
0.900213 0.435450i \(-0.143411\pi\)
\(504\) 0 0
\(505\) 11.1623 + 11.1623i 0.496715 + 0.496715i
\(506\) 8.94427 0.397621
\(507\) 22.1213 4.20086i 0.982442 0.186567i
\(508\) 20.9737 0.930556
\(509\) 5.42736 + 5.42736i 0.240563 + 0.240563i 0.817083 0.576520i \(-0.195590\pi\)
−0.576520 + 0.817083i \(0.695590\pi\)
\(510\) −1.16228 2.59893i −0.0514665 0.115083i
\(511\) 0 0
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −3.91526 7.59070i −0.172863 0.335138i
\(514\) 5.16228 + 5.16228i 0.227698 + 0.227698i
\(515\) −4.70163 + 4.70163i −0.207179 + 0.207179i
\(516\) −1.32456 + 0.592359i −0.0583103 + 0.0260772i
\(517\) 4.64911i 0.204468i
\(518\) 0 0
\(519\) 21.5761 9.64911i 0.947084 0.423549i
\(520\) −3.58114 0.418861i −0.157043 0.0183683i
\(521\) 24.7301i 1.08345i −0.840557 0.541723i \(-0.817772\pi\)
0.840557 0.541723i \(-0.182228\pi\)
\(522\) −0.746512 13.3956i −0.0326740 0.586310i
\(523\) −4.18861 −0.183155 −0.0915776 0.995798i \(-0.529191\pi\)
−0.0915776 + 0.995798i \(0.529191\pi\)
\(524\) −17.4296 −0.761414
\(525\) 0 0
\(526\) 7.16228 7.16228i 0.312290 0.312290i
\(527\) 4.93113 4.93113i 0.214803 0.214803i
\(528\) 1.23607 3.23607i 0.0537930 0.140832i
\(529\) −3.00000 −0.130435
\(530\) 1.41421 0.0614295
\(531\) 0.721878 + 12.9536i 0.0313268 + 0.562137i
\(532\) 0 0
\(533\) 7.07107 + 8.94427i 0.306282 + 0.387419i
\(534\) 11.3246 5.06450i 0.490061 0.219162i
\(535\) 7.32456 7.32456i 0.316668 0.316668i
\(536\) 1.18472i 0.0511720i
\(537\) −27.5585 + 12.3246i −1.18924 + 0.531844i
\(538\) 3.16228 3.16228i 0.136335 0.136335i
\(539\) 9.89949 + 9.89949i 0.426401 + 0.426401i
\(540\) 2.38197 + 4.61803i 0.102503 + 0.198729i
\(541\) −1.81139 1.81139i −0.0778777 0.0778777i 0.667095 0.744973i \(-0.267538\pi\)
−0.744973 + 0.667095i \(0.767538\pi\)
\(542\) 7.53006i 0.323444i
\(543\) 5.88635 + 13.1623i 0.252607 + 0.564847i
\(544\) 1.16228 + 1.16228i 0.0498322 + 0.0498322i
\(545\) −15.7858 −0.676191
\(546\) 0 0
\(547\) 9.48683 0.405628 0.202814 0.979217i \(-0.434991\pi\)
0.202814 + 0.979217i \(0.434991\pi\)
\(548\) 5.42736 + 5.42736i 0.231845 + 0.231845i
\(549\) −29.2982 + 32.7564i −1.25042 + 1.39801i
\(550\) 2.00000i 0.0852803i
\(551\) −5.19786 5.19786i −0.221436 0.221436i
\(552\) 2.76393 7.23607i 0.117641 0.307988i
\(553\) 0 0
\(554\) 2.23607 2.23607i 0.0950014 0.0950014i
\(555\) −4.00000 8.94427i −0.169791 0.379663i
\(556\) 6.32456i 0.268221i
\(557\) 6.11584 6.11584i 0.259137 0.259137i −0.565566 0.824703i \(-0.691342\pi\)
0.824703 + 0.565566i \(0.191342\pi\)
\(558\) −8.48528 + 9.48683i −0.359211 + 0.401610i
\(559\) −0.350889 + 3.00000i −0.0148410 + 0.126886i
\(560\) 0 0
\(561\) 2.03174 5.31915i 0.0857800 0.224575i
\(562\) 31.1623 1.31450
\(563\) 42.3892 1.78649 0.893245 0.449570i \(-0.148423\pi\)
0.893245 + 0.449570i \(0.148423\pi\)
\(564\) −3.76121 1.43665i −0.158375 0.0604941i
\(565\) 7.48683 7.48683i 0.314973 0.314973i
\(566\) 13.5498 13.5498i 0.569540 0.569540i
\(567\) 0 0
\(568\) −13.4868 −0.565895
\(569\) 24.7301 1.03674 0.518370 0.855156i \(-0.326539\pi\)
0.518370 + 0.855156i \(0.326539\pi\)
\(570\) 2.65958 + 1.01587i 0.111397 + 0.0425500i
\(571\) 18.9737i 0.794023i 0.917814 + 0.397012i \(0.129953\pi\)
−0.917814 + 0.397012i \(0.870047\pi\)
\(572\) −4.47214 5.65685i −0.186989 0.236525i
\(573\) 17.4868 + 39.1017i 0.730523 + 1.63350i
\(574\) 0 0
\(575\) 4.47214i 0.186501i
\(576\) −2.23607 2.00000i −0.0931695 0.0833333i
\(577\) −14.8377 + 14.8377i −0.617702 + 0.617702i −0.944942 0.327239i \(-0.893882\pi\)
0.327239 + 0.944942i \(0.393882\pi\)
\(578\) −10.1104 10.1104i −0.420536 0.420536i
\(579\) 35.4377 + 13.5360i 1.47274 + 0.562536i
\(580\) 3.16228 + 3.16228i 0.131306 + 0.131306i
\(581\) 0 0
\(582\) 11.5432 5.16228i 0.478481 0.213983i
\(583\) 2.00000 + 2.00000i 0.0828315 + 0.0828315i
\(584\) −1.64371 −0.0680172
\(585\) 10.7967 + 0.656854i 0.446388 + 0.0271576i
\(586\) 4.00000 0.165238
\(587\) 17.4296 + 17.4296i 0.719395 + 0.719395i 0.968481 0.249087i \(-0.0801304\pi\)
−0.249087 + 0.968481i \(0.580130\pi\)
\(588\) 11.0680 4.94975i 0.456435 0.204124i
\(589\) 6.97367i 0.287345i
\(590\) −3.05792 3.05792i −0.125893 0.125893i
\(591\) 20.4667 + 7.81758i 0.841887 + 0.321572i
\(592\) 4.00000 + 4.00000i 0.164399 + 0.164399i
\(593\) −22.5902 + 22.5902i −0.927667 + 0.927667i −0.997555 0.0698876i \(-0.977736\pi\)
0.0698876 + 0.997555i \(0.477736\pi\)
\(594\) −3.16228 + 9.89949i −0.129750 + 0.406181i
\(595\) 0 0
\(596\) −11.5432 + 11.5432i −0.472828 + 0.472828i
\(597\) 1.41421 + 3.16228i 0.0578799 + 0.129423i
\(598\) −10.0000 12.6491i −0.408930 0.517261i
\(599\) 14.8679i 0.607484i 0.952754 + 0.303742i \(0.0982362\pi\)
−0.952754 + 0.303742i \(0.901764\pi\)
\(600\) −1.61803 0.618034i −0.0660560 0.0252311i
\(601\) 0.649111 0.0264778 0.0132389 0.999912i \(-0.495786\pi\)
0.0132389 + 0.999912i \(0.495786\pi\)
\(602\) 0 0
\(603\) −0.197759 3.54865i −0.00805339 0.144512i
\(604\) −13.3246 + 13.3246i −0.542168 + 0.542168i
\(605\) −4.94975 + 4.94975i −0.201236 + 0.201236i
\(606\) 25.5420 + 9.75619i 1.03757 + 0.396318i
\(607\) 41.6228 1.68942 0.844708 0.535227i \(-0.179774\pi\)
0.844708 + 0.535227i \(0.179774\pi\)
\(608\) −1.64371 −0.0666612
\(609\) 0 0
\(610\) 14.6491i 0.593125i
\(611\) −6.57484 + 5.19786i −0.265989 + 0.210283i
\(612\) −3.67544 3.28742i −0.148571 0.132886i
\(613\) −9.67544 + 9.67544i −0.390788 + 0.390788i −0.874968 0.484181i \(-0.839118\pi\)
0.484181 + 0.874968i \(0.339118\pi\)
\(614\) 1.18472i 0.0478113i
\(615\) 2.23607 + 5.00000i 0.0901670 + 0.201619i
\(616\) 0 0
\(617\) −18.3848 18.3848i −0.740143 0.740143i 0.232462 0.972605i \(-0.425322\pi\)
−0.972605 + 0.232462i \(0.925322\pi\)
\(618\) −4.10938 + 10.7585i −0.165303 + 0.432770i
\(619\) 10.5132 + 10.5132i 0.422560 + 0.422560i 0.886084 0.463524i \(-0.153415\pi\)
−0.463524 + 0.886084i \(0.653415\pi\)
\(620\) 4.24264i 0.170389i
\(621\) −7.07107 + 22.1359i −0.283752 + 0.888285i
\(622\) −22.9737 22.9737i −0.921160 0.921160i
\(623\) 0 0
\(624\) −5.95846 + 1.86997i −0.238529 + 0.0748587i
\(625\) −1.00000 −0.0400000
\(626\) 4.70163 + 4.70163i 0.187915 + 0.187915i
\(627\) 2.32456 + 5.19786i 0.0928338 + 0.207583i
\(628\) 16.8377i 0.671898i
\(629\) 6.57484 + 6.57484i 0.262156 + 0.262156i
\(630\) 0 0
\(631\) 0.675445 + 0.675445i 0.0268890 + 0.0268890i 0.720423 0.693534i \(-0.243947\pi\)
−0.693534 + 0.720423i \(0.743947\pi\)
\(632\) 7.07107 7.07107i 0.281272 0.281272i
\(633\) 45.2982 20.2580i 1.80044 0.805182i
\(634\) 25.2982i 1.00472i
\(635\) 14.8306 14.8306i 0.588535 0.588535i
\(636\) 2.23607 1.00000i 0.0886659 0.0396526i
\(637\) 2.93203 25.0680i 0.116171 0.993229i
\(638\) 8.94427i 0.354107i
\(639\) 40.3978 2.25129i 1.59811 0.0890598i
\(640\) 1.00000 0.0395285
\(641\) −35.7771 −1.41311 −0.706555 0.707658i \(-0.749752\pi\)
−0.706555 + 0.707658i \(0.749752\pi\)
\(642\) 6.40190 16.7604i 0.252663 0.661479i
\(643\) 7.35089 7.35089i 0.289891 0.289891i −0.547146 0.837037i \(-0.684286\pi\)
0.837037 + 0.547146i \(0.184286\pi\)
\(644\) 0 0
\(645\) −0.517741 + 1.35546i −0.0203860 + 0.0533713i
\(646\) −2.70178 −0.106300
\(647\) −37.9543 −1.49214 −0.746068 0.665870i \(-0.768061\pi\)
−0.746068 + 0.665870i \(0.768061\pi\)
\(648\) 7.03166 + 5.61745i 0.276230 + 0.220674i
\(649\) 8.64911i 0.339507i
\(650\) −2.82843 + 2.23607i −0.110940 + 0.0877058i
\(651\) 0 0
\(652\) 10.3246 10.3246i 0.404341 0.404341i
\(653\) 48.0460i 1.88019i 0.340918 + 0.940093i \(0.389262\pi\)
−0.340918 + 0.940093i \(0.610738\pi\)
\(654\) −24.9596 + 11.1623i −0.975998 + 0.436480i
\(655\) −12.3246 + 12.3246i −0.481560 + 0.481560i
\(656\) −2.23607 2.23607i −0.0873038 0.0873038i
\(657\) 4.92349 0.274377i 0.192084 0.0107044i
\(658\) 0 0
\(659\) 8.94427i 0.348419i 0.984709 + 0.174210i \(0.0557371\pi\)
−0.984709 + 0.174210i \(0.944263\pi\)
\(660\) −1.41421 3.16228i −0.0550482 0.123091i
\(661\) −17.1623 17.1623i −0.667535 0.667535i 0.289610 0.957145i \(-0.406475\pi\)
−0.957145 + 0.289610i \(0.906475\pi\)
\(662\) 13.4164 0.521443
\(663\) −9.79397 + 3.07369i −0.380366 + 0.119372i
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) −12.6491 11.3137i −0.490143 0.438397i
\(667\) 20.0000i 0.774403i
\(668\) −7.30056 7.30056i −0.282467 0.282467i
\(669\) −7.55960 + 19.7913i −0.292271 + 0.765175i
\(670\) 0.837722 + 0.837722i 0.0323640 + 0.0323640i
\(671\) 20.7170 20.7170i 0.799770 0.799770i
\(672\) 0 0
\(673\) 32.3246i 1.24602i −0.782214 0.623010i \(-0.785910\pi\)
0.782214 0.623010i \(-0.214090\pi\)
\(674\) 3.78365 3.78365i 0.145741 0.145741i
\(675\) 4.94975 + 1.58114i 0.190516 + 0.0608581i
\(676\) −3.00000 + 12.6491i −0.115385 + 0.486504i
\(677\) 13.1869i 0.506814i 0.967360 + 0.253407i \(0.0815512\pi\)
−0.967360 + 0.253407i \(0.918449\pi\)
\(678\) 6.54373 17.1317i 0.251311 0.657939i
\(679\) 0 0
\(680\) 1.64371 0.0630334
\(681\) 29.1246 + 11.1246i 1.11606 + 0.426296i
\(682\) 6.00000 6.00000i 0.229752 0.229752i
\(683\) 4.24264 4.24264i 0.162340 0.162340i −0.621262 0.783603i \(-0.713380\pi\)
0.783603 + 0.621262i \(0.213380\pi\)
\(684\) 4.92349 0.274377i 0.188254 0.0104910i
\(685\) 7.67544 0.293264
\(686\) 0 0
\(687\) 40.7568 + 15.5677i 1.55497 + 0.593946i
\(688\) 0.837722i 0.0319379i
\(689\) 0.592359 5.06450i 0.0225671 0.192942i
\(690\) −3.16228 7.07107i −0.120386 0.269191i
\(691\) −4.18861 + 4.18861i −0.159342 + 0.159342i −0.782275 0.622933i \(-0.785941\pi\)
0.622933 + 0.782275i \(0.285941\pi\)
\(692\) 13.6459i 0.518739i
\(693\) 0 0
\(694\) −7.32456 + 7.32456i −0.278036 + 0.278036i
\(695\) −4.47214 4.47214i −0.169638 0.169638i
\(696\) 7.23607 + 2.76393i 0.274282 + 0.104767i
\(697\) −3.67544 3.67544i −0.139217 0.139217i
\(698\) 10.1290i 0.383388i
\(699\) −20.4875 + 9.16228i −0.774907 + 0.346549i
\(700\) 0 0
\(701\) 5.39012 0.203582 0.101791 0.994806i \(-0.467543\pi\)
0.101791 + 0.994806i \(0.467543\pi\)
\(702\) 17.5355 6.59584i 0.661836 0.248944i
\(703\) −9.29822 −0.350689
\(704\) 1.41421 + 1.41421i 0.0533002 + 0.0533002i
\(705\) −3.67544 + 1.64371i −0.138425 + 0.0619057i
\(706\) 24.9737i 0.939896i
\(707\) 0 0
\(708\) −6.99728 2.67272i −0.262974 0.100447i
\(709\) 3.48683 + 3.48683i 0.130951 + 0.130951i 0.769544 0.638593i \(-0.220483\pi\)
−0.638593 + 0.769544i \(0.720483\pi\)
\(710\) −9.53663 + 9.53663i −0.357903 + 0.357903i
\(711\) −20.0000 + 22.3607i −0.750059 + 0.838591i
\(712\) 7.16228i 0.268418i
\(713\) 13.4164 13.4164i 0.502448 0.502448i
\(714\) 0 0
\(715\) −7.16228 0.837722i −0.267854 0.0313290i
\(716\) 17.4296i 0.651373i
\(717\) 7.82760 + 2.98988i 0.292327 + 0.111659i
\(718\) −0.188612 −0.00703893
\(719\) 24.7301 0.922278 0.461139 0.887328i \(-0.347441\pi\)
0.461139 + 0.887328i \(0.347441\pi\)
\(720\) −2.99535 + 0.166925i −0.111630 + 0.00622094i
\(721\) 0 0
\(722\) −11.5246 + 11.5246i −0.428901 + 0.428901i
\(723\) −40.3855 15.4259i −1.50195 0.573695i
\(724\) −8.32456 −0.309380
\(725\) 4.47214 0.166091
\(726\) −4.32624 + 11.3262i −0.160562 + 0.420356i
\(727\) 32.9737i 1.22293i −0.791273 0.611463i \(-0.790581\pi\)
0.791273 0.611463i \(-0.209419\pi\)
\(728\) 0 0
\(729\) −22.0000 15.6525i −0.814815 0.579721i
\(730\) −1.16228 + 1.16228i −0.0430178 + 0.0430178i
\(731\) 1.37697i 0.0509291i
\(732\) −10.3585 23.1623i −0.382861 0.856102i
\(733\) −14.5132 + 14.5132i −0.536056 + 0.536056i −0.922368 0.386312i \(-0.873749\pi\)
0.386312 + 0.922368i \(0.373749\pi\)
\(734\) −4.70163 4.70163i −0.173540 0.173540i
\(735\) 4.32624 11.3262i 0.159576 0.417775i
\(736\) 3.16228 + 3.16228i 0.116563 + 0.116563i
\(737\) 2.36944i 0.0872793i
\(738\) 7.07107 + 6.32456i 0.260290 + 0.232810i
\(739\) −32.1359 32.1359i −1.18214 1.18214i −0.979189 0.202951i \(-0.934947\pi\)
−0.202951 0.979189i \(-0.565053\pi\)
\(740\) 5.65685 0.207950
\(741\) 4.75196 9.09881i 0.174568 0.334253i
\(742\) 0 0
\(743\) −0.725728 0.725728i −0.0266244 0.0266244i 0.693669 0.720294i \(-0.255993\pi\)
−0.720294 + 0.693669i \(0.755993\pi\)
\(744\) −3.00000 6.70820i −0.109985 0.245935i
\(745\) 16.3246i 0.598085i
\(746\) 6.24921 + 6.24921i 0.228800 + 0.228800i
\(747\) −23.9628 + 1.33540i −0.876754 + 0.0488598i
\(748\) 2.32456 + 2.32456i 0.0849942 + 0.0849942i
\(749\) 0 0
\(750\) −1.58114 + 0.707107i −0.0577350 + 0.0258199i
\(751\) 28.0000i 1.02173i 0.859660 + 0.510867i \(0.170676\pi\)
−0.859660 + 0.510867i \(0.829324\pi\)
\(752\) 1.64371 1.64371i 0.0599399 0.0599399i
\(753\) −5.19786 + 2.32456i −0.189421 + 0.0847115i
\(754\) 12.6491 10.0000i 0.460653 0.364179i
\(755\) 18.8438i 0.685795i
\(756\) 0 0
\(757\) −23.8114 −0.865440 −0.432720 0.901528i \(-0.642446\pi\)
−0.432720 + 0.901528i \(0.642446\pi\)
\(758\) −9.67000 −0.351230
\(759\) 5.52786 14.4721i 0.200649 0.525305i
\(760\) −1.16228 + 1.16228i −0.0421602 + 0.0421602i
\(761\) −29.7946 + 29.7946i −1.08005 + 1.08005i −0.0835503 + 0.996504i \(0.526626\pi\)
−0.996504 + 0.0835503i \(0.973374\pi\)
\(762\) 12.9624 33.9361i 0.469580 1.22938i
\(763\) 0 0
\(764\) −24.7301 −0.894704
\(765\) −4.92349 + 0.274377i −0.178009 + 0.00992010i
\(766\) 30.9737i 1.11912i
\(767\) −12.2317 + 9.67000i −0.441661 + 0.349163i
\(768\) 1.58114 0.707107i 0.0570544 0.0255155i
\(769\) 31.6491 31.6491i 1.14130 1.14130i 0.153083 0.988213i \(-0.451080\pi\)
0.988213 0.153083i \(-0.0489201\pi\)
\(770\) 0 0
\(771\) 11.5432 5.16228i 0.415718 0.185915i
\(772\) −15.4868 + 15.4868i −0.557383 + 0.557383i
\(773\) −16.9706 16.9706i −0.610389 0.610389i 0.332659 0.943047i \(-0.392054\pi\)
−0.943047 + 0.332659i \(0.892054\pi\)
\(774\) 0.139837 + 2.50927i 0.00502634 + 0.0901940i
\(775\) −3.00000 3.00000i −0.107763 0.107763i
\(776\) 7.30056i 0.262075i
\(777\) 0 0
\(778\) −14.8377 14.8377i −0.531958 0.531958i
\(779\) 5.19786 0.186233
\(780\) −2.89100 + 5.53553i −0.103514 + 0.198204i
\(781\) −26.9737 −0.965194
\(782\) 5.19786 + 5.19786i 0.185875 + 0.185875i
\(783\) −22.1359 7.07107i −0.791074 0.252699i
\(784\) 7.00000i 0.250000i
\(785\) 11.9061 + 11.9061i 0.424946 + 0.424946i
\(786\) −10.7721 + 28.2016i −0.384227 + 1.00592i
\(787\) 9.48683 + 9.48683i 0.338169 + 0.338169i 0.855678 0.517509i \(-0.173141\pi\)
−0.517509 + 0.855678i \(0.673141\pi\)
\(788\) −8.94427 + 8.94427i −0.318626 + 0.318626i
\(789\) −7.16228 16.0153i −0.254984 0.570161i
\(790\) 10.0000i 0.355784i
\(791\) 0 0
\(792\) −4.47214 4.00000i −0.158910 0.142134i
\(793\) −52.4605 6.13594i −1.86293 0.217894i
\(794\) 27.0996i 0.961727i
\(795\) 0.874032 2.28825i 0.0309987 0.0811557i
\(796\) −2.00000 −0.0708881
\(797\) −40.0197 −1.41757 −0.708786 0.705424i \(-0.750757\pi\)
−0.708786 + 0.705424i \(0.750757\pi\)
\(798\) 0 0
\(799\) 2.70178 2.70178i 0.0955821 0.0955821i
\(800\) 0.707107 0.707107i 0.0250000 0.0250000i
\(801\) −1.19557 21.4535i −0.0422432 0.758024i
\(802\) 2.51317 0.0887430
\(803\) −3.28742 −0.116010
\(804\) 1.91691 + 0.732196i 0.0676044 + 0.0258226i
\(805\) 0 0
\(806\) −15.1935 1.77708i −0.535168 0.0625949i
\(807\) −3.16228 7.07107i −0.111317 0.248913i
\(808\) −11.1623 + 11.1623i −0.392688 + 0.392688i
\(809\) 37.2285i 1.30889i −0.756111 0.654443i \(-0.772903\pi\)
0.756111 0.654443i \(-0.227097\pi\)
\(810\) 8.94427 1.00000i 0.314270 0.0351364i
\(811\) −11.4868 + 11.4868i −0.403357 + 0.403357i −0.879414 0.476057i \(-0.842066\pi\)
0.476057 + 0.879414i \(0.342066\pi\)
\(812\) 0 0
\(813\) 12.1839 + 4.65383i 0.427308 + 0.163217i
\(814\) 8.00000 + 8.00000i 0.280400 + 0.280400i
\(815\) 14.6011i 0.511455i
\(816\) 2.59893 1.16228i 0.0909808 0.0406879i
\(817\) 0.973666 + 0.973666i 0.0340643 + 0.0340643i
\(818\) 32.9859 1.15333
\(819\) 0 0
\(820\) −3.16228 −0.110432
\(821\) 14.1049 + 14.1049i 0.492264 + 0.492264i 0.909019 0.416755i \(-0.136833\pi\)
−0.416755 + 0.909019i \(0.636833\pi\)
\(822\) 12.1359 5.42736i 0.423290 0.189301i
\(823\) 44.9737i 1.56768i 0.620961 + 0.783842i \(0.286743\pi\)
−0.620961 + 0.783842i \(0.713257\pi\)
\(824\) −4.70163 4.70163i −0.163789 0.163789i
\(825\) −3.23607 1.23607i −0.112665 0.0430344i
\(826\) 0 0
\(827\) 24.9596 24.9596i 0.867931 0.867931i −0.124312 0.992243i \(-0.539672\pi\)
0.992243 + 0.124312i \(0.0396725\pi\)
\(828\) −10.0000 8.94427i −0.347524 0.310835i
\(829\) 14.0000i 0.486240i −0.969996 0.243120i \(-0.921829\pi\)
0.969996 0.243120i \(-0.0781709\pi\)
\(830\) 5.65685 5.65685i 0.196352 0.196352i
\(831\) −2.23607 5.00000i −0.0775683 0.173448i
\(832\) 0.418861 3.58114i 0.0145214 0.124154i
\(833\) 11.5060i 0.398658i
\(834\) −10.2333 3.90879i −0.354352 0.135350i
\(835\) −10.3246 −0.357296
\(836\) −3.28742 −0.113698
\(837\) 10.1058 + 19.5927i 0.349308 + 0.677221i
\(838\) 3.35089 3.35089i 0.115755 0.115755i
\(839\) −23.2198 + 23.2198i −0.801636 + 0.801636i −0.983351 0.181715i \(-0.941835\pi\)
0.181715 + 0.983351i \(0.441835\pi\)
\(840\) 0 0
\(841\) 9.00000 0.310345
\(842\) −27.0996 −0.933912
\(843\) 19.2593 50.4216i 0.663327 1.73661i
\(844\) 28.6491i 0.986143i
\(845\) 6.82295 + 11.0656i 0.234717 + 0.380668i
\(846\) −4.64911 + 5.19786i −0.159840 + 0.178706i
\(847\) 0 0
\(848\) 1.41421i 0.0485643i
\(849\) −13.5498 30.2982i −0.465027 1.03983i
\(850\) 1.16228 1.16228i 0.0398658 0.0398658i
\(851\) 17.8885 + 17.8885i 0.613211 + 0.613211i
\(852\) −8.33532 + 21.8222i −0.285563 + 0.747615i
\(853\) −4.64911 4.64911i −0.159183 0.159183i 0.623022 0.782204i \(-0.285905\pi\)
−0.782204 + 0.623022i \(0.785905\pi\)
\(854\) 0 0
\(855\) 3.28742 3.67544i 0.112427 0.125698i
\(856\) 7.32456 + 7.32456i 0.250348 + 0.250348i
\(857\) 9.21101 0.314642 0.157321 0.987548i \(-0.449714\pi\)
0.157321 + 0.987548i \(0.449714\pi\)
\(858\) −11.9169 + 3.73994i −0.406837 + 0.127679i
\(859\) 14.3246 0.488748 0.244374 0.969681i \(-0.421418\pi\)
0.244374 + 0.969681i \(0.421418\pi\)
\(860\) −0.592359 0.592359i −0.0201993 0.0201993i
\(861\) 0 0
\(862\) 21.4868i 0.731844i
\(863\) −36.9618 36.9618i −1.25819 1.25819i −0.951954 0.306240i \(-0.900929\pi\)
−0.306240 0.951954i \(-0.599071\pi\)
\(864\) −4.61803 + 2.38197i −0.157109 + 0.0810361i
\(865\) 9.64911 + 9.64911i 0.328080 + 0.328080i
\(866\) 7.98905 7.98905i 0.271479 0.271479i
\(867\) −22.6075 + 10.1104i −0.767790 + 0.343366i
\(868\) 0 0
\(869\) 14.1421 14.1421i 0.479739 0.479739i
\(870\) 7.07107 3.16228i 0.239732 0.107211i
\(871\) 3.35089 2.64911i 0.113541 0.0897617i
\(872\) 15.7858i 0.534576i
\(873\) −1.21865 21.8678i −0.0412450 0.740112i
\(874\) −7.35089 −0.248648
\(875\) 0 0
\(876\) −1.01587 + 2.65958i −0.0343230 + 0.0898588i
\(877\) −35.8114 + 35.8114i −1.20926 + 1.20926i −0.237999 + 0.971265i \(0.576492\pi\)
−0.971265 + 0.237999i \(0.923508\pi\)
\(878\) 20.2580 20.2580i 0.683674 0.683674i
\(879\) 2.47214 6.47214i 0.0833831 0.218300i
\(880\) 2.00000 0.0674200
\(881\) 8.67753 0.292354 0.146177 0.989258i \(-0.453303\pi\)
0.146177 + 0.989258i \(0.453303\pi\)
\(882\) −1.16848 20.9675i −0.0393447 0.706011i
\(883\) 20.1886i 0.679401i −0.940534 0.339700i \(-0.889674\pi\)
0.940534 0.339700i \(-0.110326\pi\)
\(884\) 0.688486 5.88635i 0.0231563 0.197979i
\(885\) −6.83772 + 3.05792i −0.229848 + 0.102791i
\(886\) −5.32456 + 5.32456i −0.178882 + 0.178882i
\(887\) 53.9324i 1.81087i −0.424483 0.905436i \(-0.639544\pi\)
0.424483 0.905436i \(-0.360456\pi\)
\(888\) 8.94427 4.00000i 0.300150 0.134231i
\(889\) 0 0
\(890\) 5.06450 + 5.06450i 0.169762 + 0.169762i
\(891\) 14.0633 + 11.2349i 0.471139 + 0.376383i
\(892\) −8.64911 8.64911i −0.289594 0.289594i
\(893\) 3.82089i 0.127861i
\(894\) 11.5432 + 25.8114i 0.386062 + 0.863262i
\(895\) −12.3246 12.3246i −0.411964 0.411964i
\(896\) 0 0
\(897\) −26.6470 + 8.36276i −0.889718 + 0.279224i
\(898\) −11.8114 −0.394151
\(899\) 13.4164 + 13.4164i 0.447462 + 0.447462i
\(900\) −2.00000 + 2.23607i −0.0666667 + 0.0745356i
\(901\) 2.32456i 0.0774422i
\(902\) −4.47214 4.47214i −0.148906 0.148906i
\(903\) 0 0
\(904\) 7.48683 + 7.48683i 0.249008 + 0.249008i
\(905\) −5.88635 + 5.88635i −0.195669 + 0.195669i
\(906\) 13.3246 + 29.7946i 0.442679 + 0.989860i
\(907\) 22.7851i 0.756565i 0.925690 + 0.378283i \(0.123485\pi\)
−0.925690 + 0.378283i \(0.876515\pi\)
\(908\) −12.7279 + 12.7279i −0.422391 + 0.422391i
\(909\) 31.5717 35.2982i 1.04717 1.17077i
\(910\) 0 0
\(911\) 8.67753i 0.287500i −0.989614 0.143750i \(-0.954084\pi\)
0.989614 0.143750i \(-0.0459160\pi\)
\(912\) −1.01587 + 2.65958i −0.0336387 + 0.0880674i
\(913\) 16.0000 0.529523
\(914\) −21.9017 −0.724443
\(915\) −23.7028 9.05365i −0.783589 0.299304i
\(916\) −17.8114 + 17.8114i −0.588505 + 0.588505i
\(917\) 0 0
\(918\) −7.59070 + 3.91526i −0.250531 + 0.129223i
\(919\) 21.2982 0.702563 0.351282 0.936270i \(-0.385746\pi\)
0.351282 + 0.936270i \(0.385746\pi\)
\(920\) 4.47214 0.147442
\(921\) 1.91691 + 0.732196i 0.0631645 + 0.0241267i
\(922\) 5.35089i 0.176222i
\(923\) 30.1575 + 38.1465i 0.992645 + 1.25561i
\(924\) 0 0
\(925\) 4.00000 4.00000i 0.131519 0.131519i
\(926\) 6.11584i 0.200979i
\(927\) 14.8679 + 13.2982i 0.488325 + 0.436771i
\(928\) −3.16228 + 3.16228i −0.103807 + 0.103807i
\(929\) −22.0351 22.0351i −0.722947 0.722947i 0.246258 0.969204i \(-0.420799\pi\)
−0.969204 + 0.246258i \(0.920799\pi\)
\(930\) −6.86474 2.62210i −0.225104 0.0859819i
\(931\) −8.13594 8.13594i −0.266645 0.266645i
\(932\) 12.9574i 0.424434i
\(933\) −51.3707 + 22.9737i −1.68180 + 0.752124i
\(934\) −13.9737 13.9737i −0.457232 0.457232i
\(935\) 3.28742 0.107510
\(936\) −0.656854 + 10.7967i −0.0214700 + 0.352901i
\(937\) 23.2982 0.761120 0.380560 0.924756i \(-0.375731\pi\)
0.380560 + 0.924756i \(0.375731\pi\)
\(938\) 0 0
\(939\) 10.5132 4.70163i 0.343084 0.153432i
\(940\) 2.32456i 0.0758186i
\(941\) 32.2602 + 32.2602i 1.05165 + 1.05165i 0.998591 + 0.0530603i \(0.0168976\pi\)
0.0530603 + 0.998591i \(0.483102\pi\)
\(942\) 27.2440 + 10.4063i 0.887658 + 0.339055i
\(943\) −10.0000 10.0000i −0.325645 0.325645i
\(944\) 3.05792 3.05792i 0.0995269 0.0995269i
\(945\) 0 0
\(946\) 1.67544i 0.0544734i
\(947\) −28.2470 + 28.2470i −0.917905 + 0.917905i −0.996877 0.0789717i \(-0.974836\pi\)
0.0789717 + 0.996877i \(0.474836\pi\)
\(948\) −7.07107 15.8114i −0.229658 0.513530i
\(949\) 3.67544 + 4.64911i 0.119310 + 0.150917i
\(950\) 1.64371i 0.0533290i
\(951\) 40.9334 + 15.6352i 1.32736 + 0.507005i
\(952\) 0 0
\(953\) 53.9324 1.74704 0.873520 0.486788i \(-0.161831\pi\)
0.873520 + 0.486788i \(0.161831\pi\)
\(954\) −0.236068 4.23607i −0.00764298 0.137148i
\(955\) −17.4868 + 17.4868i −0.565861 + 0.565861i
\(956\) −3.42079 + 3.42079i −0.110636 + 0.110636i
\(957\) 14.4721 + 5.52786i 0.467818 + 0.178690i
\(958\) 31.8114 1.02778
\(959\) 0 0
\(960\) 0.618034 1.61803i 0.0199470 0.0522218i
\(961\) 13.0000i 0.419355i
\(962\) 2.36944 20.2580i 0.0763937 0.653144i
\(963\) −23.1623 20.7170i −0.746394 0.667595i
\(964\) 17.6491 17.6491i 0.568440 0.568440i
\(965\) 21.9017i 0.705040i
\(966\) 0 0
\(967\) 12.3246 12.3246i 0.396331 0.396331i −0.480606 0.876937i \(-0.659583\pi\)
0.876937 + 0.480606i \(0.159583\pi\)
\(968\) −4.94975 4.94975i −0.159091 0.159091i
\(969\) −1.66979 + 4.37157i −0.0536414 + 0.140435i
\(970\) 5.16228 + 5.16228i 0.165751 + 0.165751i
\(971\) 35.3181i 1.13341i 0.823920 + 0.566706i \(0.191782\pi\)
−0.823920 + 0.566706i \(0.808218\pi\)
\(972\) 13.4350 7.90569i 0.430929 0.253575i
\(973\) 0 0
\(974\) −25.4558 −0.815658
\(975\) 1.86997 + 5.95846i 0.0598870 + 0.190823i
\(976\) 14.6491 0.468907
\(977\) −30.6165 30.6165i −0.979508 0.979508i 0.0202867 0.999794i \(-0.493542\pi\)
−0.999794 + 0.0202867i \(0.993542\pi\)
\(978\) −10.3246 23.0864i −0.330143 0.738222i
\(979\) 14.3246i 0.457815i
\(980\) 4.94975 + 4.94975i 0.158114 + 0.158114i
\(981\) 2.63506 + 47.2842i 0.0841309 + 1.50967i
\(982\) 20.0000 + 20.0000i 0.638226 + 0.638226i
\(983\) −24.0044 + 24.0044i −0.765621 + 0.765621i −0.977332 0.211711i \(-0.932096\pi\)
0.211711 + 0.977332i \(0.432096\pi\)
\(984\) −5.00000 + 2.23607i −0.159394 + 0.0712832i
\(985\) 12.6491i 0.403034i
\(986\) −5.19786 + 5.19786i −0.165534 + 0.165534i
\(987\) 0 0
\(988\) 3.67544 + 4.64911i 0.116931 + 0.147908i
\(989\) 3.74641i 0.119129i
\(990\) −5.99070 + 0.333851i −0.190397 + 0.0106105i
\(991\) 55.2982 1.75661 0.878303 0.478105i \(-0.158676\pi\)
0.878303 + 0.478105i \(0.158676\pi\)
\(992\) 4.24264 0.134704
\(993\) 8.29180 21.7082i 0.263132 0.688889i
\(994\) 0 0
\(995\) −1.41421 + 1.41421i −0.0448336 + 0.0448336i
\(996\) 4.94427 12.9443i 0.156665 0.410155i
\(997\) 32.4605 1.02803 0.514017 0.857780i \(-0.328157\pi\)
0.514017 + 0.857780i \(0.328157\pi\)
\(998\) −6.84157 −0.216566
\(999\) −26.1235 + 13.4744i −0.826512 + 0.426312i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.p.g.161.4 yes 8
3.2 odd 2 inner 390.2.p.g.161.2 8
13.8 odd 4 inner 390.2.p.g.281.2 yes 8
39.8 even 4 inner 390.2.p.g.281.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.p.g.161.2 8 3.2 odd 2 inner
390.2.p.g.161.4 yes 8 1.1 even 1 trivial
390.2.p.g.281.2 yes 8 13.8 odd 4 inner
390.2.p.g.281.4 yes 8 39.8 even 4 inner