Properties

Label 390.2.p.g.161.1
Level $390$
Weight $2$
Character 390.161
Analytic conductor $3.114$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,2,Mod(161,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.1
Root \(0.437016 - 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 390.161
Dual form 390.2.p.g.281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(-1.58114 + 0.707107i) q^{3} +1.00000i q^{4} +(-0.707107 - 0.707107i) q^{5} +(1.61803 + 0.618034i) q^{6} +(0.707107 - 0.707107i) q^{8} +(2.00000 - 2.23607i) q^{9} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{2} +(-1.58114 + 0.707107i) q^{3} +1.00000i q^{4} +(-0.707107 - 0.707107i) q^{5} +(1.61803 + 0.618034i) q^{6} +(0.707107 - 0.707107i) q^{8} +(2.00000 - 2.23607i) q^{9} +1.00000i q^{10} +(1.41421 - 1.41421i) q^{11} +(-0.707107 - 1.58114i) q^{12} +(0.418861 + 3.58114i) q^{13} +(1.61803 + 0.618034i) q^{15} -1.00000 q^{16} -7.30056 q^{17} +(-2.99535 + 0.166925i) q^{18} +(-5.16228 + 5.16228i) q^{19} +(0.707107 - 0.707107i) q^{20} -2.00000 q^{22} -4.47214 q^{23} +(-0.618034 + 1.61803i) q^{24} +1.00000i q^{25} +(2.23607 - 2.82843i) q^{26} +(-1.58114 + 4.94975i) q^{27} -4.47214i q^{29} +(-0.707107 - 1.58114i) q^{30} +(-3.00000 + 3.00000i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-1.23607 + 3.23607i) q^{33} +(5.16228 + 5.16228i) q^{34} +(2.23607 + 2.00000i) q^{36} +(-4.00000 - 4.00000i) q^{37} +7.30056 q^{38} +(-3.19453 - 5.36610i) q^{39} -1.00000 q^{40} +(2.23607 + 2.23607i) q^{41} +7.16228i q^{43} +(1.41421 + 1.41421i) q^{44} +(-2.99535 + 0.166925i) q^{45} +(3.16228 + 3.16228i) q^{46} +(-7.30056 + 7.30056i) q^{47} +(1.58114 - 0.707107i) q^{48} -7.00000i q^{49} +(0.707107 - 0.707107i) q^{50} +(11.5432 - 5.16228i) q^{51} +(-3.58114 + 0.418861i) q^{52} +1.41421i q^{53} +(4.61803 - 2.38197i) q^{54} -2.00000 q^{55} +(4.51200 - 11.8126i) q^{57} +(-3.16228 + 3.16228i) q^{58} +(-5.88635 + 5.88635i) q^{59} +(-0.618034 + 1.61803i) q^{60} +10.6491 q^{61} +4.24264 q^{62} -1.00000i q^{64} +(2.23607 - 2.82843i) q^{65} +(3.16228 - 1.41421i) q^{66} +(7.16228 - 7.16228i) q^{67} -7.30056i q^{68} +(7.07107 - 3.16228i) q^{69} +(3.87978 + 3.87978i) q^{71} +(-0.166925 - 2.99535i) q^{72} +(-5.16228 - 5.16228i) q^{73} +5.65685i q^{74} +(-0.707107 - 1.58114i) q^{75} +(-5.16228 - 5.16228i) q^{76} +(-1.53553 + 6.05327i) q^{78} -10.0000 q^{79} +(0.707107 + 0.707107i) q^{80} +(-1.00000 - 8.94427i) q^{81} -3.16228i q^{82} +(5.65685 + 5.65685i) q^{83} +(5.16228 + 5.16228i) q^{85} +(5.06450 - 5.06450i) q^{86} +(3.16228 + 7.07107i) q^{87} -2.00000i q^{88} +(-0.592359 + 0.592359i) q^{89} +(2.23607 + 2.00000i) q^{90} -4.47214i q^{92} +(2.62210 - 6.86474i) q^{93} +10.3246 q^{94} +7.30056 q^{95} +(-1.61803 - 0.618034i) q^{96} +(-1.16228 + 1.16228i) q^{97} +(-4.94975 + 4.94975i) q^{98} +(-0.333851 - 5.99070i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{6} + 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{6} + 16 q^{9} + 16 q^{13} + 4 q^{15} - 8 q^{16} - 16 q^{19} - 16 q^{22} + 4 q^{24} - 24 q^{31} + 8 q^{33} + 16 q^{34} - 32 q^{37} + 20 q^{39} - 8 q^{40} - 16 q^{52} + 28 q^{54} - 16 q^{55} + 40 q^{57} + 4 q^{60} - 16 q^{61} + 32 q^{67} - 16 q^{73} - 16 q^{76} + 16 q^{78} - 80 q^{79} - 8 q^{81} + 16 q^{85} + 32 q^{94} - 4 q^{96} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) −1.58114 + 0.707107i −0.912871 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) 1.61803 + 0.618034i 0.660560 + 0.252311i
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 2.00000 2.23607i 0.666667 0.745356i
\(10\) 1.00000i 0.316228i
\(11\) 1.41421 1.41421i 0.426401 0.426401i −0.460999 0.887401i \(-0.652509\pi\)
0.887401 + 0.460999i \(0.152509\pi\)
\(12\) −0.707107 1.58114i −0.204124 0.456435i
\(13\) 0.418861 + 3.58114i 0.116171 + 0.993229i
\(14\) 0 0
\(15\) 1.61803 + 0.618034i 0.417775 + 0.159576i
\(16\) −1.00000 −0.250000
\(17\) −7.30056 −1.77065 −0.885323 0.464976i \(-0.846063\pi\)
−0.885323 + 0.464976i \(0.846063\pi\)
\(18\) −2.99535 + 0.166925i −0.706011 + 0.0393447i
\(19\) −5.16228 + 5.16228i −1.18431 + 1.18431i −0.205691 + 0.978617i \(0.565944\pi\)
−0.978617 + 0.205691i \(0.934056\pi\)
\(20\) 0.707107 0.707107i 0.158114 0.158114i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −4.47214 −0.932505 −0.466252 0.884652i \(-0.654396\pi\)
−0.466252 + 0.884652i \(0.654396\pi\)
\(24\) −0.618034 + 1.61803i −0.126156 + 0.330280i
\(25\) 1.00000i 0.200000i
\(26\) 2.23607 2.82843i 0.438529 0.554700i
\(27\) −1.58114 + 4.94975i −0.304290 + 0.952579i
\(28\) 0 0
\(29\) 4.47214i 0.830455i −0.909718 0.415227i \(-0.863702\pi\)
0.909718 0.415227i \(-0.136298\pi\)
\(30\) −0.707107 1.58114i −0.129099 0.288675i
\(31\) −3.00000 + 3.00000i −0.538816 + 0.538816i −0.923181 0.384365i \(-0.874420\pi\)
0.384365 + 0.923181i \(0.374420\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) −1.23607 + 3.23607i −0.215172 + 0.563327i
\(34\) 5.16228 + 5.16228i 0.885323 + 0.885323i
\(35\) 0 0
\(36\) 2.23607 + 2.00000i 0.372678 + 0.333333i
\(37\) −4.00000 4.00000i −0.657596 0.657596i 0.297215 0.954811i \(-0.403942\pi\)
−0.954811 + 0.297215i \(0.903942\pi\)
\(38\) 7.30056 1.18431
\(39\) −3.19453 5.36610i −0.511533 0.859263i
\(40\) −1.00000 −0.158114
\(41\) 2.23607 + 2.23607i 0.349215 + 0.349215i 0.859817 0.510602i \(-0.170577\pi\)
−0.510602 + 0.859817i \(0.670577\pi\)
\(42\) 0 0
\(43\) 7.16228i 1.09224i 0.837708 + 0.546119i \(0.183895\pi\)
−0.837708 + 0.546119i \(0.816105\pi\)
\(44\) 1.41421 + 1.41421i 0.213201 + 0.213201i
\(45\) −2.99535 + 0.166925i −0.446521 + 0.0248837i
\(46\) 3.16228 + 3.16228i 0.466252 + 0.466252i
\(47\) −7.30056 + 7.30056i −1.06490 + 1.06490i −0.0671539 + 0.997743i \(0.521392\pi\)
−0.997743 + 0.0671539i \(0.978608\pi\)
\(48\) 1.58114 0.707107i 0.228218 0.102062i
\(49\) 7.00000i 1.00000i
\(50\) 0.707107 0.707107i 0.100000 0.100000i
\(51\) 11.5432 5.16228i 1.61637 0.722863i
\(52\) −3.58114 + 0.418861i −0.496615 + 0.0580856i
\(53\) 1.41421i 0.194257i 0.995272 + 0.0971286i \(0.0309658\pi\)
−0.995272 + 0.0971286i \(0.969034\pi\)
\(54\) 4.61803 2.38197i 0.628435 0.324145i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 4.51200 11.8126i 0.597628 1.56461i
\(58\) −3.16228 + 3.16228i −0.415227 + 0.415227i
\(59\) −5.88635 + 5.88635i −0.766337 + 0.766337i −0.977460 0.211122i \(-0.932288\pi\)
0.211122 + 0.977460i \(0.432288\pi\)
\(60\) −0.618034 + 1.61803i −0.0797878 + 0.208887i
\(61\) 10.6491 1.36348 0.681739 0.731595i \(-0.261224\pi\)
0.681739 + 0.731595i \(0.261224\pi\)
\(62\) 4.24264 0.538816
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 2.23607 2.82843i 0.277350 0.350823i
\(66\) 3.16228 1.41421i 0.389249 0.174078i
\(67\) 7.16228 7.16228i 0.875011 0.875011i −0.118002 0.993013i \(-0.537649\pi\)
0.993013 + 0.118002i \(0.0376489\pi\)
\(68\) 7.30056i 0.885323i
\(69\) 7.07107 3.16228i 0.851257 0.380693i
\(70\) 0 0
\(71\) 3.87978 + 3.87978i 0.460445 + 0.460445i 0.898801 0.438356i \(-0.144439\pi\)
−0.438356 + 0.898801i \(0.644439\pi\)
\(72\) −0.166925 2.99535i −0.0196723 0.353006i
\(73\) −5.16228 5.16228i −0.604199 0.604199i 0.337225 0.941424i \(-0.390512\pi\)
−0.941424 + 0.337225i \(0.890512\pi\)
\(74\) 5.65685i 0.657596i
\(75\) −0.707107 1.58114i −0.0816497 0.182574i
\(76\) −5.16228 5.16228i −0.592154 0.592154i
\(77\) 0 0
\(78\) −1.53553 + 6.05327i −0.173865 + 0.685398i
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0.707107 + 0.707107i 0.0790569 + 0.0790569i
\(81\) −1.00000 8.94427i −0.111111 0.993808i
\(82\) 3.16228i 0.349215i
\(83\) 5.65685 + 5.65685i 0.620920 + 0.620920i 0.945767 0.324846i \(-0.105313\pi\)
−0.324846 + 0.945767i \(0.605313\pi\)
\(84\) 0 0
\(85\) 5.16228 + 5.16228i 0.559928 + 0.559928i
\(86\) 5.06450 5.06450i 0.546119 0.546119i
\(87\) 3.16228 + 7.07107i 0.339032 + 0.758098i
\(88\) 2.00000i 0.213201i
\(89\) −0.592359 + 0.592359i −0.0627899 + 0.0627899i −0.737804 0.675015i \(-0.764137\pi\)
0.675015 + 0.737804i \(0.264137\pi\)
\(90\) 2.23607 + 2.00000i 0.235702 + 0.210819i
\(91\) 0 0
\(92\) 4.47214i 0.466252i
\(93\) 2.62210 6.86474i 0.271899 0.711840i
\(94\) 10.3246 1.06490
\(95\) 7.30056 0.749022
\(96\) −1.61803 0.618034i −0.165140 0.0630778i
\(97\) −1.16228 + 1.16228i −0.118011 + 0.118011i −0.763646 0.645635i \(-0.776593\pi\)
0.645635 + 0.763646i \(0.276593\pi\)
\(98\) −4.94975 + 4.94975i −0.500000 + 0.500000i
\(99\) −0.333851 5.99070i −0.0335532 0.602088i
\(100\) −1.00000 −0.100000
\(101\) −6.84157 −0.680762 −0.340381 0.940288i \(-0.610556\pi\)
−0.340381 + 0.940288i \(0.610556\pi\)
\(102\) −11.8126 4.51200i −1.16962 0.446754i
\(103\) 18.6491i 1.83755i −0.394780 0.918776i \(-0.629179\pi\)
0.394780 0.918776i \(-0.370821\pi\)
\(104\) 2.82843 + 2.23607i 0.277350 + 0.219265i
\(105\) 0 0
\(106\) 1.00000 1.00000i 0.0971286 0.0971286i
\(107\) 7.53006i 0.727958i −0.931407 0.363979i \(-0.881418\pi\)
0.931407 0.363979i \(-0.118582\pi\)
\(108\) −4.94975 1.58114i −0.476290 0.152145i
\(109\) −4.83772 + 4.83772i −0.463370 + 0.463370i −0.899758 0.436389i \(-0.856257\pi\)
0.436389 + 0.899758i \(0.356257\pi\)
\(110\) 1.41421 + 1.41421i 0.134840 + 0.134840i
\(111\) 9.15298 + 3.49613i 0.868763 + 0.331838i
\(112\) 0 0
\(113\) 16.2448i 1.52819i −0.645106 0.764093i \(-0.723187\pi\)
0.645106 0.764093i \(-0.276813\pi\)
\(114\) −11.5432 + 5.16228i −1.08112 + 0.483492i
\(115\) 3.16228 + 3.16228i 0.294884 + 0.294884i
\(116\) 4.47214 0.415227
\(117\) 8.84539 + 6.22568i 0.817757 + 0.575564i
\(118\) 8.32456 0.766337
\(119\) 0 0
\(120\) 1.58114 0.707107i 0.144338 0.0645497i
\(121\) 7.00000i 0.636364i
\(122\) −7.53006 7.53006i −0.681739 0.681739i
\(123\) −5.11667 1.95440i −0.461355 0.176222i
\(124\) −3.00000 3.00000i −0.269408 0.269408i
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) 0 0
\(127\) 16.9737i 1.50617i 0.657924 + 0.753085i \(0.271435\pi\)
−0.657924 + 0.753085i \(0.728565\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) −5.06450 11.3246i −0.445904 0.997071i
\(130\) −3.58114 + 0.418861i −0.314087 + 0.0367366i
\(131\) 0.458991i 0.0401022i 0.999799 + 0.0200511i \(0.00638289\pi\)
−0.999799 + 0.0200511i \(0.993617\pi\)
\(132\) −3.23607 1.23607i −0.281664 0.107586i
\(133\) 0 0
\(134\) −10.1290 −0.875011
\(135\) 4.61803 2.38197i 0.397457 0.205007i
\(136\) −5.16228 + 5.16228i −0.442662 + 0.442662i
\(137\) −14.3716 + 14.3716i −1.22785 + 1.22785i −0.263076 + 0.964775i \(0.584737\pi\)
−0.964775 + 0.263076i \(0.915263\pi\)
\(138\) −7.23607 2.76393i −0.615975 0.235282i
\(139\) 6.32456 0.536442 0.268221 0.963357i \(-0.413564\pi\)
0.268221 + 0.963357i \(0.413564\pi\)
\(140\) 0 0
\(141\) 6.38093 16.7055i 0.537371 1.40686i
\(142\) 5.48683i 0.460445i
\(143\) 5.65685 + 4.47214i 0.473050 + 0.373979i
\(144\) −2.00000 + 2.23607i −0.166667 + 0.186339i
\(145\) −3.16228 + 3.16228i −0.262613 + 0.262613i
\(146\) 7.30056i 0.604199i
\(147\) 4.94975 + 11.0680i 0.408248 + 0.912871i
\(148\) 4.00000 4.00000i 0.328798 0.328798i
\(149\) −2.59893 2.59893i −0.212913 0.212913i 0.592591 0.805504i \(-0.298105\pi\)
−0.805504 + 0.592591i \(0.798105\pi\)
\(150\) −0.618034 + 1.61803i −0.0504623 + 0.132112i
\(151\) 0.675445 + 0.675445i 0.0549669 + 0.0549669i 0.734056 0.679089i \(-0.237625\pi\)
−0.679089 + 0.734056i \(0.737625\pi\)
\(152\) 7.30056i 0.592154i
\(153\) −14.6011 + 16.3246i −1.18043 + 1.31976i
\(154\) 0 0
\(155\) 4.24264 0.340777
\(156\) 5.36610 3.19453i 0.429632 0.255767i
\(157\) 23.1623 1.84855 0.924276 0.381726i \(-0.124670\pi\)
0.924276 + 0.381726i \(0.124670\pi\)
\(158\) 7.07107 + 7.07107i 0.562544 + 0.562544i
\(159\) −1.00000 2.23607i −0.0793052 0.177332i
\(160\) 1.00000i 0.0790569i
\(161\) 0 0
\(162\) −5.61745 + 7.03166i −0.441348 + 0.552460i
\(163\) 2.32456 + 2.32456i 0.182073 + 0.182073i 0.792259 0.610185i \(-0.208905\pi\)
−0.610185 + 0.792259i \(0.708905\pi\)
\(164\) −2.23607 + 2.23607i −0.174608 + 0.174608i
\(165\) 3.16228 1.41421i 0.246183 0.110096i
\(166\) 8.00000i 0.620920i
\(167\) −1.64371 + 1.64371i −0.127194 + 0.127194i −0.767838 0.640644i \(-0.778667\pi\)
0.640644 + 0.767838i \(0.278667\pi\)
\(168\) 0 0
\(169\) −12.6491 + 3.00000i −0.973009 + 0.230769i
\(170\) 7.30056i 0.559928i
\(171\) 1.21865 + 21.8678i 0.0931924 + 1.67227i
\(172\) −7.16228 −0.546119
\(173\) 22.1312 1.68260 0.841301 0.540566i \(-0.181790\pi\)
0.841301 + 0.540566i \(0.181790\pi\)
\(174\) 2.76393 7.23607i 0.209533 0.548565i
\(175\) 0 0
\(176\) −1.41421 + 1.41421i −0.106600 + 0.106600i
\(177\) 5.14486 13.4694i 0.386711 1.01242i
\(178\) 0.837722 0.0627899
\(179\) −0.458991 −0.0343066 −0.0171533 0.999853i \(-0.505460\pi\)
−0.0171533 + 0.999853i \(0.505460\pi\)
\(180\) −0.166925 2.99535i −0.0124419 0.223260i
\(181\) 4.32456i 0.321442i −0.987000 0.160721i \(-0.948618\pi\)
0.987000 0.160721i \(-0.0513819\pi\)
\(182\) 0 0
\(183\) −16.8377 + 7.53006i −1.24468 + 0.556638i
\(184\) −3.16228 + 3.16228i −0.233126 + 0.233126i
\(185\) 5.65685i 0.415900i
\(186\) −6.70820 + 3.00000i −0.491869 + 0.219971i
\(187\) −10.3246 + 10.3246i −0.755006 + 0.755006i
\(188\) −7.30056 7.30056i −0.532448 0.532448i
\(189\) 0 0
\(190\) −5.16228 5.16228i −0.374511 0.374511i
\(191\) 2.10270i 0.152146i 0.997102 + 0.0760730i \(0.0242382\pi\)
−0.997102 + 0.0760730i \(0.975762\pi\)
\(192\) 0.707107 + 1.58114i 0.0510310 + 0.114109i
\(193\) −3.48683 3.48683i −0.250988 0.250988i 0.570388 0.821376i \(-0.306793\pi\)
−0.821376 + 0.570388i \(0.806793\pi\)
\(194\) 1.64371 0.118011
\(195\) −1.53553 + 6.05327i −0.109962 + 0.433484i
\(196\) 7.00000 0.500000
\(197\) 8.94427 + 8.94427i 0.637253 + 0.637253i 0.949877 0.312624i \(-0.101208\pi\)
−0.312624 + 0.949877i \(0.601208\pi\)
\(198\) −4.00000 + 4.47214i −0.284268 + 0.317821i
\(199\) 2.00000i 0.141776i 0.997484 + 0.0708881i \(0.0225833\pi\)
−0.997484 + 0.0708881i \(0.977417\pi\)
\(200\) 0.707107 + 0.707107i 0.0500000 + 0.0500000i
\(201\) −6.26006 + 16.3891i −0.441551 + 1.15599i
\(202\) 4.83772 + 4.83772i 0.340381 + 0.340381i
\(203\) 0 0
\(204\) 5.16228 + 11.5432i 0.361432 + 0.808186i
\(205\) 3.16228i 0.220863i
\(206\) −13.1869 + 13.1869i −0.918776 + 0.918776i
\(207\) −8.94427 + 10.0000i −0.621670 + 0.695048i
\(208\) −0.418861 3.58114i −0.0290428 0.248307i
\(209\) 14.6011i 1.00998i
\(210\) 0 0
\(211\) 3.35089 0.230685 0.115342 0.993326i \(-0.463203\pi\)
0.115342 + 0.993326i \(0.463203\pi\)
\(212\) −1.41421 −0.0971286
\(213\) −8.87788 3.39105i −0.608302 0.232351i
\(214\) −5.32456 + 5.32456i −0.363979 + 0.363979i
\(215\) 5.06450 5.06450i 0.345396 0.345396i
\(216\) 2.38197 + 4.61803i 0.162072 + 0.314217i
\(217\) 0 0
\(218\) 6.84157 0.463370
\(219\) 11.8126 + 4.51200i 0.798219 + 0.304892i
\(220\) 2.00000i 0.134840i
\(221\) −3.05792 26.1443i −0.205698 1.75866i
\(222\) −4.00000 8.94427i −0.268462 0.600300i
\(223\) 16.6491 16.6491i 1.11491 1.11491i 0.122430 0.992477i \(-0.460931\pi\)
0.992477 0.122430i \(-0.0390686\pi\)
\(224\) 0 0
\(225\) 2.23607 + 2.00000i 0.149071 + 0.133333i
\(226\) −11.4868 + 11.4868i −0.764093 + 0.764093i
\(227\) −12.7279 12.7279i −0.844782 0.844782i 0.144695 0.989476i \(-0.453780\pi\)
−0.989476 + 0.144695i \(0.953780\pi\)
\(228\) 11.8126 + 4.51200i 0.782306 + 0.298814i
\(229\) −13.8114 13.8114i −0.912682 0.912682i 0.0838003 0.996483i \(-0.473294\pi\)
−0.996483 + 0.0838003i \(0.973294\pi\)
\(230\) 4.47214i 0.294884i
\(231\) 0 0
\(232\) −3.16228 3.16228i −0.207614 0.207614i
\(233\) 4.01315 0.262910 0.131455 0.991322i \(-0.458035\pi\)
0.131455 + 0.991322i \(0.458035\pi\)
\(234\) −1.85242 10.6569i −0.121096 0.696660i
\(235\) 10.3246 0.673500
\(236\) −5.88635 5.88635i −0.383169 0.383169i
\(237\) 15.8114 7.07107i 1.02706 0.459315i
\(238\) 0 0
\(239\) −7.89292 7.89292i −0.510551 0.510551i 0.404144 0.914695i \(-0.367569\pi\)
−0.914695 + 0.404144i \(0.867569\pi\)
\(240\) −1.61803 0.618034i −0.104444 0.0398939i
\(241\) 7.64911 + 7.64911i 0.492723 + 0.492723i 0.909163 0.416440i \(-0.136723\pi\)
−0.416440 + 0.909163i \(0.636723\pi\)
\(242\) 4.94975 4.94975i 0.318182 0.318182i
\(243\) 7.90569 + 13.4350i 0.507151 + 0.861858i
\(244\) 10.6491i 0.681739i
\(245\) −4.94975 + 4.94975i −0.316228 + 0.316228i
\(246\) 2.23607 + 5.00000i 0.142566 + 0.318788i
\(247\) −20.6491 16.3246i −1.31387 1.03871i
\(248\) 4.24264i 0.269408i
\(249\) −12.9443 4.94427i −0.820310 0.313331i
\(250\) −1.00000 −0.0632456
\(251\) −14.6011 −0.921615 −0.460807 0.887500i \(-0.652440\pi\)
−0.460807 + 0.887500i \(0.652440\pi\)
\(252\) 0 0
\(253\) −6.32456 + 6.32456i −0.397621 + 0.397621i
\(254\) 12.0022 12.0022i 0.753085 0.753085i
\(255\) −11.8126 4.51200i −0.739731 0.282552i
\(256\) 1.00000 0.0625000
\(257\) 1.64371 0.102532 0.0512659 0.998685i \(-0.483674\pi\)
0.0512659 + 0.998685i \(0.483674\pi\)
\(258\) −4.42653 + 11.5888i −0.275584 + 0.721488i
\(259\) 0 0
\(260\) 2.82843 + 2.23607i 0.175412 + 0.138675i
\(261\) −10.0000 8.94427i −0.618984 0.553637i
\(262\) 0.324555 0.324555i 0.0200511 0.0200511i
\(263\) 1.18472i 0.0730529i 0.999333 + 0.0365264i \(0.0116293\pi\)
−0.999333 + 0.0365264i \(0.988371\pi\)
\(264\) 1.41421 + 3.16228i 0.0870388 + 0.194625i
\(265\) 1.00000 1.00000i 0.0614295 0.0614295i
\(266\) 0 0
\(267\) 0.517741 1.35546i 0.0316852 0.0829530i
\(268\) 7.16228 + 7.16228i 0.437506 + 0.437506i
\(269\) 4.47214i 0.272671i −0.990663 0.136335i \(-0.956467\pi\)
0.990663 0.136335i \(-0.0435325\pi\)
\(270\) −4.94975 1.58114i −0.301232 0.0962250i
\(271\) −7.32456 7.32456i −0.444935 0.444935i 0.448732 0.893667i \(-0.351876\pi\)
−0.893667 + 0.448732i \(0.851876\pi\)
\(272\) 7.30056 0.442662
\(273\) 0 0
\(274\) 20.3246 1.22785
\(275\) 1.41421 + 1.41421i 0.0852803 + 0.0852803i
\(276\) 3.16228 + 7.07107i 0.190347 + 0.425628i
\(277\) 3.16228i 0.190003i 0.995477 + 0.0950014i \(0.0302856\pi\)
−0.995477 + 0.0950014i \(0.969714\pi\)
\(278\) −4.47214 4.47214i −0.268221 0.268221i
\(279\) 0.708204 + 12.7082i 0.0423991 + 0.760820i
\(280\) 0 0
\(281\) −17.5629 + 17.5629i −1.04772 + 1.04772i −0.0489130 + 0.998803i \(0.515576\pi\)
−0.998803 + 0.0489130i \(0.984424\pi\)
\(282\) −16.3246 + 7.30056i −0.972113 + 0.434742i
\(283\) 12.8377i 0.763123i −0.924343 0.381562i \(-0.875386\pi\)
0.924343 0.381562i \(-0.124614\pi\)
\(284\) −3.87978 + 3.87978i −0.230222 + 0.230222i
\(285\) −11.5432 + 5.16228i −0.683760 + 0.305787i
\(286\) −0.837722 7.16228i −0.0495356 0.423514i
\(287\) 0 0
\(288\) 2.99535 0.166925i 0.176503 0.00983617i
\(289\) 36.2982 2.13519
\(290\) 4.47214 0.262613
\(291\) 1.01587 2.65958i 0.0595512 0.155907i
\(292\) 5.16228 5.16228i 0.302099 0.302099i
\(293\) −2.82843 + 2.82843i −0.165238 + 0.165238i −0.784883 0.619644i \(-0.787277\pi\)
0.619644 + 0.784883i \(0.287277\pi\)
\(294\) 4.32624 11.3262i 0.252311 0.660560i
\(295\) 8.32456 0.484674
\(296\) −5.65685 −0.328798
\(297\) 4.76393 + 9.23607i 0.276431 + 0.535931i
\(298\) 3.67544i 0.212913i
\(299\) −1.87320 16.0153i −0.108330 0.926191i
\(300\) 1.58114 0.707107i 0.0912871 0.0408248i
\(301\) 0 0
\(302\) 0.955223i 0.0549669i
\(303\) 10.8175 4.83772i 0.621448 0.277920i
\(304\) 5.16228 5.16228i 0.296077 0.296077i
\(305\) −7.53006 7.53006i −0.431170 0.431170i
\(306\) 21.8678 1.21865i 1.25010 0.0696655i
\(307\) 7.16228 + 7.16228i 0.408773 + 0.408773i 0.881310 0.472538i \(-0.156662\pi\)
−0.472538 + 0.881310i \(0.656662\pi\)
\(308\) 0 0
\(309\) 13.1869 + 29.4868i 0.750177 + 1.67745i
\(310\) −3.00000 3.00000i −0.170389 0.170389i
\(311\) −21.1760 −1.20078 −0.600389 0.799708i \(-0.704988\pi\)
−0.600389 + 0.799708i \(0.704988\pi\)
\(312\) −6.05327 1.53553i −0.342699 0.0869325i
\(313\) −18.6491 −1.05411 −0.527055 0.849831i \(-0.676704\pi\)
−0.527055 + 0.849831i \(0.676704\pi\)
\(314\) −16.3782 16.3782i −0.924276 0.924276i
\(315\) 0 0
\(316\) 10.0000i 0.562544i
\(317\) 17.8885 + 17.8885i 1.00472 + 1.00472i 0.999989 + 0.00473191i \(0.00150622\pi\)
0.00473191 + 0.999989i \(0.498494\pi\)
\(318\) −0.874032 + 2.28825i −0.0490133 + 0.128318i
\(319\) −6.32456 6.32456i −0.354107 0.354107i
\(320\) −0.707107 + 0.707107i −0.0395285 + 0.0395285i
\(321\) 5.32456 + 11.9061i 0.297188 + 0.664532i
\(322\) 0 0
\(323\) 37.6875 37.6875i 2.09699 2.09699i
\(324\) 8.94427 1.00000i 0.496904 0.0555556i
\(325\) −3.58114 + 0.418861i −0.198646 + 0.0232342i
\(326\) 3.28742i 0.182073i
\(327\) 4.22832 11.0699i 0.233827 0.612167i
\(328\) 3.16228 0.174608
\(329\) 0 0
\(330\) −3.23607 1.23607i −0.178140 0.0680433i
\(331\) −9.48683 + 9.48683i −0.521443 + 0.521443i −0.918007 0.396564i \(-0.870203\pi\)
0.396564 + 0.918007i \(0.370203\pi\)
\(332\) −5.65685 + 5.65685i −0.310460 + 0.310460i
\(333\) −16.9443 + 0.944272i −0.928540 + 0.0517458i
\(334\) 2.32456 0.127194
\(335\) −10.1290 −0.553406
\(336\) 0 0
\(337\) 30.6491i 1.66956i −0.550581 0.834782i \(-0.685594\pi\)
0.550581 0.834782i \(-0.314406\pi\)
\(338\) 11.0656 + 6.82295i 0.601889 + 0.371120i
\(339\) 11.4868 + 25.6853i 0.623879 + 1.39504i
\(340\) −5.16228 + 5.16228i −0.279964 + 0.279964i
\(341\) 8.48528i 0.459504i
\(342\) 14.6011 16.3246i 0.789538 0.882731i
\(343\) 0 0
\(344\) 5.06450 + 5.06450i 0.273059 + 0.273059i
\(345\) −7.23607 2.76393i −0.389577 0.148805i
\(346\) −15.6491 15.6491i −0.841301 0.841301i
\(347\) 7.53006i 0.404235i 0.979361 + 0.202117i \(0.0647822\pi\)
−0.979361 + 0.202117i \(0.935218\pi\)
\(348\) −7.07107 + 3.16228i −0.379049 + 0.169516i
\(349\) −0.837722 0.837722i −0.0448422 0.0448422i 0.684330 0.729172i \(-0.260095\pi\)
−0.729172 + 0.684330i \(0.760095\pi\)
\(350\) 0 0
\(351\) −18.3880 3.58902i −0.981479 0.191568i
\(352\) 2.00000 0.106600
\(353\) −9.17377 9.17377i −0.488270 0.488270i 0.419490 0.907760i \(-0.362209\pi\)
−0.907760 + 0.419490i \(0.862209\pi\)
\(354\) −13.1623 + 5.88635i −0.699567 + 0.312856i
\(355\) 5.48683i 0.291211i
\(356\) −0.592359 0.592359i −0.0313950 0.0313950i
\(357\) 0 0
\(358\) 0.324555 + 0.324555i 0.0171533 + 0.0171533i
\(359\) 22.4940 22.4940i 1.18719 1.18719i 0.209350 0.977841i \(-0.432865\pi\)
0.977841 0.209350i \(-0.0671347\pi\)
\(360\) −2.00000 + 2.23607i −0.105409 + 0.117851i
\(361\) 34.2982i 1.80517i
\(362\) −3.05792 + 3.05792i −0.160721 + 0.160721i
\(363\) −4.94975 11.0680i −0.259794 0.580918i
\(364\) 0 0
\(365\) 7.30056i 0.382129i
\(366\) 17.2306 + 6.58151i 0.900659 + 0.344021i
\(367\) 18.6491 0.973476 0.486738 0.873548i \(-0.338187\pi\)
0.486738 + 0.873548i \(0.338187\pi\)
\(368\) 4.47214 0.233126
\(369\) 9.47214 0.527864i 0.493100 0.0274795i
\(370\) 4.00000 4.00000i 0.207950 0.207950i
\(371\) 0 0
\(372\) 6.86474 + 2.62210i 0.355920 + 0.135949i
\(373\) 15.1623 0.785073 0.392536 0.919736i \(-0.371598\pi\)
0.392536 + 0.919736i \(0.371598\pi\)
\(374\) 14.6011 0.755006
\(375\) −0.618034 + 1.61803i −0.0319151 + 0.0835549i
\(376\) 10.3246i 0.532448i
\(377\) 16.0153 1.87320i 0.824832 0.0964749i
\(378\) 0 0
\(379\) −13.1623 + 13.1623i −0.676101 + 0.676101i −0.959116 0.283015i \(-0.908665\pi\)
0.283015 + 0.959116i \(0.408665\pi\)
\(380\) 7.30056i 0.374511i
\(381\) −12.0022 26.8377i −0.614891 1.37494i
\(382\) 1.48683 1.48683i 0.0760730 0.0760730i
\(383\) −4.93113 4.93113i −0.251969 0.251969i 0.569809 0.821777i \(-0.307017\pi\)
−0.821777 + 0.569809i \(0.807017\pi\)
\(384\) 0.618034 1.61803i 0.0315389 0.0825700i
\(385\) 0 0
\(386\) 4.93113i 0.250988i
\(387\) 16.0153 + 14.3246i 0.814105 + 0.728158i
\(388\) −1.16228 1.16228i −0.0590057 0.0590057i
\(389\) 29.9280 1.51741 0.758704 0.651435i \(-0.225833\pi\)
0.758704 + 0.651435i \(0.225833\pi\)
\(390\) 5.36610 3.19453i 0.271723 0.161761i
\(391\) 32.6491 1.65114
\(392\) −4.94975 4.94975i −0.250000 0.250000i
\(393\) −0.324555 0.725728i −0.0163717 0.0366081i
\(394\) 12.6491i 0.637253i
\(395\) 7.07107 + 7.07107i 0.355784 + 0.355784i
\(396\) 5.99070 0.333851i 0.301044 0.0167766i
\(397\) −12.8377 12.8377i −0.644307 0.644307i 0.307304 0.951611i \(-0.400573\pi\)
−0.951611 + 0.307304i \(0.900573\pi\)
\(398\) 1.41421 1.41421i 0.0708881 0.0708881i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) −15.1935 + 15.1935i −0.758726 + 0.758726i −0.976091 0.217364i \(-0.930254\pi\)
0.217364 + 0.976091i \(0.430254\pi\)
\(402\) 16.0153 7.16228i 0.798773 0.357222i
\(403\) −12.0000 9.48683i −0.597763 0.472573i
\(404\) 6.84157i 0.340381i
\(405\) −5.61745 + 7.03166i −0.279133 + 0.349406i
\(406\) 0 0
\(407\) −11.3137 −0.560800
\(408\) 4.51200 11.8126i 0.223377 0.584809i
\(409\) 10.6754 10.6754i 0.527867 0.527867i −0.392069 0.919936i \(-0.628241\pi\)
0.919936 + 0.392069i \(0.128241\pi\)
\(410\) −2.23607 + 2.23607i −0.110432 + 0.110432i
\(411\) 12.5613 32.8858i 0.619602 1.62214i
\(412\) 18.6491 0.918776
\(413\) 0 0
\(414\) 13.3956 0.746512i 0.658359 0.0366891i
\(415\) 8.00000i 0.392705i
\(416\) −2.23607 + 2.82843i −0.109632 + 0.138675i
\(417\) −10.0000 + 4.47214i −0.489702 + 0.219001i
\(418\) 10.3246 10.3246i 0.504991 0.504991i
\(419\) 40.5160i 1.97933i 0.143384 + 0.989667i \(0.454202\pi\)
−0.143384 + 0.989667i \(0.545798\pi\)
\(420\) 0 0
\(421\) −12.8377 + 12.8377i −0.625672 + 0.625672i −0.946976 0.321304i \(-0.895879\pi\)
0.321304 + 0.946976i \(0.395879\pi\)
\(422\) −2.36944 2.36944i −0.115342 0.115342i
\(423\) 1.72343 + 30.9257i 0.0837960 + 1.50366i
\(424\) 1.00000 + 1.00000i 0.0485643 + 0.0485643i
\(425\) 7.30056i 0.354129i
\(426\) 3.87978 + 8.67544i 0.187976 + 0.420327i
\(427\) 0 0
\(428\) 7.53006 0.363979
\(429\) −12.1065 3.07107i −0.584510 0.148273i
\(430\) −7.16228 −0.345396
\(431\) 1.77708 + 1.77708i 0.0855988 + 0.0855988i 0.748610 0.663011i \(-0.230722\pi\)
−0.663011 + 0.748610i \(0.730722\pi\)
\(432\) 1.58114 4.94975i 0.0760726 0.238145i
\(433\) 39.2982i 1.88855i 0.329155 + 0.944276i \(0.393236\pi\)
−0.329155 + 0.944276i \(0.606764\pi\)
\(434\) 0 0
\(435\) 2.76393 7.23607i 0.132520 0.346943i
\(436\) −4.83772 4.83772i −0.231685 0.231685i
\(437\) 23.0864 23.0864i 1.10437 1.10437i
\(438\) −5.16228 11.5432i −0.246663 0.551556i
\(439\) 3.35089i 0.159929i −0.996798 0.0799646i \(-0.974519\pi\)
0.996798 0.0799646i \(-0.0254807\pi\)
\(440\) −1.41421 + 1.41421i −0.0674200 + 0.0674200i
\(441\) −15.6525 14.0000i −0.745356 0.666667i
\(442\) −16.3246 + 20.6491i −0.776480 + 0.982178i
\(443\) 10.3585i 0.492146i 0.969251 + 0.246073i \(0.0791404\pi\)
−0.969251 + 0.246073i \(0.920860\pi\)
\(444\) −3.49613 + 9.15298i −0.165919 + 0.434381i
\(445\) 0.837722 0.0397118
\(446\) −23.5454 −1.11491
\(447\) 5.94699 + 2.27155i 0.281283 + 0.107441i
\(448\) 0 0
\(449\) −14.0088 + 14.0088i −0.661115 + 0.661115i −0.955643 0.294528i \(-0.904838\pi\)
0.294528 + 0.955643i \(0.404838\pi\)
\(450\) −0.166925 2.99535i −0.00786893 0.141202i
\(451\) 6.32456 0.297812
\(452\) 16.2448 0.764093
\(453\) −1.54558 0.590360i −0.0726178 0.0277375i
\(454\) 18.0000i 0.844782i
\(455\) 0 0
\(456\) −5.16228 11.5432i −0.241746 0.540560i
\(457\) 3.48683 3.48683i 0.163107 0.163107i −0.620834 0.783942i \(-0.713206\pi\)
0.783942 + 0.620834i \(0.213206\pi\)
\(458\) 19.5323i 0.912682i
\(459\) 11.5432 36.1359i 0.538791 1.68668i
\(460\) −3.16228 + 3.16228i −0.147442 + 0.147442i
\(461\) 21.6722 + 21.6722i 1.00937 + 1.00937i 0.999956 + 0.00941906i \(0.00299823\pi\)
0.00941906 + 0.999956i \(0.497002\pi\)
\(462\) 0 0
\(463\) 8.32456 + 8.32456i 0.386875 + 0.386875i 0.873571 0.486696i \(-0.161798\pi\)
−0.486696 + 0.873571i \(0.661798\pi\)
\(464\) 4.47214i 0.207614i
\(465\) −6.70820 + 3.00000i −0.311086 + 0.139122i
\(466\) −2.83772 2.83772i −0.131455 0.131455i
\(467\) −33.9039 −1.56888 −0.784442 0.620202i \(-0.787051\pi\)
−0.784442 + 0.620202i \(0.787051\pi\)
\(468\) −6.22568 + 8.84539i −0.287782 + 0.408878i
\(469\) 0 0
\(470\) −7.30056 7.30056i −0.336750 0.336750i
\(471\) −36.6228 + 16.3782i −1.68749 + 0.754668i
\(472\) 8.32456i 0.383169i
\(473\) 10.1290 + 10.1290i 0.465731 + 0.465731i
\(474\) −16.1803 6.18034i −0.743188 0.283872i
\(475\) −5.16228 5.16228i −0.236862 0.236862i
\(476\) 0 0
\(477\) 3.16228 + 2.82843i 0.144791 + 0.129505i
\(478\) 11.1623i 0.510551i
\(479\) −0.133369 + 0.133369i −0.00609377 + 0.00609377i −0.710147 0.704053i \(-0.751372\pi\)
0.704053 + 0.710147i \(0.251372\pi\)
\(480\) 0.707107 + 1.58114i 0.0322749 + 0.0721688i
\(481\) 12.6491 16.0000i 0.576750 0.729537i
\(482\) 10.8175i 0.492723i
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 1.64371 0.0746370
\(486\) 3.90983 15.0902i 0.177353 0.684504i
\(487\) −18.0000 + 18.0000i −0.815658 + 0.815658i −0.985476 0.169818i \(-0.945682\pi\)
0.169818 + 0.985476i \(0.445682\pi\)
\(488\) 7.53006 7.53006i 0.340870 0.340870i
\(489\) −5.31915 2.03174i −0.240540 0.0918783i
\(490\) 7.00000 0.316228
\(491\) −28.2843 −1.27645 −0.638226 0.769849i \(-0.720331\pi\)
−0.638226 + 0.769849i \(0.720331\pi\)
\(492\) 1.95440 5.11667i 0.0881109 0.230677i
\(493\) 32.6491i 1.47044i
\(494\) 3.05792 + 26.1443i 0.137582 + 1.17629i
\(495\) −4.00000 + 4.47214i −0.179787 + 0.201008i
\(496\) 3.00000 3.00000i 0.134704 0.134704i
\(497\) 0 0
\(498\) 5.65685 + 12.6491i 0.253490 + 0.566820i
\(499\) −11.1623 + 11.1623i −0.499692 + 0.499692i −0.911342 0.411650i \(-0.864953\pi\)
0.411650 + 0.911342i \(0.364953\pi\)
\(500\) 0.707107 + 0.707107i 0.0316228 + 0.0316228i
\(501\) 1.43665 3.76121i 0.0641850 0.168038i
\(502\) 10.3246 + 10.3246i 0.460807 + 0.460807i
\(503\) 25.1891i 1.12313i −0.827434 0.561563i \(-0.810200\pi\)
0.827434 0.561563i \(-0.189800\pi\)
\(504\) 0 0
\(505\) 4.83772 + 4.83772i 0.215276 + 0.215276i
\(506\) 8.94427 0.397621
\(507\) 17.8787 13.6877i 0.794020 0.607892i
\(508\) −16.9737 −0.753085
\(509\) −14.3716 14.3716i −0.637011 0.637011i 0.312806 0.949817i \(-0.398731\pi\)
−0.949817 + 0.312806i \(0.898731\pi\)
\(510\) 5.16228 + 11.5432i 0.228589 + 0.511142i
\(511\) 0 0
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) −17.3897 33.7142i −0.767774 1.48852i
\(514\) −1.16228 1.16228i −0.0512659 0.0512659i
\(515\) −13.1869 + 13.1869i −0.581085 + 0.581085i
\(516\) 11.3246 5.06450i 0.498536 0.222952i
\(517\) 20.6491i 0.908147i
\(518\) 0 0
\(519\) −34.9925 + 15.6491i −1.53600 + 0.686920i
\(520\) −0.418861 3.58114i −0.0183683 0.157043i
\(521\) 2.10270i 0.0921209i −0.998939 0.0460605i \(-0.985333\pi\)
0.998939 0.0460605i \(-0.0146667\pi\)
\(522\) 0.746512 + 13.3956i 0.0326740 + 0.586310i
\(523\) −35.8114 −1.56592 −0.782961 0.622070i \(-0.786292\pi\)
−0.782961 + 0.622070i \(0.786292\pi\)
\(524\) −0.458991 −0.0200511
\(525\) 0 0
\(526\) 0.837722 0.837722i 0.0365264 0.0365264i
\(527\) 21.9017 21.9017i 0.954053 0.954053i
\(528\) 1.23607 3.23607i 0.0537930 0.140832i
\(529\) −3.00000 −0.130435
\(530\) −1.41421 −0.0614295
\(531\) 1.38958 + 24.9350i 0.0603026 + 1.08209i
\(532\) 0 0
\(533\) −7.07107 + 8.94427i −0.306282 + 0.387419i
\(534\) −1.32456 + 0.592359i −0.0573191 + 0.0256339i
\(535\) −5.32456 + 5.32456i −0.230201 + 0.230201i
\(536\) 10.1290i 0.437506i
\(537\) 0.725728 0.324555i 0.0313175 0.0140056i
\(538\) −3.16228 + 3.16228i −0.136335 + 0.136335i
\(539\) −9.89949 9.89949i −0.426401 0.426401i
\(540\) 2.38197 + 4.61803i 0.102503 + 0.198729i
\(541\) 29.8114 + 29.8114i 1.28169 + 1.28169i 0.939705 + 0.341987i \(0.111100\pi\)
0.341987 + 0.939705i \(0.388900\pi\)
\(542\) 10.3585i 0.444935i
\(543\) 3.05792 + 6.83772i 0.131228 + 0.293435i
\(544\) −5.16228 5.16228i −0.221331 0.221331i
\(545\) 6.84157 0.293061
\(546\) 0 0
\(547\) −9.48683 −0.405628 −0.202814 0.979217i \(-0.565009\pi\)
−0.202814 + 0.979217i \(0.565009\pi\)
\(548\) −14.3716 14.3716i −0.613926 0.613926i
\(549\) 21.2982 23.8121i 0.908986 1.01628i
\(550\) 2.00000i 0.0852803i
\(551\) 23.0864 + 23.0864i 0.983514 + 0.983514i
\(552\) 2.76393 7.23607i 0.117641 0.307988i
\(553\) 0 0
\(554\) 2.23607 2.23607i 0.0950014 0.0950014i
\(555\) −4.00000 8.94427i −0.169791 0.379663i
\(556\) 6.32456i 0.268221i
\(557\) 11.7727 11.7727i 0.498825 0.498825i −0.412247 0.911072i \(-0.635256\pi\)
0.911072 + 0.412247i \(0.135256\pi\)
\(558\) 8.48528 9.48683i 0.359211 0.401610i
\(559\) −25.6491 + 3.00000i −1.08484 + 0.126886i
\(560\) 0 0
\(561\) 9.02399 23.6251i 0.380993 0.997453i
\(562\) 24.8377 1.04772
\(563\) 11.2765 0.475246 0.237623 0.971357i \(-0.423632\pi\)
0.237623 + 0.971357i \(0.423632\pi\)
\(564\) 16.7055 + 6.38093i 0.703428 + 0.268685i
\(565\) −11.4868 + 11.4868i −0.483255 + 0.483255i
\(566\) −9.07764 + 9.07764i −0.381562 + 0.381562i
\(567\) 0 0
\(568\) 5.48683 0.230222
\(569\) 2.10270 0.0881497 0.0440749 0.999028i \(-0.485966\pi\)
0.0440749 + 0.999028i \(0.485966\pi\)
\(570\) 11.8126 + 4.51200i 0.494774 + 0.188987i
\(571\) 18.9737i 0.794023i −0.917814 0.397012i \(-0.870047\pi\)
0.917814 0.397012i \(-0.129953\pi\)
\(572\) −4.47214 + 5.65685i −0.186989 + 0.236525i
\(573\) −1.48683 3.32466i −0.0621133 0.138890i
\(574\) 0 0
\(575\) 4.47214i 0.186501i
\(576\) −2.23607 2.00000i −0.0931695 0.0833333i
\(577\) −21.1623 + 21.1623i −0.880997 + 0.880997i −0.993636 0.112639i \(-0.964070\pi\)
0.112639 + 0.993636i \(0.464070\pi\)
\(578\) −25.6667 25.6667i −1.06759 1.06759i
\(579\) 7.97873 + 3.04760i 0.331585 + 0.126654i
\(580\) −3.16228 3.16228i −0.131306 0.131306i
\(581\) 0 0
\(582\) −2.59893 + 1.16228i −0.107729 + 0.0481780i
\(583\) 2.00000 + 2.00000i 0.0828315 + 0.0828315i
\(584\) −7.30056 −0.302099
\(585\) −1.85242 10.6569i −0.0765881 0.440607i
\(586\) 4.00000 0.165238
\(587\) 0.458991 + 0.458991i 0.0189446 + 0.0189446i 0.716516 0.697571i \(-0.245736\pi\)
−0.697571 + 0.716516i \(0.745736\pi\)
\(588\) −11.0680 + 4.94975i −0.456435 + 0.204124i
\(589\) 30.9737i 1.27625i
\(590\) −5.88635 5.88635i −0.242337 0.242337i
\(591\) −20.4667 7.81758i −0.841887 0.321572i
\(592\) 4.00000 + 4.00000i 0.164399 + 0.164399i
\(593\) −31.0755 + 31.0755i −1.27612 + 1.27612i −0.333293 + 0.942823i \(0.608160\pi\)
−0.942823 + 0.333293i \(0.891840\pi\)
\(594\) 3.16228 9.89949i 0.129750 0.406181i
\(595\) 0 0
\(596\) 2.59893 2.59893i 0.106456 0.106456i
\(597\) −1.41421 3.16228i −0.0578799 0.129423i
\(598\) −10.0000 + 12.6491i −0.408930 + 0.517261i
\(599\) 41.7007i 1.70384i −0.523669 0.851922i \(-0.675437\pi\)
0.523669 0.851922i \(-0.324563\pi\)
\(600\) −1.61803 0.618034i −0.0660560 0.0252311i
\(601\) −24.6491 −1.00546 −0.502729 0.864444i \(-0.667671\pi\)
−0.502729 + 0.864444i \(0.667671\pi\)
\(602\) 0 0
\(603\) −1.69078 30.3399i −0.0688541 1.23554i
\(604\) −0.675445 + 0.675445i −0.0274835 + 0.0274835i
\(605\) 4.94975 4.94975i 0.201236 0.201236i
\(606\) −11.0699 4.22832i −0.449684 0.171764i
\(607\) −21.6228 −0.877641 −0.438821 0.898575i \(-0.644604\pi\)
−0.438821 + 0.898575i \(0.644604\pi\)
\(608\) −7.30056 −0.296077
\(609\) 0 0
\(610\) 10.6491i 0.431170i
\(611\) −29.2023 23.0864i −1.18140 0.933976i
\(612\) −16.3246 14.6011i −0.659881 0.590216i
\(613\) −22.3246 + 22.3246i −0.901680 + 0.901680i −0.995582 0.0939012i \(-0.970066\pi\)
0.0939012 + 0.995582i \(0.470066\pi\)
\(614\) 10.1290i 0.408773i
\(615\) 2.23607 + 5.00000i 0.0901670 + 0.201619i
\(616\) 0 0
\(617\) 18.3848 + 18.3848i 0.740143 + 0.740143i 0.972605 0.232462i \(-0.0746782\pi\)
−0.232462 + 0.972605i \(0.574678\pi\)
\(618\) 11.5258 30.1749i 0.463635 1.21381i
\(619\) 29.4868 + 29.4868i 1.18518 + 1.18518i 0.978385 + 0.206791i \(0.0663019\pi\)
0.206791 + 0.978385i \(0.433698\pi\)
\(620\) 4.24264i 0.170389i
\(621\) 7.07107 22.1359i 0.283752 0.888285i
\(622\) 14.9737 + 14.9737i 0.600389 + 0.600389i
\(623\) 0 0
\(624\) 3.19453 + 5.36610i 0.127883 + 0.214816i
\(625\) −1.00000 −0.0400000
\(626\) 13.1869 + 13.1869i 0.527055 + 0.527055i
\(627\) −10.3246 23.0864i −0.412323 0.921982i
\(628\) 23.1623i 0.924276i
\(629\) 29.2023 + 29.2023i 1.16437 + 1.16437i
\(630\) 0 0
\(631\) 13.3246 + 13.3246i 0.530442 + 0.530442i 0.920704 0.390262i \(-0.127615\pi\)
−0.390262 + 0.920704i \(0.627615\pi\)
\(632\) −7.07107 + 7.07107i −0.281272 + 0.281272i
\(633\) −5.29822 + 2.36944i −0.210585 + 0.0941766i
\(634\) 25.2982i 1.00472i
\(635\) 12.0022 12.0022i 0.476293 0.476293i
\(636\) 2.23607 1.00000i 0.0886659 0.0396526i
\(637\) 25.0680 2.93203i 0.993229 0.116171i
\(638\) 8.94427i 0.354107i
\(639\) 16.4350 0.915891i 0.650158 0.0362321i
\(640\) 1.00000 0.0395285
\(641\) −35.7771 −1.41311 −0.706555 0.707658i \(-0.749752\pi\)
−0.706555 + 0.707658i \(0.749752\pi\)
\(642\) 4.65383 12.1839i 0.183672 0.480860i
\(643\) 32.6491 32.6491i 1.28756 1.28756i 0.351288 0.936268i \(-0.385744\pi\)
0.936268 0.351288i \(-0.114256\pi\)
\(644\) 0 0
\(645\) −4.42653 + 11.5888i −0.174294 + 0.456309i
\(646\) −53.2982 −2.09699
\(647\) 46.8985 1.84377 0.921886 0.387461i \(-0.126648\pi\)
0.921886 + 0.387461i \(0.126648\pi\)
\(648\) −7.03166 5.61745i −0.276230 0.220674i
\(649\) 16.6491i 0.653535i
\(650\) 2.82843 + 2.23607i 0.110940 + 0.0877058i
\(651\) 0 0
\(652\) −2.32456 + 2.32456i −0.0910366 + 0.0910366i
\(653\) 5.61961i 0.219912i 0.993936 + 0.109956i \(0.0350711\pi\)
−0.993936 + 0.109956i \(0.964929\pi\)
\(654\) −10.8175 + 4.83772i −0.422997 + 0.189170i
\(655\) 0.324555 0.324555i 0.0126814 0.0126814i
\(656\) −2.23607 2.23607i −0.0873038 0.0873038i
\(657\) −21.8678 + 1.21865i −0.853143 + 0.0475440i
\(658\) 0 0
\(659\) 8.94427i 0.348419i 0.984709 + 0.174210i \(0.0557371\pi\)
−0.984709 + 0.174210i \(0.944263\pi\)
\(660\) 1.41421 + 3.16228i 0.0550482 + 0.123091i
\(661\) −10.8377 10.8377i −0.421539 0.421539i 0.464195 0.885733i \(-0.346344\pi\)
−0.885733 + 0.464195i \(0.846344\pi\)
\(662\) 13.4164 0.521443
\(663\) 23.3218 + 39.1755i 0.905745 + 1.52145i
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) 12.6491 + 11.3137i 0.490143 + 0.438397i
\(667\) 20.0000i 0.774403i
\(668\) −1.64371 1.64371i −0.0635970 0.0635970i
\(669\) −14.5519 + 38.0973i −0.562607 + 1.47292i
\(670\) 7.16228 + 7.16228i 0.276703 + 0.276703i
\(671\) 15.0601 15.0601i 0.581389 0.581389i
\(672\) 0 0
\(673\) 19.6754i 0.758433i −0.925308 0.379216i \(-0.876194\pi\)
0.925308 0.379216i \(-0.123806\pi\)
\(674\) −21.6722 + 21.6722i −0.834782 + 0.834782i
\(675\) −4.94975 1.58114i −0.190516 0.0608581i
\(676\) −3.00000 12.6491i −0.115385 0.486504i
\(677\) 4.70163i 0.180698i 0.995910 + 0.0903492i \(0.0287983\pi\)
−0.995910 + 0.0903492i \(0.971202\pi\)
\(678\) 10.0399 26.2847i 0.385579 1.00946i
\(679\) 0 0
\(680\) 7.30056 0.279964
\(681\) 29.1246 + 11.1246i 1.11606 + 0.426296i
\(682\) 6.00000 6.00000i 0.229752 0.229752i
\(683\) −4.24264 + 4.24264i −0.162340 + 0.162340i −0.783603 0.621262i \(-0.786620\pi\)
0.621262 + 0.783603i \(0.286620\pi\)
\(684\) −21.8678 + 1.21865i −0.836135 + 0.0465962i
\(685\) 20.3246 0.776561
\(686\) 0 0
\(687\) 31.6038 + 12.0716i 1.20576 + 0.460560i
\(688\) 7.16228i 0.273059i
\(689\) −5.06450 + 0.592359i −0.192942 + 0.0225671i
\(690\) 3.16228 + 7.07107i 0.120386 + 0.269191i
\(691\) −35.8114 + 35.8114i −1.36233 + 1.36233i −0.491389 + 0.870940i \(0.663511\pi\)
−0.870940 + 0.491389i \(0.836489\pi\)
\(692\) 22.1312i 0.841301i
\(693\) 0 0
\(694\) 5.32456 5.32456i 0.202117 0.202117i
\(695\) −4.47214 4.47214i −0.169638 0.169638i
\(696\) 7.23607 + 2.76393i 0.274282 + 0.104767i
\(697\) −16.3246 16.3246i −0.618337 0.618337i
\(698\) 1.18472i 0.0448422i
\(699\) −6.34534 + 2.83772i −0.240003 + 0.107333i
\(700\) 0 0
\(701\) 39.3312 1.48552 0.742760 0.669557i \(-0.233516\pi\)
0.742760 + 0.669557i \(0.233516\pi\)
\(702\) 10.4645 + 15.5401i 0.394956 + 0.586524i
\(703\) 41.2982 1.55759
\(704\) −1.41421 1.41421i −0.0533002 0.0533002i
\(705\) −16.3246 + 7.30056i −0.614818 + 0.274955i
\(706\) 12.9737i 0.488270i
\(707\) 0 0
\(708\) 13.4694 + 5.14486i 0.506212 + 0.193356i
\(709\) −15.4868 15.4868i −0.581620 0.581620i 0.353728 0.935348i \(-0.384914\pi\)
−0.935348 + 0.353728i \(0.884914\pi\)
\(710\) −3.87978 + 3.87978i −0.145605 + 0.145605i
\(711\) −20.0000 + 22.3607i −0.750059 + 0.838591i
\(712\) 0.837722i 0.0313950i
\(713\) 13.4164 13.4164i 0.502448 0.502448i
\(714\) 0 0
\(715\) −0.837722 7.16228i −0.0313290 0.267854i
\(716\) 0.458991i 0.0171533i
\(717\) 18.0609 + 6.89867i 0.674498 + 0.257635i
\(718\) −31.8114 −1.18719
\(719\) 2.10270 0.0784175 0.0392087 0.999231i \(-0.487516\pi\)
0.0392087 + 0.999231i \(0.487516\pi\)
\(720\) 2.99535 0.166925i 0.111630 0.00622094i
\(721\) 0 0
\(722\) −24.2525 + 24.2525i −0.902585 + 0.902585i
\(723\) −17.5030 6.68557i −0.650945 0.248639i
\(724\) 4.32456 0.160721
\(725\) 4.47214 0.166091
\(726\) −4.32624 + 11.3262i −0.160562 + 0.420356i
\(727\) 4.97367i 0.184463i 0.995738 + 0.0922315i \(0.0294000\pi\)
−0.995738 + 0.0922315i \(0.970600\pi\)
\(728\) 0 0
\(729\) −22.0000 15.6525i −0.814815 0.579721i
\(730\) 5.16228 5.16228i 0.191064 0.191064i
\(731\) 52.2887i 1.93397i
\(732\) −7.53006 16.8377i −0.278319 0.622340i
\(733\) −33.4868 + 33.4868i −1.23686 + 1.23686i −0.275589 + 0.961276i \(0.588873\pi\)
−0.961276 + 0.275589i \(0.911127\pi\)
\(734\) −13.1869 13.1869i −0.486738 0.486738i
\(735\) 4.32624 11.3262i 0.159576 0.417775i
\(736\) −3.16228 3.16228i −0.116563 0.116563i
\(737\) 20.2580i 0.746212i
\(738\) −7.07107 6.32456i −0.260290 0.232810i
\(739\) 12.1359 + 12.1359i 0.446428 + 0.446428i 0.894165 0.447737i \(-0.147770\pi\)
−0.447737 + 0.894165i \(0.647770\pi\)
\(740\) −5.65685 −0.207950
\(741\) 44.1923 + 11.2103i 1.62345 + 0.411819i
\(742\) 0 0
\(743\) 27.5585 + 27.5585i 1.01102 + 1.01102i 0.999939 + 0.0110864i \(0.00352897\pi\)
0.0110864 + 0.999939i \(0.496471\pi\)
\(744\) −3.00000 6.70820i −0.109985 0.245935i
\(745\) 3.67544i 0.134658i
\(746\) −10.7213 10.7213i −0.392536 0.392536i
\(747\) 23.9628 1.33540i 0.876754 0.0488598i
\(748\) −10.3246 10.3246i −0.377503 0.377503i
\(749\) 0 0
\(750\) 1.58114 0.707107i 0.0577350 0.0258199i
\(751\) 28.0000i 1.02173i 0.859660 + 0.510867i \(0.170676\pi\)
−0.859660 + 0.510867i \(0.829324\pi\)
\(752\) 7.30056 7.30056i 0.266224 0.266224i
\(753\) 23.0864 10.3246i 0.841315 0.376248i
\(754\) −12.6491 10.0000i −0.460653 0.364179i
\(755\) 0.955223i 0.0347641i
\(756\) 0 0
\(757\) 7.81139 0.283910 0.141955 0.989873i \(-0.454661\pi\)
0.141955 + 0.989873i \(0.454661\pi\)
\(758\) 18.6143 0.676101
\(759\) 5.52786 14.4721i 0.200649 0.525305i
\(760\) 5.16228 5.16228i 0.187255 0.187255i
\(761\) −1.51034 + 1.51034i −0.0547498 + 0.0547498i −0.733952 0.679202i \(-0.762326\pi\)
0.679202 + 0.733952i \(0.262326\pi\)
\(762\) −10.4903 + 27.4640i −0.380024 + 0.994915i
\(763\) 0 0
\(764\) −2.10270 −0.0760730
\(765\) 21.8678 1.21865i 0.790630 0.0440603i
\(766\) 6.97367i 0.251969i
\(767\) −23.5454 18.6143i −0.850175 0.672122i
\(768\) −1.58114 + 0.707107i −0.0570544 + 0.0255155i
\(769\) 6.35089 6.35089i 0.229019 0.229019i −0.583264 0.812283i \(-0.698225\pi\)
0.812283 + 0.583264i \(0.198225\pi\)
\(770\) 0 0
\(771\) −2.59893 + 1.16228i −0.0935982 + 0.0418584i
\(772\) 3.48683 3.48683i 0.125494 0.125494i
\(773\) 16.9706 + 16.9706i 0.610389 + 0.610389i 0.943047 0.332659i \(-0.107946\pi\)
−0.332659 + 0.943047i \(0.607946\pi\)
\(774\) −1.19557 21.4535i −0.0429737 0.771132i