Properties

Label 390.2.p.d.161.1
Level $390$
Weight $2$
Character 390.161
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(161,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.161
Dual form 390.2.p.d.281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(1.00000 - 1.41421i) q^{3} +1.00000i q^{4} +(-0.707107 - 0.707107i) q^{5} +(-1.70711 + 0.292893i) q^{6} +(0.707107 - 0.707107i) q^{8} +(-1.00000 - 2.82843i) q^{9} +1.00000i q^{10} +(1.41421 - 1.41421i) q^{11} +(1.41421 + 1.00000i) q^{12} +(-3.00000 - 2.00000i) q^{13} +(-1.70711 + 0.292893i) q^{15} -1.00000 q^{16} -4.24264 q^{17} +(-1.29289 + 2.70711i) q^{18} +(6.00000 - 6.00000i) q^{19} +(0.707107 - 0.707107i) q^{20} -2.00000 q^{22} -1.41421 q^{23} +(-0.292893 - 1.70711i) q^{24} +1.00000i q^{25} +(0.707107 + 3.53553i) q^{26} +(-5.00000 - 1.41421i) q^{27} -1.41421i q^{29} +(1.41421 + 1.00000i) q^{30} +(-3.00000 + 3.00000i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-0.585786 - 3.41421i) q^{33} +(3.00000 + 3.00000i) q^{34} +(2.82843 - 1.00000i) q^{36} +(5.00000 + 5.00000i) q^{37} -8.48528 q^{38} +(-5.82843 + 2.24264i) q^{39} -1.00000 q^{40} +(7.07107 + 7.07107i) q^{41} -4.00000i q^{43} +(1.41421 + 1.41421i) q^{44} +(-1.29289 + 2.70711i) q^{45} +(1.00000 + 1.00000i) q^{46} +(-4.24264 + 4.24264i) q^{47} +(-1.00000 + 1.41421i) q^{48} -7.00000i q^{49} +(0.707107 - 0.707107i) q^{50} +(-4.24264 + 6.00000i) q^{51} +(2.00000 - 3.00000i) q^{52} -11.3137i q^{53} +(2.53553 + 4.53553i) q^{54} -2.00000 q^{55} +(-2.48528 - 14.4853i) q^{57} +(-1.00000 + 1.00000i) q^{58} +(-2.82843 + 2.82843i) q^{59} +(-0.292893 - 1.70711i) q^{60} +2.00000 q^{61} +4.24264 q^{62} -1.00000i q^{64} +(0.707107 + 3.53553i) q^{65} +(-2.00000 + 2.82843i) q^{66} +(5.00000 - 5.00000i) q^{67} -4.24264i q^{68} +(-1.41421 + 2.00000i) q^{69} +(5.65685 + 5.65685i) q^{71} +(-2.70711 - 1.29289i) q^{72} +(6.00000 + 6.00000i) q^{73} -7.07107i q^{74} +(1.41421 + 1.00000i) q^{75} +(6.00000 + 6.00000i) q^{76} +(5.70711 + 2.53553i) q^{78} +8.00000 q^{79} +(0.707107 + 0.707107i) q^{80} +(-7.00000 + 5.65685i) q^{81} -10.0000i q^{82} +(5.65685 + 5.65685i) q^{83} +(3.00000 + 3.00000i) q^{85} +(-2.82843 + 2.82843i) q^{86} +(-2.00000 - 1.41421i) q^{87} -2.00000i q^{88} +(4.24264 - 4.24264i) q^{89} +(2.82843 - 1.00000i) q^{90} -1.41421i q^{92} +(1.24264 + 7.24264i) q^{93} +6.00000 q^{94} -8.48528 q^{95} +(1.70711 - 0.292893i) q^{96} +(10.0000 - 10.0000i) q^{97} +(-4.94975 + 4.94975i) q^{98} +(-5.41421 - 2.58579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{6} - 4 q^{9} - 12 q^{13} - 4 q^{15} - 4 q^{16} - 8 q^{18} + 24 q^{19} - 8 q^{22} - 4 q^{24} - 20 q^{27} - 12 q^{31} - 8 q^{33} + 12 q^{34} + 20 q^{37} - 12 q^{39} - 4 q^{40} - 8 q^{45}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 1.00000 1.41421i 0.577350 0.816497i
\(4\) 1.00000i 0.500000i
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) −1.70711 + 0.292893i −0.696923 + 0.119573i
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) −1.00000 2.82843i −0.333333 0.942809i
\(10\) 1.00000i 0.316228i
\(11\) 1.41421 1.41421i 0.426401 0.426401i −0.460999 0.887401i \(-0.652509\pi\)
0.887401 + 0.460999i \(0.152509\pi\)
\(12\) 1.41421 + 1.00000i 0.408248 + 0.288675i
\(13\) −3.00000 2.00000i −0.832050 0.554700i
\(14\) 0 0
\(15\) −1.70711 + 0.292893i −0.440773 + 0.0756247i
\(16\) −1.00000 −0.250000
\(17\) −4.24264 −1.02899 −0.514496 0.857493i \(-0.672021\pi\)
−0.514496 + 0.857493i \(0.672021\pi\)
\(18\) −1.29289 + 2.70711i −0.304738 + 0.638071i
\(19\) 6.00000 6.00000i 1.37649 1.37649i 0.526026 0.850469i \(-0.323682\pi\)
0.850469 0.526026i \(-0.176318\pi\)
\(20\) 0.707107 0.707107i 0.158114 0.158114i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −1.41421 −0.294884 −0.147442 0.989071i \(-0.547104\pi\)
−0.147442 + 0.989071i \(0.547104\pi\)
\(24\) −0.292893 1.70711i −0.0597866 0.348462i
\(25\) 1.00000i 0.200000i
\(26\) 0.707107 + 3.53553i 0.138675 + 0.693375i
\(27\) −5.00000 1.41421i −0.962250 0.272166i
\(28\) 0 0
\(29\) 1.41421i 0.262613i −0.991342 0.131306i \(-0.958083\pi\)
0.991342 0.131306i \(-0.0419172\pi\)
\(30\) 1.41421 + 1.00000i 0.258199 + 0.182574i
\(31\) −3.00000 + 3.00000i −0.538816 + 0.538816i −0.923181 0.384365i \(-0.874420\pi\)
0.384365 + 0.923181i \(0.374420\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) −0.585786 3.41421i −0.101972 0.594338i
\(34\) 3.00000 + 3.00000i 0.514496 + 0.514496i
\(35\) 0 0
\(36\) 2.82843 1.00000i 0.471405 0.166667i
\(37\) 5.00000 + 5.00000i 0.821995 + 0.821995i 0.986394 0.164399i \(-0.0525685\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −8.48528 −1.37649
\(39\) −5.82843 + 2.24264i −0.933295 + 0.359110i
\(40\) −1.00000 −0.158114
\(41\) 7.07107 + 7.07107i 1.10432 + 1.10432i 0.993884 + 0.110432i \(0.0352233\pi\)
0.110432 + 0.993884i \(0.464777\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 1.41421 + 1.41421i 0.213201 + 0.213201i
\(45\) −1.29289 + 2.70711i −0.192733 + 0.403552i
\(46\) 1.00000 + 1.00000i 0.147442 + 0.147442i
\(47\) −4.24264 + 4.24264i −0.618853 + 0.618853i −0.945237 0.326384i \(-0.894170\pi\)
0.326384 + 0.945237i \(0.394170\pi\)
\(48\) −1.00000 + 1.41421i −0.144338 + 0.204124i
\(49\) 7.00000i 1.00000i
\(50\) 0.707107 0.707107i 0.100000 0.100000i
\(51\) −4.24264 + 6.00000i −0.594089 + 0.840168i
\(52\) 2.00000 3.00000i 0.277350 0.416025i
\(53\) 11.3137i 1.55406i −0.629465 0.777029i \(-0.716726\pi\)
0.629465 0.777029i \(-0.283274\pi\)
\(54\) 2.53553 + 4.53553i 0.345042 + 0.617208i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) −2.48528 14.4853i −0.329184 1.91862i
\(58\) −1.00000 + 1.00000i −0.131306 + 0.131306i
\(59\) −2.82843 + 2.82843i −0.368230 + 0.368230i −0.866831 0.498601i \(-0.833847\pi\)
0.498601 + 0.866831i \(0.333847\pi\)
\(60\) −0.292893 1.70711i −0.0378124 0.220387i
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 4.24264 0.538816
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.707107 + 3.53553i 0.0877058 + 0.438529i
\(66\) −2.00000 + 2.82843i −0.246183 + 0.348155i
\(67\) 5.00000 5.00000i 0.610847 0.610847i −0.332320 0.943167i \(-0.607831\pi\)
0.943167 + 0.332320i \(0.107831\pi\)
\(68\) 4.24264i 0.514496i
\(69\) −1.41421 + 2.00000i −0.170251 + 0.240772i
\(70\) 0 0
\(71\) 5.65685 + 5.65685i 0.671345 + 0.671345i 0.958026 0.286681i \(-0.0925520\pi\)
−0.286681 + 0.958026i \(0.592552\pi\)
\(72\) −2.70711 1.29289i −0.319036 0.152369i
\(73\) 6.00000 + 6.00000i 0.702247 + 0.702247i 0.964892 0.262646i \(-0.0845950\pi\)
−0.262646 + 0.964892i \(0.584595\pi\)
\(74\) 7.07107i 0.821995i
\(75\) 1.41421 + 1.00000i 0.163299 + 0.115470i
\(76\) 6.00000 + 6.00000i 0.688247 + 0.688247i
\(77\) 0 0
\(78\) 5.70711 + 2.53553i 0.646203 + 0.287093i
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0.707107 + 0.707107i 0.0790569 + 0.0790569i
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) 10.0000i 1.10432i
\(83\) 5.65685 + 5.65685i 0.620920 + 0.620920i 0.945767 0.324846i \(-0.105313\pi\)
−0.324846 + 0.945767i \(0.605313\pi\)
\(84\) 0 0
\(85\) 3.00000 + 3.00000i 0.325396 + 0.325396i
\(86\) −2.82843 + 2.82843i −0.304997 + 0.304997i
\(87\) −2.00000 1.41421i −0.214423 0.151620i
\(88\) 2.00000i 0.213201i
\(89\) 4.24264 4.24264i 0.449719 0.449719i −0.445542 0.895261i \(-0.646989\pi\)
0.895261 + 0.445542i \(0.146989\pi\)
\(90\) 2.82843 1.00000i 0.298142 0.105409i
\(91\) 0 0
\(92\) 1.41421i 0.147442i
\(93\) 1.24264 + 7.24264i 0.128856 + 0.751027i
\(94\) 6.00000 0.618853
\(95\) −8.48528 −0.870572
\(96\) 1.70711 0.292893i 0.174231 0.0298933i
\(97\) 10.0000 10.0000i 1.01535 1.01535i 0.0154658 0.999880i \(-0.495077\pi\)
0.999880 0.0154658i \(-0.00492310\pi\)
\(98\) −4.94975 + 4.94975i −0.500000 + 0.500000i
\(99\) −5.41421 2.58579i −0.544149 0.259881i
\(100\) −1.00000 −0.100000
\(101\) 15.5563 1.54791 0.773957 0.633238i \(-0.218274\pi\)
0.773957 + 0.633238i \(0.218274\pi\)
\(102\) 7.24264 1.24264i 0.717128 0.123040i
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) −3.53553 + 0.707107i −0.346688 + 0.0693375i
\(105\) 0 0
\(106\) −8.00000 + 8.00000i −0.777029 + 0.777029i
\(107\) 11.3137i 1.09374i 0.837218 + 0.546869i \(0.184180\pi\)
−0.837218 + 0.546869i \(0.815820\pi\)
\(108\) 1.41421 5.00000i 0.136083 0.481125i
\(109\) 2.00000 2.00000i 0.191565 0.191565i −0.604807 0.796372i \(-0.706750\pi\)
0.796372 + 0.604807i \(0.206750\pi\)
\(110\) 1.41421 + 1.41421i 0.134840 + 0.134840i
\(111\) 12.0711 2.07107i 1.14574 0.196577i
\(112\) 0 0
\(113\) 7.07107i 0.665190i −0.943070 0.332595i \(-0.892076\pi\)
0.943070 0.332595i \(-0.107924\pi\)
\(114\) −8.48528 + 12.0000i −0.794719 + 1.12390i
\(115\) 1.00000 + 1.00000i 0.0932505 + 0.0932505i
\(116\) 1.41421 0.131306
\(117\) −2.65685 + 10.4853i −0.245626 + 0.969365i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) −1.00000 + 1.41421i −0.0912871 + 0.129099i
\(121\) 7.00000i 0.636364i
\(122\) −1.41421 1.41421i −0.128037 0.128037i
\(123\) 17.0711 2.92893i 1.53925 0.264093i
\(124\) −3.00000 3.00000i −0.269408 0.269408i
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) 0 0
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) −5.65685 4.00000i −0.498058 0.352180i
\(130\) 2.00000 3.00000i 0.175412 0.263117i
\(131\) 7.07107i 0.617802i 0.951094 + 0.308901i \(0.0999612\pi\)
−0.951094 + 0.308901i \(0.900039\pi\)
\(132\) 3.41421 0.585786i 0.297169 0.0509862i
\(133\) 0 0
\(134\) −7.07107 −0.610847
\(135\) 2.53553 + 4.53553i 0.218224 + 0.390357i
\(136\) −3.00000 + 3.00000i −0.257248 + 0.257248i
\(137\) 14.1421 14.1421i 1.20824 1.20824i 0.236649 0.971595i \(-0.423951\pi\)
0.971595 0.236649i \(-0.0760491\pi\)
\(138\) 2.41421 0.414214i 0.205512 0.0352602i
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 1.75736 + 10.2426i 0.147996 + 0.862586i
\(142\) 8.00000i 0.671345i
\(143\) −7.07107 + 1.41421i −0.591312 + 0.118262i
\(144\) 1.00000 + 2.82843i 0.0833333 + 0.235702i
\(145\) −1.00000 + 1.00000i −0.0830455 + 0.0830455i
\(146\) 8.48528i 0.702247i
\(147\) −9.89949 7.00000i −0.816497 0.577350i
\(148\) −5.00000 + 5.00000i −0.410997 + 0.410997i
\(149\) 7.07107 + 7.07107i 0.579284 + 0.579284i 0.934706 0.355422i \(-0.115663\pi\)
−0.355422 + 0.934706i \(0.615663\pi\)
\(150\) −0.292893 1.70711i −0.0239146 0.139385i
\(151\) −13.0000 13.0000i −1.05792 1.05792i −0.998216 0.0597092i \(-0.980983\pi\)
−0.0597092 0.998216i \(-0.519017\pi\)
\(152\) 8.48528i 0.688247i
\(153\) 4.24264 + 12.0000i 0.342997 + 0.970143i
\(154\) 0 0
\(155\) 4.24264 0.340777
\(156\) −2.24264 5.82843i −0.179555 0.466648i
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) −5.65685 5.65685i −0.450035 0.450035i
\(159\) −16.0000 11.3137i −1.26888 0.897235i
\(160\) 1.00000i 0.0790569i
\(161\) 0 0
\(162\) 8.94975 + 0.949747i 0.703159 + 0.0746192i
\(163\) −11.0000 11.0000i −0.861586 0.861586i 0.129936 0.991522i \(-0.458523\pi\)
−0.991522 + 0.129936i \(0.958523\pi\)
\(164\) −7.07107 + 7.07107i −0.552158 + 0.552158i
\(165\) −2.00000 + 2.82843i −0.155700 + 0.220193i
\(166\) 8.00000i 0.620920i
\(167\) −11.3137 + 11.3137i −0.875481 + 0.875481i −0.993063 0.117582i \(-0.962486\pi\)
0.117582 + 0.993063i \(0.462486\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 4.24264i 0.325396i
\(171\) −22.9706 10.9706i −1.75660 0.838940i
\(172\) 4.00000 0.304997
\(173\) −2.82843 −0.215041 −0.107521 0.994203i \(-0.534291\pi\)
−0.107521 + 0.994203i \(0.534291\pi\)
\(174\) 0.414214 + 2.41421i 0.0314014 + 0.183021i
\(175\) 0 0
\(176\) −1.41421 + 1.41421i −0.106600 + 0.106600i
\(177\) 1.17157 + 6.82843i 0.0880608 + 0.513256i
\(178\) −6.00000 −0.449719
\(179\) 18.3848 1.37414 0.687071 0.726590i \(-0.258896\pi\)
0.687071 + 0.726590i \(0.258896\pi\)
\(180\) −2.70711 1.29289i −0.201776 0.0963666i
\(181\) 18.0000i 1.33793i 0.743294 + 0.668965i \(0.233262\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 2.00000 2.82843i 0.147844 0.209083i
\(184\) −1.00000 + 1.00000i −0.0737210 + 0.0737210i
\(185\) 7.07107i 0.519875i
\(186\) 4.24264 6.00000i 0.311086 0.439941i
\(187\) −6.00000 + 6.00000i −0.438763 + 0.438763i
\(188\) −4.24264 4.24264i −0.309426 0.309426i
\(189\) 0 0
\(190\) 6.00000 + 6.00000i 0.435286 + 0.435286i
\(191\) 19.7990i 1.43260i −0.697790 0.716302i \(-0.745833\pi\)
0.697790 0.716302i \(-0.254167\pi\)
\(192\) −1.41421 1.00000i −0.102062 0.0721688i
\(193\) −6.00000 6.00000i −0.431889 0.431889i 0.457381 0.889271i \(-0.348787\pi\)
−0.889271 + 0.457381i \(0.848787\pi\)
\(194\) −14.1421 −1.01535
\(195\) 5.70711 + 2.53553i 0.408694 + 0.181573i
\(196\) 7.00000 0.500000
\(197\) −9.89949 9.89949i −0.705310 0.705310i 0.260235 0.965545i \(-0.416200\pi\)
−0.965545 + 0.260235i \(0.916200\pi\)
\(198\) 2.00000 + 5.65685i 0.142134 + 0.402015i
\(199\) 2.00000i 0.141776i 0.997484 + 0.0708881i \(0.0225833\pi\)
−0.997484 + 0.0708881i \(0.977417\pi\)
\(200\) 0.707107 + 0.707107i 0.0500000 + 0.0500000i
\(201\) −2.07107 12.0711i −0.146082 0.851427i
\(202\) −11.0000 11.0000i −0.773957 0.773957i
\(203\) 0 0
\(204\) −6.00000 4.24264i −0.420084 0.297044i
\(205\) 10.0000i 0.698430i
\(206\) 5.65685 5.65685i 0.394132 0.394132i
\(207\) 1.41421 + 4.00000i 0.0982946 + 0.278019i
\(208\) 3.00000 + 2.00000i 0.208013 + 0.138675i
\(209\) 16.9706i 1.17388i
\(210\) 0 0
\(211\) −24.0000 −1.65223 −0.826114 0.563503i \(-0.809453\pi\)
−0.826114 + 0.563503i \(0.809453\pi\)
\(212\) 11.3137 0.777029
\(213\) 13.6569 2.34315i 0.935752 0.160550i
\(214\) 8.00000 8.00000i 0.546869 0.546869i
\(215\) −2.82843 + 2.82843i −0.192897 + 0.192897i
\(216\) −4.53553 + 2.53553i −0.308604 + 0.172521i
\(217\) 0 0
\(218\) −2.82843 −0.191565
\(219\) 14.4853 2.48528i 0.978825 0.167940i
\(220\) 2.00000i 0.134840i
\(221\) 12.7279 + 8.48528i 0.856173 + 0.570782i
\(222\) −10.0000 7.07107i −0.671156 0.474579i
\(223\) −10.0000 + 10.0000i −0.669650 + 0.669650i −0.957635 0.287985i \(-0.907015\pi\)
0.287985 + 0.957635i \(0.407015\pi\)
\(224\) 0 0
\(225\) 2.82843 1.00000i 0.188562 0.0666667i
\(226\) −5.00000 + 5.00000i −0.332595 + 0.332595i
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 14.4853 2.48528i 0.959311 0.164592i
\(229\) 6.00000 + 6.00000i 0.396491 + 0.396491i 0.876993 0.480502i \(-0.159546\pi\)
−0.480502 + 0.876993i \(0.659546\pi\)
\(230\) 1.41421i 0.0932505i
\(231\) 0 0
\(232\) −1.00000 1.00000i −0.0656532 0.0656532i
\(233\) −18.3848 −1.20443 −0.602213 0.798335i \(-0.705714\pi\)
−0.602213 + 0.798335i \(0.705714\pi\)
\(234\) 9.29289 5.53553i 0.607495 0.361869i
\(235\) 6.00000 0.391397
\(236\) −2.82843 2.82843i −0.184115 0.184115i
\(237\) 8.00000 11.3137i 0.519656 0.734904i
\(238\) 0 0
\(239\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 1.70711 0.292893i 0.110193 0.0189062i
\(241\) −1.00000 1.00000i −0.0644157 0.0644157i 0.674165 0.738581i \(-0.264504\pi\)
−0.738581 + 0.674165i \(0.764504\pi\)
\(242\) 4.94975 4.94975i 0.318182 0.318182i
\(243\) 1.00000 + 15.5563i 0.0641500 + 0.997940i
\(244\) 2.00000i 0.128037i
\(245\) −4.94975 + 4.94975i −0.316228 + 0.316228i
\(246\) −14.1421 10.0000i −0.901670 0.637577i
\(247\) −30.0000 + 6.00000i −1.90885 + 0.381771i
\(248\) 4.24264i 0.269408i
\(249\) 13.6569 2.34315i 0.865468 0.148491i
\(250\) −1.00000 −0.0632456
\(251\) 4.24264 0.267793 0.133897 0.990995i \(-0.457251\pi\)
0.133897 + 0.990995i \(0.457251\pi\)
\(252\) 0 0
\(253\) −2.00000 + 2.00000i −0.125739 + 0.125739i
\(254\) 2.82843 2.82843i 0.177471 0.177471i
\(255\) 7.24264 1.24264i 0.453552 0.0778172i
\(256\) 1.00000 0.0625000
\(257\) −1.41421 −0.0882162 −0.0441081 0.999027i \(-0.514045\pi\)
−0.0441081 + 0.999027i \(0.514045\pi\)
\(258\) 1.17157 + 6.82843i 0.0729389 + 0.425119i
\(259\) 0 0
\(260\) −3.53553 + 0.707107i −0.219265 + 0.0438529i
\(261\) −4.00000 + 1.41421i −0.247594 + 0.0875376i
\(262\) 5.00000 5.00000i 0.308901 0.308901i
\(263\) 4.24264i 0.261612i 0.991408 + 0.130806i \(0.0417566\pi\)
−0.991408 + 0.130806i \(0.958243\pi\)
\(264\) −2.82843 2.00000i −0.174078 0.123091i
\(265\) −8.00000 + 8.00000i −0.491436 + 0.491436i
\(266\) 0 0
\(267\) −1.75736 10.2426i −0.107549 0.626839i
\(268\) 5.00000 + 5.00000i 0.305424 + 0.305424i
\(269\) 1.41421i 0.0862261i −0.999070 0.0431131i \(-0.986272\pi\)
0.999070 0.0431131i \(-0.0137276\pi\)
\(270\) 1.41421 5.00000i 0.0860663 0.304290i
\(271\) −3.00000 3.00000i −0.182237 0.182237i 0.610093 0.792330i \(-0.291132\pi\)
−0.792330 + 0.610093i \(0.791132\pi\)
\(272\) 4.24264 0.257248
\(273\) 0 0
\(274\) −20.0000 −1.20824
\(275\) 1.41421 + 1.41421i 0.0852803 + 0.0852803i
\(276\) −2.00000 1.41421i −0.120386 0.0851257i
\(277\) 28.0000i 1.68236i 0.540758 + 0.841178i \(0.318138\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 11.3137 + 11.3137i 0.678551 + 0.678551i
\(279\) 11.4853 + 5.48528i 0.687606 + 0.328395i
\(280\) 0 0
\(281\) −12.7279 + 12.7279i −0.759284 + 0.759284i −0.976192 0.216908i \(-0.930403\pi\)
0.216908 + 0.976192i \(0.430403\pi\)
\(282\) 6.00000 8.48528i 0.357295 0.505291i
\(283\) 6.00000i 0.356663i −0.983970 0.178331i \(-0.942930\pi\)
0.983970 0.178331i \(-0.0570699\pi\)
\(284\) −5.65685 + 5.65685i −0.335673 + 0.335673i
\(285\) −8.48528 + 12.0000i −0.502625 + 0.710819i
\(286\) 6.00000 + 4.00000i 0.354787 + 0.236525i
\(287\) 0 0
\(288\) 1.29289 2.70711i 0.0761845 0.159518i
\(289\) 1.00000 0.0588235
\(290\) 1.41421 0.0830455
\(291\) −4.14214 24.1421i −0.242816 1.41524i
\(292\) −6.00000 + 6.00000i −0.351123 + 0.351123i
\(293\) 9.89949 9.89949i 0.578335 0.578335i −0.356110 0.934444i \(-0.615897\pi\)
0.934444 + 0.356110i \(0.115897\pi\)
\(294\) 2.05025 + 11.9497i 0.119573 + 0.696923i
\(295\) 4.00000 0.232889
\(296\) 7.07107 0.410997
\(297\) −9.07107 + 5.07107i −0.526357 + 0.294253i
\(298\) 10.0000i 0.579284i
\(299\) 4.24264 + 2.82843i 0.245358 + 0.163572i
\(300\) −1.00000 + 1.41421i −0.0577350 + 0.0816497i
\(301\) 0 0
\(302\) 18.3848i 1.05792i
\(303\) 15.5563 22.0000i 0.893689 1.26387i
\(304\) −6.00000 + 6.00000i −0.344124 + 0.344124i
\(305\) −1.41421 1.41421i −0.0809776 0.0809776i
\(306\) 5.48528 11.4853i 0.313573 0.656570i
\(307\) 23.0000 + 23.0000i 1.31268 + 1.31268i 0.919433 + 0.393246i \(0.128648\pi\)
0.393246 + 0.919433i \(0.371352\pi\)
\(308\) 0 0
\(309\) 11.3137 + 8.00000i 0.643614 + 0.455104i
\(310\) −3.00000 3.00000i −0.170389 0.170389i
\(311\) −2.82843 −0.160385 −0.0801927 0.996779i \(-0.525554\pi\)
−0.0801927 + 0.996779i \(0.525554\pi\)
\(312\) −2.53553 + 5.70711i −0.143546 + 0.323101i
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 4.24264 + 4.24264i 0.239426 + 0.239426i
\(315\) 0 0
\(316\) 8.00000i 0.450035i
\(317\) 18.3848 + 18.3848i 1.03259 + 1.03259i 0.999451 + 0.0331412i \(0.0105511\pi\)
0.0331412 + 0.999451i \(0.489449\pi\)
\(318\) 3.31371 + 19.3137i 0.185824 + 1.08306i
\(319\) −2.00000 2.00000i −0.111979 0.111979i
\(320\) −0.707107 + 0.707107i −0.0395285 + 0.0395285i
\(321\) 16.0000 + 11.3137i 0.893033 + 0.631470i
\(322\) 0 0
\(323\) −25.4558 + 25.4558i −1.41640 + 1.41640i
\(324\) −5.65685 7.00000i −0.314270 0.388889i
\(325\) 2.00000 3.00000i 0.110940 0.166410i
\(326\) 15.5563i 0.861586i
\(327\) −0.828427 4.82843i −0.0458121 0.267013i
\(328\) 10.0000 0.552158
\(329\) 0 0
\(330\) 3.41421 0.585786i 0.187946 0.0322465i
\(331\) 24.0000 24.0000i 1.31916 1.31916i 0.404718 0.914442i \(-0.367370\pi\)
0.914442 0.404718i \(-0.132630\pi\)
\(332\) −5.65685 + 5.65685i −0.310460 + 0.310460i
\(333\) 9.14214 19.1421i 0.500986 1.04898i
\(334\) 16.0000 0.875481
\(335\) −7.07107 −0.386334
\(336\) 0 0
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) 4.94975 12.0208i 0.269231 0.653846i
\(339\) −10.0000 7.07107i −0.543125 0.384048i
\(340\) −3.00000 + 3.00000i −0.162698 + 0.162698i
\(341\) 8.48528i 0.459504i
\(342\) 8.48528 + 24.0000i 0.458831 + 1.29777i
\(343\) 0 0
\(344\) −2.82843 2.82843i −0.152499 0.152499i
\(345\) 2.41421 0.414214i 0.129977 0.0223005i
\(346\) 2.00000 + 2.00000i 0.107521 + 0.107521i
\(347\) 11.3137i 0.607352i −0.952775 0.303676i \(-0.901786\pi\)
0.952775 0.303676i \(-0.0982140\pi\)
\(348\) 1.41421 2.00000i 0.0758098 0.107211i
\(349\) −12.0000 12.0000i −0.642345 0.642345i 0.308786 0.951131i \(-0.400077\pi\)
−0.951131 + 0.308786i \(0.900077\pi\)
\(350\) 0 0
\(351\) 12.1716 + 14.2426i 0.649670 + 0.760216i
\(352\) 2.00000 0.106600
\(353\) −25.4558 25.4558i −1.35488 1.35488i −0.880112 0.474766i \(-0.842533\pi\)
−0.474766 0.880112i \(-0.657467\pi\)
\(354\) 4.00000 5.65685i 0.212598 0.300658i
\(355\) 8.00000i 0.424596i
\(356\) 4.24264 + 4.24264i 0.224860 + 0.224860i
\(357\) 0 0
\(358\) −13.0000 13.0000i −0.687071 0.687071i
\(359\) −16.9706 + 16.9706i −0.895672 + 0.895672i −0.995050 0.0993777i \(-0.968315\pi\)
0.0993777 + 0.995050i \(0.468315\pi\)
\(360\) 1.00000 + 2.82843i 0.0527046 + 0.149071i
\(361\) 53.0000i 2.78947i
\(362\) 12.7279 12.7279i 0.668965 0.668965i
\(363\) 9.89949 + 7.00000i 0.519589 + 0.367405i
\(364\) 0 0
\(365\) 8.48528i 0.444140i
\(366\) −3.41421 + 0.585786i −0.178464 + 0.0306195i
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 1.41421 0.0737210
\(369\) 12.9289 27.0711i 0.673053 1.40926i
\(370\) −5.00000 + 5.00000i −0.259938 + 0.259938i
\(371\) 0 0
\(372\) −7.24264 + 1.24264i −0.375513 + 0.0644279i
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 8.48528 0.438763
\(375\) −0.292893 1.70711i −0.0151249 0.0881546i
\(376\) 6.00000i 0.309426i
\(377\) −2.82843 + 4.24264i −0.145671 + 0.218507i
\(378\) 0 0
\(379\) 16.0000 16.0000i 0.821865 0.821865i −0.164511 0.986375i \(-0.552604\pi\)
0.986375 + 0.164511i \(0.0526045\pi\)
\(380\) 8.48528i 0.435286i
\(381\) 5.65685 + 4.00000i 0.289809 + 0.204926i
\(382\) −14.0000 + 14.0000i −0.716302 + 0.716302i
\(383\) 16.9706 + 16.9706i 0.867155 + 0.867155i 0.992157 0.125001i \(-0.0398935\pi\)
−0.125001 + 0.992157i \(0.539894\pi\)
\(384\) 0.292893 + 1.70711i 0.0149466 + 0.0871154i
\(385\) 0 0
\(386\) 8.48528i 0.431889i
\(387\) −11.3137 + 4.00000i −0.575108 + 0.203331i
\(388\) 10.0000 + 10.0000i 0.507673 + 0.507673i
\(389\) 26.8701 1.36237 0.681183 0.732113i \(-0.261466\pi\)
0.681183 + 0.732113i \(0.261466\pi\)
\(390\) −2.24264 5.82843i −0.113561 0.295134i
\(391\) 6.00000 0.303433
\(392\) −4.94975 4.94975i −0.250000 0.250000i
\(393\) 10.0000 + 7.07107i 0.504433 + 0.356688i
\(394\) 14.0000i 0.705310i
\(395\) −5.65685 5.65685i −0.284627 0.284627i
\(396\) 2.58579 5.41421i 0.129941 0.272074i
\(397\) 3.00000 + 3.00000i 0.150566 + 0.150566i 0.778371 0.627805i \(-0.216046\pi\)
−0.627805 + 0.778371i \(0.716046\pi\)
\(398\) 1.41421 1.41421i 0.0708881 0.0708881i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) −4.24264 + 4.24264i −0.211867 + 0.211867i −0.805060 0.593193i \(-0.797867\pi\)
0.593193 + 0.805060i \(0.297867\pi\)
\(402\) −7.07107 + 10.0000i −0.352673 + 0.498755i
\(403\) 15.0000 3.00000i 0.747203 0.149441i
\(404\) 15.5563i 0.773957i
\(405\) 8.94975 + 0.949747i 0.444717 + 0.0471933i
\(406\) 0 0
\(407\) 14.1421 0.701000
\(408\) 1.24264 + 7.24264i 0.0615199 + 0.358564i
\(409\) −3.00000 + 3.00000i −0.148340 + 0.148340i −0.777376 0.629036i \(-0.783450\pi\)
0.629036 + 0.777376i \(0.283450\pi\)
\(410\) −7.07107 + 7.07107i −0.349215 + 0.349215i
\(411\) −5.85786 34.1421i −0.288947 1.68411i
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) 1.82843 3.82843i 0.0898623 0.188157i
\(415\) 8.00000i 0.392705i
\(416\) −0.707107 3.53553i −0.0346688 0.173344i
\(417\) −16.0000 + 22.6274i −0.783523 + 1.10807i
\(418\) −12.0000 + 12.0000i −0.586939 + 0.586939i
\(419\) 15.5563i 0.759977i 0.924991 + 0.379989i \(0.124072\pi\)
−0.924991 + 0.379989i \(0.875928\pi\)
\(420\) 0 0
\(421\) 12.0000 12.0000i 0.584844 0.584844i −0.351386 0.936231i \(-0.614290\pi\)
0.936231 + 0.351386i \(0.114290\pi\)
\(422\) 16.9706 + 16.9706i 0.826114 + 0.826114i
\(423\) 16.2426 + 7.75736i 0.789744 + 0.377176i
\(424\) −8.00000 8.00000i −0.388514 0.388514i
\(425\) 4.24264i 0.205798i
\(426\) −11.3137 8.00000i −0.548151 0.387601i
\(427\) 0 0
\(428\) −11.3137 −0.546869
\(429\) −5.07107 + 11.4142i −0.244833 + 0.551083i
\(430\) 4.00000 0.192897
\(431\) −25.4558 25.4558i −1.22616 1.22616i −0.965403 0.260762i \(-0.916026\pi\)
−0.260762 0.965403i \(-0.583974\pi\)
\(432\) 5.00000 + 1.41421i 0.240563 + 0.0680414i
\(433\) 14.0000i 0.672797i −0.941720 0.336399i \(-0.890791\pi\)
0.941720 0.336399i \(-0.109209\pi\)
\(434\) 0 0
\(435\) 0.414214 + 2.41421i 0.0198600 + 0.115753i
\(436\) 2.00000 + 2.00000i 0.0957826 + 0.0957826i
\(437\) −8.48528 + 8.48528i −0.405906 + 0.405906i
\(438\) −12.0000 8.48528i −0.573382 0.405442i
\(439\) 6.00000i 0.286364i 0.989696 + 0.143182i \(0.0457335\pi\)
−0.989696 + 0.143182i \(0.954267\pi\)
\(440\) −1.41421 + 1.41421i −0.0674200 + 0.0674200i
\(441\) −19.7990 + 7.00000i −0.942809 + 0.333333i
\(442\) −3.00000 15.0000i −0.142695 0.713477i
\(443\) 8.48528i 0.403148i −0.979473 0.201574i \(-0.935394\pi\)
0.979473 0.201574i \(-0.0646056\pi\)
\(444\) 2.07107 + 12.0711i 0.0982885 + 0.572868i
\(445\) −6.00000 −0.284427
\(446\) 14.1421 0.669650
\(447\) 17.0711 2.92893i 0.807434 0.138534i
\(448\) 0 0
\(449\) 12.7279 12.7279i 0.600668 0.600668i −0.339822 0.940490i \(-0.610367\pi\)
0.940490 + 0.339822i \(0.110367\pi\)
\(450\) −2.70711 1.29289i −0.127614 0.0609476i
\(451\) 20.0000 0.941763
\(452\) 7.07107 0.332595
\(453\) −31.3848 + 5.38478i −1.47459 + 0.252999i
\(454\) 0 0
\(455\) 0 0
\(456\) −12.0000 8.48528i −0.561951 0.397360i
\(457\) 6.00000 6.00000i 0.280668 0.280668i −0.552707 0.833375i \(-0.686405\pi\)
0.833375 + 0.552707i \(0.186405\pi\)
\(458\) 8.48528i 0.396491i
\(459\) 21.2132 + 6.00000i 0.990148 + 0.280056i
\(460\) −1.00000 + 1.00000i −0.0466252 + 0.0466252i
\(461\) 2.82843 + 2.82843i 0.131733 + 0.131733i 0.769899 0.638166i \(-0.220307\pi\)
−0.638166 + 0.769899i \(0.720307\pi\)
\(462\) 0 0
\(463\) 22.0000 + 22.0000i 1.02243 + 1.02243i 0.999743 + 0.0226840i \(0.00722117\pi\)
0.0226840 + 0.999743i \(0.492779\pi\)
\(464\) 1.41421i 0.0656532i
\(465\) 4.24264 6.00000i 0.196748 0.278243i
\(466\) 13.0000 + 13.0000i 0.602213 + 0.602213i
\(467\) −2.82843 −0.130884 −0.0654420 0.997856i \(-0.520846\pi\)
−0.0654420 + 0.997856i \(0.520846\pi\)
\(468\) −10.4853 2.65685i −0.484682 0.122813i
\(469\) 0 0
\(470\) −4.24264 4.24264i −0.195698 0.195698i
\(471\) −6.00000 + 8.48528i −0.276465 + 0.390981i
\(472\) 4.00000i 0.184115i
\(473\) −5.65685 5.65685i −0.260102 0.260102i
\(474\) −13.6569 + 2.34315i −0.627280 + 0.107624i
\(475\) 6.00000 + 6.00000i 0.275299 + 0.275299i
\(476\) 0 0
\(477\) −32.0000 + 11.3137i −1.46518 + 0.518019i
\(478\) 0 0
\(479\) −14.1421 + 14.1421i −0.646171 + 0.646171i −0.952065 0.305895i \(-0.901044\pi\)
0.305895 + 0.952065i \(0.401044\pi\)
\(480\) −1.41421 1.00000i −0.0645497 0.0456435i
\(481\) −5.00000 25.0000i −0.227980 1.13990i
\(482\) 1.41421i 0.0644157i
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) −14.1421 −0.642161
\(486\) 10.2929 11.7071i 0.466895 0.531045i
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 1.41421 1.41421i 0.0640184 0.0640184i
\(489\) −26.5563 + 4.55635i −1.20092 + 0.206045i
\(490\) 7.00000 0.316228
\(491\) −15.5563 −0.702048 −0.351024 0.936366i \(-0.614166\pi\)
−0.351024 + 0.936366i \(0.614166\pi\)
\(492\) 2.92893 + 17.0711i 0.132046 + 0.769623i
\(493\) 6.00000i 0.270226i
\(494\) 25.4558 + 16.9706i 1.14531 + 0.763542i
\(495\) 2.00000 + 5.65685i 0.0898933 + 0.254257i
\(496\) 3.00000 3.00000i 0.134704 0.134704i
\(497\) 0 0
\(498\) −11.3137 8.00000i −0.506979 0.358489i
\(499\) −18.0000 + 18.0000i −0.805791 + 0.805791i −0.983994 0.178203i \(-0.942972\pi\)
0.178203 + 0.983994i \(0.442972\pi\)
\(500\) 0.707107 + 0.707107i 0.0316228 + 0.0316228i
\(501\) 4.68629 + 27.3137i 0.209368 + 1.22029i
\(502\) −3.00000 3.00000i −0.133897 0.133897i
\(503\) 9.89949i 0.441397i −0.975342 0.220698i \(-0.929166\pi\)
0.975342 0.220698i \(-0.0708336\pi\)
\(504\) 0 0
\(505\) −11.0000 11.0000i −0.489494 0.489494i
\(506\) 2.82843 0.125739
\(507\) 21.9706 + 4.92893i 0.975747 + 0.218902i
\(508\) −4.00000 −0.177471
\(509\) 14.1421 + 14.1421i 0.626839 + 0.626839i 0.947271 0.320432i \(-0.103828\pi\)
−0.320432 + 0.947271i \(0.603828\pi\)
\(510\) −6.00000 4.24264i −0.265684 0.187867i
\(511\) 0 0
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) −38.4853 + 21.5147i −1.69917 + 0.949898i
\(514\) 1.00000 + 1.00000i 0.0441081 + 0.0441081i
\(515\) 5.65685 5.65685i 0.249271 0.249271i
\(516\) 4.00000 5.65685i 0.176090 0.249029i
\(517\) 12.0000i 0.527759i
\(518\) 0 0
\(519\) −2.82843 + 4.00000i −0.124154 + 0.175581i
\(520\) 3.00000 + 2.00000i 0.131559 + 0.0877058i
\(521\) 5.65685i 0.247831i −0.992293 0.123916i \(-0.960455\pi\)
0.992293 0.123916i \(-0.0395452\pi\)
\(522\) 3.82843 + 1.82843i 0.167566 + 0.0800281i
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −7.07107 −0.308901
\(525\) 0 0
\(526\) 3.00000 3.00000i 0.130806 0.130806i
\(527\) 12.7279 12.7279i 0.554437 0.554437i
\(528\) 0.585786 + 3.41421i 0.0254931 + 0.148585i
\(529\) −21.0000 −0.913043
\(530\) 11.3137 0.491436
\(531\) 10.8284 + 5.17157i 0.469914 + 0.224427i
\(532\) 0 0
\(533\) −7.07107 35.3553i −0.306282 1.53141i
\(534\) −6.00000 + 8.48528i −0.259645 + 0.367194i
\(535\) 8.00000 8.00000i 0.345870 0.345870i
\(536\) 7.07107i 0.305424i
\(537\) 18.3848 26.0000i 0.793362 1.12198i
\(538\) −1.00000 + 1.00000i −0.0431131 + 0.0431131i
\(539\) −9.89949 9.89949i −0.426401 0.426401i
\(540\) −4.53553 + 2.53553i −0.195178 + 0.109112i
\(541\) −8.00000 8.00000i −0.343947 0.343947i 0.513902 0.857849i \(-0.328199\pi\)
−0.857849 + 0.513902i \(0.828199\pi\)
\(542\) 4.24264i 0.182237i
\(543\) 25.4558 + 18.0000i 1.09241 + 0.772454i
\(544\) −3.00000 3.00000i −0.128624 0.128624i
\(545\) −2.82843 −0.121157
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 14.1421 + 14.1421i 0.604122 + 0.604122i
\(549\) −2.00000 5.65685i −0.0853579 0.241429i
\(550\) 2.00000i 0.0852803i
\(551\) −8.48528 8.48528i −0.361485 0.361485i
\(552\) 0.414214 + 2.41421i 0.0176301 + 0.102756i
\(553\) 0 0
\(554\) 19.7990 19.7990i 0.841178 0.841178i
\(555\) −10.0000 7.07107i −0.424476 0.300150i
\(556\) 16.0000i 0.678551i
\(557\) 18.3848 18.3848i 0.778988 0.778988i −0.200671 0.979659i \(-0.564312\pi\)
0.979659 + 0.200671i \(0.0643121\pi\)
\(558\) −4.24264 12.0000i −0.179605 0.508001i
\(559\) −8.00000 + 12.0000i −0.338364 + 0.507546i
\(560\) 0 0
\(561\) 2.48528 + 14.4853i 0.104929 + 0.611569i
\(562\) 18.0000 0.759284
\(563\) −19.7990 −0.834428 −0.417214 0.908808i \(-0.636993\pi\)
−0.417214 + 0.908808i \(0.636993\pi\)
\(564\) −10.2426 + 1.75736i −0.431293 + 0.0739982i
\(565\) −5.00000 + 5.00000i −0.210352 + 0.210352i
\(566\) −4.24264 + 4.24264i −0.178331 + 0.178331i
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) −45.2548 −1.89718 −0.948591 0.316506i \(-0.897490\pi\)
−0.948591 + 0.316506i \(0.897490\pi\)
\(570\) 14.4853 2.48528i 0.606722 0.104097i
\(571\) 12.0000i 0.502184i 0.967963 + 0.251092i \(0.0807897\pi\)
−0.967963 + 0.251092i \(0.919210\pi\)
\(572\) −1.41421 7.07107i −0.0591312 0.295656i
\(573\) −28.0000 19.7990i −1.16972 0.827115i
\(574\) 0 0
\(575\) 1.41421i 0.0589768i
\(576\) −2.82843 + 1.00000i −0.117851 + 0.0416667i
\(577\) 26.0000 26.0000i 1.08239 1.08239i 0.0861084 0.996286i \(-0.472557\pi\)
0.996286 0.0861084i \(-0.0274431\pi\)
\(578\) −0.707107 0.707107i −0.0294118 0.0294118i
\(579\) −14.4853 + 2.48528i −0.601988 + 0.103285i
\(580\) −1.00000 1.00000i −0.0415227 0.0415227i
\(581\) 0 0
\(582\) −14.1421 + 20.0000i −0.586210 + 0.829027i
\(583\) −16.0000 16.0000i −0.662652 0.662652i
\(584\) 8.48528 0.351123
\(585\) 9.29289 5.53553i 0.384214 0.228866i
\(586\) −14.0000 −0.578335
\(587\) 19.7990 + 19.7990i 0.817192 + 0.817192i 0.985700 0.168508i \(-0.0538950\pi\)
−0.168508 + 0.985700i \(0.553895\pi\)
\(588\) 7.00000 9.89949i 0.288675 0.408248i
\(589\) 36.0000i 1.48335i
\(590\) −2.82843 2.82843i −0.116445 0.116445i
\(591\) −23.8995 + 4.10051i −0.983094 + 0.168672i
\(592\) −5.00000 5.00000i −0.205499 0.205499i
\(593\) 25.4558 25.4558i 1.04535 1.04535i 0.0464244 0.998922i \(-0.485217\pi\)
0.998922 0.0464244i \(-0.0147827\pi\)
\(594\) 10.0000 + 2.82843i 0.410305 + 0.116052i
\(595\) 0 0
\(596\) −7.07107 + 7.07107i −0.289642 + 0.289642i
\(597\) 2.82843 + 2.00000i 0.115760 + 0.0818546i
\(598\) −1.00000 5.00000i −0.0408930 0.204465i
\(599\) 45.2548i 1.84906i −0.381106 0.924531i \(-0.624457\pi\)
0.381106 0.924531i \(-0.375543\pi\)
\(600\) 1.70711 0.292893i 0.0696923 0.0119573i
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) −19.1421 9.14214i −0.779528 0.372297i
\(604\) 13.0000 13.0000i 0.528962 0.528962i
\(605\) 4.94975 4.94975i 0.201236 0.201236i
\(606\) −26.5563 + 4.55635i −1.07878 + 0.185089i
\(607\) 36.0000 1.46119 0.730597 0.682808i \(-0.239242\pi\)
0.730597 + 0.682808i \(0.239242\pi\)
\(608\) 8.48528 0.344124
\(609\) 0 0
\(610\) 2.00000i 0.0809776i
\(611\) 21.2132 4.24264i 0.858194 0.171639i
\(612\) −12.0000 + 4.24264i −0.485071 + 0.171499i
\(613\) −9.00000 + 9.00000i −0.363507 + 0.363507i −0.865102 0.501596i \(-0.832747\pi\)
0.501596 + 0.865102i \(0.332747\pi\)
\(614\) 32.5269i 1.31268i
\(615\) −14.1421 10.0000i −0.570266 0.403239i
\(616\) 0 0
\(617\) −7.07107 7.07107i −0.284670 0.284670i 0.550298 0.834968i \(-0.314514\pi\)
−0.834968 + 0.550298i \(0.814514\pi\)
\(618\) −2.34315 13.6569i −0.0942551 0.549359i
\(619\) 32.0000 + 32.0000i 1.28619 + 1.28619i 0.937084 + 0.349105i \(0.113514\pi\)
0.349105 + 0.937084i \(0.386486\pi\)
\(620\) 4.24264i 0.170389i
\(621\) 7.07107 + 2.00000i 0.283752 + 0.0802572i
\(622\) 2.00000 + 2.00000i 0.0801927 + 0.0801927i
\(623\) 0 0
\(624\) 5.82843 2.24264i 0.233324 0.0897775i
\(625\) −1.00000 −0.0400000
\(626\) −18.3848 18.3848i −0.734803 0.734803i
\(627\) −24.0000 16.9706i −0.958468 0.677739i
\(628\) 6.00000i 0.239426i
\(629\) −21.2132 21.2132i −0.845826 0.845826i
\(630\) 0 0
\(631\) 9.00000 + 9.00000i 0.358284 + 0.358284i 0.863180 0.504896i \(-0.168469\pi\)
−0.504896 + 0.863180i \(0.668469\pi\)
\(632\) 5.65685 5.65685i 0.225018 0.225018i
\(633\) −24.0000 + 33.9411i −0.953914 + 1.34904i
\(634\) 26.0000i 1.03259i
\(635\) 2.82843 2.82843i 0.112243 0.112243i
\(636\) 11.3137 16.0000i 0.448618 0.634441i
\(637\) −14.0000 + 21.0000i −0.554700 + 0.832050i
\(638\) 2.82843i 0.111979i
\(639\) 10.3431 21.6569i 0.409169 0.856732i
\(640\) 1.00000 0.0395285
\(641\) 39.5980 1.56403 0.782013 0.623262i \(-0.214193\pi\)
0.782013 + 0.623262i \(0.214193\pi\)
\(642\) −3.31371 19.3137i −0.130782 0.762251i
\(643\) −21.0000 + 21.0000i −0.828159 + 0.828159i −0.987262 0.159103i \(-0.949140\pi\)
0.159103 + 0.987262i \(0.449140\pi\)
\(644\) 0 0
\(645\) 1.17157 + 6.82843i 0.0461306 + 0.268869i
\(646\) 36.0000 1.41640
\(647\) −7.07107 −0.277992 −0.138996 0.990293i \(-0.544388\pi\)
−0.138996 + 0.990293i \(0.544388\pi\)
\(648\) −0.949747 + 8.94975i −0.0373096 + 0.351579i
\(649\) 8.00000i 0.314027i
\(650\) −3.53553 + 0.707107i −0.138675 + 0.0277350i
\(651\) 0 0
\(652\) 11.0000 11.0000i 0.430793 0.430793i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) −2.82843 + 4.00000i −0.110600 + 0.156412i
\(655\) 5.00000 5.00000i 0.195366 0.195366i
\(656\) −7.07107 7.07107i −0.276079 0.276079i
\(657\) 10.9706 22.9706i 0.428002 0.896167i
\(658\) 0 0
\(659\) 9.89949i 0.385630i −0.981235 0.192815i \(-0.938238\pi\)
0.981235 0.192815i \(-0.0617617\pi\)
\(660\) −2.82843 2.00000i −0.110096 0.0778499i
\(661\) −22.0000 22.0000i −0.855701 0.855701i 0.135127 0.990828i \(-0.456856\pi\)
−0.990828 + 0.135127i \(0.956856\pi\)
\(662\) −33.9411 −1.31916
\(663\) 24.7279 9.51472i 0.960353 0.369521i
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) −20.0000 + 7.07107i −0.774984 + 0.273998i
\(667\) 2.00000i 0.0774403i
\(668\) −11.3137 11.3137i −0.437741 0.437741i
\(669\) 4.14214 + 24.1421i 0.160144 + 0.933389i
\(670\) 5.00000 + 5.00000i 0.193167 + 0.193167i
\(671\) 2.82843 2.82843i 0.109190 0.109190i
\(672\) 0 0
\(673\) 6.00000i 0.231283i −0.993291 0.115642i \(-0.963108\pi\)
0.993291 0.115642i \(-0.0368924\pi\)
\(674\) 9.89949 9.89949i 0.381314 0.381314i
\(675\) 1.41421 5.00000i 0.0544331 0.192450i
\(676\) −12.0000 + 5.00000i −0.461538 + 0.192308i
\(677\) 36.7696i 1.41317i 0.707629 + 0.706584i \(0.249765\pi\)
−0.707629 + 0.706584i \(0.750235\pi\)
\(678\) 2.07107 + 12.0711i 0.0795389 + 0.463587i
\(679\) 0 0
\(680\) 4.24264 0.162698
\(681\) 0 0
\(682\) 6.00000 6.00000i 0.229752 0.229752i
\(683\) −16.9706 + 16.9706i −0.649361 + 0.649361i −0.952838 0.303478i \(-0.901852\pi\)
0.303478 + 0.952838i \(0.401852\pi\)
\(684\) 10.9706 22.9706i 0.419470 0.878301i
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) 14.4853 2.48528i 0.552648 0.0948194i
\(688\) 4.00000i 0.152499i
\(689\) −22.6274 + 33.9411i −0.862036 + 1.29305i
\(690\) −2.00000 1.41421i −0.0761387 0.0538382i
\(691\) −16.0000 + 16.0000i −0.608669 + 0.608669i −0.942598 0.333929i \(-0.891625\pi\)
0.333929 + 0.942598i \(0.391625\pi\)
\(692\) 2.82843i 0.107521i
\(693\) 0 0
\(694\) −8.00000 + 8.00000i −0.303676 + 0.303676i
\(695\) 11.3137 + 11.3137i 0.429153 + 0.429153i
\(696\) −2.41421 + 0.414214i −0.0915105 + 0.0157007i
\(697\) −30.0000 30.0000i −1.13633 1.13633i
\(698\) 16.9706i 0.642345i
\(699\) −18.3848 + 26.0000i −0.695376 + 0.983410i
\(700\) 0 0
\(701\) −1.41421 −0.0534141 −0.0267071 0.999643i \(-0.508502\pi\)
−0.0267071 + 0.999643i \(0.508502\pi\)
\(702\) 1.46447 18.6777i 0.0552727 0.704943i
\(703\) 60.0000 2.26294
\(704\) −1.41421 1.41421i −0.0533002 0.0533002i
\(705\) 6.00000 8.48528i 0.225973 0.319574i
\(706\) 36.0000i 1.35488i
\(707\) 0 0
\(708\) −6.82843 + 1.17157i −0.256628 + 0.0440304i
\(709\) −18.0000 18.0000i −0.676004 0.676004i 0.283089 0.959094i \(-0.408641\pi\)
−0.959094 + 0.283089i \(0.908641\pi\)
\(710\) −5.65685 + 5.65685i −0.212298 + 0.212298i
\(711\) −8.00000 22.6274i −0.300023 0.848594i
\(712\) 6.00000i 0.224860i
\(713\) 4.24264 4.24264i 0.158888 0.158888i
\(714\) 0 0
\(715\) 6.00000 + 4.00000i 0.224387 + 0.149592i
\(716\) 18.3848i 0.687071i
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) −45.2548 −1.68772 −0.843860 0.536563i \(-0.819722\pi\)
−0.843860 + 0.536563i \(0.819722\pi\)
\(720\) 1.29289 2.70711i 0.0481833 0.100888i
\(721\) 0 0
\(722\) −37.4767 + 37.4767i −1.39474 + 1.39474i
\(723\) −2.41421 + 0.414214i −0.0897856 + 0.0154048i
\(724\) −18.0000 −0.668965
\(725\) 1.41421 0.0525226
\(726\) −2.05025 11.9497i −0.0760920 0.443497i
\(727\) 8.00000i 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) 0 0
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) −6.00000 + 6.00000i −0.222070 + 0.222070i
\(731\) 16.9706i 0.627679i
\(732\) 2.82843 + 2.00000i 0.104542 + 0.0739221i
\(733\) −9.00000 + 9.00000i −0.332423 + 0.332423i −0.853506 0.521083i \(-0.825528\pi\)
0.521083 + 0.853506i \(0.325528\pi\)
\(734\) 5.65685 + 5.65685i 0.208798 + 0.208798i
\(735\) 2.05025 + 11.9497i 0.0756247 + 0.440773i
\(736\) −1.00000 1.00000i −0.0368605 0.0368605i
\(737\) 14.1421i 0.520932i
\(738\) −28.2843 + 10.0000i −1.04116 + 0.368105i
\(739\) −12.0000 12.0000i −0.441427 0.441427i 0.451064 0.892491i \(-0.351045\pi\)
−0.892491 + 0.451064i \(0.851045\pi\)
\(740\) 7.07107 0.259938
\(741\) −21.5147 + 48.4264i −0.790363 + 1.77899i
\(742\) 0 0
\(743\) 18.3848 + 18.3848i 0.674472 + 0.674472i 0.958744 0.284272i \(-0.0917518\pi\)
−0.284272 + 0.958744i \(0.591752\pi\)
\(744\) 6.00000 + 4.24264i 0.219971 + 0.155543i
\(745\) 10.0000i 0.366372i
\(746\) 22.6274 + 22.6274i 0.828449 + 0.828449i
\(747\) 10.3431 21.6569i 0.378436 0.792383i
\(748\) −6.00000 6.00000i −0.219382 0.219382i
\(749\) 0 0
\(750\) −1.00000 + 1.41421i −0.0365148 + 0.0516398i
\(751\) 10.0000i 0.364905i 0.983215 + 0.182453i \(0.0584036\pi\)
−0.983215 + 0.182453i \(0.941596\pi\)
\(752\) 4.24264 4.24264i 0.154713 0.154713i
\(753\) 4.24264 6.00000i 0.154610 0.218652i
\(754\) 5.00000 1.00000i 0.182089 0.0364179i
\(755\) 18.3848i 0.669091i
\(756\) 0 0
\(757\) 42.0000 1.52652 0.763258 0.646094i \(-0.223599\pi\)
0.763258 + 0.646094i \(0.223599\pi\)
\(758\) −22.6274 −0.821865
\(759\) 0.828427 + 4.82843i 0.0300700 + 0.175261i
\(760\) −6.00000 + 6.00000i −0.217643 + 0.217643i
\(761\) −9.89949 + 9.89949i −0.358856 + 0.358856i −0.863391 0.504535i \(-0.831664\pi\)
0.504535 + 0.863391i \(0.331664\pi\)
\(762\) −1.17157 6.82843i −0.0424416 0.247368i
\(763\) 0 0
\(764\) 19.7990 0.716302
\(765\) 5.48528 11.4853i 0.198321 0.415251i
\(766\) 24.0000i 0.867155i
\(767\) 14.1421 2.82843i 0.510643 0.102129i
\(768\) 1.00000 1.41421i 0.0360844 0.0510310i
\(769\) −21.0000 + 21.0000i −0.757279 + 0.757279i −0.975826 0.218547i \(-0.929868\pi\)
0.218547 + 0.975826i \(0.429868\pi\)
\(770\) 0 0
\(771\) −1.41421 + 2.00000i −0.0509317 + 0.0720282i
\(772\) 6.00000 6.00000i 0.215945 0.215945i
\(773\) 4.24264 + 4.24264i 0.152597 + 0.152597i 0.779277 0.626680i \(-0.215587\pi\)
−0.626680 + 0.779277i \(0.715587\pi\)
\(774\) 10.8284 + 5.17157i 0.389220 + 0.185888i
\(775\) −3.00000 3.00000i −0.107763 0.107763i
\(776\) 14.1421i 0.507673i
\(777\) 0 0
\(778\) −19.0000 19.0000i −0.681183 0.681183i
\(779\) 84.8528 3.04017
\(780\) −2.53553 + 5.70711i −0.0907867 + 0.204347i
\(781\) 16.0000 0.572525
\(782\) −4.24264 4.24264i −0.151717 0.151717i
\(783\) −2.00000 + 7.07107i −0.0714742 + 0.252699i
\(784\) 7.00000i 0.250000i
\(785\) 4.24264 + 4.24264i 0.151426 + 0.151426i
\(786\) −2.07107 12.0711i −0.0738725 0.430561i
\(787\) −3.00000 3.00000i −0.106938 0.106938i 0.651613 0.758552i \(-0.274093\pi\)
−0.758552 + 0.651613i \(0.774093\pi\)
\(788\) 9.89949 9.89949i 0.352655 0.352655i
\(789\) 6.00000 + 4.24264i 0.213606 + 0.151042i
\(790\) 8.00000i 0.284627i
\(791\) 0 0
\(792\) −5.65685 + 2.00000i −0.201008 + 0.0710669i
\(793\) −6.00000 4.00000i −0.213066 0.142044i
\(794\) 4.24264i 0.150566i
\(795\) 3.31371 + 19.3137i 0.117525 + 0.684987i
\(796\) −2.00000 −0.0708881
\(797\) −45.2548 −1.60301 −0.801504 0.597989i \(-0.795967\pi\)
−0.801504 + 0.597989i \(0.795967\pi\)
\(798\) 0 0
\(799\) 18.0000 18.0000i 0.636794 0.636794i
\(800\) −0.707107 + 0.707107i −0.0250000 + 0.0250000i
\(801\) −16.2426 7.75736i −0.573905 0.274093i
\(802\) 6.00000 0.211867
\(803\) 16.9706 0.598878
\(804\) 12.0711 2.07107i 0.425714 0.0730409i
\(805\) 0 0
\(806\) −12.7279 8.48528i −0.448322 0.298881i
\(807\) −2.00000 1.41421i −0.0704033 0.0497827i
\(808\) 11.0000 11.0000i 0.386979 0.386979i
\(809\) 25.4558i 0.894980i 0.894289 + 0.447490i \(0.147682\pi\)
−0.894289 + 0.447490i \(0.852318\pi\)
\(810\) −5.65685 7.00000i −0.198762 0.245955i
\(811\) −26.0000 + 26.0000i −0.912983 + 0.912983i −0.996506 0.0835224i \(-0.973383\pi\)
0.0835224 + 0.996506i \(0.473383\pi\)
\(812\) 0 0
\(813\) −7.24264 + 1.24264i −0.254010 + 0.0435813i
\(814\) −10.0000 10.0000i −0.350500 0.350500i
\(815\) 15.5563i 0.544915i
\(816\) 4.24264 6.00000i 0.148522 0.210042i
\(817\) −24.0000 24.0000i −0.839654 0.839654i
\(818\) 4.24264 0.148340
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) 21.2132 + 21.2132i 0.740346 + 0.740346i 0.972645 0.232299i \(-0.0746247\pi\)
−0.232299 + 0.972645i \(0.574625\pi\)
\(822\) −20.0000 + 28.2843i −0.697580 + 0.986527i
\(823\) 52.0000i 1.81261i −0.422628 0.906303i \(-0.638892\pi\)
0.422628 0.906303i \(-0.361108\pi\)
\(824\) 5.65685 + 5.65685i 0.197066 + 0.197066i
\(825\) 3.41421 0.585786i 0.118868 0.0203945i
\(826\) 0 0
\(827\) −14.1421 + 14.1421i −0.491770 + 0.491770i −0.908864 0.417093i \(-0.863049\pi\)
0.417093 + 0.908864i \(0.363049\pi\)
\(828\) −4.00000 + 1.41421i −0.139010 + 0.0491473i
\(829\) 14.0000i 0.486240i −0.969996 0.243120i \(-0.921829\pi\)
0.969996 0.243120i \(-0.0781709\pi\)
\(830\) −5.65685 + 5.65685i −0.196352 + 0.196352i
\(831\) 39.5980 + 28.0000i 1.37364 + 0.971309i
\(832\) −2.00000 + 3.00000i −0.0693375 + 0.104006i
\(833\) 29.6985i 1.02899i
\(834\) 27.3137 4.68629i 0.945796 0.162273i
\(835\) 16.0000 0.553703
\(836\) 16.9706 0.586939
\(837\) 19.2426 10.7574i 0.665123 0.371829i
\(838\) 11.0000 11.0000i 0.379989 0.379989i
\(839\) −31.1127 + 31.1127i −1.07413 + 1.07413i −0.0771068 + 0.997023i \(0.524568\pi\)
−0.997023 + 0.0771068i \(0.975432\pi\)
\(840\) 0 0
\(841\) 27.0000 0.931034
\(842\) −16.9706 −0.584844
\(843\) 5.27208 + 30.7279i 0.181580 + 1.05833i
\(844\) 24.0000i 0.826114i
\(845\) 4.94975 12.0208i 0.170276 0.413529i
\(846\) −6.00000 16.9706i −0.206284 0.583460i
\(847\) 0 0
\(848\) 11.3137i 0.388514i
\(849\) −8.48528 6.00000i −0.291214 0.205919i
\(850\) −3.00000 + 3.00000i −0.102899 + 0.102899i
\(851\) −7.07107 7.07107i −0.242393 0.242393i
\(852\) 2.34315 + 13.6569i 0.0802749 + 0.467876i
\(853\) 39.0000 + 39.0000i 1.33533 + 1.33533i 0.900520 + 0.434815i \(0.143186\pi\)
0.434815 + 0.900520i \(0.356814\pi\)
\(854\) 0 0
\(855\) 8.48528 + 24.0000i 0.290191 + 0.820783i
\(856\) 8.00000 + 8.00000i 0.273434 + 0.273434i
\(857\) 49.4975 1.69080 0.845401 0.534133i \(-0.179362\pi\)
0.845401 + 0.534133i \(0.179362\pi\)
\(858\) 11.6569 4.48528i 0.397958 0.153125i
\(859\) 24.0000 0.818869 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(860\) −2.82843 2.82843i −0.0964486 0.0964486i
\(861\) 0 0
\(862\) 36.0000i 1.22616i
\(863\) 33.9411 + 33.9411i 1.15537 + 1.15537i 0.985460 + 0.169910i \(0.0543476\pi\)
0.169910 + 0.985460i \(0.445652\pi\)
\(864\) −2.53553 4.53553i −0.0862606 0.154302i
\(865\) 2.00000 + 2.00000i 0.0680020 + 0.0680020i
\(866\) −9.89949 + 9.89949i −0.336399 + 0.336399i
\(867\) 1.00000 1.41421i 0.0339618 0.0480292i
\(868\) 0 0
\(869\) 11.3137 11.3137i 0.383791 0.383791i
\(870\) 1.41421 2.00000i 0.0479463 0.0678064i
\(871\) −25.0000 + 5.00000i −0.847093 + 0.169419i
\(872\) 2.82843i 0.0957826i
\(873\) −38.2843 18.2843i −1.29573 0.618829i
\(874\) 12.0000 0.405906
\(875\) 0 0
\(876\) 2.48528 + 14.4853i 0.0839699 + 0.489412i
\(877\) −15.0000 + 15.0000i −0.506514 + 0.506514i −0.913455 0.406941i \(-0.866596\pi\)
0.406941 + 0.913455i \(0.366596\pi\)
\(878\) 4.24264 4.24264i 0.143182 0.143182i
\(879\) −4.10051 23.8995i −0.138307 0.806110i
\(880\) 2.00000 0.0674200
\(881\) −56.5685 −1.90584 −0.952921 0.303218i \(-0.901939\pi\)
−0.952921 + 0.303218i \(0.901939\pi\)
\(882\) 18.9497 + 9.05025i 0.638071 + 0.304738i
\(883\) 4.00000i 0.134611i 0.997732 + 0.0673054i \(0.0214402\pi\)
−0.997732 + 0.0673054i \(0.978560\pi\)
\(884\) −8.48528 + 12.7279i −0.285391 + 0.428086i
\(885\) 4.00000 5.65685i 0.134459 0.190153i
\(886\) −6.00000 + 6.00000i −0.201574 + 0.201574i
\(887\) 38.1838i 1.28209i −0.767505 0.641043i \(-0.778502\pi\)
0.767505 0.641043i \(-0.221498\pi\)
\(888\) 7.07107 10.0000i 0.237289 0.335578i
\(889\) 0 0
\(890\) 4.24264 + 4.24264i 0.142214 + 0.142214i
\(891\) −1.89949 + 17.8995i −0.0636355 + 0.599656i
\(892\) −10.0000 10.0000i −0.334825 0.334825i
\(893\) 50.9117i 1.70369i
\(894\) −14.1421 10.0000i −0.472984 0.334450i
\(895\) −13.0000 13.0000i −0.434542 0.434542i
\(896\) 0 0
\(897\) 8.24264 3.17157i 0.275214 0.105896i
\(898\) −18.0000 −0.600668
\(899\) 4.24264 + 4.24264i 0.141500 + 0.141500i
\(900\) 1.00000 + 2.82843i 0.0333333 + 0.0942809i
\(901\) 48.0000i 1.59911i
\(902\) −14.1421 14.1421i −0.470882 0.470882i
\(903\) 0 0
\(904\) −5.00000 5.00000i −0.166298 0.166298i
\(905\) 12.7279 12.7279i 0.423090 0.423090i
\(906\) 26.0000 + 18.3848i 0.863792 + 0.610793i
\(907\) 14.0000i 0.464862i −0.972613 0.232431i \(-0.925332\pi\)
0.972613 0.232431i \(-0.0746680\pi\)
\(908\) 0 0
\(909\) −15.5563 44.0000i −0.515972 1.45939i
\(910\) 0 0
\(911\) 5.65685i 0.187420i 0.995600 + 0.0937100i \(0.0298726\pi\)
−0.995600 + 0.0937100i \(0.970127\pi\)
\(912\) 2.48528 + 14.4853i 0.0822959 + 0.479656i
\(913\) 16.0000 0.529523
\(914\) −8.48528 −0.280668
\(915\) −3.41421 + 0.585786i −0.112870 + 0.0193655i
\(916\) −6.00000 + 6.00000i −0.198246 + 0.198246i
\(917\) 0 0
\(918\) −10.7574 19.2426i −0.355046 0.635102i
\(919\) 42.0000 1.38545 0.692726 0.721201i \(-0.256409\pi\)
0.692726 + 0.721201i \(0.256409\pi\)
\(920\) 1.41421 0.0466252
\(921\) 55.5269 9.52691i 1.82967 0.313922i
\(922\) 4.00000i 0.131733i
\(923\) −5.65685 28.2843i −0.186198 0.930988i
\(924\) 0 0
\(925\) −5.00000 + 5.00000i −0.164399 + 0.164399i
\(926\) 31.1127i 1.02243i
\(927\) 22.6274 8.00000i 0.743182 0.262754i
\(928\) 1.00000 1.00000i 0.0328266 0.0328266i
\(929\) −12.7279 12.7279i −0.417590 0.417590i 0.466783 0.884372i \(-0.345413\pi\)
−0.884372 + 0.466783i \(0.845413\pi\)
\(930\) −7.24264 + 1.24264i −0.237496 + 0.0407478i
\(931\) −42.0000 42.0000i −1.37649 1.37649i
\(932\) 18.3848i 0.602213i
\(933\) −2.82843 + 4.00000i −0.0925985 + 0.130954i
\(934\) 2.00000 + 2.00000i 0.0654420 + 0.0654420i
\(935\) 8.48528 0.277498
\(936\) 5.53553 + 9.29289i 0.180935 + 0.303748i
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 26.0000 36.7696i 0.848478 1.19993i
\(940\) 6.00000i 0.195698i
\(941\) −28.2843 28.2843i −0.922041 0.922041i 0.0751327 0.997174i \(-0.476062\pi\)
−0.997174 + 0.0751327i \(0.976062\pi\)
\(942\) 10.2426 1.75736i 0.333723 0.0572579i
\(943\) −10.0000 10.0000i −0.325645 0.325645i
\(944\) 2.82843 2.82843i 0.0920575 0.0920575i
\(945\) 0 0
\(946\) 8.00000i 0.260102i
\(947\) 5.65685 5.65685i 0.183823 0.183823i −0.609196 0.793019i \(-0.708508\pi\)
0.793019 + 0.609196i \(0.208508\pi\)
\(948\) 11.3137 + 8.00000i 0.367452 + 0.259828i
\(949\) −6.00000 30.0000i −0.194768 0.973841i
\(950\) 8.48528i 0.275299i
\(951\) 44.3848 7.61522i 1.43927 0.246941i
\(952\) 0 0
\(953\) 12.7279 0.412298 0.206149 0.978521i \(-0.433907\pi\)
0.206149 + 0.978521i \(0.433907\pi\)
\(954\) 30.6274 + 14.6274i 0.991599 + 0.473580i
\(955\) −14.0000 + 14.0000i −0.453029 + 0.453029i
\(956\) 0 0
\(957\) −4.82843 + 0.828427i −0.156081 + 0.0267792i
\(958\) 20.0000 0.646171
\(959\) 0 0
\(960\) 0.292893 + 1.70711i 0.00945309 + 0.0550966i
\(961\) 13.0000i 0.419355i
\(962\) −14.1421 + 21.2132i −0.455961 + 0.683941i
\(963\) 32.0000 11.3137i 1.03119 0.364579i
\(964\) 1.00000 1.00000i 0.0322078 0.0322078i
\(965\) 8.48528i 0.273151i
\(966\) 0 0
\(967\) −32.0000 + 32.0000i −1.02905 + 1.02905i −0.0294854 + 0.999565i \(0.509387\pi\)
−0.999565 + 0.0294854i \(0.990613\pi\)
\(968\) 4.94975 + 4.94975i 0.159091 + 0.159091i
\(969\) 10.5442 + 61.4558i 0.338727 + 1.97425i
\(970\) 10.0000 + 10.0000i 0.321081 + 0.321081i
\(971\) 12.7279i 0.408458i −0.978923 0.204229i \(-0.934531\pi\)
0.978923 0.204229i \(-0.0654688\pi\)
\(972\) −15.5563 + 1.00000i −0.498970 + 0.0320750i
\(973\) 0 0
\(974\) 0 0
\(975\) −2.24264 5.82843i −0.0718220 0.186659i
\(976\) −2.00000 −0.0640184
\(977\) 19.7990 + 19.7990i 0.633426 + 0.633426i 0.948926 0.315500i \(-0.102172\pi\)
−0.315500 + 0.948926i \(0.602172\pi\)
\(978\) 22.0000 + 15.5563i 0.703482 + 0.497437i
\(979\) 12.0000i 0.383522i
\(980\) −4.94975 4.94975i −0.158114 0.158114i
\(981\) −7.65685 3.65685i −0.244465 0.116754i
\(982\) 11.0000 + 11.0000i 0.351024 + 0.351024i
\(983\) −24.0416 + 24.0416i −0.766809 + 0.766809i −0.977543 0.210734i \(-0.932414\pi\)
0.210734 + 0.977543i \(0.432414\pi\)
\(984\) 10.0000 14.1421i 0.318788 0.450835i
\(985\) 14.0000i 0.446077i
\(986\) 4.24264 4.24264i 0.135113 0.135113i
\(987\) 0 0
\(988\) −6.00000 30.0000i −0.190885 0.954427i
\(989\) 5.65685i 0.179878i
\(990\) 2.58579 5.41421i 0.0821817 0.172075i
\(991\) −50.0000 −1.58830 −0.794151 0.607720i \(-0.792084\pi\)
−0.794151 + 0.607720i \(0.792084\pi\)
\(992\) −4.24264 −0.134704
\(993\) −9.94113 57.9411i −0.315472 1.83871i
\(994\) 0 0
\(995\) 1.41421 1.41421i 0.0448336 0.0448336i
\(996\) 2.34315 + 13.6569i 0.0742454 + 0.432734i
\(997\) 22.0000 0.696747 0.348373 0.937356i \(-0.386734\pi\)
0.348373 + 0.937356i \(0.386734\pi\)
\(998\) 25.4558 0.805791
\(999\) −17.9289 32.0711i −0.567246 1.01468i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.p.d.161.1 4
3.2 odd 2 inner 390.2.p.d.161.2 yes 4
13.8 odd 4 inner 390.2.p.d.281.2 yes 4
39.8 even 4 inner 390.2.p.d.281.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.p.d.161.1 4 1.1 even 1 trivial
390.2.p.d.161.2 yes 4 3.2 odd 2 inner
390.2.p.d.281.1 yes 4 39.8 even 4 inner
390.2.p.d.281.2 yes 4 13.8 odd 4 inner