# Properties

 Label 390.2.p.e Level $390$ Weight $2$ Character orbit 390.p Analytic conductor $3.114$ Analytic rank $0$ Dimension $4$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [390,2,Mod(161,390)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(390, base_ring=CyclotomicField(4))

chi = DirichletCharacter(H, H._module([2, 0, 3]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("390.161");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$390 = 2 \cdot 3 \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 390.p (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$3.11416567883$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(\zeta_{8})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} + 1$$ x^4 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{8}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{8} q^{2} + (\zeta_{8}^{3} + \zeta_{8}^{2} + 1) q^{3} + \zeta_{8}^{2} q^{4} - \zeta_{8} q^{5} + (\zeta_{8}^{3} + \zeta_{8} - 1) q^{6} + (2 \zeta_{8}^{2} + 2) q^{7} + \zeta_{8}^{3} q^{8} + (2 \zeta_{8}^{3} + \zeta_{8}^{2} - 2 \zeta_{8}) q^{9} +O(q^{10})$$ q + z * q^2 + (z^3 + z^2 + 1) * q^3 + z^2 * q^4 - z * q^5 + (z^3 + z - 1) * q^6 + (2*z^2 + 2) * q^7 + z^3 * q^8 + (2*z^3 + z^2 - 2*z) * q^9 $$q + \zeta_{8} q^{2} + (\zeta_{8}^{3} + \zeta_{8}^{2} + 1) q^{3} + \zeta_{8}^{2} q^{4} - \zeta_{8} q^{5} + (\zeta_{8}^{3} + \zeta_{8} - 1) q^{6} + (2 \zeta_{8}^{2} + 2) q^{7} + \zeta_{8}^{3} q^{8} + (2 \zeta_{8}^{3} + \zeta_{8}^{2} - 2 \zeta_{8}) q^{9} - \zeta_{8}^{2} q^{10} + (2 \zeta_{8}^{2} - 2) q^{11} + (\zeta_{8}^{2} - \zeta_{8} - 1) q^{12} + ( - 3 \zeta_{8}^{3} + 2 \zeta_{8}) q^{13} + (2 \zeta_{8}^{3} + 2 \zeta_{8}) q^{14} + ( - \zeta_{8}^{3} - \zeta_{8} + 1) q^{15} - q^{16} + (2 \zeta_{8}^{3} - 2 \zeta_{8} - 2) q^{17} + (\zeta_{8}^{3} - 2 \zeta_{8}^{2} - 2) q^{18} - \zeta_{8}^{3} q^{20} + (2 \zeta_{8}^{3} + 4 \zeta_{8}^{2} - 2 \zeta_{8}) q^{21} + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{22} + ( - 2 \zeta_{8}^{3} + 2 \zeta_{8} + 4) q^{23} + (\zeta_{8}^{3} - \zeta_{8}^{2} - \zeta_{8}) q^{24} + \zeta_{8}^{2} q^{25} + (2 \zeta_{8}^{2} + 3) q^{26} + ( - \zeta_{8}^{2} - 5 \zeta_{8} + 1) q^{27} + (2 \zeta_{8}^{2} - 2) q^{28} + (4 \zeta_{8}^{3} - 2 \zeta_{8}^{2} + 4 \zeta_{8}) q^{29} + ( - \zeta_{8}^{2} + \zeta_{8} + 1) q^{30} + ( - 2 \zeta_{8}^{3} - 3 \zeta_{8}^{2} + 3) q^{31} - \zeta_{8} q^{32} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8} - 4) q^{33} + ( - 2 \zeta_{8}^{2} - 2 \zeta_{8} - 2) q^{34} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{35} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8} - 1) q^{36} + ( - 4 \zeta_{8}^{2} - 4) q^{37} + ( - \zeta_{8}^{3} + 3 \zeta_{8}^{2} + \cdots - 2) q^{39} + \cdots + ( - 8 \zeta_{8}^{3} - 2 \zeta_{8}^{2} - 2) q^{99} +O(q^{100})$$ q + z * q^2 + (z^3 + z^2 + 1) * q^3 + z^2 * q^4 - z * q^5 + (z^3 + z - 1) * q^6 + (2*z^2 + 2) * q^7 + z^3 * q^8 + (2*z^3 + z^2 - 2*z) * q^9 - z^2 * q^10 + (2*z^2 - 2) * q^11 + (z^2 - z - 1) * q^12 + (-3*z^3 + 2*z) * q^13 + (2*z^3 + 2*z) * q^14 + (-z^3 - z + 1) * q^15 - q^16 + (2*z^3 - 2*z - 2) * q^17 + (z^3 - 2*z^2 - 2) * q^18 - z^3 * q^20 + (2*z^3 + 4*z^2 - 2*z) * q^21 + (2*z^3 - 2*z) * q^22 + (-2*z^3 + 2*z + 4) * q^23 + (z^3 - z^2 - z) * q^24 + z^2 * q^25 + (2*z^2 + 3) * q^26 + (-z^2 - 5*z + 1) * q^27 + (2*z^2 - 2) * q^28 + (4*z^3 - 2*z^2 + 4*z) * q^29 + (-z^2 + z + 1) * q^30 + (-2*z^3 - 3*z^2 + 3) * q^31 - z * q^32 + (-2*z^3 - 2*z - 4) * q^33 + (-2*z^2 - 2*z - 2) * q^34 + (-2*z^3 - 2*z) * q^35 + (-2*z^3 - 2*z - 1) * q^36 + (-4*z^2 - 4) * q^37 + (-z^3 + 3*z^2 + 5*z - 2) * q^39 + q^40 + (5*z^2 - 4*z + 5) * q^41 + (4*z^3 - 2*z^2 - 2) * q^42 + (5*z^3 - 2*z^2 + 5*z) * q^43 + (-2*z^2 - 2) * q^44 + (-z^3 + 2*z^2 + 2) * q^45 + (2*z^2 + 4*z + 2) * q^46 + (-2*z^2 + 2) * q^47 + (-z^3 - z^2 - 1) * q^48 + z^2 * q^49 + z^3 * q^50 + (-2*z^3 - 4*z^2 - 4*z) * q^51 + (2*z^3 + 3*z) * q^52 + (-z^3 - 8*z^2 - z) * q^53 + (-z^3 - 5*z^2 + z) * q^54 + (-2*z^3 + 2*z) * q^55 + (2*z^3 - 2*z) * q^56 + (-2*z^3 + 4*z^2 - 4) * q^58 + (-4*z^2 + 4) * q^59 + (-z^3 + z^2 + z) * q^60 + (-2*z^3 + 2*z + 10) * q^61 + (-3*z^3 + 3*z + 2) * q^62 + (2*z^2 - 8*z - 2) * q^63 - z^2 * q^64 + (-2*z^2 - 3) * q^65 + (-2*z^2 - 4*z + 2) * q^66 + (-6*z^3 + 2*z^2 - 2) * q^67 + (-2*z^3 - 2*z^2 - 2*z) * q^68 + (4*z^3 + 6*z^2 + 4*z + 2) * q^69 + (-2*z^2 + 2) * q^70 + (9*z^2 + 2*z + 9) * q^71 + (-2*z^2 - z + 2) * q^72 + 14*z * q^73 + (-4*z^3 - 4*z) * q^74 + (z^2 - z - 1) * q^75 - 8 * q^77 + (3*z^3 + 5*z^2 - 2*z + 1) * q^78 + (2*z^3 - 2*z - 6) * q^79 + z * q^80 + (-4*z^3 - 4*z + 7) * q^81 + (5*z^3 - 4*z^2 + 5*z) * q^82 + (-4*z^2 + 4*z - 4) * q^83 + (-2*z^3 - 2*z - 4) * q^84 + (2*z^2 + 2*z + 2) * q^85 + (-2*z^3 + 5*z^2 - 5) * q^86 + (8*z^3 - 6*z^2 + 2*z - 2) * q^87 + (-2*z^3 - 2*z) * q^88 + (-8*z^3 + 3*z^2 - 3) * q^89 + (2*z^3 + 2*z + 1) * q^90 + (-2*z^3 + 10*z) * q^91 + (2*z^3 + 4*z^2 + 2*z) * q^92 + (z^3 + 2*z^2 + 5*z + 6) * q^93 + (-2*z^3 + 2*z) * q^94 + (-z^3 - z + 1) * q^96 + (-2*z^3 + 10*z^2 - 10) * q^97 + z^3 * q^98 + (-8*z^3 - 2*z^2 - 2) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 4 q^{3} - 4 q^{6} + 8 q^{7}+O(q^{10})$$ 4 * q + 4 * q^3 - 4 * q^6 + 8 * q^7 $$4 q + 4 q^{3} - 4 q^{6} + 8 q^{7} - 8 q^{11} - 4 q^{12} + 4 q^{15} - 4 q^{16} - 8 q^{17} - 8 q^{18} + 16 q^{23} + 12 q^{26} + 4 q^{27} - 8 q^{28} + 4 q^{30} + 12 q^{31} - 16 q^{33} - 8 q^{34} - 4 q^{36} - 16 q^{37} - 8 q^{39} + 4 q^{40} + 20 q^{41} - 8 q^{42} - 8 q^{44} + 8 q^{45} + 8 q^{46} + 8 q^{47} - 4 q^{48} - 16 q^{58} + 16 q^{59} + 40 q^{61} + 8 q^{62} - 8 q^{63} - 12 q^{65} + 8 q^{66} - 8 q^{67} + 8 q^{69} + 8 q^{70} + 36 q^{71} + 8 q^{72} - 4 q^{75} - 32 q^{77} + 4 q^{78} - 24 q^{79} + 28 q^{81} - 16 q^{83} - 16 q^{84} + 8 q^{85} - 20 q^{86} - 8 q^{87} - 12 q^{89} + 4 q^{90} + 24 q^{93} + 4 q^{96} - 40 q^{97} - 8 q^{99}+O(q^{100})$$ 4 * q + 4 * q^3 - 4 * q^6 + 8 * q^7 - 8 * q^11 - 4 * q^12 + 4 * q^15 - 4 * q^16 - 8 * q^17 - 8 * q^18 + 16 * q^23 + 12 * q^26 + 4 * q^27 - 8 * q^28 + 4 * q^30 + 12 * q^31 - 16 * q^33 - 8 * q^34 - 4 * q^36 - 16 * q^37 - 8 * q^39 + 4 * q^40 + 20 * q^41 - 8 * q^42 - 8 * q^44 + 8 * q^45 + 8 * q^46 + 8 * q^47 - 4 * q^48 - 16 * q^58 + 16 * q^59 + 40 * q^61 + 8 * q^62 - 8 * q^63 - 12 * q^65 + 8 * q^66 - 8 * q^67 + 8 * q^69 + 8 * q^70 + 36 * q^71 + 8 * q^72 - 4 * q^75 - 32 * q^77 + 4 * q^78 - 24 * q^79 + 28 * q^81 - 16 * q^83 - 16 * q^84 + 8 * q^85 - 20 * q^86 - 8 * q^87 - 12 * q^89 + 4 * q^90 + 24 * q^93 + 4 * q^96 - 40 * q^97 - 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/390\mathbb{Z}\right)^\times$$.

 $$n$$ $$131$$ $$157$$ $$301$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-\zeta_{8}^{2}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
161.1
 −0.707107 − 0.707107i 0.707107 + 0.707107i −0.707107 + 0.707107i 0.707107 − 0.707107i
−0.707107 0.707107i 1.70711 + 0.292893i 1.00000i 0.707107 + 0.707107i −1.00000 1.41421i 2.00000 + 2.00000i 0.707107 0.707107i 2.82843 + 1.00000i 1.00000i
161.2 0.707107 + 0.707107i 0.292893 + 1.70711i 1.00000i −0.707107 0.707107i −1.00000 + 1.41421i 2.00000 + 2.00000i −0.707107 + 0.707107i −2.82843 + 1.00000i 1.00000i
281.1 −0.707107 + 0.707107i 1.70711 0.292893i 1.00000i 0.707107 0.707107i −1.00000 + 1.41421i 2.00000 2.00000i 0.707107 + 0.707107i 2.82843 1.00000i 1.00000i
281.2 0.707107 0.707107i 0.292893 1.70711i 1.00000i −0.707107 + 0.707107i −1.00000 1.41421i 2.00000 2.00000i −0.707107 0.707107i −2.82843 1.00000i 1.00000i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
39.f even 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 390.2.p.e 4
3.b odd 2 1 390.2.p.f yes 4
13.d odd 4 1 390.2.p.f yes 4
39.f even 4 1 inner 390.2.p.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.p.e 4 1.a even 1 1 trivial
390.2.p.e 4 39.f even 4 1 inner
390.2.p.f yes 4 3.b odd 2 1
390.2.p.f yes 4 13.d odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(390, [\chi])$$:

 $$T_{7}^{2} - 4T_{7} + 8$$ T7^2 - 4*T7 + 8 $$T_{11}^{2} + 4T_{11} + 8$$ T11^2 + 4*T11 + 8 $$T_{17}^{2} + 4T_{17} - 4$$ T17^2 + 4*T17 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4} + 1$$
$3$ $$T^{4} - 4 T^{3} + \cdots + 9$$
$5$ $$T^{4} + 1$$
$7$ $$(T^{2} - 4 T + 8)^{2}$$
$11$ $$(T^{2} + 4 T + 8)^{2}$$
$13$ $$T^{4} - 24T^{2} + 169$$
$17$ $$(T^{2} + 4 T - 4)^{2}$$
$19$ $$T^{4}$$
$23$ $$(T^{2} - 8 T + 8)^{2}$$
$29$ $$T^{4} + 72T^{2} + 784$$
$31$ $$T^{4} - 12 T^{3} + \cdots + 196$$
$37$ $$(T^{2} + 8 T + 32)^{2}$$
$41$ $$T^{4} - 20 T^{3} + \cdots + 1156$$
$43$ $$T^{4} + 108T^{2} + 2116$$
$47$ $$(T^{2} - 4 T + 8)^{2}$$
$53$ $$T^{4} + 132T^{2} + 3844$$
$59$ $$(T^{2} - 8 T + 32)^{2}$$
$61$ $$(T^{2} - 20 T + 92)^{2}$$
$67$ $$T^{4} + 8 T^{3} + \cdots + 784$$
$71$ $$T^{4} - 36 T^{3} + \cdots + 24964$$
$73$ $$T^{4} + 38416$$
$79$ $$(T^{2} + 12 T + 28)^{2}$$
$83$ $$T^{4} + 16 T^{3} + \cdots + 256$$
$89$ $$T^{4} + 12 T^{3} + \cdots + 2116$$
$97$ $$T^{4} + 40 T^{3} + \cdots + 38416$$