Properties

Label 390.2.p.d.281.1
Level $390$
Weight $2$
Character 390.281
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(161,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 281.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.281
Dual form 390.2.p.d.161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.00000 + 1.41421i) q^{3} -1.00000i q^{4} +(-0.707107 + 0.707107i) q^{5} +(-1.70711 - 0.292893i) q^{6} +(0.707107 + 0.707107i) q^{8} +(-1.00000 + 2.82843i) q^{9} -1.00000i q^{10} +(1.41421 + 1.41421i) q^{11} +(1.41421 - 1.00000i) q^{12} +(-3.00000 + 2.00000i) q^{13} +(-1.70711 - 0.292893i) q^{15} -1.00000 q^{16} -4.24264 q^{17} +(-1.29289 - 2.70711i) q^{18} +(6.00000 + 6.00000i) q^{19} +(0.707107 + 0.707107i) q^{20} -2.00000 q^{22} -1.41421 q^{23} +(-0.292893 + 1.70711i) q^{24} -1.00000i q^{25} +(0.707107 - 3.53553i) q^{26} +(-5.00000 + 1.41421i) q^{27} +1.41421i q^{29} +(1.41421 - 1.00000i) q^{30} +(-3.00000 - 3.00000i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-0.585786 + 3.41421i) q^{33} +(3.00000 - 3.00000i) q^{34} +(2.82843 + 1.00000i) q^{36} +(5.00000 - 5.00000i) q^{37} -8.48528 q^{38} +(-5.82843 - 2.24264i) q^{39} -1.00000 q^{40} +(7.07107 - 7.07107i) q^{41} +4.00000i q^{43} +(1.41421 - 1.41421i) q^{44} +(-1.29289 - 2.70711i) q^{45} +(1.00000 - 1.00000i) q^{46} +(-4.24264 - 4.24264i) q^{47} +(-1.00000 - 1.41421i) q^{48} +7.00000i q^{49} +(0.707107 + 0.707107i) q^{50} +(-4.24264 - 6.00000i) q^{51} +(2.00000 + 3.00000i) q^{52} +11.3137i q^{53} +(2.53553 - 4.53553i) q^{54} -2.00000 q^{55} +(-2.48528 + 14.4853i) q^{57} +(-1.00000 - 1.00000i) q^{58} +(-2.82843 - 2.82843i) q^{59} +(-0.292893 + 1.70711i) q^{60} +2.00000 q^{61} +4.24264 q^{62} +1.00000i q^{64} +(0.707107 - 3.53553i) q^{65} +(-2.00000 - 2.82843i) q^{66} +(5.00000 + 5.00000i) q^{67} +4.24264i q^{68} +(-1.41421 - 2.00000i) q^{69} +(5.65685 - 5.65685i) q^{71} +(-2.70711 + 1.29289i) q^{72} +(6.00000 - 6.00000i) q^{73} +7.07107i q^{74} +(1.41421 - 1.00000i) q^{75} +(6.00000 - 6.00000i) q^{76} +(5.70711 - 2.53553i) q^{78} +8.00000 q^{79} +(0.707107 - 0.707107i) q^{80} +(-7.00000 - 5.65685i) q^{81} +10.0000i q^{82} +(5.65685 - 5.65685i) q^{83} +(3.00000 - 3.00000i) q^{85} +(-2.82843 - 2.82843i) q^{86} +(-2.00000 + 1.41421i) q^{87} +2.00000i q^{88} +(4.24264 + 4.24264i) q^{89} +(2.82843 + 1.00000i) q^{90} +1.41421i q^{92} +(1.24264 - 7.24264i) q^{93} +6.00000 q^{94} -8.48528 q^{95} +(1.70711 + 0.292893i) q^{96} +(10.0000 + 10.0000i) q^{97} +(-4.94975 - 4.94975i) q^{98} +(-5.41421 + 2.58579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{6} - 4 q^{9} - 12 q^{13} - 4 q^{15} - 4 q^{16} - 8 q^{18} + 24 q^{19} - 8 q^{22} - 4 q^{24} - 20 q^{27} - 12 q^{31} - 8 q^{33} + 12 q^{34} + 20 q^{37} - 12 q^{39} - 4 q^{40} - 8 q^{45}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 1.00000 + 1.41421i 0.577350 + 0.816497i
\(4\) 1.00000i 0.500000i
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) −1.70711 0.292893i −0.696923 0.119573i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) 1.00000i 0.316228i
\(11\) 1.41421 + 1.41421i 0.426401 + 0.426401i 0.887401 0.460999i \(-0.152509\pi\)
−0.460999 + 0.887401i \(0.652509\pi\)
\(12\) 1.41421 1.00000i 0.408248 0.288675i
\(13\) −3.00000 + 2.00000i −0.832050 + 0.554700i
\(14\) 0 0
\(15\) −1.70711 0.292893i −0.440773 0.0756247i
\(16\) −1.00000 −0.250000
\(17\) −4.24264 −1.02899 −0.514496 0.857493i \(-0.672021\pi\)
−0.514496 + 0.857493i \(0.672021\pi\)
\(18\) −1.29289 2.70711i −0.304738 0.638071i
\(19\) 6.00000 + 6.00000i 1.37649 + 1.37649i 0.850469 + 0.526026i \(0.176318\pi\)
0.526026 + 0.850469i \(0.323682\pi\)
\(20\) 0.707107 + 0.707107i 0.158114 + 0.158114i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −1.41421 −0.294884 −0.147442 0.989071i \(-0.547104\pi\)
−0.147442 + 0.989071i \(0.547104\pi\)
\(24\) −0.292893 + 1.70711i −0.0597866 + 0.348462i
\(25\) 1.00000i 0.200000i
\(26\) 0.707107 3.53553i 0.138675 0.693375i
\(27\) −5.00000 + 1.41421i −0.962250 + 0.272166i
\(28\) 0 0
\(29\) 1.41421i 0.262613i 0.991342 + 0.131306i \(0.0419172\pi\)
−0.991342 + 0.131306i \(0.958083\pi\)
\(30\) 1.41421 1.00000i 0.258199 0.182574i
\(31\) −3.00000 3.00000i −0.538816 0.538816i 0.384365 0.923181i \(-0.374420\pi\)
−0.923181 + 0.384365i \(0.874420\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −0.585786 + 3.41421i −0.101972 + 0.594338i
\(34\) 3.00000 3.00000i 0.514496 0.514496i
\(35\) 0 0
\(36\) 2.82843 + 1.00000i 0.471405 + 0.166667i
\(37\) 5.00000 5.00000i 0.821995 0.821995i −0.164399 0.986394i \(-0.552568\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) −8.48528 −1.37649
\(39\) −5.82843 2.24264i −0.933295 0.359110i
\(40\) −1.00000 −0.158114
\(41\) 7.07107 7.07107i 1.10432 1.10432i 0.110432 0.993884i \(-0.464777\pi\)
0.993884 0.110432i \(-0.0352233\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 1.41421 1.41421i 0.213201 0.213201i
\(45\) −1.29289 2.70711i −0.192733 0.403552i
\(46\) 1.00000 1.00000i 0.147442 0.147442i
\(47\) −4.24264 4.24264i −0.618853 0.618853i 0.326384 0.945237i \(-0.394170\pi\)
−0.945237 + 0.326384i \(0.894170\pi\)
\(48\) −1.00000 1.41421i −0.144338 0.204124i
\(49\) 7.00000i 1.00000i
\(50\) 0.707107 + 0.707107i 0.100000 + 0.100000i
\(51\) −4.24264 6.00000i −0.594089 0.840168i
\(52\) 2.00000 + 3.00000i 0.277350 + 0.416025i
\(53\) 11.3137i 1.55406i 0.629465 + 0.777029i \(0.283274\pi\)
−0.629465 + 0.777029i \(0.716726\pi\)
\(54\) 2.53553 4.53553i 0.345042 0.617208i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) −2.48528 + 14.4853i −0.329184 + 1.91862i
\(58\) −1.00000 1.00000i −0.131306 0.131306i
\(59\) −2.82843 2.82843i −0.368230 0.368230i 0.498601 0.866831i \(-0.333847\pi\)
−0.866831 + 0.498601i \(0.833847\pi\)
\(60\) −0.292893 + 1.70711i −0.0378124 + 0.220387i
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 4.24264 0.538816
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.707107 3.53553i 0.0877058 0.438529i
\(66\) −2.00000 2.82843i −0.246183 0.348155i
\(67\) 5.00000 + 5.00000i 0.610847 + 0.610847i 0.943167 0.332320i \(-0.107831\pi\)
−0.332320 + 0.943167i \(0.607831\pi\)
\(68\) 4.24264i 0.514496i
\(69\) −1.41421 2.00000i −0.170251 0.240772i
\(70\) 0 0
\(71\) 5.65685 5.65685i 0.671345 0.671345i −0.286681 0.958026i \(-0.592552\pi\)
0.958026 + 0.286681i \(0.0925520\pi\)
\(72\) −2.70711 + 1.29289i −0.319036 + 0.152369i
\(73\) 6.00000 6.00000i 0.702247 0.702247i −0.262646 0.964892i \(-0.584595\pi\)
0.964892 + 0.262646i \(0.0845950\pi\)
\(74\) 7.07107i 0.821995i
\(75\) 1.41421 1.00000i 0.163299 0.115470i
\(76\) 6.00000 6.00000i 0.688247 0.688247i
\(77\) 0 0
\(78\) 5.70711 2.53553i 0.646203 0.287093i
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0.707107 0.707107i 0.0790569 0.0790569i
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 10.0000i 1.10432i
\(83\) 5.65685 5.65685i 0.620920 0.620920i −0.324846 0.945767i \(-0.605313\pi\)
0.945767 + 0.324846i \(0.105313\pi\)
\(84\) 0 0
\(85\) 3.00000 3.00000i 0.325396 0.325396i
\(86\) −2.82843 2.82843i −0.304997 0.304997i
\(87\) −2.00000 + 1.41421i −0.214423 + 0.151620i
\(88\) 2.00000i 0.213201i
\(89\) 4.24264 + 4.24264i 0.449719 + 0.449719i 0.895261 0.445542i \(-0.146989\pi\)
−0.445542 + 0.895261i \(0.646989\pi\)
\(90\) 2.82843 + 1.00000i 0.298142 + 0.105409i
\(91\) 0 0
\(92\) 1.41421i 0.147442i
\(93\) 1.24264 7.24264i 0.128856 0.751027i
\(94\) 6.00000 0.618853
\(95\) −8.48528 −0.870572
\(96\) 1.70711 + 0.292893i 0.174231 + 0.0298933i
\(97\) 10.0000 + 10.0000i 1.01535 + 1.01535i 0.999880 + 0.0154658i \(0.00492310\pi\)
0.0154658 + 0.999880i \(0.495077\pi\)
\(98\) −4.94975 4.94975i −0.500000 0.500000i
\(99\) −5.41421 + 2.58579i −0.544149 + 0.259881i
\(100\) −1.00000 −0.100000
\(101\) 15.5563 1.54791 0.773957 0.633238i \(-0.218274\pi\)
0.773957 + 0.633238i \(0.218274\pi\)
\(102\) 7.24264 + 1.24264i 0.717128 + 0.123040i
\(103\) 8.00000i 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) −3.53553 0.707107i −0.346688 0.0693375i
\(105\) 0 0
\(106\) −8.00000 8.00000i −0.777029 0.777029i
\(107\) 11.3137i 1.09374i −0.837218 0.546869i \(-0.815820\pi\)
0.837218 0.546869i \(-0.184180\pi\)
\(108\) 1.41421 + 5.00000i 0.136083 + 0.481125i
\(109\) 2.00000 + 2.00000i 0.191565 + 0.191565i 0.796372 0.604807i \(-0.206750\pi\)
−0.604807 + 0.796372i \(0.706750\pi\)
\(110\) 1.41421 1.41421i 0.134840 0.134840i
\(111\) 12.0711 + 2.07107i 1.14574 + 0.196577i
\(112\) 0 0
\(113\) 7.07107i 0.665190i 0.943070 + 0.332595i \(0.107924\pi\)
−0.943070 + 0.332595i \(0.892076\pi\)
\(114\) −8.48528 12.0000i −0.794719 1.12390i
\(115\) 1.00000 1.00000i 0.0932505 0.0932505i
\(116\) 1.41421 0.131306
\(117\) −2.65685 10.4853i −0.245626 0.969365i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) −1.00000 1.41421i −0.0912871 0.129099i
\(121\) 7.00000i 0.636364i
\(122\) −1.41421 + 1.41421i −0.128037 + 0.128037i
\(123\) 17.0711 + 2.92893i 1.53925 + 0.264093i
\(124\) −3.00000 + 3.00000i −0.269408 + 0.269408i
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 4.00000i 0.354943i −0.984126 0.177471i \(-0.943208\pi\)
0.984126 0.177471i \(-0.0567917\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) −5.65685 + 4.00000i −0.498058 + 0.352180i
\(130\) 2.00000 + 3.00000i 0.175412 + 0.263117i
\(131\) 7.07107i 0.617802i −0.951094 0.308901i \(-0.900039\pi\)
0.951094 0.308901i \(-0.0999612\pi\)
\(132\) 3.41421 + 0.585786i 0.297169 + 0.0509862i
\(133\) 0 0
\(134\) −7.07107 −0.610847
\(135\) 2.53553 4.53553i 0.218224 0.390357i
\(136\) −3.00000 3.00000i −0.257248 0.257248i
\(137\) 14.1421 + 14.1421i 1.20824 + 1.20824i 0.971595 + 0.236649i \(0.0760491\pi\)
0.236649 + 0.971595i \(0.423951\pi\)
\(138\) 2.41421 + 0.414214i 0.205512 + 0.0352602i
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 1.75736 10.2426i 0.147996 0.862586i
\(142\) 8.00000i 0.671345i
\(143\) −7.07107 1.41421i −0.591312 0.118262i
\(144\) 1.00000 2.82843i 0.0833333 0.235702i
\(145\) −1.00000 1.00000i −0.0830455 0.0830455i
\(146\) 8.48528i 0.702247i
\(147\) −9.89949 + 7.00000i −0.816497 + 0.577350i
\(148\) −5.00000 5.00000i −0.410997 0.410997i
\(149\) 7.07107 7.07107i 0.579284 0.579284i −0.355422 0.934706i \(-0.615663\pi\)
0.934706 + 0.355422i \(0.115663\pi\)
\(150\) −0.292893 + 1.70711i −0.0239146 + 0.139385i
\(151\) −13.0000 + 13.0000i −1.05792 + 1.05792i −0.0597092 + 0.998216i \(0.519017\pi\)
−0.998216 + 0.0597092i \(0.980983\pi\)
\(152\) 8.48528i 0.688247i
\(153\) 4.24264 12.0000i 0.342997 0.970143i
\(154\) 0 0
\(155\) 4.24264 0.340777
\(156\) −2.24264 + 5.82843i −0.179555 + 0.466648i
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) −5.65685 + 5.65685i −0.450035 + 0.450035i
\(159\) −16.0000 + 11.3137i −1.26888 + 0.897235i
\(160\) 1.00000i 0.0790569i
\(161\) 0 0
\(162\) 8.94975 0.949747i 0.703159 0.0746192i
\(163\) −11.0000 + 11.0000i −0.861586 + 0.861586i −0.991522 0.129936i \(-0.958523\pi\)
0.129936 + 0.991522i \(0.458523\pi\)
\(164\) −7.07107 7.07107i −0.552158 0.552158i
\(165\) −2.00000 2.82843i −0.155700 0.220193i
\(166\) 8.00000i 0.620920i
\(167\) −11.3137 11.3137i −0.875481 0.875481i 0.117582 0.993063i \(-0.462486\pi\)
−0.993063 + 0.117582i \(0.962486\pi\)
\(168\) 0 0
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 4.24264i 0.325396i
\(171\) −22.9706 + 10.9706i −1.75660 + 0.838940i
\(172\) 4.00000 0.304997
\(173\) −2.82843 −0.215041 −0.107521 0.994203i \(-0.534291\pi\)
−0.107521 + 0.994203i \(0.534291\pi\)
\(174\) 0.414214 2.41421i 0.0314014 0.183021i
\(175\) 0 0
\(176\) −1.41421 1.41421i −0.106600 0.106600i
\(177\) 1.17157 6.82843i 0.0880608 0.513256i
\(178\) −6.00000 −0.449719
\(179\) 18.3848 1.37414 0.687071 0.726590i \(-0.258896\pi\)
0.687071 + 0.726590i \(0.258896\pi\)
\(180\) −2.70711 + 1.29289i −0.201776 + 0.0963666i
\(181\) 18.0000i 1.33793i −0.743294 0.668965i \(-0.766738\pi\)
0.743294 0.668965i \(-0.233262\pi\)
\(182\) 0 0
\(183\) 2.00000 + 2.82843i 0.147844 + 0.209083i
\(184\) −1.00000 1.00000i −0.0737210 0.0737210i
\(185\) 7.07107i 0.519875i
\(186\) 4.24264 + 6.00000i 0.311086 + 0.439941i
\(187\) −6.00000 6.00000i −0.438763 0.438763i
\(188\) −4.24264 + 4.24264i −0.309426 + 0.309426i
\(189\) 0 0
\(190\) 6.00000 6.00000i 0.435286 0.435286i
\(191\) 19.7990i 1.43260i 0.697790 + 0.716302i \(0.254167\pi\)
−0.697790 + 0.716302i \(0.745833\pi\)
\(192\) −1.41421 + 1.00000i −0.102062 + 0.0721688i
\(193\) −6.00000 + 6.00000i −0.431889 + 0.431889i −0.889271 0.457381i \(-0.848787\pi\)
0.457381 + 0.889271i \(0.348787\pi\)
\(194\) −14.1421 −1.01535
\(195\) 5.70711 2.53553i 0.408694 0.181573i
\(196\) 7.00000 0.500000
\(197\) −9.89949 + 9.89949i −0.705310 + 0.705310i −0.965545 0.260235i \(-0.916200\pi\)
0.260235 + 0.965545i \(0.416200\pi\)
\(198\) 2.00000 5.65685i 0.142134 0.402015i
\(199\) 2.00000i 0.141776i −0.997484 0.0708881i \(-0.977417\pi\)
0.997484 0.0708881i \(-0.0225833\pi\)
\(200\) 0.707107 0.707107i 0.0500000 0.0500000i
\(201\) −2.07107 + 12.0711i −0.146082 + 0.851427i
\(202\) −11.0000 + 11.0000i −0.773957 + 0.773957i
\(203\) 0 0
\(204\) −6.00000 + 4.24264i −0.420084 + 0.297044i
\(205\) 10.0000i 0.698430i
\(206\) 5.65685 + 5.65685i 0.394132 + 0.394132i
\(207\) 1.41421 4.00000i 0.0982946 0.278019i
\(208\) 3.00000 2.00000i 0.208013 0.138675i
\(209\) 16.9706i 1.17388i
\(210\) 0 0
\(211\) −24.0000 −1.65223 −0.826114 0.563503i \(-0.809453\pi\)
−0.826114 + 0.563503i \(0.809453\pi\)
\(212\) 11.3137 0.777029
\(213\) 13.6569 + 2.34315i 0.935752 + 0.160550i
\(214\) 8.00000 + 8.00000i 0.546869 + 0.546869i
\(215\) −2.82843 2.82843i −0.192897 0.192897i
\(216\) −4.53553 2.53553i −0.308604 0.172521i
\(217\) 0 0
\(218\) −2.82843 −0.191565
\(219\) 14.4853 + 2.48528i 0.978825 + 0.167940i
\(220\) 2.00000i 0.134840i
\(221\) 12.7279 8.48528i 0.856173 0.570782i
\(222\) −10.0000 + 7.07107i −0.671156 + 0.474579i
\(223\) −10.0000 10.0000i −0.669650 0.669650i 0.287985 0.957635i \(-0.407015\pi\)
−0.957635 + 0.287985i \(0.907015\pi\)
\(224\) 0 0
\(225\) 2.82843 + 1.00000i 0.188562 + 0.0666667i
\(226\) −5.00000 5.00000i −0.332595 0.332595i
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 14.4853 + 2.48528i 0.959311 + 0.164592i
\(229\) 6.00000 6.00000i 0.396491 0.396491i −0.480502 0.876993i \(-0.659546\pi\)
0.876993 + 0.480502i \(0.159546\pi\)
\(230\) 1.41421i 0.0932505i
\(231\) 0 0
\(232\) −1.00000 + 1.00000i −0.0656532 + 0.0656532i
\(233\) −18.3848 −1.20443 −0.602213 0.798335i \(-0.705714\pi\)
−0.602213 + 0.798335i \(0.705714\pi\)
\(234\) 9.29289 + 5.53553i 0.607495 + 0.361869i
\(235\) 6.00000 0.391397
\(236\) −2.82843 + 2.82843i −0.184115 + 0.184115i
\(237\) 8.00000 + 11.3137i 0.519656 + 0.734904i
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 1.70711 + 0.292893i 0.110193 + 0.0189062i
\(241\) −1.00000 + 1.00000i −0.0644157 + 0.0644157i −0.738581 0.674165i \(-0.764504\pi\)
0.674165 + 0.738581i \(0.264504\pi\)
\(242\) 4.94975 + 4.94975i 0.318182 + 0.318182i
\(243\) 1.00000 15.5563i 0.0641500 0.997940i
\(244\) 2.00000i 0.128037i
\(245\) −4.94975 4.94975i −0.316228 0.316228i
\(246\) −14.1421 + 10.0000i −0.901670 + 0.637577i
\(247\) −30.0000 6.00000i −1.90885 0.381771i
\(248\) 4.24264i 0.269408i
\(249\) 13.6569 + 2.34315i 0.865468 + 0.148491i
\(250\) −1.00000 −0.0632456
\(251\) 4.24264 0.267793 0.133897 0.990995i \(-0.457251\pi\)
0.133897 + 0.990995i \(0.457251\pi\)
\(252\) 0 0
\(253\) −2.00000 2.00000i −0.125739 0.125739i
\(254\) 2.82843 + 2.82843i 0.177471 + 0.177471i
\(255\) 7.24264 + 1.24264i 0.453552 + 0.0778172i
\(256\) 1.00000 0.0625000
\(257\) −1.41421 −0.0882162 −0.0441081 0.999027i \(-0.514045\pi\)
−0.0441081 + 0.999027i \(0.514045\pi\)
\(258\) 1.17157 6.82843i 0.0729389 0.425119i
\(259\) 0 0
\(260\) −3.53553 0.707107i −0.219265 0.0438529i
\(261\) −4.00000 1.41421i −0.247594 0.0875376i
\(262\) 5.00000 + 5.00000i 0.308901 + 0.308901i
\(263\) 4.24264i 0.261612i −0.991408 0.130806i \(-0.958243\pi\)
0.991408 0.130806i \(-0.0417566\pi\)
\(264\) −2.82843 + 2.00000i −0.174078 + 0.123091i
\(265\) −8.00000 8.00000i −0.491436 0.491436i
\(266\) 0 0
\(267\) −1.75736 + 10.2426i −0.107549 + 0.626839i
\(268\) 5.00000 5.00000i 0.305424 0.305424i
\(269\) 1.41421i 0.0862261i 0.999070 + 0.0431131i \(0.0137276\pi\)
−0.999070 + 0.0431131i \(0.986272\pi\)
\(270\) 1.41421 + 5.00000i 0.0860663 + 0.304290i
\(271\) −3.00000 + 3.00000i −0.182237 + 0.182237i −0.792330 0.610093i \(-0.791132\pi\)
0.610093 + 0.792330i \(0.291132\pi\)
\(272\) 4.24264 0.257248
\(273\) 0 0
\(274\) −20.0000 −1.20824
\(275\) 1.41421 1.41421i 0.0852803 0.0852803i
\(276\) −2.00000 + 1.41421i −0.120386 + 0.0851257i
\(277\) 28.0000i 1.68236i −0.540758 0.841178i \(-0.681862\pi\)
0.540758 0.841178i \(-0.318138\pi\)
\(278\) 11.3137 11.3137i 0.678551 0.678551i
\(279\) 11.4853 5.48528i 0.687606 0.328395i
\(280\) 0 0
\(281\) −12.7279 12.7279i −0.759284 0.759284i 0.216908 0.976192i \(-0.430403\pi\)
−0.976192 + 0.216908i \(0.930403\pi\)
\(282\) 6.00000 + 8.48528i 0.357295 + 0.505291i
\(283\) 6.00000i 0.356663i 0.983970 + 0.178331i \(0.0570699\pi\)
−0.983970 + 0.178331i \(0.942930\pi\)
\(284\) −5.65685 5.65685i −0.335673 0.335673i
\(285\) −8.48528 12.0000i −0.502625 0.710819i
\(286\) 6.00000 4.00000i 0.354787 0.236525i
\(287\) 0 0
\(288\) 1.29289 + 2.70711i 0.0761845 + 0.159518i
\(289\) 1.00000 0.0588235
\(290\) 1.41421 0.0830455
\(291\) −4.14214 + 24.1421i −0.242816 + 1.41524i
\(292\) −6.00000 6.00000i −0.351123 0.351123i
\(293\) 9.89949 + 9.89949i 0.578335 + 0.578335i 0.934444 0.356110i \(-0.115897\pi\)
−0.356110 + 0.934444i \(0.615897\pi\)
\(294\) 2.05025 11.9497i 0.119573 0.696923i
\(295\) 4.00000 0.232889
\(296\) 7.07107 0.410997
\(297\) −9.07107 5.07107i −0.526357 0.294253i
\(298\) 10.0000i 0.579284i
\(299\) 4.24264 2.82843i 0.245358 0.163572i
\(300\) −1.00000 1.41421i −0.0577350 0.0816497i
\(301\) 0 0
\(302\) 18.3848i 1.05792i
\(303\) 15.5563 + 22.0000i 0.893689 + 1.26387i
\(304\) −6.00000 6.00000i −0.344124 0.344124i
\(305\) −1.41421 + 1.41421i −0.0809776 + 0.0809776i
\(306\) 5.48528 + 11.4853i 0.313573 + 0.656570i
\(307\) 23.0000 23.0000i 1.31268 1.31268i 0.393246 0.919433i \(-0.371352\pi\)
0.919433 0.393246i \(-0.128648\pi\)
\(308\) 0 0
\(309\) 11.3137 8.00000i 0.643614 0.455104i
\(310\) −3.00000 + 3.00000i −0.170389 + 0.170389i
\(311\) −2.82843 −0.160385 −0.0801927 0.996779i \(-0.525554\pi\)
−0.0801927 + 0.996779i \(0.525554\pi\)
\(312\) −2.53553 5.70711i −0.143546 0.323101i
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 4.24264 4.24264i 0.239426 0.239426i
\(315\) 0 0
\(316\) 8.00000i 0.450035i
\(317\) 18.3848 18.3848i 1.03259 1.03259i 0.0331412 0.999451i \(-0.489449\pi\)
0.999451 0.0331412i \(-0.0105511\pi\)
\(318\) 3.31371 19.3137i 0.185824 1.08306i
\(319\) −2.00000 + 2.00000i −0.111979 + 0.111979i
\(320\) −0.707107 0.707107i −0.0395285 0.0395285i
\(321\) 16.0000 11.3137i 0.893033 0.631470i
\(322\) 0 0
\(323\) −25.4558 25.4558i −1.41640 1.41640i
\(324\) −5.65685 + 7.00000i −0.314270 + 0.388889i
\(325\) 2.00000 + 3.00000i 0.110940 + 0.166410i
\(326\) 15.5563i 0.861586i
\(327\) −0.828427 + 4.82843i −0.0458121 + 0.267013i
\(328\) 10.0000 0.552158
\(329\) 0 0
\(330\) 3.41421 + 0.585786i 0.187946 + 0.0322465i
\(331\) 24.0000 + 24.0000i 1.31916 + 1.31916i 0.914442 + 0.404718i \(0.132630\pi\)
0.404718 + 0.914442i \(0.367370\pi\)
\(332\) −5.65685 5.65685i −0.310460 0.310460i
\(333\) 9.14214 + 19.1421i 0.500986 + 1.04898i
\(334\) 16.0000 0.875481
\(335\) −7.07107 −0.386334
\(336\) 0 0
\(337\) 14.0000i 0.762629i −0.924445 0.381314i \(-0.875472\pi\)
0.924445 0.381314i \(-0.124528\pi\)
\(338\) 4.94975 + 12.0208i 0.269231 + 0.653846i
\(339\) −10.0000 + 7.07107i −0.543125 + 0.384048i
\(340\) −3.00000 3.00000i −0.162698 0.162698i
\(341\) 8.48528i 0.459504i
\(342\) 8.48528 24.0000i 0.458831 1.29777i
\(343\) 0 0
\(344\) −2.82843 + 2.82843i −0.152499 + 0.152499i
\(345\) 2.41421 + 0.414214i 0.129977 + 0.0223005i
\(346\) 2.00000 2.00000i 0.107521 0.107521i
\(347\) 11.3137i 0.607352i 0.952775 + 0.303676i \(0.0982140\pi\)
−0.952775 + 0.303676i \(0.901786\pi\)
\(348\) 1.41421 + 2.00000i 0.0758098 + 0.107211i
\(349\) −12.0000 + 12.0000i −0.642345 + 0.642345i −0.951131 0.308786i \(-0.900077\pi\)
0.308786 + 0.951131i \(0.400077\pi\)
\(350\) 0 0
\(351\) 12.1716 14.2426i 0.649670 0.760216i
\(352\) 2.00000 0.106600
\(353\) −25.4558 + 25.4558i −1.35488 + 1.35488i −0.474766 + 0.880112i \(0.657467\pi\)
−0.880112 + 0.474766i \(0.842533\pi\)
\(354\) 4.00000 + 5.65685i 0.212598 + 0.300658i
\(355\) 8.00000i 0.424596i
\(356\) 4.24264 4.24264i 0.224860 0.224860i
\(357\) 0 0
\(358\) −13.0000 + 13.0000i −0.687071 + 0.687071i
\(359\) −16.9706 16.9706i −0.895672 0.895672i 0.0993777 0.995050i \(-0.468315\pi\)
−0.995050 + 0.0993777i \(0.968315\pi\)
\(360\) 1.00000 2.82843i 0.0527046 0.149071i
\(361\) 53.0000i 2.78947i
\(362\) 12.7279 + 12.7279i 0.668965 + 0.668965i
\(363\) 9.89949 7.00000i 0.519589 0.367405i
\(364\) 0 0
\(365\) 8.48528i 0.444140i
\(366\) −3.41421 0.585786i −0.178464 0.0306195i
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 1.41421 0.0737210
\(369\) 12.9289 + 27.0711i 0.673053 + 1.40926i
\(370\) −5.00000 5.00000i −0.259938 0.259938i
\(371\) 0 0
\(372\) −7.24264 1.24264i −0.375513 0.0644279i
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 8.48528 0.438763
\(375\) −0.292893 + 1.70711i −0.0151249 + 0.0881546i
\(376\) 6.00000i 0.309426i
\(377\) −2.82843 4.24264i −0.145671 0.218507i
\(378\) 0 0
\(379\) 16.0000 + 16.0000i 0.821865 + 0.821865i 0.986375 0.164511i \(-0.0526045\pi\)
−0.164511 + 0.986375i \(0.552604\pi\)
\(380\) 8.48528i 0.435286i
\(381\) 5.65685 4.00000i 0.289809 0.204926i
\(382\) −14.0000 14.0000i −0.716302 0.716302i
\(383\) 16.9706 16.9706i 0.867155 0.867155i −0.125001 0.992157i \(-0.539894\pi\)
0.992157 + 0.125001i \(0.0398935\pi\)
\(384\) 0.292893 1.70711i 0.0149466 0.0871154i
\(385\) 0 0
\(386\) 8.48528i 0.431889i
\(387\) −11.3137 4.00000i −0.575108 0.203331i
\(388\) 10.0000 10.0000i 0.507673 0.507673i
\(389\) 26.8701 1.36237 0.681183 0.732113i \(-0.261466\pi\)
0.681183 + 0.732113i \(0.261466\pi\)
\(390\) −2.24264 + 5.82843i −0.113561 + 0.295134i
\(391\) 6.00000 0.303433
\(392\) −4.94975 + 4.94975i −0.250000 + 0.250000i
\(393\) 10.0000 7.07107i 0.504433 0.356688i
\(394\) 14.0000i 0.705310i
\(395\) −5.65685 + 5.65685i −0.284627 + 0.284627i
\(396\) 2.58579 + 5.41421i 0.129941 + 0.272074i
\(397\) 3.00000 3.00000i 0.150566 0.150566i −0.627805 0.778371i \(-0.716046\pi\)
0.778371 + 0.627805i \(0.216046\pi\)
\(398\) 1.41421 + 1.41421i 0.0708881 + 0.0708881i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) −4.24264 4.24264i −0.211867 0.211867i 0.593193 0.805060i \(-0.297867\pi\)
−0.805060 + 0.593193i \(0.797867\pi\)
\(402\) −7.07107 10.0000i −0.352673 0.498755i
\(403\) 15.0000 + 3.00000i 0.747203 + 0.149441i
\(404\) 15.5563i 0.773957i
\(405\) 8.94975 0.949747i 0.444717 0.0471933i
\(406\) 0 0
\(407\) 14.1421 0.701000
\(408\) 1.24264 7.24264i 0.0615199 0.358564i
\(409\) −3.00000 3.00000i −0.148340 0.148340i 0.629036 0.777376i \(-0.283450\pi\)
−0.777376 + 0.629036i \(0.783450\pi\)
\(410\) −7.07107 7.07107i −0.349215 0.349215i
\(411\) −5.85786 + 34.1421i −0.288947 + 1.68411i
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) 1.82843 + 3.82843i 0.0898623 + 0.188157i
\(415\) 8.00000i 0.392705i
\(416\) −0.707107 + 3.53553i −0.0346688 + 0.173344i
\(417\) −16.0000 22.6274i −0.783523 1.10807i
\(418\) −12.0000 12.0000i −0.586939 0.586939i
\(419\) 15.5563i 0.759977i −0.924991 0.379989i \(-0.875928\pi\)
0.924991 0.379989i \(-0.124072\pi\)
\(420\) 0 0
\(421\) 12.0000 + 12.0000i 0.584844 + 0.584844i 0.936231 0.351386i \(-0.114290\pi\)
−0.351386 + 0.936231i \(0.614290\pi\)
\(422\) 16.9706 16.9706i 0.826114 0.826114i
\(423\) 16.2426 7.75736i 0.789744 0.377176i
\(424\) −8.00000 + 8.00000i −0.388514 + 0.388514i
\(425\) 4.24264i 0.205798i
\(426\) −11.3137 + 8.00000i −0.548151 + 0.387601i
\(427\) 0 0
\(428\) −11.3137 −0.546869
\(429\) −5.07107 11.4142i −0.244833 0.551083i
\(430\) 4.00000 0.192897
\(431\) −25.4558 + 25.4558i −1.22616 + 1.22616i −0.260762 + 0.965403i \(0.583974\pi\)
−0.965403 + 0.260762i \(0.916026\pi\)
\(432\) 5.00000 1.41421i 0.240563 0.0680414i
\(433\) 14.0000i 0.672797i 0.941720 + 0.336399i \(0.109209\pi\)
−0.941720 + 0.336399i \(0.890791\pi\)
\(434\) 0 0
\(435\) 0.414214 2.41421i 0.0198600 0.115753i
\(436\) 2.00000 2.00000i 0.0957826 0.0957826i
\(437\) −8.48528 8.48528i −0.405906 0.405906i
\(438\) −12.0000 + 8.48528i −0.573382 + 0.405442i
\(439\) 6.00000i 0.286364i −0.989696 0.143182i \(-0.954267\pi\)
0.989696 0.143182i \(-0.0457335\pi\)
\(440\) −1.41421 1.41421i −0.0674200 0.0674200i
\(441\) −19.7990 7.00000i −0.942809 0.333333i
\(442\) −3.00000 + 15.0000i −0.142695 + 0.713477i
\(443\) 8.48528i 0.403148i 0.979473 + 0.201574i \(0.0646056\pi\)
−0.979473 + 0.201574i \(0.935394\pi\)
\(444\) 2.07107 12.0711i 0.0982885 0.572868i
\(445\) −6.00000 −0.284427
\(446\) 14.1421 0.669650
\(447\) 17.0711 + 2.92893i 0.807434 + 0.138534i
\(448\) 0 0
\(449\) 12.7279 + 12.7279i 0.600668 + 0.600668i 0.940490 0.339822i \(-0.110367\pi\)
−0.339822 + 0.940490i \(0.610367\pi\)
\(450\) −2.70711 + 1.29289i −0.127614 + 0.0609476i
\(451\) 20.0000 0.941763
\(452\) 7.07107 0.332595
\(453\) −31.3848 5.38478i −1.47459 0.252999i
\(454\) 0 0
\(455\) 0 0
\(456\) −12.0000 + 8.48528i −0.561951 + 0.397360i
\(457\) 6.00000 + 6.00000i 0.280668 + 0.280668i 0.833375 0.552707i \(-0.186405\pi\)
−0.552707 + 0.833375i \(0.686405\pi\)
\(458\) 8.48528i 0.396491i
\(459\) 21.2132 6.00000i 0.990148 0.280056i
\(460\) −1.00000 1.00000i −0.0466252 0.0466252i
\(461\) 2.82843 2.82843i 0.131733 0.131733i −0.638166 0.769899i \(-0.720307\pi\)
0.769899 + 0.638166i \(0.220307\pi\)
\(462\) 0 0
\(463\) 22.0000 22.0000i 1.02243 1.02243i 0.0226840 0.999743i \(-0.492779\pi\)
0.999743 0.0226840i \(-0.00722117\pi\)
\(464\) 1.41421i 0.0656532i
\(465\) 4.24264 + 6.00000i 0.196748 + 0.278243i
\(466\) 13.0000 13.0000i 0.602213 0.602213i
\(467\) −2.82843 −0.130884 −0.0654420 0.997856i \(-0.520846\pi\)
−0.0654420 + 0.997856i \(0.520846\pi\)
\(468\) −10.4853 + 2.65685i −0.484682 + 0.122813i
\(469\) 0 0
\(470\) −4.24264 + 4.24264i −0.195698 + 0.195698i
\(471\) −6.00000 8.48528i −0.276465 0.390981i
\(472\) 4.00000i 0.184115i
\(473\) −5.65685 + 5.65685i −0.260102 + 0.260102i
\(474\) −13.6569 2.34315i −0.627280 0.107624i
\(475\) 6.00000 6.00000i 0.275299 0.275299i
\(476\) 0 0
\(477\) −32.0000 11.3137i −1.46518 0.518019i
\(478\) 0 0
\(479\) −14.1421 14.1421i −0.646171 0.646171i 0.305895 0.952065i \(-0.401044\pi\)
−0.952065 + 0.305895i \(0.901044\pi\)
\(480\) −1.41421 + 1.00000i −0.0645497 + 0.0456435i
\(481\) −5.00000 + 25.0000i −0.227980 + 1.13990i
\(482\) 1.41421i 0.0644157i
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) −14.1421 −0.642161
\(486\) 10.2929 + 11.7071i 0.466895 + 0.531045i
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 1.41421 + 1.41421i 0.0640184 + 0.0640184i
\(489\) −26.5563 4.55635i −1.20092 0.206045i
\(490\) 7.00000 0.316228
\(491\) −15.5563 −0.702048 −0.351024 0.936366i \(-0.614166\pi\)
−0.351024 + 0.936366i \(0.614166\pi\)
\(492\) 2.92893 17.0711i 0.132046 0.769623i
\(493\) 6.00000i 0.270226i
\(494\) 25.4558 16.9706i 1.14531 0.763542i
\(495\) 2.00000 5.65685i 0.0898933 0.254257i
\(496\) 3.00000 + 3.00000i 0.134704 + 0.134704i
\(497\) 0 0
\(498\) −11.3137 + 8.00000i −0.506979 + 0.358489i
\(499\) −18.0000 18.0000i −0.805791 0.805791i 0.178203 0.983994i \(-0.442972\pi\)
−0.983994 + 0.178203i \(0.942972\pi\)
\(500\) 0.707107 0.707107i 0.0316228 0.0316228i
\(501\) 4.68629 27.3137i 0.209368 1.22029i
\(502\) −3.00000 + 3.00000i −0.133897 + 0.133897i
\(503\) 9.89949i 0.441397i 0.975342 + 0.220698i \(0.0708336\pi\)
−0.975342 + 0.220698i \(0.929166\pi\)
\(504\) 0 0
\(505\) −11.0000 + 11.0000i −0.489494 + 0.489494i
\(506\) 2.82843 0.125739
\(507\) 21.9706 4.92893i 0.975747 0.218902i
\(508\) −4.00000 −0.177471
\(509\) 14.1421 14.1421i 0.626839 0.626839i −0.320432 0.947271i \(-0.603828\pi\)
0.947271 + 0.320432i \(0.103828\pi\)
\(510\) −6.00000 + 4.24264i −0.265684 + 0.187867i
\(511\) 0 0
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −38.4853 21.5147i −1.69917 0.949898i
\(514\) 1.00000 1.00000i 0.0441081 0.0441081i
\(515\) 5.65685 + 5.65685i 0.249271 + 0.249271i
\(516\) 4.00000 + 5.65685i 0.176090 + 0.249029i
\(517\) 12.0000i 0.527759i
\(518\) 0 0
\(519\) −2.82843 4.00000i −0.124154 0.175581i
\(520\) 3.00000 2.00000i 0.131559 0.0877058i
\(521\) 5.65685i 0.247831i 0.992293 + 0.123916i \(0.0395452\pi\)
−0.992293 + 0.123916i \(0.960455\pi\)
\(522\) 3.82843 1.82843i 0.167566 0.0800281i
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −7.07107 −0.308901
\(525\) 0 0
\(526\) 3.00000 + 3.00000i 0.130806 + 0.130806i
\(527\) 12.7279 + 12.7279i 0.554437 + 0.554437i
\(528\) 0.585786 3.41421i 0.0254931 0.148585i
\(529\) −21.0000 −0.913043
\(530\) 11.3137 0.491436
\(531\) 10.8284 5.17157i 0.469914 0.224427i
\(532\) 0 0
\(533\) −7.07107 + 35.3553i −0.306282 + 1.53141i
\(534\) −6.00000 8.48528i −0.259645 0.367194i
\(535\) 8.00000 + 8.00000i 0.345870 + 0.345870i
\(536\) 7.07107i 0.305424i
\(537\) 18.3848 + 26.0000i 0.793362 + 1.12198i
\(538\) −1.00000 1.00000i −0.0431131 0.0431131i
\(539\) −9.89949 + 9.89949i −0.426401 + 0.426401i
\(540\) −4.53553 2.53553i −0.195178 0.109112i
\(541\) −8.00000 + 8.00000i −0.343947 + 0.343947i −0.857849 0.513902i \(-0.828199\pi\)
0.513902 + 0.857849i \(0.328199\pi\)
\(542\) 4.24264i 0.182237i
\(543\) 25.4558 18.0000i 1.09241 0.772454i
\(544\) −3.00000 + 3.00000i −0.128624 + 0.128624i
\(545\) −2.82843 −0.121157
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 14.1421 14.1421i 0.604122 0.604122i
\(549\) −2.00000 + 5.65685i −0.0853579 + 0.241429i
\(550\) 2.00000i 0.0852803i
\(551\) −8.48528 + 8.48528i −0.361485 + 0.361485i
\(552\) 0.414214 2.41421i 0.0176301 0.102756i
\(553\) 0 0
\(554\) 19.7990 + 19.7990i 0.841178 + 0.841178i
\(555\) −10.0000 + 7.07107i −0.424476 + 0.300150i
\(556\) 16.0000i 0.678551i
\(557\) 18.3848 + 18.3848i 0.778988 + 0.778988i 0.979659 0.200671i \(-0.0643121\pi\)
−0.200671 + 0.979659i \(0.564312\pi\)
\(558\) −4.24264 + 12.0000i −0.179605 + 0.508001i
\(559\) −8.00000 12.0000i −0.338364 0.507546i
\(560\) 0 0
\(561\) 2.48528 14.4853i 0.104929 0.611569i
\(562\) 18.0000 0.759284
\(563\) −19.7990 −0.834428 −0.417214 0.908808i \(-0.636993\pi\)
−0.417214 + 0.908808i \(0.636993\pi\)
\(564\) −10.2426 1.75736i −0.431293 0.0739982i
\(565\) −5.00000 5.00000i −0.210352 0.210352i
\(566\) −4.24264 4.24264i −0.178331 0.178331i
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) −45.2548 −1.89718 −0.948591 0.316506i \(-0.897490\pi\)
−0.948591 + 0.316506i \(0.897490\pi\)
\(570\) 14.4853 + 2.48528i 0.606722 + 0.104097i
\(571\) 12.0000i 0.502184i −0.967963 0.251092i \(-0.919210\pi\)
0.967963 0.251092i \(-0.0807897\pi\)
\(572\) −1.41421 + 7.07107i −0.0591312 + 0.295656i
\(573\) −28.0000 + 19.7990i −1.16972 + 0.827115i
\(574\) 0 0
\(575\) 1.41421i 0.0589768i
\(576\) −2.82843 1.00000i −0.117851 0.0416667i
\(577\) 26.0000 + 26.0000i 1.08239 + 1.08239i 0.996286 + 0.0861084i \(0.0274431\pi\)
0.0861084 + 0.996286i \(0.472557\pi\)
\(578\) −0.707107 + 0.707107i −0.0294118 + 0.0294118i
\(579\) −14.4853 2.48528i −0.601988 0.103285i
\(580\) −1.00000 + 1.00000i −0.0415227 + 0.0415227i
\(581\) 0 0
\(582\) −14.1421 20.0000i −0.586210 0.829027i
\(583\) −16.0000 + 16.0000i −0.662652 + 0.662652i
\(584\) 8.48528 0.351123
\(585\) 9.29289 + 5.53553i 0.384214 + 0.228866i
\(586\) −14.0000 −0.578335
\(587\) 19.7990 19.7990i 0.817192 0.817192i −0.168508 0.985700i \(-0.553895\pi\)
0.985700 + 0.168508i \(0.0538950\pi\)
\(588\) 7.00000 + 9.89949i 0.288675 + 0.408248i
\(589\) 36.0000i 1.48335i
\(590\) −2.82843 + 2.82843i −0.116445 + 0.116445i
\(591\) −23.8995 4.10051i −0.983094 0.168672i
\(592\) −5.00000 + 5.00000i −0.205499 + 0.205499i
\(593\) 25.4558 + 25.4558i 1.04535 + 1.04535i 0.998922 + 0.0464244i \(0.0147827\pi\)
0.0464244 + 0.998922i \(0.485217\pi\)
\(594\) 10.0000 2.82843i 0.410305 0.116052i
\(595\) 0 0
\(596\) −7.07107 7.07107i −0.289642 0.289642i
\(597\) 2.82843 2.00000i 0.115760 0.0818546i
\(598\) −1.00000 + 5.00000i −0.0408930 + 0.204465i
\(599\) 45.2548i 1.84906i 0.381106 + 0.924531i \(0.375543\pi\)
−0.381106 + 0.924531i \(0.624457\pi\)
\(600\) 1.70711 + 0.292893i 0.0696923 + 0.0119573i
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) −19.1421 + 9.14214i −0.779528 + 0.372297i
\(604\) 13.0000 + 13.0000i 0.528962 + 0.528962i
\(605\) 4.94975 + 4.94975i 0.201236 + 0.201236i
\(606\) −26.5563 4.55635i −1.07878 0.185089i
\(607\) 36.0000 1.46119 0.730597 0.682808i \(-0.239242\pi\)
0.730597 + 0.682808i \(0.239242\pi\)
\(608\) 8.48528 0.344124
\(609\) 0 0
\(610\) 2.00000i 0.0809776i
\(611\) 21.2132 + 4.24264i 0.858194 + 0.171639i
\(612\) −12.0000 4.24264i −0.485071 0.171499i
\(613\) −9.00000 9.00000i −0.363507 0.363507i 0.501596 0.865102i \(-0.332747\pi\)
−0.865102 + 0.501596i \(0.832747\pi\)
\(614\) 32.5269i 1.31268i
\(615\) −14.1421 + 10.0000i −0.570266 + 0.403239i
\(616\) 0 0
\(617\) −7.07107 + 7.07107i −0.284670 + 0.284670i −0.834968 0.550298i \(-0.814514\pi\)
0.550298 + 0.834968i \(0.314514\pi\)
\(618\) −2.34315 + 13.6569i −0.0942551 + 0.549359i
\(619\) 32.0000 32.0000i 1.28619 1.28619i 0.349105 0.937084i \(-0.386486\pi\)
0.937084 0.349105i \(-0.113514\pi\)
\(620\) 4.24264i 0.170389i
\(621\) 7.07107 2.00000i 0.283752 0.0802572i
\(622\) 2.00000 2.00000i 0.0801927 0.0801927i
\(623\) 0 0
\(624\) 5.82843 + 2.24264i 0.233324 + 0.0897775i
\(625\) −1.00000 −0.0400000
\(626\) −18.3848 + 18.3848i −0.734803 + 0.734803i
\(627\) −24.0000 + 16.9706i −0.958468 + 0.677739i
\(628\) 6.00000i 0.239426i
\(629\) −21.2132 + 21.2132i −0.845826 + 0.845826i
\(630\) 0 0
\(631\) 9.00000 9.00000i 0.358284 0.358284i −0.504896 0.863180i \(-0.668469\pi\)
0.863180 + 0.504896i \(0.168469\pi\)
\(632\) 5.65685 + 5.65685i 0.225018 + 0.225018i
\(633\) −24.0000 33.9411i −0.953914 1.34904i
\(634\) 26.0000i 1.03259i
\(635\) 2.82843 + 2.82843i 0.112243 + 0.112243i
\(636\) 11.3137 + 16.0000i 0.448618 + 0.634441i
\(637\) −14.0000 21.0000i −0.554700 0.832050i
\(638\) 2.82843i 0.111979i
\(639\) 10.3431 + 21.6569i 0.409169 + 0.856732i
\(640\) 1.00000 0.0395285
\(641\) 39.5980 1.56403 0.782013 0.623262i \(-0.214193\pi\)
0.782013 + 0.623262i \(0.214193\pi\)
\(642\) −3.31371 + 19.3137i −0.130782 + 0.762251i
\(643\) −21.0000 21.0000i −0.828159 0.828159i 0.159103 0.987262i \(-0.449140\pi\)
−0.987262 + 0.159103i \(0.949140\pi\)
\(644\) 0 0
\(645\) 1.17157 6.82843i 0.0461306 0.268869i
\(646\) 36.0000 1.41640
\(647\) −7.07107 −0.277992 −0.138996 0.990293i \(-0.544388\pi\)
−0.138996 + 0.990293i \(0.544388\pi\)
\(648\) −0.949747 8.94975i −0.0373096 0.351579i
\(649\) 8.00000i 0.314027i
\(650\) −3.53553 0.707107i −0.138675 0.0277350i
\(651\) 0 0
\(652\) 11.0000 + 11.0000i 0.430793 + 0.430793i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) −2.82843 4.00000i −0.110600 0.156412i
\(655\) 5.00000 + 5.00000i 0.195366 + 0.195366i
\(656\) −7.07107 + 7.07107i −0.276079 + 0.276079i
\(657\) 10.9706 + 22.9706i 0.428002 + 0.896167i
\(658\) 0 0
\(659\) 9.89949i 0.385630i 0.981235 + 0.192815i \(0.0617617\pi\)
−0.981235 + 0.192815i \(0.938238\pi\)
\(660\) −2.82843 + 2.00000i −0.110096 + 0.0778499i
\(661\) −22.0000 + 22.0000i −0.855701 + 0.855701i −0.990828 0.135127i \(-0.956856\pi\)
0.135127 + 0.990828i \(0.456856\pi\)
\(662\) −33.9411 −1.31916
\(663\) 24.7279 + 9.51472i 0.960353 + 0.369521i
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) −20.0000 7.07107i −0.774984 0.273998i
\(667\) 2.00000i 0.0774403i
\(668\) −11.3137 + 11.3137i −0.437741 + 0.437741i
\(669\) 4.14214 24.1421i 0.160144 0.933389i
\(670\) 5.00000 5.00000i 0.193167 0.193167i
\(671\) 2.82843 + 2.82843i 0.109190 + 0.109190i
\(672\) 0 0
\(673\) 6.00000i 0.231283i 0.993291 + 0.115642i \(0.0368924\pi\)
−0.993291 + 0.115642i \(0.963108\pi\)
\(674\) 9.89949 + 9.89949i 0.381314 + 0.381314i
\(675\) 1.41421 + 5.00000i 0.0544331 + 0.192450i
\(676\) −12.0000 5.00000i −0.461538 0.192308i
\(677\) 36.7696i 1.41317i −0.707629 0.706584i \(-0.750235\pi\)
0.707629 0.706584i \(-0.249765\pi\)
\(678\) 2.07107 12.0711i 0.0795389 0.463587i
\(679\) 0 0
\(680\) 4.24264 0.162698
\(681\) 0 0
\(682\) 6.00000 + 6.00000i 0.229752 + 0.229752i
\(683\) −16.9706 16.9706i −0.649361 0.649361i 0.303478 0.952838i \(-0.401852\pi\)
−0.952838 + 0.303478i \(0.901852\pi\)
\(684\) 10.9706 + 22.9706i 0.419470 + 0.878301i
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) 14.4853 + 2.48528i 0.552648 + 0.0948194i
\(688\) 4.00000i 0.152499i
\(689\) −22.6274 33.9411i −0.862036 1.29305i
\(690\) −2.00000 + 1.41421i −0.0761387 + 0.0538382i
\(691\) −16.0000 16.0000i −0.608669 0.608669i 0.333929 0.942598i \(-0.391625\pi\)
−0.942598 + 0.333929i \(0.891625\pi\)
\(692\) 2.82843i 0.107521i
\(693\) 0 0
\(694\) −8.00000 8.00000i −0.303676 0.303676i
\(695\) 11.3137 11.3137i 0.429153 0.429153i
\(696\) −2.41421 0.414214i −0.0915105 0.0157007i
\(697\) −30.0000 + 30.0000i −1.13633 + 1.13633i
\(698\) 16.9706i 0.642345i
\(699\) −18.3848 26.0000i −0.695376 0.983410i
\(700\) 0 0
\(701\) −1.41421 −0.0534141 −0.0267071 0.999643i \(-0.508502\pi\)
−0.0267071 + 0.999643i \(0.508502\pi\)
\(702\) 1.46447 + 18.6777i 0.0552727 + 0.704943i
\(703\) 60.0000 2.26294
\(704\) −1.41421 + 1.41421i −0.0533002 + 0.0533002i
\(705\) 6.00000 + 8.48528i 0.225973 + 0.319574i
\(706\) 36.0000i 1.35488i
\(707\) 0 0
\(708\) −6.82843 1.17157i −0.256628 0.0440304i
\(709\) −18.0000 + 18.0000i −0.676004 + 0.676004i −0.959094 0.283089i \(-0.908641\pi\)
0.283089 + 0.959094i \(0.408641\pi\)
\(710\) −5.65685 5.65685i −0.212298 0.212298i
\(711\) −8.00000 + 22.6274i −0.300023 + 0.848594i
\(712\) 6.00000i 0.224860i
\(713\) 4.24264 + 4.24264i 0.158888 + 0.158888i
\(714\) 0 0
\(715\) 6.00000 4.00000i 0.224387 0.149592i
\(716\) 18.3848i 0.687071i
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) −45.2548 −1.68772 −0.843860 0.536563i \(-0.819722\pi\)
−0.843860 + 0.536563i \(0.819722\pi\)
\(720\) 1.29289 + 2.70711i 0.0481833 + 0.100888i
\(721\) 0 0
\(722\) −37.4767 37.4767i −1.39474 1.39474i
\(723\) −2.41421 0.414214i −0.0897856 0.0154048i
\(724\) −18.0000 −0.668965
\(725\) 1.41421 0.0525226
\(726\) −2.05025 + 11.9497i −0.0760920 + 0.443497i
\(727\) 8.00000i 0.296704i 0.988935 + 0.148352i \(0.0473968\pi\)
−0.988935 + 0.148352i \(0.952603\pi\)
\(728\) 0 0
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) −6.00000 6.00000i −0.222070 0.222070i
\(731\) 16.9706i 0.627679i
\(732\) 2.82843 2.00000i 0.104542 0.0739221i
\(733\) −9.00000 9.00000i −0.332423 0.332423i 0.521083 0.853506i \(-0.325528\pi\)
−0.853506 + 0.521083i \(0.825528\pi\)
\(734\) 5.65685 5.65685i 0.208798 0.208798i
\(735\) 2.05025 11.9497i 0.0756247 0.440773i
\(736\) −1.00000 + 1.00000i −0.0368605 + 0.0368605i
\(737\) 14.1421i 0.520932i
\(738\) −28.2843 10.0000i −1.04116 0.368105i
\(739\) −12.0000 + 12.0000i −0.441427 + 0.441427i −0.892491 0.451064i \(-0.851045\pi\)
0.451064 + 0.892491i \(0.351045\pi\)
\(740\) 7.07107 0.259938
\(741\) −21.5147 48.4264i −0.790363 1.77899i
\(742\) 0 0
\(743\) 18.3848 18.3848i 0.674472 0.674472i −0.284272 0.958744i \(-0.591752\pi\)
0.958744 + 0.284272i \(0.0917518\pi\)
\(744\) 6.00000 4.24264i 0.219971 0.155543i
\(745\) 10.0000i 0.366372i
\(746\) 22.6274 22.6274i 0.828449 0.828449i
\(747\) 10.3431 + 21.6569i 0.378436 + 0.792383i
\(748\) −6.00000 + 6.00000i −0.219382 + 0.219382i
\(749\) 0 0
\(750\) −1.00000 1.41421i −0.0365148 0.0516398i
\(751\) 10.0000i 0.364905i −0.983215 0.182453i \(-0.941596\pi\)
0.983215 0.182453i \(-0.0584036\pi\)
\(752\) 4.24264 + 4.24264i 0.154713 + 0.154713i
\(753\) 4.24264 + 6.00000i 0.154610 + 0.218652i
\(754\) 5.00000 + 1.00000i 0.182089 + 0.0364179i
\(755\) 18.3848i 0.669091i
\(756\) 0 0
\(757\) 42.0000 1.52652 0.763258 0.646094i \(-0.223599\pi\)
0.763258 + 0.646094i \(0.223599\pi\)
\(758\) −22.6274 −0.821865
\(759\) 0.828427 4.82843i 0.0300700 0.175261i
\(760\) −6.00000 6.00000i −0.217643 0.217643i
\(761\) −9.89949 9.89949i −0.358856 0.358856i 0.504535 0.863391i \(-0.331664\pi\)
−0.863391 + 0.504535i \(0.831664\pi\)
\(762\) −1.17157 + 6.82843i −0.0424416 + 0.247368i
\(763\) 0 0
\(764\) 19.7990 0.716302
\(765\) 5.48528 + 11.4853i 0.198321 + 0.415251i
\(766\) 24.0000i 0.867155i
\(767\) 14.1421 + 2.82843i 0.510643 + 0.102129i
\(768\) 1.00000 + 1.41421i 0.0360844 + 0.0510310i
\(769\) −21.0000 21.0000i −0.757279 0.757279i 0.218547 0.975826i \(-0.429868\pi\)
−0.975826 + 0.218547i \(0.929868\pi\)
\(770\) 0 0
\(771\) −1.41421 2.00000i −0.0509317 0.0720282i
\(772\) 6.00000 + 6.00000i 0.215945 + 0.215945i
\(773\) 4.24264 4.24264i 0.152597 0.152597i −0.626680 0.779277i \(-0.715587\pi\)
0.779277 + 0.626680i \(0.215587\pi\)
\(774\) 10.8284 5.17157i 0.389220 0.185888i
\(775\) −3.00000 + 3.00000i −0.107763 + 0.107763i
\(776\) 14.1421i 0.507673i
\(777\) 0 0
\(778\) −19.0000 + 19.0000i −0.681183 + 0.681183i
\(779\) 84.8528 3.04017
\(780\) −2.53553 5.70711i −0.0907867 0.204347i
\(781\) 16.0000 0.572525
\(782\) −4.24264 + 4.24264i −0.151717 + 0.151717i
\(783\) −2.00000 7.07107i −0.0714742 0.252699i
\(784\) 7.00000i 0.250000i
\(785\) 4.24264 4.24264i 0.151426 0.151426i
\(786\) −2.07107 + 12.0711i −0.0738725 + 0.430561i
\(787\) −3.00000 + 3.00000i −0.106938 + 0.106938i −0.758552 0.651613i \(-0.774093\pi\)
0.651613 + 0.758552i \(0.274093\pi\)
\(788\) 9.89949 + 9.89949i 0.352655 + 0.352655i
\(789\) 6.00000 4.24264i 0.213606 0.151042i
\(790\) 8.00000i 0.284627i
\(791\) 0 0
\(792\) −5.65685 2.00000i −0.201008 0.0710669i
\(793\) −6.00000 + 4.00000i −0.213066 + 0.142044i
\(794\) 4.24264i 0.150566i
\(795\) 3.31371 19.3137i 0.117525 0.684987i
\(796\) −2.00000 −0.0708881
\(797\) −45.2548 −1.60301 −0.801504 0.597989i \(-0.795967\pi\)
−0.801504 + 0.597989i \(0.795967\pi\)
\(798\) 0 0
\(799\) 18.0000 + 18.0000i 0.636794 + 0.636794i
\(800\) −0.707107 0.707107i −0.0250000 0.0250000i
\(801\) −16.2426 + 7.75736i −0.573905 + 0.274093i
\(802\) 6.00000 0.211867
\(803\) 16.9706 0.598878
\(804\) 12.0711 + 2.07107i 0.425714 + 0.0730409i
\(805\) 0 0
\(806\) −12.7279 + 8.48528i −0.448322 + 0.298881i
\(807\) −2.00000 + 1.41421i −0.0704033 + 0.0497827i
\(808\) 11.0000 + 11.0000i 0.386979 + 0.386979i
\(809\) 25.4558i 0.894980i −0.894289 0.447490i \(-0.852318\pi\)
0.894289 0.447490i \(-0.147682\pi\)
\(810\) −5.65685 + 7.00000i −0.198762 + 0.245955i
\(811\) −26.0000 26.0000i −0.912983 0.912983i 0.0835224 0.996506i \(-0.473383\pi\)
−0.996506 + 0.0835224i \(0.973383\pi\)
\(812\) 0 0
\(813\) −7.24264 1.24264i −0.254010 0.0435813i
\(814\) −10.0000 + 10.0000i −0.350500 + 0.350500i
\(815\) 15.5563i 0.544915i
\(816\) 4.24264 + 6.00000i 0.148522 + 0.210042i
\(817\) −24.0000 + 24.0000i −0.839654 + 0.839654i
\(818\) 4.24264 0.148340
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) 21.2132 21.2132i 0.740346 0.740346i −0.232299 0.972645i \(-0.574625\pi\)
0.972645 + 0.232299i \(0.0746247\pi\)
\(822\) −20.0000 28.2843i −0.697580 0.986527i
\(823\) 52.0000i 1.81261i 0.422628 + 0.906303i \(0.361108\pi\)
−0.422628 + 0.906303i \(0.638892\pi\)
\(824\) 5.65685 5.65685i 0.197066 0.197066i
\(825\) 3.41421 + 0.585786i 0.118868 + 0.0203945i
\(826\) 0 0
\(827\) −14.1421 14.1421i −0.491770 0.491770i 0.417093 0.908864i \(-0.363049\pi\)
−0.908864 + 0.417093i \(0.863049\pi\)
\(828\) −4.00000 1.41421i −0.139010 0.0491473i
\(829\) 14.0000i 0.486240i 0.969996 + 0.243120i \(0.0781709\pi\)
−0.969996 + 0.243120i \(0.921829\pi\)
\(830\) −5.65685 5.65685i −0.196352 0.196352i
\(831\) 39.5980 28.0000i 1.37364 0.971309i
\(832\) −2.00000 3.00000i −0.0693375 0.104006i
\(833\) 29.6985i 1.02899i
\(834\) 27.3137 + 4.68629i 0.945796 + 0.162273i
\(835\) 16.0000 0.553703
\(836\) 16.9706 0.586939
\(837\) 19.2426 + 10.7574i 0.665123 + 0.371829i
\(838\) 11.0000 + 11.0000i 0.379989 + 0.379989i
\(839\) −31.1127 31.1127i −1.07413 1.07413i −0.997023 0.0771068i \(-0.975432\pi\)
−0.0771068 0.997023i \(-0.524568\pi\)
\(840\) 0 0
\(841\) 27.0000 0.931034
\(842\) −16.9706 −0.584844
\(843\) 5.27208 30.7279i 0.181580 1.05833i
\(844\) 24.0000i 0.826114i
\(845\) 4.94975 + 12.0208i 0.170276 + 0.413529i
\(846\) −6.00000 + 16.9706i −0.206284 + 0.583460i
\(847\) 0 0
\(848\) 11.3137i 0.388514i
\(849\) −8.48528 + 6.00000i −0.291214 + 0.205919i
\(850\) −3.00000 3.00000i −0.102899 0.102899i
\(851\) −7.07107 + 7.07107i −0.242393 + 0.242393i
\(852\) 2.34315 13.6569i 0.0802749 0.467876i
\(853\) 39.0000 39.0000i 1.33533 1.33533i 0.434815 0.900520i \(-0.356814\pi\)
0.900520 0.434815i \(-0.143186\pi\)
\(854\) 0 0
\(855\) 8.48528 24.0000i 0.290191 0.820783i
\(856\) 8.00000 8.00000i 0.273434 0.273434i
\(857\) 49.4975 1.69080 0.845401 0.534133i \(-0.179362\pi\)
0.845401 + 0.534133i \(0.179362\pi\)
\(858\) 11.6569 + 4.48528i 0.397958 + 0.153125i
\(859\) 24.0000 0.818869 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(860\) −2.82843 + 2.82843i −0.0964486 + 0.0964486i
\(861\) 0 0
\(862\) 36.0000i 1.22616i
\(863\) 33.9411 33.9411i 1.15537 1.15537i 0.169910 0.985460i \(-0.445652\pi\)
0.985460 0.169910i \(-0.0543476\pi\)
\(864\) −2.53553 + 4.53553i −0.0862606 + 0.154302i
\(865\) 2.00000 2.00000i 0.0680020 0.0680020i
\(866\) −9.89949 9.89949i −0.336399 0.336399i
\(867\) 1.00000 + 1.41421i 0.0339618 + 0.0480292i
\(868\) 0 0
\(869\) 11.3137 + 11.3137i 0.383791 + 0.383791i
\(870\) 1.41421 + 2.00000i 0.0479463 + 0.0678064i
\(871\) −25.0000 5.00000i −0.847093 0.169419i
\(872\) 2.82843i 0.0957826i
\(873\) −38.2843 + 18.2843i −1.29573 + 0.618829i
\(874\) 12.0000 0.405906
\(875\) 0 0
\(876\) 2.48528 14.4853i 0.0839699 0.489412i
\(877\) −15.0000 15.0000i −0.506514 0.506514i 0.406941 0.913455i \(-0.366596\pi\)
−0.913455 + 0.406941i \(0.866596\pi\)
\(878\) 4.24264 + 4.24264i 0.143182 + 0.143182i
\(879\) −4.10051 + 23.8995i −0.138307 + 0.806110i
\(880\) 2.00000 0.0674200
\(881\) −56.5685 −1.90584 −0.952921 0.303218i \(-0.901939\pi\)
−0.952921 + 0.303218i \(0.901939\pi\)
\(882\) 18.9497 9.05025i 0.638071 0.304738i
\(883\) 4.00000i 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) −8.48528 12.7279i −0.285391 0.428086i
\(885\) 4.00000 + 5.65685i 0.134459 + 0.190153i
\(886\) −6.00000 6.00000i −0.201574 0.201574i
\(887\) 38.1838i 1.28209i 0.767505 + 0.641043i \(0.221498\pi\)
−0.767505 + 0.641043i \(0.778502\pi\)
\(888\) 7.07107 + 10.0000i 0.237289 + 0.335578i
\(889\) 0 0
\(890\) 4.24264 4.24264i 0.142214 0.142214i
\(891\) −1.89949 17.8995i −0.0636355 0.599656i
\(892\) −10.0000 + 10.0000i −0.334825 + 0.334825i
\(893\) 50.9117i 1.70369i
\(894\) −14.1421 + 10.0000i −0.472984 + 0.334450i
\(895\) −13.0000 + 13.0000i −0.434542 + 0.434542i
\(896\) 0 0
\(897\) 8.24264 + 3.17157i 0.275214 + 0.105896i
\(898\) −18.0000 −0.600668
\(899\) 4.24264 4.24264i 0.141500 0.141500i
\(900\) 1.00000 2.82843i 0.0333333 0.0942809i
\(901\) 48.0000i 1.59911i
\(902\) −14.1421 + 14.1421i −0.470882 + 0.470882i
\(903\) 0 0
\(904\) −5.00000 + 5.00000i −0.166298 + 0.166298i
\(905\) 12.7279 + 12.7279i 0.423090 + 0.423090i
\(906\) 26.0000 18.3848i 0.863792 0.610793i
\(907\) 14.0000i 0.464862i 0.972613 + 0.232431i \(0.0746680\pi\)
−0.972613 + 0.232431i \(0.925332\pi\)
\(908\) 0 0
\(909\) −15.5563 + 44.0000i −0.515972 + 1.45939i
\(910\) 0 0
\(911\) 5.65685i 0.187420i −0.995600 0.0937100i \(-0.970127\pi\)
0.995600 0.0937100i \(-0.0298726\pi\)
\(912\) 2.48528 14.4853i 0.0822959 0.479656i
\(913\) 16.0000 0.529523
\(914\) −8.48528 −0.280668
\(915\) −3.41421 0.585786i −0.112870 0.0193655i
\(916\) −6.00000 6.00000i −0.198246 0.198246i
\(917\) 0 0
\(918\) −10.7574 + 19.2426i −0.355046 + 0.635102i
\(919\) 42.0000 1.38545 0.692726 0.721201i \(-0.256409\pi\)
0.692726 + 0.721201i \(0.256409\pi\)
\(920\) 1.41421 0.0466252
\(921\) 55.5269 + 9.52691i 1.82967 + 0.313922i
\(922\) 4.00000i 0.131733i
\(923\) −5.65685 + 28.2843i −0.186198 + 0.930988i
\(924\) 0 0
\(925\) −5.00000 5.00000i −0.164399 0.164399i
\(926\) 31.1127i 1.02243i
\(927\) 22.6274 + 8.00000i 0.743182 + 0.262754i
\(928\) 1.00000 + 1.00000i 0.0328266 + 0.0328266i
\(929\) −12.7279 + 12.7279i −0.417590 + 0.417590i −0.884372 0.466783i \(-0.845413\pi\)
0.466783 + 0.884372i \(0.345413\pi\)
\(930\) −7.24264 1.24264i −0.237496 0.0407478i
\(931\) −42.0000 + 42.0000i −1.37649 + 1.37649i
\(932\) 18.3848i 0.602213i
\(933\) −2.82843 4.00000i −0.0925985 0.130954i
\(934\) 2.00000 2.00000i 0.0654420 0.0654420i
\(935\) 8.48528 0.277498
\(936\) 5.53553 9.29289i 0.180935 0.303748i
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 26.0000 + 36.7696i 0.848478 + 1.19993i
\(940\) 6.00000i 0.195698i
\(941\) −28.2843 + 28.2843i −0.922041 + 0.922041i −0.997174 0.0751327i \(-0.976062\pi\)
0.0751327 + 0.997174i \(0.476062\pi\)
\(942\) 10.2426 + 1.75736i 0.333723 + 0.0572579i
\(943\) −10.0000 + 10.0000i −0.325645 + 0.325645i
\(944\) 2.82843 + 2.82843i 0.0920575 + 0.0920575i
\(945\) 0 0
\(946\) 8.00000i 0.260102i
\(947\) 5.65685 + 5.65685i 0.183823 + 0.183823i 0.793019 0.609196i \(-0.208508\pi\)
−0.609196 + 0.793019i \(0.708508\pi\)
\(948\) 11.3137 8.00000i 0.367452 0.259828i
\(949\) −6.00000 + 30.0000i −0.194768 + 0.973841i
\(950\) 8.48528i 0.275299i
\(951\) 44.3848 + 7.61522i 1.43927 + 0.246941i
\(952\) 0 0
\(953\) 12.7279 0.412298 0.206149 0.978521i \(-0.433907\pi\)
0.206149 + 0.978521i \(0.433907\pi\)
\(954\) 30.6274 14.6274i 0.991599 0.473580i
\(955\) −14.0000 14.0000i −0.453029 0.453029i
\(956\) 0 0
\(957\) −4.82843 0.828427i −0.156081 0.0267792i
\(958\) 20.0000 0.646171
\(959\) 0 0
\(960\) 0.292893 1.70711i 0.00945309 0.0550966i
\(961\) 13.0000i 0.419355i
\(962\) −14.1421 21.2132i −0.455961 0.683941i
\(963\) 32.0000 + 11.3137i 1.03119 + 0.364579i
\(964\) 1.00000 + 1.00000i 0.0322078 + 0.0322078i
\(965\) 8.48528i 0.273151i
\(966\) 0 0
\(967\) −32.0000 32.0000i −1.02905 1.02905i −0.999565 0.0294854i \(-0.990613\pi\)
−0.0294854 0.999565i \(-0.509387\pi\)
\(968\) 4.94975 4.94975i 0.159091 0.159091i
\(969\) 10.5442 61.4558i 0.338727 1.97425i
\(970\) 10.0000 10.0000i 0.321081 0.321081i
\(971\) 12.7279i 0.408458i 0.978923 + 0.204229i \(0.0654688\pi\)
−0.978923 + 0.204229i \(0.934531\pi\)
\(972\) −15.5563 1.00000i −0.498970 0.0320750i
\(973\) 0 0
\(974\) 0 0
\(975\) −2.24264 + 5.82843i −0.0718220 + 0.186659i
\(976\) −2.00000 −0.0640184
\(977\) 19.7990 19.7990i 0.633426 0.633426i −0.315500 0.948926i \(-0.602172\pi\)
0.948926 + 0.315500i \(0.102172\pi\)
\(978\) 22.0000 15.5563i 0.703482 0.497437i
\(979\) 12.0000i 0.383522i
\(980\) −4.94975 + 4.94975i −0.158114 + 0.158114i
\(981\) −7.65685 + 3.65685i −0.244465 + 0.116754i
\(982\) 11.0000 11.0000i 0.351024 0.351024i
\(983\) −24.0416 24.0416i −0.766809 0.766809i 0.210734 0.977543i \(-0.432414\pi\)
−0.977543 + 0.210734i \(0.932414\pi\)
\(984\) 10.0000 + 14.1421i 0.318788 + 0.450835i
\(985\) 14.0000i 0.446077i
\(986\) 4.24264 + 4.24264i 0.135113 + 0.135113i
\(987\) 0 0
\(988\) −6.00000 + 30.0000i −0.190885 + 0.954427i
\(989\) 5.65685i 0.179878i
\(990\) 2.58579 + 5.41421i 0.0821817 + 0.172075i
\(991\) −50.0000 −1.58830 −0.794151 0.607720i \(-0.792084\pi\)
−0.794151 + 0.607720i \(0.792084\pi\)
\(992\) −4.24264 −0.134704
\(993\) −9.94113 + 57.9411i −0.315472 + 1.83871i
\(994\) 0 0
\(995\) 1.41421 + 1.41421i 0.0448336 + 0.0448336i
\(996\) 2.34315 13.6569i 0.0742454 0.432734i
\(997\) 22.0000 0.696747 0.348373 0.937356i \(-0.386734\pi\)
0.348373 + 0.937356i \(0.386734\pi\)
\(998\) 25.4558 0.805791
\(999\) −17.9289 + 32.0711i −0.567246 + 1.01468i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.p.d.281.1 yes 4
3.2 odd 2 inner 390.2.p.d.281.2 yes 4
13.5 odd 4 inner 390.2.p.d.161.2 yes 4
39.5 even 4 inner 390.2.p.d.161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.p.d.161.1 4 39.5 even 4 inner
390.2.p.d.161.2 yes 4 13.5 odd 4 inner
390.2.p.d.281.1 yes 4 1.1 even 1 trivial
390.2.p.d.281.2 yes 4 3.2 odd 2 inner