Properties

Label 390.2.p.g.161.2
Level $390$
Weight $2$
Character 390.161
Analytic conductor $3.114$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,2,Mod(161,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.2
Root \(-1.14412 + 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 390.161
Dual form 390.2.p.g.281.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(1.58114 + 0.707107i) q^{3} +1.00000i q^{4} +(-0.707107 - 0.707107i) q^{5} +(-0.618034 - 1.61803i) q^{6} +(0.707107 - 0.707107i) q^{8} +(2.00000 + 2.23607i) q^{9} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{2} +(1.58114 + 0.707107i) q^{3} +1.00000i q^{4} +(-0.707107 - 0.707107i) q^{5} +(-0.618034 - 1.61803i) q^{6} +(0.707107 - 0.707107i) q^{8} +(2.00000 + 2.23607i) q^{9} +1.00000i q^{10} +(1.41421 - 1.41421i) q^{11} +(-0.707107 + 1.58114i) q^{12} +(3.58114 + 0.418861i) q^{13} +(-0.618034 - 1.61803i) q^{15} -1.00000 q^{16} +1.64371 q^{17} +(0.166925 - 2.99535i) q^{18} +(1.16228 - 1.16228i) q^{19} +(0.707107 - 0.707107i) q^{20} -2.00000 q^{22} +4.47214 q^{23} +(1.61803 - 0.618034i) q^{24} +1.00000i q^{25} +(-2.23607 - 2.82843i) q^{26} +(1.58114 + 4.94975i) q^{27} +4.47214i q^{29} +(-0.707107 + 1.58114i) q^{30} +(-3.00000 + 3.00000i) q^{31} +(0.707107 + 0.707107i) q^{32} +(3.23607 - 1.23607i) q^{33} +(-1.16228 - 1.16228i) q^{34} +(-2.23607 + 2.00000i) q^{36} +(-4.00000 - 4.00000i) q^{37} -1.64371 q^{38} +(5.36610 + 3.19453i) q^{39} -1.00000 q^{40} +(-2.23607 - 2.23607i) q^{41} +0.837722i q^{43} +(1.41421 + 1.41421i) q^{44} +(0.166925 - 2.99535i) q^{45} +(-3.16228 - 3.16228i) q^{46} +(1.64371 - 1.64371i) q^{47} +(-1.58114 - 0.707107i) q^{48} -7.00000i q^{49} +(0.707107 - 0.707107i) q^{50} +(2.59893 + 1.16228i) q^{51} +(-0.418861 + 3.58114i) q^{52} +1.41421i q^{53} +(2.38197 - 4.61803i) q^{54} -2.00000 q^{55} +(2.65958 - 1.01587i) q^{57} +(3.16228 - 3.16228i) q^{58} +(3.05792 - 3.05792i) q^{59} +(1.61803 - 0.618034i) q^{60} -14.6491 q^{61} +4.24264 q^{62} -1.00000i q^{64} +(-2.23607 - 2.82843i) q^{65} +(-3.16228 - 1.41421i) q^{66} +(0.837722 - 0.837722i) q^{67} +1.64371i q^{68} +(7.07107 + 3.16228i) q^{69} +(-9.53663 - 9.53663i) q^{71} +(2.99535 + 0.166925i) q^{72} +(1.16228 + 1.16228i) q^{73} +5.65685i q^{74} +(-0.707107 + 1.58114i) q^{75} +(1.16228 + 1.16228i) q^{76} +(-1.53553 - 6.05327i) q^{78} -10.0000 q^{79} +(0.707107 + 0.707107i) q^{80} +(-1.00000 + 8.94427i) q^{81} +3.16228i q^{82} +(5.65685 + 5.65685i) q^{83} +(-1.16228 - 1.16228i) q^{85} +(0.592359 - 0.592359i) q^{86} +(-3.16228 + 7.07107i) q^{87} -2.00000i q^{88} +(-5.06450 + 5.06450i) q^{89} +(-2.23607 + 2.00000i) q^{90} +4.47214i q^{92} +(-6.86474 + 2.62210i) q^{93} -2.32456 q^{94} -1.64371 q^{95} +(0.618034 + 1.61803i) q^{96} +(5.16228 - 5.16228i) q^{97} +(-4.94975 + 4.94975i) q^{98} +(5.99070 + 0.333851i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{6} + 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{6} + 16 q^{9} + 16 q^{13} + 4 q^{15} - 8 q^{16} - 16 q^{19} - 16 q^{22} + 4 q^{24} - 24 q^{31} + 8 q^{33} + 16 q^{34} - 32 q^{37} + 20 q^{39} - 8 q^{40} - 16 q^{52} + 28 q^{54} - 16 q^{55} + 40 q^{57} + 4 q^{60} - 16 q^{61} + 32 q^{67} - 16 q^{73} - 16 q^{76} + 16 q^{78} - 80 q^{79} - 8 q^{81} + 16 q^{85} + 32 q^{94} - 4 q^{96} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 1.58114 + 0.707107i 0.912871 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) −0.618034 1.61803i −0.252311 0.660560i
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 2.00000 + 2.23607i 0.666667 + 0.745356i
\(10\) 1.00000i 0.316228i
\(11\) 1.41421 1.41421i 0.426401 0.426401i −0.460999 0.887401i \(-0.652509\pi\)
0.887401 + 0.460999i \(0.152509\pi\)
\(12\) −0.707107 + 1.58114i −0.204124 + 0.456435i
\(13\) 3.58114 + 0.418861i 0.993229 + 0.116171i
\(14\) 0 0
\(15\) −0.618034 1.61803i −0.159576 0.417775i
\(16\) −1.00000 −0.250000
\(17\) 1.64371 0.398658 0.199329 0.979933i \(-0.436124\pi\)
0.199329 + 0.979933i \(0.436124\pi\)
\(18\) 0.166925 2.99535i 0.0393447 0.706011i
\(19\) 1.16228 1.16228i 0.266645 0.266645i −0.561102 0.827747i \(-0.689622\pi\)
0.827747 + 0.561102i \(0.189622\pi\)
\(20\) 0.707107 0.707107i 0.158114 0.158114i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 4.47214 0.932505 0.466252 0.884652i \(-0.345604\pi\)
0.466252 + 0.884652i \(0.345604\pi\)
\(24\) 1.61803 0.618034i 0.330280 0.126156i
\(25\) 1.00000i 0.200000i
\(26\) −2.23607 2.82843i −0.438529 0.554700i
\(27\) 1.58114 + 4.94975i 0.304290 + 0.952579i
\(28\) 0 0
\(29\) 4.47214i 0.830455i 0.909718 + 0.415227i \(0.136298\pi\)
−0.909718 + 0.415227i \(0.863702\pi\)
\(30\) −0.707107 + 1.58114i −0.129099 + 0.288675i
\(31\) −3.00000 + 3.00000i −0.538816 + 0.538816i −0.923181 0.384365i \(-0.874420\pi\)
0.384365 + 0.923181i \(0.374420\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 3.23607 1.23607i 0.563327 0.215172i
\(34\) −1.16228 1.16228i −0.199329 0.199329i
\(35\) 0 0
\(36\) −2.23607 + 2.00000i −0.372678 + 0.333333i
\(37\) −4.00000 4.00000i −0.657596 0.657596i 0.297215 0.954811i \(-0.403942\pi\)
−0.954811 + 0.297215i \(0.903942\pi\)
\(38\) −1.64371 −0.266645
\(39\) 5.36610 + 3.19453i 0.859263 + 0.511533i
\(40\) −1.00000 −0.158114
\(41\) −2.23607 2.23607i −0.349215 0.349215i 0.510602 0.859817i \(-0.329423\pi\)
−0.859817 + 0.510602i \(0.829423\pi\)
\(42\) 0 0
\(43\) 0.837722i 0.127751i 0.997958 + 0.0638757i \(0.0203461\pi\)
−0.997958 + 0.0638757i \(0.979654\pi\)
\(44\) 1.41421 + 1.41421i 0.213201 + 0.213201i
\(45\) 0.166925 2.99535i 0.0248837 0.446521i
\(46\) −3.16228 3.16228i −0.466252 0.466252i
\(47\) 1.64371 1.64371i 0.239760 0.239760i −0.576991 0.816751i \(-0.695773\pi\)
0.816751 + 0.576991i \(0.195773\pi\)
\(48\) −1.58114 0.707107i −0.228218 0.102062i
\(49\) 7.00000i 1.00000i
\(50\) 0.707107 0.707107i 0.100000 0.100000i
\(51\) 2.59893 + 1.16228i 0.363923 + 0.162751i
\(52\) −0.418861 + 3.58114i −0.0580856 + 0.496615i
\(53\) 1.41421i 0.194257i 0.995272 + 0.0971286i \(0.0309658\pi\)
−0.995272 + 0.0971286i \(0.969034\pi\)
\(54\) 2.38197 4.61803i 0.324145 0.628435i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 2.65958 1.01587i 0.352270 0.134555i
\(58\) 3.16228 3.16228i 0.415227 0.415227i
\(59\) 3.05792 3.05792i 0.398108 0.398108i −0.479458 0.877565i \(-0.659167\pi\)
0.877565 + 0.479458i \(0.159167\pi\)
\(60\) 1.61803 0.618034i 0.208887 0.0797878i
\(61\) −14.6491 −1.87563 −0.937813 0.347140i \(-0.887153\pi\)
−0.937813 + 0.347140i \(0.887153\pi\)
\(62\) 4.24264 0.538816
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −2.23607 2.82843i −0.277350 0.350823i
\(66\) −3.16228 1.41421i −0.389249 0.174078i
\(67\) 0.837722 0.837722i 0.102344 0.102344i −0.654081 0.756425i \(-0.726944\pi\)
0.756425 + 0.654081i \(0.226944\pi\)
\(68\) 1.64371i 0.199329i
\(69\) 7.07107 + 3.16228i 0.851257 + 0.380693i
\(70\) 0 0
\(71\) −9.53663 9.53663i −1.13179 1.13179i −0.989880 0.141910i \(-0.954676\pi\)
−0.141910 0.989880i \(-0.545324\pi\)
\(72\) 2.99535 + 0.166925i 0.353006 + 0.0196723i
\(73\) 1.16228 + 1.16228i 0.136034 + 0.136034i 0.771845 0.635811i \(-0.219334\pi\)
−0.635811 + 0.771845i \(0.719334\pi\)
\(74\) 5.65685i 0.657596i
\(75\) −0.707107 + 1.58114i −0.0816497 + 0.182574i
\(76\) 1.16228 + 1.16228i 0.133322 + 0.133322i
\(77\) 0 0
\(78\) −1.53553 6.05327i −0.173865 0.685398i
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0.707107 + 0.707107i 0.0790569 + 0.0790569i
\(81\) −1.00000 + 8.94427i −0.111111 + 0.993808i
\(82\) 3.16228i 0.349215i
\(83\) 5.65685 + 5.65685i 0.620920 + 0.620920i 0.945767 0.324846i \(-0.105313\pi\)
−0.324846 + 0.945767i \(0.605313\pi\)
\(84\) 0 0
\(85\) −1.16228 1.16228i −0.126067 0.126067i
\(86\) 0.592359 0.592359i 0.0638757 0.0638757i
\(87\) −3.16228 + 7.07107i −0.339032 + 0.758098i
\(88\) 2.00000i 0.213201i
\(89\) −5.06450 + 5.06450i −0.536835 + 0.536835i −0.922598 0.385763i \(-0.873938\pi\)
0.385763 + 0.922598i \(0.373938\pi\)
\(90\) −2.23607 + 2.00000i −0.235702 + 0.210819i
\(91\) 0 0
\(92\) 4.47214i 0.466252i
\(93\) −6.86474 + 2.62210i −0.711840 + 0.271899i
\(94\) −2.32456 −0.239760
\(95\) −1.64371 −0.168641
\(96\) 0.618034 + 1.61803i 0.0630778 + 0.165140i
\(97\) 5.16228 5.16228i 0.524150 0.524150i −0.394672 0.918822i \(-0.629142\pi\)
0.918822 + 0.394672i \(0.129142\pi\)
\(98\) −4.94975 + 4.94975i −0.500000 + 0.500000i
\(99\) 5.99070 + 0.333851i 0.602088 + 0.0335532i
\(100\) −1.00000 −0.100000
\(101\) −15.7858 −1.57075 −0.785375 0.619020i \(-0.787530\pi\)
−0.785375 + 0.619020i \(0.787530\pi\)
\(102\) −1.01587 2.65958i −0.100586 0.263337i
\(103\) 6.64911i 0.655156i 0.944824 + 0.327578i \(0.106232\pi\)
−0.944824 + 0.327578i \(0.893768\pi\)
\(104\) 2.82843 2.23607i 0.277350 0.219265i
\(105\) 0 0
\(106\) 1.00000 1.00000i 0.0971286 0.0971286i
\(107\) 10.3585i 1.00139i 0.865623 + 0.500696i \(0.166923\pi\)
−0.865623 + 0.500696i \(0.833077\pi\)
\(108\) −4.94975 + 1.58114i −0.476290 + 0.152145i
\(109\) −11.1623 + 11.1623i −1.06915 + 1.06915i −0.0717281 + 0.997424i \(0.522851\pi\)
−0.997424 + 0.0717281i \(0.977149\pi\)
\(110\) 1.41421 + 1.41421i 0.134840 + 0.134840i
\(111\) −3.49613 9.15298i −0.331838 0.868763i
\(112\) 0 0
\(113\) 10.5880i 0.996033i 0.867167 + 0.498017i \(0.165938\pi\)
−0.867167 + 0.498017i \(0.834062\pi\)
\(114\) −2.59893 1.16228i −0.243412 0.108857i
\(115\) −3.16228 3.16228i −0.294884 0.294884i
\(116\) −4.47214 −0.415227
\(117\) 6.22568 + 8.84539i 0.575564 + 0.817757i
\(118\) −4.32456 −0.398108
\(119\) 0 0
\(120\) −1.58114 0.707107i −0.144338 0.0645497i
\(121\) 7.00000i 0.636364i
\(122\) 10.3585 + 10.3585i 0.937813 + 0.937813i
\(123\) −1.95440 5.11667i −0.176222 0.461355i
\(124\) −3.00000 3.00000i −0.269408 0.269408i
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) 0 0
\(127\) 20.9737i 1.86111i −0.366150 0.930556i \(-0.619324\pi\)
0.366150 0.930556i \(-0.380676\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) −0.592359 + 1.32456i −0.0521543 + 0.116621i
\(130\) −0.418861 + 3.58114i −0.0367366 + 0.314087i
\(131\) 17.4296i 1.52283i −0.648266 0.761414i \(-0.724506\pi\)
0.648266 0.761414i \(-0.275494\pi\)
\(132\) 1.23607 + 3.23607i 0.107586 + 0.281664i
\(133\) 0 0
\(134\) −1.18472 −0.102344
\(135\) 2.38197 4.61803i 0.205007 0.397457i
\(136\) 1.16228 1.16228i 0.0996645 0.0996645i
\(137\) −5.42736 + 5.42736i −0.463691 + 0.463691i −0.899863 0.436173i \(-0.856334\pi\)
0.436173 + 0.899863i \(0.356334\pi\)
\(138\) −2.76393 7.23607i −0.235282 0.615975i
\(139\) −6.32456 −0.536442 −0.268221 0.963357i \(-0.586436\pi\)
−0.268221 + 0.963357i \(0.586436\pi\)
\(140\) 0 0
\(141\) 3.76121 1.43665i 0.316751 0.120988i
\(142\) 13.4868i 1.13179i
\(143\) 5.65685 4.47214i 0.473050 0.373979i
\(144\) −2.00000 2.23607i −0.166667 0.186339i
\(145\) 3.16228 3.16228i 0.262613 0.262613i
\(146\) 1.64371i 0.136034i
\(147\) 4.94975 11.0680i 0.408248 0.912871i
\(148\) 4.00000 4.00000i 0.328798 0.328798i
\(149\) −11.5432 11.5432i −0.945656 0.945656i 0.0529415 0.998598i \(-0.483140\pi\)
−0.998598 + 0.0529415i \(0.983140\pi\)
\(150\) 1.61803 0.618034i 0.132112 0.0504623i
\(151\) 13.3246 + 13.3246i 1.08434 + 1.08434i 0.996099 + 0.0882375i \(0.0281234\pi\)
0.0882375 + 0.996099i \(0.471877\pi\)
\(152\) 1.64371i 0.133322i
\(153\) 3.28742 + 3.67544i 0.265772 + 0.297142i
\(154\) 0 0
\(155\) 4.24264 0.340777
\(156\) −3.19453 + 5.36610i −0.255767 + 0.429632i
\(157\) 16.8377 1.34380 0.671898 0.740643i \(-0.265479\pi\)
0.671898 + 0.740643i \(0.265479\pi\)
\(158\) 7.07107 + 7.07107i 0.562544 + 0.562544i
\(159\) −1.00000 + 2.23607i −0.0793052 + 0.177332i
\(160\) 1.00000i 0.0790569i
\(161\) 0 0
\(162\) 7.03166 5.61745i 0.552460 0.441348i
\(163\) −10.3246 10.3246i −0.808682 0.808682i 0.175753 0.984434i \(-0.443764\pi\)
−0.984434 + 0.175753i \(0.943764\pi\)
\(164\) 2.23607 2.23607i 0.174608 0.174608i
\(165\) −3.16228 1.41421i −0.246183 0.110096i
\(166\) 8.00000i 0.620920i
\(167\) 7.30056 7.30056i 0.564935 0.564935i −0.365771 0.930705i \(-0.619195\pi\)
0.930705 + 0.365771i \(0.119195\pi\)
\(168\) 0 0
\(169\) 12.6491 + 3.00000i 0.973009 + 0.230769i
\(170\) 1.64371i 0.126067i
\(171\) 4.92349 + 0.274377i 0.376508 + 0.0209821i
\(172\) −0.837722 −0.0638757
\(173\) −13.6459 −1.03748 −0.518739 0.854932i \(-0.673599\pi\)
−0.518739 + 0.854932i \(0.673599\pi\)
\(174\) 7.23607 2.76393i 0.548565 0.209533i
\(175\) 0 0
\(176\) −1.41421 + 1.41421i −0.106600 + 0.106600i
\(177\) 6.99728 2.67272i 0.525948 0.200894i
\(178\) 7.16228 0.536835
\(179\) 17.4296 1.30275 0.651373 0.758758i \(-0.274193\pi\)
0.651373 + 0.758758i \(0.274193\pi\)
\(180\) 2.99535 + 0.166925i 0.223260 + 0.0124419i
\(181\) 8.32456i 0.618759i 0.950939 + 0.309380i \(0.100121\pi\)
−0.950939 + 0.309380i \(0.899879\pi\)
\(182\) 0 0
\(183\) −23.1623 10.3585i −1.71220 0.765721i
\(184\) 3.16228 3.16228i 0.233126 0.233126i
\(185\) 5.65685i 0.415900i
\(186\) 6.70820 + 3.00000i 0.491869 + 0.219971i
\(187\) 2.32456 2.32456i 0.169988 0.169988i
\(188\) 1.64371 + 1.64371i 0.119880 + 0.119880i
\(189\) 0 0
\(190\) 1.16228 + 1.16228i 0.0843205 + 0.0843205i
\(191\) 24.7301i 1.78941i −0.446659 0.894704i \(-0.647386\pi\)
0.446659 0.894704i \(-0.352614\pi\)
\(192\) 0.707107 1.58114i 0.0510310 0.114109i
\(193\) 15.4868 + 15.4868i 1.11477 + 1.11477i 0.992497 + 0.122270i \(0.0390173\pi\)
0.122270 + 0.992497i \(0.460983\pi\)
\(194\) −7.30056 −0.524150
\(195\) −1.53553 6.05327i −0.109962 0.433484i
\(196\) 7.00000 0.500000
\(197\) −8.94427 8.94427i −0.637253 0.637253i 0.312624 0.949877i \(-0.398792\pi\)
−0.949877 + 0.312624i \(0.898792\pi\)
\(198\) −4.00000 4.47214i −0.284268 0.317821i
\(199\) 2.00000i 0.141776i 0.997484 + 0.0708881i \(0.0225833\pi\)
−0.997484 + 0.0708881i \(0.977417\pi\)
\(200\) 0.707107 + 0.707107i 0.0500000 + 0.0500000i
\(201\) 1.91691 0.732196i 0.135209 0.0516451i
\(202\) 11.1623 + 11.1623i 0.785375 + 0.785375i
\(203\) 0 0
\(204\) −1.16228 + 2.59893i −0.0813757 + 0.181962i
\(205\) 3.16228i 0.220863i
\(206\) 4.70163 4.70163i 0.327578 0.327578i
\(207\) 8.94427 + 10.0000i 0.621670 + 0.695048i
\(208\) −3.58114 0.418861i −0.248307 0.0290428i
\(209\) 3.28742i 0.227395i
\(210\) 0 0
\(211\) 28.6491 1.97229 0.986143 0.165897i \(-0.0530520\pi\)
0.986143 + 0.165897i \(0.0530520\pi\)
\(212\) −1.41421 −0.0971286
\(213\) −8.33532 21.8222i −0.571127 1.49523i
\(214\) 7.32456 7.32456i 0.500696 0.500696i
\(215\) 0.592359 0.592359i 0.0403986 0.0403986i
\(216\) 4.61803 + 2.38197i 0.314217 + 0.162072i
\(217\) 0 0
\(218\) 15.7858 1.06915
\(219\) 1.01587 + 2.65958i 0.0686460 + 0.179718i
\(220\) 2.00000i 0.134840i
\(221\) 5.88635 + 0.688486i 0.395959 + 0.0463126i
\(222\) −4.00000 + 8.94427i −0.268462 + 0.600300i
\(223\) −8.64911 + 8.64911i −0.579187 + 0.579187i −0.934679 0.355492i \(-0.884313\pi\)
0.355492 + 0.934679i \(0.384313\pi\)
\(224\) 0 0
\(225\) −2.23607 + 2.00000i −0.149071 + 0.133333i
\(226\) 7.48683 7.48683i 0.498017 0.498017i
\(227\) −12.7279 12.7279i −0.844782 0.844782i 0.144695 0.989476i \(-0.453780\pi\)
−0.989476 + 0.144695i \(0.953780\pi\)
\(228\) 1.01587 + 2.65958i 0.0672775 + 0.176135i
\(229\) 17.8114 + 17.8114i 1.17701 + 1.17701i 0.980502 + 0.196507i \(0.0629599\pi\)
0.196507 + 0.980502i \(0.437040\pi\)
\(230\) 4.47214i 0.294884i
\(231\) 0 0
\(232\) 3.16228 + 3.16228i 0.207614 + 0.207614i
\(233\) 12.9574 0.848869 0.424434 0.905459i \(-0.360473\pi\)
0.424434 + 0.905459i \(0.360473\pi\)
\(234\) 1.85242 10.6569i 0.121096 0.696660i
\(235\) −2.32456 −0.151637
\(236\) 3.05792 + 3.05792i 0.199054 + 0.199054i
\(237\) −15.8114 7.07107i −1.02706 0.459315i
\(238\) 0 0
\(239\) −3.42079 3.42079i −0.221272 0.221272i 0.587762 0.809034i \(-0.300009\pi\)
−0.809034 + 0.587762i \(0.800009\pi\)
\(240\) 0.618034 + 1.61803i 0.0398939 + 0.104444i
\(241\) −17.6491 17.6491i −1.13688 1.13688i −0.989006 0.147873i \(-0.952757\pi\)
−0.147873 0.989006i \(-0.547243\pi\)
\(242\) 4.94975 4.94975i 0.318182 0.318182i
\(243\) −7.90569 + 13.4350i −0.507151 + 0.861858i
\(244\) 14.6491i 0.937813i
\(245\) −4.94975 + 4.94975i −0.316228 + 0.316228i
\(246\) −2.23607 + 5.00000i −0.142566 + 0.318788i
\(247\) 4.64911 3.67544i 0.295816 0.233863i
\(248\) 4.24264i 0.269408i
\(249\) 4.94427 + 12.9443i 0.313331 + 0.820310i
\(250\) −1.00000 −0.0632456
\(251\) 3.28742 0.207500 0.103750 0.994603i \(-0.466916\pi\)
0.103750 + 0.994603i \(0.466916\pi\)
\(252\) 0 0
\(253\) 6.32456 6.32456i 0.397621 0.397621i
\(254\) −14.8306 + 14.8306i −0.930556 + 0.930556i
\(255\) −1.01587 2.65958i −0.0636161 0.166549i
\(256\) 1.00000 0.0625000
\(257\) −7.30056 −0.455397 −0.227698 0.973732i \(-0.573120\pi\)
−0.227698 + 0.973732i \(0.573120\pi\)
\(258\) 1.35546 0.517741i 0.0843875 0.0322331i
\(259\) 0 0
\(260\) 2.82843 2.23607i 0.175412 0.138675i
\(261\) −10.0000 + 8.94427i −0.618984 + 0.553637i
\(262\) −12.3246 + 12.3246i −0.761414 + 0.761414i
\(263\) 10.1290i 0.624580i 0.949987 + 0.312290i \(0.101096\pi\)
−0.949987 + 0.312290i \(0.898904\pi\)
\(264\) 1.41421 3.16228i 0.0870388 0.194625i
\(265\) 1.00000 1.00000i 0.0614295 0.0614295i
\(266\) 0 0
\(267\) −11.5888 + 4.42653i −0.709224 + 0.270899i
\(268\) 0.837722 + 0.837722i 0.0511720 + 0.0511720i
\(269\) 4.47214i 0.272671i 0.990663 + 0.136335i \(0.0435325\pi\)
−0.990663 + 0.136335i \(0.956467\pi\)
\(270\) −4.94975 + 1.58114i −0.301232 + 0.0962250i
\(271\) 5.32456 + 5.32456i 0.323444 + 0.323444i 0.850087 0.526643i \(-0.176549\pi\)
−0.526643 + 0.850087i \(0.676549\pi\)
\(272\) −1.64371 −0.0996645
\(273\) 0 0
\(274\) 7.67544 0.463691
\(275\) 1.41421 + 1.41421i 0.0852803 + 0.0852803i
\(276\) −3.16228 + 7.07107i −0.190347 + 0.425628i
\(277\) 3.16228i 0.190003i −0.995477 0.0950014i \(-0.969714\pi\)
0.995477 0.0950014i \(-0.0302856\pi\)
\(278\) 4.47214 + 4.47214i 0.268221 + 0.268221i
\(279\) −12.7082 0.708204i −0.760820 0.0423991i
\(280\) 0 0
\(281\) −22.0351 + 22.0351i −1.31450 + 1.31450i −0.396441 + 0.918060i \(0.629755\pi\)
−0.918060 + 0.396441i \(0.870245\pi\)
\(282\) −3.67544 1.64371i −0.218870 0.0978814i
\(283\) 19.1623i 1.13908i −0.821964 0.569540i \(-0.807122\pi\)
0.821964 0.569540i \(-0.192878\pi\)
\(284\) 9.53663 9.53663i 0.565895 0.565895i
\(285\) −2.59893 1.16228i −0.153947 0.0688474i
\(286\) −7.16228 0.837722i −0.423514 0.0495356i
\(287\) 0 0
\(288\) −0.166925 + 2.99535i −0.00983617 + 0.176503i
\(289\) −14.2982 −0.841072
\(290\) −4.47214 −0.262613
\(291\) 11.8126 4.51200i 0.692464 0.264498i
\(292\) −1.16228 + 1.16228i −0.0680172 + 0.0680172i
\(293\) −2.82843 + 2.82843i −0.165238 + 0.165238i −0.784883 0.619644i \(-0.787277\pi\)
0.619644 + 0.784883i \(0.287277\pi\)
\(294\) −11.3262 + 4.32624i −0.660560 + 0.252311i
\(295\) −4.32456 −0.251785
\(296\) −5.65685 −0.328798
\(297\) 9.23607 + 4.76393i 0.535931 + 0.276431i
\(298\) 16.3246i 0.945656i
\(299\) 16.0153 + 1.87320i 0.926191 + 0.108330i
\(300\) −1.58114 0.707107i −0.0912871 0.0408248i
\(301\) 0 0
\(302\) 18.8438i 1.08434i
\(303\) −24.9596 11.1623i −1.43389 0.641256i
\(304\) −1.16228 + 1.16228i −0.0666612 + 0.0666612i
\(305\) 10.3585 + 10.3585i 0.593125 + 0.593125i
\(306\) 0.274377 4.92349i 0.0156851 0.281457i
\(307\) 0.837722 + 0.837722i 0.0478113 + 0.0478113i 0.730608 0.682797i \(-0.239237\pi\)
−0.682797 + 0.730608i \(0.739237\pi\)
\(308\) 0 0
\(309\) −4.70163 + 10.5132i −0.267466 + 0.598073i
\(310\) −3.00000 3.00000i −0.170389 0.170389i
\(311\) 32.4897 1.84232 0.921160 0.389184i \(-0.127243\pi\)
0.921160 + 0.389184i \(0.127243\pi\)
\(312\) 6.05327 1.53553i 0.342699 0.0869325i
\(313\) 6.64911 0.375830 0.187915 0.982185i \(-0.439827\pi\)
0.187915 + 0.982185i \(0.439827\pi\)
\(314\) −11.9061 11.9061i −0.671898 0.671898i
\(315\) 0 0
\(316\) 10.0000i 0.562544i
\(317\) −17.8885 17.8885i −1.00472 1.00472i −0.999989 0.00473191i \(-0.998494\pi\)
−0.00473191 0.999989i \(-0.501506\pi\)
\(318\) 2.28825 0.874032i 0.128318 0.0490133i
\(319\) 6.32456 + 6.32456i 0.354107 + 0.354107i
\(320\) −0.707107 + 0.707107i −0.0395285 + 0.0395285i
\(321\) −7.32456 + 16.3782i −0.408817 + 0.914142i
\(322\) 0 0
\(323\) 1.91045 1.91045i 0.106300 0.106300i
\(324\) −8.94427 1.00000i −0.496904 0.0555556i
\(325\) −0.418861 + 3.58114i −0.0232342 + 0.198646i
\(326\) 14.6011i 0.808682i
\(327\) −25.5420 + 9.75619i −1.41248 + 0.539518i
\(328\) −3.16228 −0.174608
\(329\) 0 0
\(330\) 1.23607 + 3.23607i 0.0680433 + 0.178140i
\(331\) 9.48683 9.48683i 0.521443 0.521443i −0.396564 0.918007i \(-0.629797\pi\)
0.918007 + 0.396564i \(0.129797\pi\)
\(332\) −5.65685 + 5.65685i −0.310460 + 0.310460i
\(333\) 0.944272 16.9443i 0.0517458 0.928540i
\(334\) −10.3246 −0.564935
\(335\) −1.18472 −0.0647281
\(336\) 0 0
\(337\) 5.35089i 0.291482i −0.989323 0.145741i \(-0.953443\pi\)
0.989323 0.145741i \(-0.0465565\pi\)
\(338\) −6.82295 11.0656i −0.371120 0.601889i
\(339\) −7.48683 + 16.7411i −0.406629 + 0.909250i
\(340\) 1.16228 1.16228i 0.0630334 0.0630334i
\(341\) 8.48528i 0.459504i
\(342\) −3.28742 3.67544i −0.177763 0.198745i
\(343\) 0 0
\(344\) 0.592359 + 0.592359i 0.0319379 + 0.0319379i
\(345\) −2.76393 7.23607i −0.148805 0.389577i
\(346\) 9.64911 + 9.64911i 0.518739 + 0.518739i
\(347\) 10.3585i 0.556073i −0.960571 0.278036i \(-0.910316\pi\)
0.960571 0.278036i \(-0.0896836\pi\)
\(348\) −7.07107 3.16228i −0.379049 0.169516i
\(349\) −7.16228 7.16228i −0.383388 0.383388i 0.488933 0.872321i \(-0.337386\pi\)
−0.872321 + 0.488933i \(0.837386\pi\)
\(350\) 0 0
\(351\) 3.58902 + 18.3880i 0.191568 + 0.981479i
\(352\) 2.00000 0.106600
\(353\) 17.6590 + 17.6590i 0.939896 + 0.939896i 0.998293 0.0583971i \(-0.0185990\pi\)
−0.0583971 + 0.998293i \(0.518599\pi\)
\(354\) −6.83772 3.05792i −0.363421 0.162527i
\(355\) 13.4868i 0.715807i
\(356\) −5.06450 5.06450i −0.268418 0.268418i
\(357\) 0 0
\(358\) −12.3246 12.3246i −0.651373 0.651373i
\(359\) 0.133369 0.133369i 0.00703893 0.00703893i −0.703579 0.710617i \(-0.748416\pi\)
0.710617 + 0.703579i \(0.248416\pi\)
\(360\) −2.00000 2.23607i −0.105409 0.117851i
\(361\) 16.2982i 0.857801i
\(362\) 5.88635 5.88635i 0.309380 0.309380i
\(363\) −4.94975 + 11.0680i −0.259794 + 0.580918i
\(364\) 0 0
\(365\) 1.64371i 0.0860357i
\(366\) 9.05365 + 23.7028i 0.473242 + 1.23896i
\(367\) −6.64911 −0.347081 −0.173540 0.984827i \(-0.555521\pi\)
−0.173540 + 0.984827i \(0.555521\pi\)
\(368\) −4.47214 −0.233126
\(369\) 0.527864 9.47214i 0.0274795 0.493100i
\(370\) 4.00000 4.00000i 0.207950 0.207950i
\(371\) 0 0
\(372\) −2.62210 6.86474i −0.135949 0.355920i
\(373\) 8.83772 0.457600 0.228800 0.973473i \(-0.426520\pi\)
0.228800 + 0.973473i \(0.426520\pi\)
\(374\) −3.28742 −0.169988
\(375\) 1.61803 0.618034i 0.0835549 0.0319151i
\(376\) 2.32456i 0.119880i
\(377\) −1.87320 + 16.0153i −0.0964749 + 0.824832i
\(378\) 0 0
\(379\) −6.83772 + 6.83772i −0.351230 + 0.351230i −0.860567 0.509337i \(-0.829891\pi\)
0.509337 + 0.860567i \(0.329891\pi\)
\(380\) 1.64371i 0.0843205i
\(381\) 14.8306 33.1623i 0.759796 1.69895i
\(382\) −17.4868 + 17.4868i −0.894704 + 0.894704i
\(383\) 21.9017 + 21.9017i 1.11912 + 1.11912i 0.991870 + 0.127254i \(0.0406163\pi\)
0.127254 + 0.991870i \(0.459384\pi\)
\(384\) −1.61803 + 0.618034i −0.0825700 + 0.0315389i
\(385\) 0 0
\(386\) 21.9017i 1.11477i
\(387\) −1.87320 + 1.67544i −0.0952203 + 0.0851676i
\(388\) 5.16228 + 5.16228i 0.262075 + 0.262075i
\(389\) 20.9837 1.06392 0.531958 0.846771i \(-0.321456\pi\)
0.531958 + 0.846771i \(0.321456\pi\)
\(390\) −3.19453 + 5.36610i −0.161761 + 0.271723i
\(391\) 7.35089 0.371750
\(392\) −4.94975 4.94975i −0.250000 0.250000i
\(393\) 12.3246 27.5585i 0.621692 1.39014i
\(394\) 12.6491i 0.637253i
\(395\) 7.07107 + 7.07107i 0.355784 + 0.355784i
\(396\) −0.333851 + 5.99070i −0.0167766 + 0.301044i
\(397\) −19.1623 19.1623i −0.961727 0.961727i 0.0375670 0.999294i \(-0.488039\pi\)
−0.999294 + 0.0375670i \(0.988039\pi\)
\(398\) 1.41421 1.41421i 0.0708881 0.0708881i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) −1.77708 + 1.77708i −0.0887430 + 0.0887430i −0.750085 0.661342i \(-0.769987\pi\)
0.661342 + 0.750085i \(0.269987\pi\)
\(402\) −1.87320 0.837722i −0.0934269 0.0417818i
\(403\) −12.0000 + 9.48683i −0.597763 + 0.472573i
\(404\) 15.7858i 0.785375i
\(405\) 7.03166 5.61745i 0.349406 0.279133i
\(406\) 0 0
\(407\) −11.3137 −0.560800
\(408\) 2.65958 1.01587i 0.131669 0.0502930i
\(409\) 23.3246 23.3246i 1.15333 1.15333i 0.167443 0.985882i \(-0.446449\pi\)
0.985882 0.167443i \(-0.0535511\pi\)
\(410\) 2.23607 2.23607i 0.110432 0.110432i
\(411\) −12.4191 + 4.74369i −0.612591 + 0.233989i
\(412\) −6.64911 −0.327578
\(413\) 0 0
\(414\) 0.746512 13.3956i 0.0366891 0.658359i
\(415\) 8.00000i 0.392705i
\(416\) 2.23607 + 2.82843i 0.109632 + 0.138675i
\(417\) −10.0000 4.47214i −0.489702 0.219001i
\(418\) −2.32456 + 2.32456i −0.113698 + 0.113698i
\(419\) 4.73887i 0.231509i 0.993278 + 0.115755i \(0.0369286\pi\)
−0.993278 + 0.115755i \(0.963071\pi\)
\(420\) 0 0
\(421\) −19.1623 + 19.1623i −0.933912 + 0.933912i −0.997948 0.0640354i \(-0.979603\pi\)
0.0640354 + 0.997948i \(0.479603\pi\)
\(422\) −20.2580 20.2580i −0.986143 0.986143i
\(423\) 6.96286 + 0.388027i 0.338546 + 0.0188665i
\(424\) 1.00000 + 1.00000i 0.0485643 + 0.0485643i
\(425\) 1.64371i 0.0797316i
\(426\) −9.53663 + 21.3246i −0.462051 + 1.03318i
\(427\) 0 0
\(428\) −10.3585 −0.500696
\(429\) 12.1065 3.07107i 0.584510 0.148273i
\(430\) −0.837722 −0.0403986
\(431\) 15.1935 + 15.1935i 0.731844 + 0.731844i 0.970985 0.239141i \(-0.0768657\pi\)
−0.239141 + 0.970985i \(0.576866\pi\)
\(432\) −1.58114 4.94975i −0.0760726 0.238145i
\(433\) 11.2982i 0.542958i −0.962444 0.271479i \(-0.912487\pi\)
0.962444 0.271479i \(-0.0875127\pi\)
\(434\) 0 0
\(435\) 7.23607 2.76393i 0.346943 0.132520i
\(436\) −11.1623 11.1623i −0.534576 0.534576i
\(437\) 5.19786 5.19786i 0.248648 0.248648i
\(438\) 1.16228 2.59893i 0.0555358 0.124182i
\(439\) 28.6491i 1.36735i −0.729788 0.683674i \(-0.760381\pi\)
0.729788 0.683674i \(-0.239619\pi\)
\(440\) −1.41421 + 1.41421i −0.0674200 + 0.0674200i
\(441\) 15.6525 14.0000i 0.745356 0.666667i
\(442\) −3.67544 4.64911i −0.174823 0.221136i
\(443\) 7.53006i 0.357764i −0.983871 0.178882i \(-0.942752\pi\)
0.983871 0.178882i \(-0.0572480\pi\)
\(444\) 9.15298 3.49613i 0.434381 0.165919i
\(445\) 7.16228 0.339525
\(446\) 12.2317 0.579187
\(447\) −10.0891 26.4137i −0.477199 1.24932i
\(448\) 0 0
\(449\) 8.35191 8.35191i 0.394151 0.394151i −0.482013 0.876164i \(-0.660094\pi\)
0.876164 + 0.482013i \(0.160094\pi\)
\(450\) 2.99535 + 0.166925i 0.141202 + 0.00786893i
\(451\) −6.32456 −0.297812
\(452\) −10.5880 −0.498017
\(453\) 11.6461 + 30.4899i 0.547181 + 1.43254i
\(454\) 18.0000i 0.844782i
\(455\) 0 0
\(456\) 1.16228 2.59893i 0.0544286 0.121706i
\(457\) −15.4868 + 15.4868i −0.724443 + 0.724443i −0.969507 0.245064i \(-0.921191\pi\)
0.245064 + 0.969507i \(0.421191\pi\)
\(458\) 25.1891i 1.17701i
\(459\) 2.59893 + 8.13594i 0.121308 + 0.379753i
\(460\) 3.16228 3.16228i 0.147442 0.147442i
\(461\) 3.78365 + 3.78365i 0.176222 + 0.176222i 0.789707 0.613485i \(-0.210233\pi\)
−0.613485 + 0.789707i \(0.710233\pi\)
\(462\) 0 0
\(463\) −4.32456 4.32456i −0.200979 0.200979i 0.599440 0.800419i \(-0.295390\pi\)
−0.800419 + 0.599440i \(0.795390\pi\)
\(464\) 4.47214i 0.207614i
\(465\) 6.70820 + 3.00000i 0.311086 + 0.139122i
\(466\) −9.16228 9.16228i −0.424434 0.424434i
\(467\) 19.7617 0.914465 0.457232 0.889347i \(-0.348841\pi\)
0.457232 + 0.889347i \(0.348841\pi\)
\(468\) −8.84539 + 6.22568i −0.408878 + 0.287782i
\(469\) 0 0
\(470\) 1.64371 + 1.64371i 0.0758186 + 0.0758186i
\(471\) 26.6228 + 11.9061i 1.22671 + 0.548603i
\(472\) 4.32456i 0.199054i
\(473\) 1.18472 + 1.18472i 0.0544734 + 0.0544734i
\(474\) 6.18034 + 16.1803i 0.283872 + 0.743188i
\(475\) 1.16228 + 1.16228i 0.0533290 + 0.0533290i
\(476\) 0 0
\(477\) −3.16228 + 2.82843i −0.144791 + 0.129505i
\(478\) 4.83772i 0.221272i
\(479\) −22.4940 + 22.4940i −1.02778 + 1.02778i −0.0281763 + 0.999603i \(0.508970\pi\)
−0.999603 + 0.0281763i \(0.991030\pi\)
\(480\) 0.707107 1.58114i 0.0322749 0.0721688i
\(481\) −12.6491 16.0000i −0.576750 0.729537i
\(482\) 24.9596i 1.13688i
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) −7.30056 −0.331501
\(486\) 15.0902 3.90983i 0.684504 0.177353i
\(487\) −18.0000 + 18.0000i −0.815658 + 0.815658i −0.985476 0.169818i \(-0.945682\pi\)
0.169818 + 0.985476i \(0.445682\pi\)
\(488\) −10.3585 + 10.3585i −0.468907 + 0.468907i
\(489\) −9.02399 23.6251i −0.408079 1.06836i
\(490\) 7.00000 0.316228
\(491\) −28.2843 −1.27645 −0.638226 0.769849i \(-0.720331\pi\)
−0.638226 + 0.769849i \(0.720331\pi\)
\(492\) 5.11667 1.95440i 0.230677 0.0881109i
\(493\) 7.35089i 0.331067i
\(494\) −5.88635 0.688486i −0.264839 0.0309764i
\(495\) −4.00000 4.47214i −0.179787 0.201008i
\(496\) 3.00000 3.00000i 0.134704 0.134704i
\(497\) 0 0
\(498\) 5.65685 12.6491i 0.253490 0.566820i
\(499\) −4.83772 + 4.83772i −0.216566 + 0.216566i −0.807050 0.590484i \(-0.798937\pi\)
0.590484 + 0.807050i \(0.298937\pi\)
\(500\) 0.707107 + 0.707107i 0.0316228 + 0.0316228i
\(501\) 16.7055 6.38093i 0.746346 0.285079i
\(502\) −2.32456 2.32456i −0.103750 0.103750i
\(503\) 19.5323i 0.870900i 0.900213 + 0.435450i \(0.143411\pi\)
−0.900213 + 0.435450i \(0.856589\pi\)
\(504\) 0 0
\(505\) 11.1623 + 11.1623i 0.496715 + 0.496715i
\(506\) −8.94427 −0.397621
\(507\) 17.8787 + 13.6877i 0.794020 + 0.607892i
\(508\) 20.9737 0.930556
\(509\) −5.42736 5.42736i −0.240563 0.240563i 0.576520 0.817083i \(-0.304410\pi\)
−0.817083 + 0.576520i \(0.804410\pi\)
\(510\) −1.16228 + 2.59893i −0.0514665 + 0.115083i
\(511\) 0 0
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 7.59070 + 3.91526i 0.335138 + 0.172863i
\(514\) 5.16228 + 5.16228i 0.227698 + 0.227698i
\(515\) 4.70163 4.70163i 0.207179 0.207179i
\(516\) −1.32456 0.592359i −0.0583103 0.0260772i
\(517\) 4.64911i 0.204468i
\(518\) 0 0
\(519\) −21.5761 9.64911i −0.947084 0.423549i
\(520\) −3.58114 0.418861i −0.157043 0.0183683i
\(521\) 24.7301i 1.08345i 0.840557 + 0.541723i \(0.182228\pi\)
−0.840557 + 0.541723i \(0.817772\pi\)
\(522\) 13.3956 + 0.746512i 0.586310 + 0.0326740i
\(523\) −4.18861 −0.183155 −0.0915776 0.995798i \(-0.529191\pi\)
−0.0915776 + 0.995798i \(0.529191\pi\)
\(524\) 17.4296 0.761414
\(525\) 0 0
\(526\) 7.16228 7.16228i 0.312290 0.312290i
\(527\) −4.93113 + 4.93113i −0.214803 + 0.214803i
\(528\) −3.23607 + 1.23607i −0.140832 + 0.0537930i
\(529\) −3.00000 −0.130435
\(530\) −1.41421 −0.0614295
\(531\) 12.9536 + 0.721878i 0.562137 + 0.0313268i
\(532\) 0 0
\(533\) −7.07107 8.94427i −0.306282 0.387419i
\(534\) 11.3246 + 5.06450i 0.490061 + 0.219162i
\(535\) 7.32456 7.32456i 0.316668 0.316668i
\(536\) 1.18472i 0.0511720i
\(537\) 27.5585 + 12.3246i 1.18924 + 0.531844i
\(538\) 3.16228 3.16228i 0.136335 0.136335i
\(539\) −9.89949 9.89949i −0.426401 0.426401i
\(540\) 4.61803 + 2.38197i 0.198729 + 0.102503i
\(541\) −1.81139 1.81139i −0.0778777 0.0778777i 0.667095 0.744973i \(-0.267538\pi\)
−0.744973 + 0.667095i \(0.767538\pi\)
\(542\) 7.53006i 0.323444i
\(543\) −5.88635 + 13.1623i −0.252607 + 0.564847i
\(544\) 1.16228 + 1.16228i 0.0498322 + 0.0498322i
\(545\) 15.7858 0.676191
\(546\) 0 0
\(547\) 9.48683 0.405628 0.202814 0.979217i \(-0.434991\pi\)
0.202814 + 0.979217i \(0.434991\pi\)
\(548\) −5.42736 5.42736i −0.231845 0.231845i
\(549\) −29.2982 32.7564i −1.25042 1.39801i
\(550\) 2.00000i 0.0852803i
\(551\) 5.19786 + 5.19786i 0.221436 + 0.221436i
\(552\) 7.23607 2.76393i 0.307988 0.117641i
\(553\) 0 0
\(554\) −2.23607 + 2.23607i −0.0950014 + 0.0950014i
\(555\) −4.00000 + 8.94427i −0.169791 + 0.379663i
\(556\) 6.32456i 0.268221i
\(557\) −6.11584 + 6.11584i −0.259137 + 0.259137i −0.824703 0.565566i \(-0.808658\pi\)
0.565566 + 0.824703i \(0.308658\pi\)
\(558\) 8.48528 + 9.48683i 0.359211 + 0.401610i
\(559\) −0.350889 + 3.00000i −0.0148410 + 0.126886i
\(560\) 0 0
\(561\) 5.31915 2.03174i 0.224575 0.0857800i
\(562\) 31.1623 1.31450
\(563\) −42.3892 −1.78649 −0.893245 0.449570i \(-0.851577\pi\)
−0.893245 + 0.449570i \(0.851577\pi\)
\(564\) 1.43665 + 3.76121i 0.0604941 + 0.158375i
\(565\) 7.48683 7.48683i 0.314973 0.314973i
\(566\) −13.5498 + 13.5498i −0.569540 + 0.569540i
\(567\) 0 0
\(568\) −13.4868 −0.565895
\(569\) −24.7301 −1.03674 −0.518370 0.855156i \(-0.673461\pi\)
−0.518370 + 0.855156i \(0.673461\pi\)
\(570\) 1.01587 + 2.65958i 0.0425500 + 0.111397i
\(571\) 18.9737i 0.794023i 0.917814 + 0.397012i \(0.129953\pi\)
−0.917814 + 0.397012i \(0.870047\pi\)
\(572\) 4.47214 + 5.65685i 0.186989 + 0.236525i
\(573\) 17.4868 39.1017i 0.730523 1.63350i
\(574\) 0 0
\(575\) 4.47214i 0.186501i
\(576\) 2.23607 2.00000i 0.0931695 0.0833333i
\(577\) −14.8377 + 14.8377i −0.617702 + 0.617702i −0.944942 0.327239i \(-0.893882\pi\)
0.327239 + 0.944942i \(0.393882\pi\)
\(578\) 10.1104 + 10.1104i 0.420536 + 0.420536i
\(579\) 13.5360 + 35.4377i 0.562536 + 1.47274i
\(580\) 3.16228 + 3.16228i 0.131306 + 0.131306i
\(581\) 0 0
\(582\) −11.5432 5.16228i −0.478481 0.213983i
\(583\) 2.00000 + 2.00000i 0.0828315 + 0.0828315i
\(584\) 1.64371 0.0680172
\(585\) 1.85242 10.6569i 0.0765881 0.440607i
\(586\) 4.00000 0.165238
\(587\) −17.4296 17.4296i −0.719395 0.719395i 0.249087 0.968481i \(-0.419870\pi\)
−0.968481 + 0.249087i \(0.919870\pi\)
\(588\) 11.0680 + 4.94975i 0.456435 + 0.204124i
\(589\) 6.97367i 0.287345i
\(590\) 3.05792 + 3.05792i 0.125893 + 0.125893i
\(591\) −7.81758 20.4667i −0.321572 0.841887i
\(592\) 4.00000 + 4.00000i 0.164399 + 0.164399i
\(593\) 22.5902 22.5902i 0.927667 0.927667i −0.0698876 0.997555i \(-0.522264\pi\)
0.997555 + 0.0698876i \(0.0222641\pi\)
\(594\) −3.16228 9.89949i −0.129750 0.406181i
\(595\) 0 0
\(596\) 11.5432 11.5432i 0.472828 0.472828i
\(597\) −1.41421 + 3.16228i −0.0578799 + 0.129423i
\(598\) −10.0000 12.6491i −0.408930 0.517261i
\(599\) 14.8679i 0.607484i −0.952754 0.303742i \(-0.901764\pi\)
0.952754 0.303742i \(-0.0982362\pi\)
\(600\) 0.618034 + 1.61803i 0.0252311 + 0.0660560i
\(601\) 0.649111 0.0264778 0.0132389 0.999912i \(-0.495786\pi\)
0.0132389 + 0.999912i \(0.495786\pi\)
\(602\) 0 0
\(603\) 3.54865 + 0.197759i 0.144512 + 0.00805339i
\(604\) −13.3246 + 13.3246i −0.542168 + 0.542168i
\(605\) 4.94975 4.94975i 0.201236 0.201236i
\(606\) 9.75619 + 25.5420i 0.396318 + 1.03757i
\(607\) 41.6228 1.68942 0.844708 0.535227i \(-0.179774\pi\)
0.844708 + 0.535227i \(0.179774\pi\)
\(608\) 1.64371 0.0666612
\(609\) 0 0
\(610\) 14.6491i 0.593125i
\(611\) 6.57484 5.19786i 0.265989 0.210283i
\(612\) −3.67544 + 3.28742i −0.148571 + 0.132886i
\(613\) −9.67544 + 9.67544i −0.390788 + 0.390788i −0.874968 0.484181i \(-0.839118\pi\)
0.484181 + 0.874968i \(0.339118\pi\)
\(614\) 1.18472i 0.0478113i
\(615\) −2.23607 + 5.00000i −0.0901670 + 0.201619i
\(616\) 0 0
\(617\) 18.3848 + 18.3848i 0.740143 + 0.740143i 0.972605 0.232462i \(-0.0746782\pi\)
−0.232462 + 0.972605i \(0.574678\pi\)
\(618\) 10.7585 4.10938i 0.432770 0.165303i
\(619\) 10.5132 + 10.5132i 0.422560 + 0.422560i 0.886084 0.463524i \(-0.153415\pi\)
−0.463524 + 0.886084i \(0.653415\pi\)
\(620\) 4.24264i 0.170389i
\(621\) 7.07107 + 22.1359i 0.283752 + 0.888285i
\(622\) −22.9737 22.9737i −0.921160 0.921160i
\(623\) 0 0
\(624\) −5.36610 3.19453i −0.214816 0.127883i
\(625\) −1.00000 −0.0400000
\(626\) −4.70163 4.70163i −0.187915 0.187915i
\(627\) 2.32456 5.19786i 0.0928338 0.207583i
\(628\) 16.8377i 0.671898i
\(629\) −6.57484 6.57484i −0.262156 0.262156i
\(630\) 0 0
\(631\) 0.675445 + 0.675445i 0.0268890 + 0.0268890i 0.720423 0.693534i \(-0.243947\pi\)
−0.693534 + 0.720423i \(0.743947\pi\)
\(632\) −7.07107 + 7.07107i −0.281272 + 0.281272i
\(633\) 45.2982 + 20.2580i 1.80044 + 0.805182i
\(634\) 25.2982i 1.00472i
\(635\) −14.8306 + 14.8306i −0.588535 + 0.588535i
\(636\) −2.23607 1.00000i −0.0886659 0.0396526i
\(637\) 2.93203 25.0680i 0.116171 0.993229i
\(638\) 8.94427i 0.354107i
\(639\) 2.25129 40.3978i 0.0890598 1.59811i
\(640\) 1.00000 0.0395285
\(641\) 35.7771 1.41311 0.706555 0.707658i \(-0.250248\pi\)
0.706555 + 0.707658i \(0.250248\pi\)
\(642\) 16.7604 6.40190i 0.661479 0.252663i
\(643\) 7.35089 7.35089i 0.289891 0.289891i −0.547146 0.837037i \(-0.684286\pi\)
0.837037 + 0.547146i \(0.184286\pi\)
\(644\) 0 0
\(645\) 1.35546 0.517741i 0.0533713 0.0203860i
\(646\) −2.70178 −0.106300
\(647\) 37.9543 1.49214 0.746068 0.665870i \(-0.231939\pi\)
0.746068 + 0.665870i \(0.231939\pi\)
\(648\) 5.61745 + 7.03166i 0.220674 + 0.276230i
\(649\) 8.64911i 0.339507i
\(650\) 2.82843 2.23607i 0.110940 0.0877058i
\(651\) 0 0
\(652\) 10.3246 10.3246i 0.404341 0.404341i
\(653\) 48.0460i 1.88019i −0.340918 0.940093i \(-0.610738\pi\)
0.340918 0.940093i \(-0.389262\pi\)
\(654\) 24.9596 + 11.1623i 0.975998 + 0.436480i
\(655\) −12.3246 + 12.3246i −0.481560 + 0.481560i
\(656\) 2.23607 + 2.23607i 0.0873038 + 0.0873038i
\(657\) −0.274377 + 4.92349i −0.0107044 + 0.192084i
\(658\) 0 0
\(659\) 8.94427i 0.348419i −0.984709 0.174210i \(-0.944263\pi\)
0.984709 0.174210i \(-0.0557371\pi\)
\(660\) 1.41421 3.16228i 0.0550482 0.123091i
\(661\) −17.1623 17.1623i −0.667535 0.667535i 0.289610 0.957145i \(-0.406475\pi\)
−0.957145 + 0.289610i \(0.906475\pi\)
\(662\) −13.4164 −0.521443
\(663\) 8.82030 + 5.25087i 0.342552 + 0.203927i
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) −12.6491 + 11.3137i −0.490143 + 0.438397i
\(667\) 20.0000i 0.774403i
\(668\) 7.30056 + 7.30056i 0.282467 + 0.282467i
\(669\) −19.7913 + 7.55960i −0.765175 + 0.292271i
\(670\) 0.837722 + 0.837722i 0.0323640 + 0.0323640i
\(671\) −20.7170 + 20.7170i −0.799770 + 0.799770i
\(672\) 0 0
\(673\) 32.3246i 1.24602i −0.782214 0.623010i \(-0.785910\pi\)
0.782214 0.623010i \(-0.214090\pi\)
\(674\) −3.78365 + 3.78365i −0.145741 + 0.145741i
\(675\) −4.94975 + 1.58114i −0.190516 + 0.0608581i
\(676\) −3.00000 + 12.6491i −0.115385 + 0.486504i
\(677\) 13.1869i 0.506814i −0.967360 0.253407i \(-0.918449\pi\)
0.967360 0.253407i \(-0.0815512\pi\)
\(678\) 17.1317 6.54373i 0.657939 0.251311i
\(679\) 0 0
\(680\) −1.64371 −0.0630334
\(681\) −11.1246 29.1246i −0.426296 1.11606i
\(682\) 6.00000 6.00000i 0.229752 0.229752i
\(683\) −4.24264 + 4.24264i −0.162340 + 0.162340i −0.783603 0.621262i \(-0.786620\pi\)
0.621262 + 0.783603i \(0.286620\pi\)
\(684\) −0.274377 + 4.92349i −0.0104910 + 0.188254i
\(685\) 7.67544 0.293264
\(686\) 0 0
\(687\) 15.5677 + 40.7568i 0.593946 + 1.55497i
\(688\) 0.837722i 0.0319379i
\(689\) −0.592359 + 5.06450i −0.0225671 + 0.192942i
\(690\) −3.16228 + 7.07107i −0.120386 + 0.269191i
\(691\) −4.18861 + 4.18861i −0.159342 + 0.159342i −0.782275 0.622933i \(-0.785941\pi\)
0.622933 + 0.782275i \(0.285941\pi\)
\(692\) 13.6459i 0.518739i
\(693\) 0 0
\(694\) −7.32456 + 7.32456i −0.278036 + 0.278036i
\(695\) 4.47214 + 4.47214i 0.169638 + 0.169638i
\(696\) 2.76393 + 7.23607i 0.104767 + 0.274282i
\(697\) −3.67544 3.67544i −0.139217 0.139217i
\(698\) 10.1290i 0.383388i
\(699\) 20.4875 + 9.16228i 0.774907 + 0.346549i
\(700\) 0 0
\(701\) −5.39012 −0.203582 −0.101791 0.994806i \(-0.532457\pi\)
−0.101791 + 0.994806i \(0.532457\pi\)
\(702\) 10.4645 15.5401i 0.394956 0.586524i
\(703\) −9.29822 −0.350689
\(704\) −1.41421 1.41421i −0.0533002 0.0533002i
\(705\) −3.67544 1.64371i −0.138425 0.0619057i
\(706\) 24.9737i 0.939896i
\(707\) 0 0
\(708\) 2.67272 + 6.99728i 0.100447 + 0.262974i
\(709\) 3.48683 + 3.48683i 0.130951 + 0.130951i 0.769544 0.638593i \(-0.220483\pi\)
−0.638593 + 0.769544i \(0.720483\pi\)
\(710\) 9.53663 9.53663i 0.357903 0.357903i
\(711\) −20.0000 22.3607i −0.750059 0.838591i
\(712\) 7.16228i 0.268418i
\(713\) −13.4164 + 13.4164i −0.502448 + 0.502448i
\(714\) 0 0
\(715\) −7.16228 0.837722i −0.267854 0.0313290i
\(716\) 17.4296i 0.651373i
\(717\) −2.98988 7.82760i −0.111659 0.292327i
\(718\) −0.188612 −0.00703893
\(719\) −24.7301 −0.922278 −0.461139 0.887328i \(-0.652559\pi\)
−0.461139 + 0.887328i \(0.652559\pi\)
\(720\) −0.166925 + 2.99535i −0.00622094 + 0.111630i
\(721\) 0 0
\(722\) 11.5246 11.5246i 0.428901 0.428901i
\(723\) −15.4259 40.3855i −0.573695 1.50195i
\(724\) −8.32456 −0.309380
\(725\) −4.47214 −0.166091
\(726\) 11.3262 4.32624i 0.420356 0.160562i
\(727\) 32.9737i 1.22293i −0.791273 0.611463i \(-0.790581\pi\)
0.791273 0.611463i \(-0.209419\pi\)
\(728\) 0 0
\(729\) −22.0000 + 15.6525i −0.814815 + 0.579721i
\(730\) −1.16228 + 1.16228i −0.0430178 + 0.0430178i
\(731\) 1.37697i 0.0509291i
\(732\) 10.3585 23.1623i 0.382861 0.856102i
\(733\) −14.5132 + 14.5132i −0.536056 + 0.536056i −0.922368 0.386312i \(-0.873749\pi\)
0.386312 + 0.922368i \(0.373749\pi\)
\(734\) 4.70163 + 4.70163i 0.173540 + 0.173540i
\(735\) −11.3262 + 4.32624i −0.417775 + 0.159576i
\(736\) 3.16228 + 3.16228i 0.116563 + 0.116563i
\(737\) 2.36944i 0.0872793i
\(738\) −7.07107 + 6.32456i −0.260290 + 0.232810i
\(739\) −32.1359 32.1359i −1.18214 1.18214i −0.979189 0.202951i \(-0.934947\pi\)
−0.202951 0.979189i \(-0.565053\pi\)
\(740\) −5.65685 −0.207950
\(741\) 9.94982 2.52397i 0.365516 0.0927204i
\(742\) 0 0
\(743\) 0.725728 + 0.725728i 0.0266244 + 0.0266244i 0.720294 0.693669i \(-0.244007\pi\)
−0.693669 + 0.720294i \(0.744007\pi\)
\(744\) −3.00000 + 6.70820i −0.109985 + 0.245935i
\(745\) 16.3246i 0.598085i
\(746\) −6.24921 6.24921i −0.228800 0.228800i
\(747\) −1.33540 + 23.9628i −0.0488598 + 0.876754i
\(748\) 2.32456 + 2.32456i 0.0849942 + 0.0849942i
\(749\) 0 0
\(750\) −1.58114 0.707107i −0.0577350 0.0258199i
\(751\) 28.0000i 1.02173i 0.859660 + 0.510867i \(0.170676\pi\)
−0.859660 + 0.510867i \(0.829324\pi\)
\(752\) −1.64371 + 1.64371i −0.0599399 + 0.0599399i
\(753\) 5.19786 + 2.32456i 0.189421 + 0.0847115i
\(754\) 12.6491 10.0000i 0.460653 0.364179i
\(755\) 18.8438i 0.685795i
\(756\) 0 0
\(757\) −23.8114 −0.865440 −0.432720 0.901528i \(-0.642446\pi\)
−0.432720 + 0.901528i \(0.642446\pi\)
\(758\) 9.67000 0.351230
\(759\) 14.4721 5.52786i 0.525305 0.200649i
\(760\) −1.16228 + 1.16228i −0.0421602 + 0.0421602i
\(761\) 29.7946 29.7946i 1.08005 1.08005i 0.0835503 0.996504i \(-0.473374\pi\)
0.996504 0.0835503i \(-0.0266259\pi\)
\(762\) −33.9361 + 12.9624i −1.22938 + 0.469580i
\(763\) 0 0
\(764\) 24.7301 0.894704
\(765\) 0.274377 4.92349i 0.00992010 0.178009i
\(766\) 30.9737i 1.11912i
\(767\) 12.2317 9.67000i 0.441661 0.349163i
\(768\) 1.58114 + 0.707107i 0.0570544 + 0.0255155i
\(769\) 31.6491 31.6491i 1.14130 1.14130i 0.153083 0.988213i \(-0.451080\pi\)
0.988213 0.153083i \(-0.0489201\pi\)
\(770\) 0 0
\(771\) −11.5432 5.16228i −0.415718 0.185915i
\(772\) −15.4868 + 15.4868i −0.557383 + 0.557383i
\(773\) 16.9706 + 16.9706i 0.610389 + 0.610389i 0.943047 0.332659i \(-0.107946\pi\)
−0.332659 + 0.943047i \(0.607946\pi\)
\(774\) 2.50927 + 0.139837i 0.0901940 + 0.00502634i