Properties

Label 390.2.p.c.281.2
Level $390$
Weight $2$
Character 390.281
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(161,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 281.2
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.281
Dual form 390.2.p.c.161.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-1.00000 + 1.41421i) q^{3} -1.00000i q^{4} +(-0.707107 + 0.707107i) q^{5} +(0.292893 + 1.70711i) q^{6} +(2.00000 - 2.00000i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-1.00000 - 2.82843i) q^{9} +1.00000i q^{10} +(4.24264 + 4.24264i) q^{11} +(1.41421 + 1.00000i) q^{12} +(3.00000 + 2.00000i) q^{13} -2.82843i q^{14} +(-0.292893 - 1.70711i) q^{15} -1.00000 q^{16} +1.41421 q^{17} +(-2.70711 - 1.29289i) q^{18} +(0.707107 + 0.707107i) q^{20} +(0.828427 + 4.82843i) q^{21} +6.00000 q^{22} +4.24264 q^{23} +(1.70711 - 0.292893i) q^{24} -1.00000i q^{25} +(3.53553 - 0.707107i) q^{26} +(5.00000 + 1.41421i) q^{27} +(-2.00000 - 2.00000i) q^{28} +9.89949i q^{29} +(-1.41421 - 1.00000i) q^{30} +(-7.00000 - 7.00000i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(-10.2426 + 1.75736i) q^{33} +(1.00000 - 1.00000i) q^{34} +2.82843i q^{35} +(-2.82843 + 1.00000i) q^{36} +(3.00000 - 3.00000i) q^{37} +(-5.82843 + 2.24264i) q^{39} +1.00000 q^{40} +(1.41421 - 1.41421i) q^{41} +(4.00000 + 2.82843i) q^{42} -4.00000i q^{43} +(4.24264 - 4.24264i) q^{44} +(2.70711 + 1.29289i) q^{45} +(3.00000 - 3.00000i) q^{46} +(-4.24264 - 4.24264i) q^{47} +(1.00000 - 1.41421i) q^{48} -1.00000i q^{49} +(-0.707107 - 0.707107i) q^{50} +(-1.41421 + 2.00000i) q^{51} +(2.00000 - 3.00000i) q^{52} -5.65685i q^{53} +(4.53553 - 2.53553i) q^{54} -6.00000 q^{55} -2.82843 q^{56} +(7.00000 + 7.00000i) q^{58} +(-8.48528 - 8.48528i) q^{59} +(-1.70711 + 0.292893i) q^{60} -10.0000 q^{61} -9.89949 q^{62} +(-7.65685 - 3.65685i) q^{63} +1.00000i q^{64} +(-3.53553 + 0.707107i) q^{65} +(-6.00000 + 8.48528i) q^{66} +(3.00000 + 3.00000i) q^{67} -1.41421i q^{68} +(-4.24264 + 6.00000i) q^{69} +(2.00000 + 2.00000i) q^{70} +(-2.82843 + 2.82843i) q^{71} +(-1.29289 + 2.70711i) q^{72} -4.24264i q^{74} +(1.41421 + 1.00000i) q^{75} +16.9706 q^{77} +(-2.53553 + 5.70711i) q^{78} +(0.707107 - 0.707107i) q^{80} +(-7.00000 + 5.65685i) q^{81} -2.00000i q^{82} +(-8.48528 + 8.48528i) q^{83} +(4.82843 - 0.828427i) q^{84} +(-1.00000 + 1.00000i) q^{85} +(-2.82843 - 2.82843i) q^{86} +(-14.0000 - 9.89949i) q^{87} -6.00000i q^{88} +(7.07107 + 7.07107i) q^{89} +(2.82843 - 1.00000i) q^{90} +(10.0000 - 2.00000i) q^{91} -4.24264i q^{92} +(16.8995 - 2.89949i) q^{93} -6.00000 q^{94} +(-0.292893 - 1.70711i) q^{96} +(8.00000 + 8.00000i) q^{97} +(-0.707107 - 0.707107i) q^{98} +(7.75736 - 16.2426i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{6} + 8 q^{7} - 4 q^{9} + 12 q^{13} - 4 q^{15} - 4 q^{16} - 8 q^{18} - 8 q^{21} + 24 q^{22} + 4 q^{24} + 20 q^{27} - 8 q^{28} - 28 q^{31} - 24 q^{33} + 4 q^{34} + 12 q^{37} - 12 q^{39}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −1.00000 + 1.41421i −0.577350 + 0.816497i
\(4\) 1.00000i 0.500000i
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0.292893 + 1.70711i 0.119573 + 0.696923i
\(7\) 2.00000 2.00000i 0.755929 0.755929i −0.219650 0.975579i \(-0.570491\pi\)
0.975579 + 0.219650i \(0.0704915\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) −1.00000 2.82843i −0.333333 0.942809i
\(10\) 1.00000i 0.316228i
\(11\) 4.24264 + 4.24264i 1.27920 + 1.27920i 0.941113 + 0.338091i \(0.109781\pi\)
0.338091 + 0.941113i \(0.390219\pi\)
\(12\) 1.41421 + 1.00000i 0.408248 + 0.288675i
\(13\) 3.00000 + 2.00000i 0.832050 + 0.554700i
\(14\) 2.82843i 0.755929i
\(15\) −0.292893 1.70711i −0.0756247 0.440773i
\(16\) −1.00000 −0.250000
\(17\) 1.41421 0.342997 0.171499 0.985184i \(-0.445139\pi\)
0.171499 + 0.985184i \(0.445139\pi\)
\(18\) −2.70711 1.29289i −0.638071 0.304738i
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) 0.707107 + 0.707107i 0.158114 + 0.158114i
\(21\) 0.828427 + 4.82843i 0.180778 + 1.05365i
\(22\) 6.00000 1.27920
\(23\) 4.24264 0.884652 0.442326 0.896854i \(-0.354153\pi\)
0.442326 + 0.896854i \(0.354153\pi\)
\(24\) 1.70711 0.292893i 0.348462 0.0597866i
\(25\) 1.00000i 0.200000i
\(26\) 3.53553 0.707107i 0.693375 0.138675i
\(27\) 5.00000 + 1.41421i 0.962250 + 0.272166i
\(28\) −2.00000 2.00000i −0.377964 0.377964i
\(29\) 9.89949i 1.83829i 0.393919 + 0.919145i \(0.371119\pi\)
−0.393919 + 0.919145i \(0.628881\pi\)
\(30\) −1.41421 1.00000i −0.258199 0.182574i
\(31\) −7.00000 7.00000i −1.25724 1.25724i −0.952407 0.304830i \(-0.901400\pi\)
−0.304830 0.952407i \(-0.598600\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −10.2426 + 1.75736i −1.78301 + 0.305917i
\(34\) 1.00000 1.00000i 0.171499 0.171499i
\(35\) 2.82843i 0.478091i
\(36\) −2.82843 + 1.00000i −0.471405 + 0.166667i
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 0 0
\(39\) −5.82843 + 2.24264i −0.933295 + 0.359110i
\(40\) 1.00000 0.158114
\(41\) 1.41421 1.41421i 0.220863 0.220863i −0.587999 0.808862i \(-0.700084\pi\)
0.808862 + 0.587999i \(0.200084\pi\)
\(42\) 4.00000 + 2.82843i 0.617213 + 0.436436i
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 4.24264 4.24264i 0.639602 0.639602i
\(45\) 2.70711 + 1.29289i 0.403552 + 0.192733i
\(46\) 3.00000 3.00000i 0.442326 0.442326i
\(47\) −4.24264 4.24264i −0.618853 0.618853i 0.326384 0.945237i \(-0.394170\pi\)
−0.945237 + 0.326384i \(0.894170\pi\)
\(48\) 1.00000 1.41421i 0.144338 0.204124i
\(49\) 1.00000i 0.142857i
\(50\) −0.707107 0.707107i −0.100000 0.100000i
\(51\) −1.41421 + 2.00000i −0.198030 + 0.280056i
\(52\) 2.00000 3.00000i 0.277350 0.416025i
\(53\) 5.65685i 0.777029i −0.921443 0.388514i \(-0.872988\pi\)
0.921443 0.388514i \(-0.127012\pi\)
\(54\) 4.53553 2.53553i 0.617208 0.345042i
\(55\) −6.00000 −0.809040
\(56\) −2.82843 −0.377964
\(57\) 0 0
\(58\) 7.00000 + 7.00000i 0.919145 + 0.919145i
\(59\) −8.48528 8.48528i −1.10469 1.10469i −0.993837 0.110853i \(-0.964642\pi\)
−0.110853 0.993837i \(-0.535358\pi\)
\(60\) −1.70711 + 0.292893i −0.220387 + 0.0378124i
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) −9.89949 −1.25724
\(63\) −7.65685 3.65685i −0.964673 0.460720i
\(64\) 1.00000i 0.125000i
\(65\) −3.53553 + 0.707107i −0.438529 + 0.0877058i
\(66\) −6.00000 + 8.48528i −0.738549 + 1.04447i
\(67\) 3.00000 + 3.00000i 0.366508 + 0.366508i 0.866202 0.499694i \(-0.166554\pi\)
−0.499694 + 0.866202i \(0.666554\pi\)
\(68\) 1.41421i 0.171499i
\(69\) −4.24264 + 6.00000i −0.510754 + 0.722315i
\(70\) 2.00000 + 2.00000i 0.239046 + 0.239046i
\(71\) −2.82843 + 2.82843i −0.335673 + 0.335673i −0.854736 0.519063i \(-0.826281\pi\)
0.519063 + 0.854736i \(0.326281\pi\)
\(72\) −1.29289 + 2.70711i −0.152369 + 0.319036i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 4.24264i 0.493197i
\(75\) 1.41421 + 1.00000i 0.163299 + 0.115470i
\(76\) 0 0
\(77\) 16.9706 1.93398
\(78\) −2.53553 + 5.70711i −0.287093 + 0.646203i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0.707107 0.707107i 0.0790569 0.0790569i
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) 2.00000i 0.220863i
\(83\) −8.48528 + 8.48528i −0.931381 + 0.931381i −0.997792 0.0664117i \(-0.978845\pi\)
0.0664117 + 0.997792i \(0.478845\pi\)
\(84\) 4.82843 0.828427i 0.526825 0.0903888i
\(85\) −1.00000 + 1.00000i −0.108465 + 0.108465i
\(86\) −2.82843 2.82843i −0.304997 0.304997i
\(87\) −14.0000 9.89949i −1.50096 1.06134i
\(88\) 6.00000i 0.639602i
\(89\) 7.07107 + 7.07107i 0.749532 + 0.749532i 0.974391 0.224860i \(-0.0721923\pi\)
−0.224860 + 0.974391i \(0.572192\pi\)
\(90\) 2.82843 1.00000i 0.298142 0.105409i
\(91\) 10.0000 2.00000i 1.04828 0.209657i
\(92\) 4.24264i 0.442326i
\(93\) 16.8995 2.89949i 1.75240 0.300664i
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) −0.292893 1.70711i −0.0298933 0.174231i
\(97\) 8.00000 + 8.00000i 0.812277 + 0.812277i 0.984975 0.172698i \(-0.0552484\pi\)
−0.172698 + 0.984975i \(0.555248\pi\)
\(98\) −0.707107 0.707107i −0.0714286 0.0714286i
\(99\) 7.75736 16.2426i 0.779644 1.63245i
\(100\) −1.00000 −0.100000
\(101\) −15.5563 −1.54791 −0.773957 0.633238i \(-0.781726\pi\)
−0.773957 + 0.633238i \(0.781726\pi\)
\(102\) 0.414214 + 2.41421i 0.0410133 + 0.239043i
\(103\) 8.00000i 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) −0.707107 3.53553i −0.0693375 0.346688i
\(105\) −4.00000 2.82843i −0.390360 0.276026i
\(106\) −4.00000 4.00000i −0.388514 0.388514i
\(107\) 11.3137i 1.09374i −0.837218 0.546869i \(-0.815820\pi\)
0.837218 0.546869i \(-0.184180\pi\)
\(108\) 1.41421 5.00000i 0.136083 0.481125i
\(109\) 12.0000 + 12.0000i 1.14939 + 1.14939i 0.986672 + 0.162719i \(0.0520264\pi\)
0.162719 + 0.986672i \(0.447974\pi\)
\(110\) −4.24264 + 4.24264i −0.404520 + 0.404520i
\(111\) 1.24264 + 7.24264i 0.117946 + 0.687441i
\(112\) −2.00000 + 2.00000i −0.188982 + 0.188982i
\(113\) 7.07107i 0.665190i 0.943070 + 0.332595i \(0.107924\pi\)
−0.943070 + 0.332595i \(0.892076\pi\)
\(114\) 0 0
\(115\) −3.00000 + 3.00000i −0.279751 + 0.279751i
\(116\) 9.89949 0.919145
\(117\) 2.65685 10.4853i 0.245626 0.969365i
\(118\) −12.0000 −1.10469
\(119\) 2.82843 2.82843i 0.259281 0.259281i
\(120\) −1.00000 + 1.41421i −0.0912871 + 0.129099i
\(121\) 25.0000i 2.27273i
\(122\) −7.07107 + 7.07107i −0.640184 + 0.640184i
\(123\) 0.585786 + 3.41421i 0.0528186 + 0.307849i
\(124\) −7.00000 + 7.00000i −0.628619 + 0.628619i
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) −8.00000 + 2.82843i −0.712697 + 0.251976i
\(127\) 16.0000i 1.41977i −0.704317 0.709885i \(-0.748747\pi\)
0.704317 0.709885i \(-0.251253\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 5.65685 + 4.00000i 0.498058 + 0.352180i
\(130\) −2.00000 + 3.00000i −0.175412 + 0.263117i
\(131\) 1.41421i 0.123560i 0.998090 + 0.0617802i \(0.0196778\pi\)
−0.998090 + 0.0617802i \(0.980322\pi\)
\(132\) 1.75736 + 10.2426i 0.152958 + 0.891507i
\(133\) 0 0
\(134\) 4.24264 0.366508
\(135\) −4.53553 + 2.53553i −0.390357 + 0.218224i
\(136\) −1.00000 1.00000i −0.0857493 0.0857493i
\(137\) −11.3137 11.3137i −0.966595 0.966595i 0.0328645 0.999460i \(-0.489537\pi\)
−0.999460 + 0.0328645i \(0.989537\pi\)
\(138\) 1.24264 + 7.24264i 0.105781 + 0.616535i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 2.82843 0.239046
\(141\) 10.2426 1.75736i 0.862586 0.147996i
\(142\) 4.00000i 0.335673i
\(143\) 4.24264 + 21.2132i 0.354787 + 1.77394i
\(144\) 1.00000 + 2.82843i 0.0833333 + 0.235702i
\(145\) −7.00000 7.00000i −0.581318 0.581318i
\(146\) 0 0
\(147\) 1.41421 + 1.00000i 0.116642 + 0.0824786i
\(148\) −3.00000 3.00000i −0.246598 0.246598i
\(149\) −4.24264 + 4.24264i −0.347571 + 0.347571i −0.859204 0.511633i \(-0.829041\pi\)
0.511633 + 0.859204i \(0.329041\pi\)
\(150\) 1.70711 0.292893i 0.139385 0.0239146i
\(151\) −1.00000 + 1.00000i −0.0813788 + 0.0813788i −0.746625 0.665246i \(-0.768327\pi\)
0.665246 + 0.746625i \(0.268327\pi\)
\(152\) 0 0
\(153\) −1.41421 4.00000i −0.114332 0.323381i
\(154\) 12.0000 12.0000i 0.966988 0.966988i
\(155\) 9.89949 0.795147
\(156\) 2.24264 + 5.82843i 0.179555 + 0.466648i
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 8.00000 + 5.65685i 0.634441 + 0.448618i
\(160\) 1.00000i 0.0790569i
\(161\) 8.48528 8.48528i 0.668734 0.668734i
\(162\) −0.949747 + 8.94975i −0.0746192 + 0.703159i
\(163\) 15.0000 15.0000i 1.17489 1.17489i 0.193862 0.981029i \(-0.437899\pi\)
0.981029 0.193862i \(-0.0621013\pi\)
\(164\) −1.41421 1.41421i −0.110432 0.110432i
\(165\) 6.00000 8.48528i 0.467099 0.660578i
\(166\) 12.0000i 0.931381i
\(167\) −5.65685 5.65685i −0.437741 0.437741i 0.453510 0.891251i \(-0.350171\pi\)
−0.891251 + 0.453510i \(0.850171\pi\)
\(168\) 2.82843 4.00000i 0.218218 0.308607i
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 1.41421i 0.108465i
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −14.1421 −1.07521 −0.537603 0.843198i \(-0.680670\pi\)
−0.537603 + 0.843198i \(0.680670\pi\)
\(174\) −16.8995 + 2.89949i −1.28115 + 0.219810i
\(175\) −2.00000 2.00000i −0.151186 0.151186i
\(176\) −4.24264 4.24264i −0.319801 0.319801i
\(177\) 20.4853 3.51472i 1.53977 0.264182i
\(178\) 10.0000 0.749532
\(179\) −12.7279 −0.951330 −0.475665 0.879627i \(-0.657792\pi\)
−0.475665 + 0.879627i \(0.657792\pi\)
\(180\) 1.29289 2.70711i 0.0963666 0.201776i
\(181\) 22.0000i 1.63525i −0.575753 0.817624i \(-0.695291\pi\)
0.575753 0.817624i \(-0.304709\pi\)
\(182\) 5.65685 8.48528i 0.419314 0.628971i
\(183\) 10.0000 14.1421i 0.739221 1.04542i
\(184\) −3.00000 3.00000i −0.221163 0.221163i
\(185\) 4.24264i 0.311925i
\(186\) 9.89949 14.0000i 0.725866 1.02653i
\(187\) 6.00000 + 6.00000i 0.438763 + 0.438763i
\(188\) −4.24264 + 4.24264i −0.309426 + 0.309426i
\(189\) 12.8284 7.17157i 0.933131 0.521655i
\(190\) 0 0
\(191\) 8.48528i 0.613973i −0.951714 0.306987i \(-0.900679\pi\)
0.951714 0.306987i \(-0.0993207\pi\)
\(192\) −1.41421 1.00000i −0.102062 0.0721688i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 11.3137 0.812277
\(195\) 2.53553 5.70711i 0.181573 0.408694i
\(196\) −1.00000 −0.0714286
\(197\) −1.41421 + 1.41421i −0.100759 + 0.100759i −0.755689 0.654931i \(-0.772698\pi\)
0.654931 + 0.755689i \(0.272698\pi\)
\(198\) −6.00000 16.9706i −0.426401 1.20605i
\(199\) 6.00000i 0.425329i 0.977125 + 0.212664i \(0.0682141\pi\)
−0.977125 + 0.212664i \(0.931786\pi\)
\(200\) −0.707107 + 0.707107i −0.0500000 + 0.0500000i
\(201\) −7.24264 + 1.24264i −0.510856 + 0.0876491i
\(202\) −11.0000 + 11.0000i −0.773957 + 0.773957i
\(203\) 19.7990 + 19.7990i 1.38962 + 1.38962i
\(204\) 2.00000 + 1.41421i 0.140028 + 0.0990148i
\(205\) 2.00000i 0.139686i
\(206\) −5.65685 5.65685i −0.394132 0.394132i
\(207\) −4.24264 12.0000i −0.294884 0.834058i
\(208\) −3.00000 2.00000i −0.208013 0.138675i
\(209\) 0 0
\(210\) −4.82843 + 0.828427i −0.333193 + 0.0571669i
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) −5.65685 −0.388514
\(213\) −1.17157 6.82843i −0.0802749 0.467876i
\(214\) −8.00000 8.00000i −0.546869 0.546869i
\(215\) 2.82843 + 2.82843i 0.192897 + 0.192897i
\(216\) −2.53553 4.53553i −0.172521 0.308604i
\(217\) −28.0000 −1.90076
\(218\) 16.9706 1.14939
\(219\) 0 0
\(220\) 6.00000i 0.404520i
\(221\) 4.24264 + 2.82843i 0.285391 + 0.190261i
\(222\) 6.00000 + 4.24264i 0.402694 + 0.284747i
\(223\) 4.00000 + 4.00000i 0.267860 + 0.267860i 0.828237 0.560378i \(-0.189344\pi\)
−0.560378 + 0.828237i \(0.689344\pi\)
\(224\) 2.82843i 0.188982i
\(225\) −2.82843 + 1.00000i −0.188562 + 0.0666667i
\(226\) 5.00000 + 5.00000i 0.332595 + 0.332595i
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) 8.00000 8.00000i 0.528655 0.528655i −0.391516 0.920171i \(-0.628049\pi\)
0.920171 + 0.391516i \(0.128049\pi\)
\(230\) 4.24264i 0.279751i
\(231\) −16.9706 + 24.0000i −1.11658 + 1.57908i
\(232\) 7.00000 7.00000i 0.459573 0.459573i
\(233\) 4.24264 0.277945 0.138972 0.990296i \(-0.455620\pi\)
0.138972 + 0.990296i \(0.455620\pi\)
\(234\) −5.53553 9.29289i −0.361869 0.607495i
\(235\) 6.00000 0.391397
\(236\) −8.48528 + 8.48528i −0.552345 + 0.552345i
\(237\) 0 0
\(238\) 4.00000i 0.259281i
\(239\) 11.3137 11.3137i 0.731823 0.731823i −0.239158 0.970981i \(-0.576871\pi\)
0.970981 + 0.239158i \(0.0768713\pi\)
\(240\) 0.292893 + 1.70711i 0.0189062 + 0.110193i
\(241\) 15.0000 15.0000i 0.966235 0.966235i −0.0332133 0.999448i \(-0.510574\pi\)
0.999448 + 0.0332133i \(0.0105741\pi\)
\(242\) 17.6777 + 17.6777i 1.13636 + 1.13636i
\(243\) −1.00000 15.5563i −0.0641500 0.997940i
\(244\) 10.0000i 0.640184i
\(245\) 0.707107 + 0.707107i 0.0451754 + 0.0451754i
\(246\) 2.82843 + 2.00000i 0.180334 + 0.127515i
\(247\) 0 0
\(248\) 9.89949i 0.628619i
\(249\) −3.51472 20.4853i −0.222736 1.29820i
\(250\) 1.00000 0.0632456
\(251\) 7.07107 0.446322 0.223161 0.974782i \(-0.428362\pi\)
0.223161 + 0.974782i \(0.428362\pi\)
\(252\) −3.65685 + 7.65685i −0.230360 + 0.482336i
\(253\) 18.0000 + 18.0000i 1.13165 + 1.13165i
\(254\) −11.3137 11.3137i −0.709885 0.709885i
\(255\) −0.414214 2.41421i −0.0259391 0.151184i
\(256\) 1.00000 0.0625000
\(257\) 9.89949 0.617514 0.308757 0.951141i \(-0.400087\pi\)
0.308757 + 0.951141i \(0.400087\pi\)
\(258\) 6.82843 1.17157i 0.425119 0.0729389i
\(259\) 12.0000i 0.745644i
\(260\) 0.707107 + 3.53553i 0.0438529 + 0.219265i
\(261\) 28.0000 9.89949i 1.73316 0.612763i
\(262\) 1.00000 + 1.00000i 0.0617802 + 0.0617802i
\(263\) 7.07107i 0.436021i 0.975946 + 0.218010i \(0.0699567\pi\)
−0.975946 + 0.218010i \(0.930043\pi\)
\(264\) 8.48528 + 6.00000i 0.522233 + 0.369274i
\(265\) 4.00000 + 4.00000i 0.245718 + 0.245718i
\(266\) 0 0
\(267\) −17.0711 + 2.92893i −1.04473 + 0.179248i
\(268\) 3.00000 3.00000i 0.183254 0.183254i
\(269\) 1.41421i 0.0862261i −0.999070 0.0431131i \(-0.986272\pi\)
0.999070 0.0431131i \(-0.0137276\pi\)
\(270\) −1.41421 + 5.00000i −0.0860663 + 0.304290i
\(271\) −15.0000 + 15.0000i −0.911185 + 0.911185i −0.996366 0.0851804i \(-0.972853\pi\)
0.0851804 + 0.996366i \(0.472853\pi\)
\(272\) −1.41421 −0.0857493
\(273\) −7.17157 + 16.1421i −0.434043 + 0.976966i
\(274\) −16.0000 −0.966595
\(275\) 4.24264 4.24264i 0.255841 0.255841i
\(276\) 6.00000 + 4.24264i 0.361158 + 0.255377i
\(277\) 4.00000i 0.240337i 0.992754 + 0.120168i \(0.0383434\pi\)
−0.992754 + 0.120168i \(0.961657\pi\)
\(278\) 0 0
\(279\) −12.7990 + 26.7990i −0.766255 + 1.60441i
\(280\) 2.00000 2.00000i 0.119523 0.119523i
\(281\) 7.07107 + 7.07107i 0.421825 + 0.421825i 0.885832 0.464007i \(-0.153589\pi\)
−0.464007 + 0.885832i \(0.653589\pi\)
\(282\) 6.00000 8.48528i 0.357295 0.505291i
\(283\) 26.0000i 1.54554i 0.634686 + 0.772770i \(0.281129\pi\)
−0.634686 + 0.772770i \(0.718871\pi\)
\(284\) 2.82843 + 2.82843i 0.167836 + 0.167836i
\(285\) 0 0
\(286\) 18.0000 + 12.0000i 1.06436 + 0.709575i
\(287\) 5.65685i 0.333914i
\(288\) 2.70711 + 1.29289i 0.159518 + 0.0761845i
\(289\) −15.0000 −0.882353
\(290\) −9.89949 −0.581318
\(291\) −19.3137 + 3.31371i −1.13219 + 0.194253i
\(292\) 0 0
\(293\) 1.41421 + 1.41421i 0.0826192 + 0.0826192i 0.747209 0.664589i \(-0.231394\pi\)
−0.664589 + 0.747209i \(0.731394\pi\)
\(294\) 1.70711 0.292893i 0.0995605 0.0170819i
\(295\) 12.0000 0.698667
\(296\) −4.24264 −0.246598
\(297\) 15.2132 + 27.2132i 0.882760 + 1.57907i
\(298\) 6.00000i 0.347571i
\(299\) 12.7279 + 8.48528i 0.736075 + 0.490716i
\(300\) 1.00000 1.41421i 0.0577350 0.0816497i
\(301\) −8.00000 8.00000i −0.461112 0.461112i
\(302\) 1.41421i 0.0813788i
\(303\) 15.5563 22.0000i 0.893689 1.26387i
\(304\) 0 0
\(305\) 7.07107 7.07107i 0.404888 0.404888i
\(306\) −3.82843 1.82843i −0.218857 0.104524i
\(307\) 1.00000 1.00000i 0.0570730 0.0570730i −0.677994 0.735067i \(-0.737151\pi\)
0.735067 + 0.677994i \(0.237151\pi\)
\(308\) 16.9706i 0.966988i
\(309\) 11.3137 + 8.00000i 0.643614 + 0.455104i
\(310\) 7.00000 7.00000i 0.397573 0.397573i
\(311\) −14.1421 −0.801927 −0.400963 0.916094i \(-0.631325\pi\)
−0.400963 + 0.916094i \(0.631325\pi\)
\(312\) 5.70711 + 2.53553i 0.323101 + 0.143546i
\(313\) −34.0000 −1.92179 −0.960897 0.276907i \(-0.910691\pi\)
−0.960897 + 0.276907i \(0.910691\pi\)
\(314\) −1.41421 + 1.41421i −0.0798087 + 0.0798087i
\(315\) 8.00000 2.82843i 0.450749 0.159364i
\(316\) 0 0
\(317\) 12.7279 12.7279i 0.714871 0.714871i −0.252679 0.967550i \(-0.581312\pi\)
0.967550 + 0.252679i \(0.0813116\pi\)
\(318\) 9.65685 1.65685i 0.541529 0.0929118i
\(319\) −42.0000 + 42.0000i −2.35155 + 2.35155i
\(320\) −0.707107 0.707107i −0.0395285 0.0395285i
\(321\) 16.0000 + 11.3137i 0.893033 + 0.631470i
\(322\) 12.0000i 0.668734i
\(323\) 0 0
\(324\) 5.65685 + 7.00000i 0.314270 + 0.388889i
\(325\) 2.00000 3.00000i 0.110940 0.166410i
\(326\) 21.2132i 1.17489i
\(327\) −28.9706 + 4.97056i −1.60208 + 0.274873i
\(328\) −2.00000 −0.110432
\(329\) −16.9706 −0.935617
\(330\) −1.75736 10.2426i −0.0967394 0.563839i
\(331\) −6.00000 6.00000i −0.329790 0.329790i 0.522717 0.852506i \(-0.324919\pi\)
−0.852506 + 0.522717i \(0.824919\pi\)
\(332\) 8.48528 + 8.48528i 0.465690 + 0.465690i
\(333\) −11.4853 5.48528i −0.629390 0.300592i
\(334\) −8.00000 −0.437741
\(335\) −4.24264 −0.231800
\(336\) −0.828427 4.82843i −0.0451944 0.263412i
\(337\) 18.0000i 0.980522i 0.871576 + 0.490261i \(0.163099\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 12.0208 + 4.94975i 0.653846 + 0.269231i
\(339\) −10.0000 7.07107i −0.543125 0.384048i
\(340\) 1.00000 + 1.00000i 0.0542326 + 0.0542326i
\(341\) 59.3970i 3.21653i
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) −2.82843 + 2.82843i −0.152499 + 0.152499i
\(345\) −1.24264 7.24264i −0.0669015 0.389931i
\(346\) −10.0000 + 10.0000i −0.537603 + 0.537603i
\(347\) 5.65685i 0.303676i 0.988405 + 0.151838i \(0.0485192\pi\)
−0.988405 + 0.151838i \(0.951481\pi\)
\(348\) −9.89949 + 14.0000i −0.530669 + 0.750479i
\(349\) 10.0000 10.0000i 0.535288 0.535288i −0.386853 0.922141i \(-0.626438\pi\)
0.922141 + 0.386853i \(0.126438\pi\)
\(350\) −2.82843 −0.151186
\(351\) 12.1716 + 14.2426i 0.649670 + 0.760216i
\(352\) −6.00000 −0.319801
\(353\) −22.6274 + 22.6274i −1.20434 + 1.20434i −0.231501 + 0.972835i \(0.574364\pi\)
−0.972835 + 0.231501i \(0.925636\pi\)
\(354\) 12.0000 16.9706i 0.637793 0.901975i
\(355\) 4.00000i 0.212298i
\(356\) 7.07107 7.07107i 0.374766 0.374766i
\(357\) 1.17157 + 6.82843i 0.0620062 + 0.361399i
\(358\) −9.00000 + 9.00000i −0.475665 + 0.475665i
\(359\) −14.1421 14.1421i −0.746393 0.746393i 0.227407 0.973800i \(-0.426975\pi\)
−0.973800 + 0.227407i \(0.926975\pi\)
\(360\) −1.00000 2.82843i −0.0527046 0.149071i
\(361\) 19.0000i 1.00000i
\(362\) −15.5563 15.5563i −0.817624 0.817624i
\(363\) −35.3553 25.0000i −1.85567 1.31216i
\(364\) −2.00000 10.0000i −0.104828 0.524142i
\(365\) 0 0
\(366\) −2.92893 17.0711i −0.153098 0.892319i
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) −4.24264 −0.221163
\(369\) −5.41421 2.58579i −0.281853 0.134611i
\(370\) 3.00000 + 3.00000i 0.155963 + 0.155963i
\(371\) −11.3137 11.3137i −0.587378 0.587378i
\(372\) −2.89949 16.8995i −0.150332 0.876198i
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) 8.48528 0.438763
\(375\) −1.70711 + 0.292893i −0.0881546 + 0.0151249i
\(376\) 6.00000i 0.309426i
\(377\) −19.7990 + 29.6985i −1.01970 + 1.52955i
\(378\) 4.00000 14.1421i 0.205738 0.727393i
\(379\) 6.00000 + 6.00000i 0.308199 + 0.308199i 0.844211 0.536011i \(-0.180070\pi\)
−0.536011 + 0.844211i \(0.680070\pi\)
\(380\) 0 0
\(381\) 22.6274 + 16.0000i 1.15924 + 0.819705i
\(382\) −6.00000 6.00000i −0.306987 0.306987i
\(383\) 11.3137 11.3137i 0.578103 0.578103i −0.356277 0.934380i \(-0.615954\pi\)
0.934380 + 0.356277i \(0.115954\pi\)
\(384\) −1.70711 + 0.292893i −0.0871154 + 0.0149466i
\(385\) −12.0000 + 12.0000i −0.611577 + 0.611577i
\(386\) 0 0
\(387\) −11.3137 + 4.00000i −0.575108 + 0.203331i
\(388\) 8.00000 8.00000i 0.406138 0.406138i
\(389\) −9.89949 −0.501924 −0.250962 0.967997i \(-0.580747\pi\)
−0.250962 + 0.967997i \(0.580747\pi\)
\(390\) −2.24264 5.82843i −0.113561 0.295134i
\(391\) 6.00000 0.303433
\(392\) −0.707107 + 0.707107i −0.0357143 + 0.0357143i
\(393\) −2.00000 1.41421i −0.100887 0.0713376i
\(394\) 2.00000i 0.100759i
\(395\) 0 0
\(396\) −16.2426 7.75736i −0.816223 0.389822i
\(397\) −3.00000 + 3.00000i −0.150566 + 0.150566i −0.778371 0.627805i \(-0.783954\pi\)
0.627805 + 0.778371i \(0.283954\pi\)
\(398\) 4.24264 + 4.24264i 0.212664 + 0.212664i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) −9.89949 9.89949i −0.494357 0.494357i 0.415319 0.909676i \(-0.363670\pi\)
−0.909676 + 0.415319i \(0.863670\pi\)
\(402\) −4.24264 + 6.00000i −0.211604 + 0.299253i
\(403\) −7.00000 35.0000i −0.348695 1.74347i
\(404\) 15.5563i 0.773957i
\(405\) 0.949747 8.94975i 0.0471933 0.444717i
\(406\) 28.0000 1.38962
\(407\) 25.4558 1.26180
\(408\) 2.41421 0.414214i 0.119521 0.0205066i
\(409\) 1.00000 + 1.00000i 0.0494468 + 0.0494468i 0.731398 0.681951i \(-0.238868\pi\)
−0.681951 + 0.731398i \(0.738868\pi\)
\(410\) 1.41421 + 1.41421i 0.0698430 + 0.0698430i
\(411\) 27.3137 4.68629i 1.34729 0.231158i
\(412\) −8.00000 −0.394132
\(413\) −33.9411 −1.67013
\(414\) −11.4853 5.48528i −0.564471 0.269587i
\(415\) 12.0000i 0.589057i
\(416\) −3.53553 + 0.707107i −0.173344 + 0.0346688i
\(417\) 0 0
\(418\) 0 0
\(419\) 9.89949i 0.483622i 0.970323 + 0.241811i \(0.0777414\pi\)
−0.970323 + 0.241811i \(0.922259\pi\)
\(420\) −2.82843 + 4.00000i −0.138013 + 0.195180i
\(421\) 18.0000 + 18.0000i 0.877266 + 0.877266i 0.993251 0.115985i \(-0.0370024\pi\)
−0.115985 + 0.993251i \(0.537002\pi\)
\(422\) −14.1421 + 14.1421i −0.688428 + 0.688428i
\(423\) −7.75736 + 16.2426i −0.377176 + 0.789744i
\(424\) −4.00000 + 4.00000i −0.194257 + 0.194257i
\(425\) 1.41421i 0.0685994i
\(426\) −5.65685 4.00000i −0.274075 0.193801i
\(427\) −20.0000 + 20.0000i −0.967868 + 0.967868i
\(428\) −11.3137 −0.546869
\(429\) −34.2426 15.2132i −1.65325 0.734500i
\(430\) 4.00000 0.192897
\(431\) 25.4558 25.4558i 1.22616 1.22616i 0.260762 0.965403i \(-0.416026\pi\)
0.965403 0.260762i \(-0.0839737\pi\)
\(432\) −5.00000 1.41421i −0.240563 0.0680414i
\(433\) 10.0000i 0.480569i −0.970702 0.240285i \(-0.922759\pi\)
0.970702 0.240285i \(-0.0772408\pi\)
\(434\) −19.7990 + 19.7990i −0.950382 + 0.950382i
\(435\) 16.8995 2.89949i 0.810269 0.139020i
\(436\) 12.0000 12.0000i 0.574696 0.574696i
\(437\) 0 0
\(438\) 0 0
\(439\) 38.0000i 1.81364i −0.421517 0.906821i \(-0.638502\pi\)
0.421517 0.906821i \(-0.361498\pi\)
\(440\) 4.24264 + 4.24264i 0.202260 + 0.202260i
\(441\) −2.82843 + 1.00000i −0.134687 + 0.0476190i
\(442\) 5.00000 1.00000i 0.237826 0.0475651i
\(443\) 19.7990i 0.940678i 0.882486 + 0.470339i \(0.155868\pi\)
−0.882486 + 0.470339i \(0.844132\pi\)
\(444\) 7.24264 1.24264i 0.343721 0.0589731i
\(445\) −10.0000 −0.474045
\(446\) 5.65685 0.267860
\(447\) −1.75736 10.2426i −0.0831202 0.484460i
\(448\) 2.00000 + 2.00000i 0.0944911 + 0.0944911i
\(449\) −1.41421 1.41421i −0.0667409 0.0667409i 0.672948 0.739689i \(-0.265028\pi\)
−0.739689 + 0.672948i \(0.765028\pi\)
\(450\) −1.29289 + 2.70711i −0.0609476 + 0.127614i
\(451\) 12.0000 0.565058
\(452\) 7.07107 0.332595
\(453\) −0.414214 2.41421i −0.0194615 0.113430i
\(454\) 0 0
\(455\) −5.65685 + 8.48528i −0.265197 + 0.397796i
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 11.3137i 0.528655i
\(459\) 7.07107 + 2.00000i 0.330049 + 0.0933520i
\(460\) 3.00000 + 3.00000i 0.139876 + 0.139876i
\(461\) −28.2843 + 28.2843i −1.31733 + 1.31733i −0.401448 + 0.915882i \(0.631493\pi\)
−0.915882 + 0.401448i \(0.868507\pi\)
\(462\) 4.97056 + 28.9706i 0.231252 + 1.34783i
\(463\) −16.0000 + 16.0000i −0.743583 + 0.743583i −0.973266 0.229683i \(-0.926231\pi\)
0.229683 + 0.973266i \(0.426231\pi\)
\(464\) 9.89949i 0.459573i
\(465\) −9.89949 + 14.0000i −0.459078 + 0.649234i
\(466\) 3.00000 3.00000i 0.138972 0.138972i
\(467\) 8.48528 0.392652 0.196326 0.980539i \(-0.437099\pi\)
0.196326 + 0.980539i \(0.437099\pi\)
\(468\) −10.4853 2.65685i −0.484682 0.122813i
\(469\) 12.0000 0.554109
\(470\) 4.24264 4.24264i 0.195698 0.195698i
\(471\) 2.00000 2.82843i 0.0921551 0.130327i
\(472\) 12.0000i 0.552345i
\(473\) 16.9706 16.9706i 0.780307 0.780307i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.82843 2.82843i −0.129641 0.129641i
\(477\) −16.0000 + 5.65685i −0.732590 + 0.259010i
\(478\) 16.0000i 0.731823i
\(479\) 25.4558 + 25.4558i 1.16311 + 1.16311i 0.983792 + 0.179316i \(0.0573883\pi\)
0.179316 + 0.983792i \(0.442612\pi\)
\(480\) 1.41421 + 1.00000i 0.0645497 + 0.0456435i
\(481\) 15.0000 3.00000i 0.683941 0.136788i
\(482\) 21.2132i 0.966235i
\(483\) 3.51472 + 20.4853i 0.159925 + 0.932113i
\(484\) 25.0000 1.13636
\(485\) −11.3137 −0.513729
\(486\) −11.7071 10.2929i −0.531045 0.466895i
\(487\) −14.0000 14.0000i −0.634401 0.634401i 0.314768 0.949169i \(-0.398073\pi\)
−0.949169 + 0.314768i \(0.898073\pi\)
\(488\) 7.07107 + 7.07107i 0.320092 + 0.320092i
\(489\) 6.21320 + 36.2132i 0.280971 + 1.63762i
\(490\) 1.00000 0.0451754
\(491\) 15.5563 0.702048 0.351024 0.936366i \(-0.385834\pi\)
0.351024 + 0.936366i \(0.385834\pi\)
\(492\) 3.41421 0.585786i 0.153925 0.0264093i
\(493\) 14.0000i 0.630528i
\(494\) 0 0
\(495\) 6.00000 + 16.9706i 0.269680 + 0.762770i
\(496\) 7.00000 + 7.00000i 0.314309 + 0.314309i
\(497\) 11.3137i 0.507489i
\(498\) −16.9706 12.0000i −0.760469 0.537733i
\(499\) 24.0000 + 24.0000i 1.07439 + 1.07439i 0.997001 + 0.0773864i \(0.0246575\pi\)
0.0773864 + 0.997001i \(0.475342\pi\)
\(500\) 0.707107 0.707107i 0.0316228 0.0316228i
\(501\) 13.6569 2.34315i 0.610143 0.104684i
\(502\) 5.00000 5.00000i 0.223161 0.223161i
\(503\) 35.3553i 1.57642i −0.615409 0.788208i \(-0.711009\pi\)
0.615409 0.788208i \(-0.288991\pi\)
\(504\) 2.82843 + 8.00000i 0.125988 + 0.356348i
\(505\) 11.0000 11.0000i 0.489494 0.489494i
\(506\) 25.4558 1.13165
\(507\) −21.9706 4.92893i −0.975747 0.218902i
\(508\) −16.0000 −0.709885
\(509\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(510\) −2.00000 1.41421i −0.0885615 0.0626224i
\(511\) 0 0
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 7.00000 7.00000i 0.308757 0.308757i
\(515\) 5.65685 + 5.65685i 0.249271 + 0.249271i
\(516\) 4.00000 5.65685i 0.176090 0.249029i
\(517\) 36.0000i 1.58328i
\(518\) −8.48528 8.48528i −0.372822 0.372822i
\(519\) 14.1421 20.0000i 0.620771 0.877903i
\(520\) 3.00000 + 2.00000i 0.131559 + 0.0877058i
\(521\) 11.3137i 0.495663i 0.968803 + 0.247831i \(0.0797179\pi\)
−0.968803 + 0.247831i \(0.920282\pi\)
\(522\) 12.7990 26.7990i 0.560197 1.17296i
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) 1.41421 0.0617802
\(525\) 4.82843 0.828427i 0.210730 0.0361555i
\(526\) 5.00000 + 5.00000i 0.218010 + 0.218010i
\(527\) −9.89949 9.89949i −0.431229 0.431229i
\(528\) 10.2426 1.75736i 0.445754 0.0764792i
\(529\) −5.00000 −0.217391
\(530\) 5.65685 0.245718
\(531\) −15.5147 + 32.4853i −0.673281 + 1.40974i
\(532\) 0 0
\(533\) 7.07107 1.41421i 0.306282 0.0612564i
\(534\) −10.0000 + 14.1421i −0.432742 + 0.611990i
\(535\) 8.00000 + 8.00000i 0.345870 + 0.345870i
\(536\) 4.24264i 0.183254i
\(537\) 12.7279 18.0000i 0.549250 0.776757i
\(538\) −1.00000 1.00000i −0.0431131 0.0431131i
\(539\) 4.24264 4.24264i 0.182743 0.182743i
\(540\) 2.53553 + 4.53553i 0.109112 + 0.195178i
\(541\) 18.0000 18.0000i 0.773880 0.773880i −0.204902 0.978782i \(-0.565688\pi\)
0.978782 + 0.204902i \(0.0656876\pi\)
\(542\) 21.2132i 0.911185i
\(543\) 31.1127 + 22.0000i 1.33517 + 0.944110i
\(544\) −1.00000 + 1.00000i −0.0428746 + 0.0428746i
\(545\) −16.9706 −0.726939
\(546\) 6.34315 + 16.4853i 0.271462 + 0.705505i
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) −11.3137 + 11.3137i −0.483298 + 0.483298i
\(549\) 10.0000 + 28.2843i 0.426790 + 1.20714i
\(550\) 6.00000i 0.255841i
\(551\) 0 0
\(552\) 7.24264 1.24264i 0.308267 0.0528903i
\(553\) 0 0
\(554\) 2.82843 + 2.82843i 0.120168 + 0.120168i
\(555\) −6.00000 4.24264i −0.254686 0.180090i
\(556\) 0 0
\(557\) 1.41421 + 1.41421i 0.0599222 + 0.0599222i 0.736433 0.676511i \(-0.236509\pi\)
−0.676511 + 0.736433i \(0.736509\pi\)
\(558\) 9.89949 + 28.0000i 0.419079 + 1.18533i
\(559\) 8.00000 12.0000i 0.338364 0.507546i
\(560\) 2.82843i 0.119523i
\(561\) −14.4853 + 2.48528i −0.611569 + 0.104929i
\(562\) 10.0000 0.421825
\(563\) 2.82843 0.119204 0.0596020 0.998222i \(-0.481017\pi\)
0.0596020 + 0.998222i \(0.481017\pi\)
\(564\) −1.75736 10.2426i −0.0739982 0.431293i
\(565\) −5.00000 5.00000i −0.210352 0.210352i
\(566\) 18.3848 + 18.3848i 0.772770 + 0.772770i
\(567\) −2.68629 + 25.3137i −0.112814 + 1.06308i
\(568\) 4.00000 0.167836
\(569\) 11.3137 0.474295 0.237148 0.971474i \(-0.423787\pi\)
0.237148 + 0.971474i \(0.423787\pi\)
\(570\) 0 0
\(571\) 4.00000i 0.167395i 0.996491 + 0.0836974i \(0.0266729\pi\)
−0.996491 + 0.0836974i \(0.973327\pi\)
\(572\) 21.2132 4.24264i 0.886969 0.177394i
\(573\) 12.0000 + 8.48528i 0.501307 + 0.354478i
\(574\) −4.00000 4.00000i −0.166957 0.166957i
\(575\) 4.24264i 0.176930i
\(576\) 2.82843 1.00000i 0.117851 0.0416667i
\(577\) 4.00000 + 4.00000i 0.166522 + 0.166522i 0.785449 0.618927i \(-0.212432\pi\)
−0.618927 + 0.785449i \(0.712432\pi\)
\(578\) −10.6066 + 10.6066i −0.441176 + 0.441176i
\(579\) 0 0
\(580\) −7.00000 + 7.00000i −0.290659 + 0.290659i
\(581\) 33.9411i 1.40812i
\(582\) −11.3137 + 16.0000i −0.468968 + 0.663221i
\(583\) 24.0000 24.0000i 0.993978 0.993978i
\(584\) 0 0
\(585\) 5.53553 + 9.29289i 0.228866 + 0.384214i
\(586\) 2.00000 0.0826192
\(587\) 2.82843 2.82843i 0.116742 0.116742i −0.646323 0.763064i \(-0.723694\pi\)
0.763064 + 0.646323i \(0.223694\pi\)
\(588\) 1.00000 1.41421i 0.0412393 0.0583212i
\(589\) 0 0
\(590\) 8.48528 8.48528i 0.349334 0.349334i
\(591\) −0.585786 3.41421i −0.0240960 0.140442i
\(592\) −3.00000 + 3.00000i −0.123299 + 0.123299i
\(593\) −5.65685 5.65685i −0.232299 0.232299i 0.581353 0.813652i \(-0.302524\pi\)
−0.813652 + 0.581353i \(0.802524\pi\)
\(594\) 30.0000 + 8.48528i 1.23091 + 0.348155i
\(595\) 4.00000i 0.163984i
\(596\) 4.24264 + 4.24264i 0.173785 + 0.173785i
\(597\) −8.48528 6.00000i −0.347279 0.245564i
\(598\) 15.0000 3.00000i 0.613396 0.122679i
\(599\) 16.9706i 0.693398i −0.937976 0.346699i \(-0.887302\pi\)
0.937976 0.346699i \(-0.112698\pi\)
\(600\) −0.292893 1.70711i −0.0119573 0.0696923i
\(601\) −18.0000 −0.734235 −0.367118 0.930175i \(-0.619655\pi\)
−0.367118 + 0.930175i \(0.619655\pi\)
\(602\) −11.3137 −0.461112
\(603\) 5.48528 11.4853i 0.223378 0.467717i
\(604\) 1.00000 + 1.00000i 0.0406894 + 0.0406894i
\(605\) −17.6777 17.6777i −0.718699 0.718699i
\(606\) −4.55635 26.5563i −0.185089 1.07878i
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 0 0
\(609\) −47.7990 + 8.20101i −1.93691 + 0.332322i
\(610\) 10.0000i 0.404888i
\(611\) −4.24264 21.2132i −0.171639 0.858194i
\(612\) −4.00000 + 1.41421i −0.161690 + 0.0571662i
\(613\) 25.0000 + 25.0000i 1.00974 + 1.00974i 0.999952 + 0.00978840i \(0.00311579\pi\)
0.00978840 + 0.999952i \(0.496884\pi\)
\(614\) 1.41421i 0.0570730i
\(615\) −2.82843 2.00000i −0.114053 0.0806478i
\(616\) −12.0000 12.0000i −0.483494 0.483494i
\(617\) −15.5563 + 15.5563i −0.626275 + 0.626275i −0.947129 0.320854i \(-0.896030\pi\)
0.320854 + 0.947129i \(0.396030\pi\)
\(618\) 13.6569 2.34315i 0.549359 0.0942551i
\(619\) −14.0000 + 14.0000i −0.562708 + 0.562708i −0.930076 0.367368i \(-0.880259\pi\)
0.367368 + 0.930076i \(0.380259\pi\)
\(620\) 9.89949i 0.397573i
\(621\) 21.2132 + 6.00000i 0.851257 + 0.240772i
\(622\) −10.0000 + 10.0000i −0.400963 + 0.400963i
\(623\) 28.2843 1.13319
\(624\) 5.82843 2.24264i 0.233324 0.0897775i
\(625\) −1.00000 −0.0400000
\(626\) −24.0416 + 24.0416i −0.960897 + 0.960897i
\(627\) 0 0
\(628\) 2.00000i 0.0798087i
\(629\) 4.24264 4.24264i 0.169165 0.169165i
\(630\) 3.65685 7.65685i 0.145693 0.305056i
\(631\) 17.0000 17.0000i 0.676759 0.676759i −0.282506 0.959265i \(-0.591166\pi\)
0.959265 + 0.282506i \(0.0911658\pi\)
\(632\) 0 0
\(633\) 20.0000 28.2843i 0.794929 1.12420i
\(634\) 18.0000i 0.714871i
\(635\) 11.3137 + 11.3137i 0.448971 + 0.448971i
\(636\) 5.65685 8.00000i 0.224309 0.317221i
\(637\) 2.00000 3.00000i 0.0792429 0.118864i
\(638\) 59.3970i 2.35155i
\(639\) 10.8284 + 5.17157i 0.428366 + 0.204584i
\(640\) −1.00000 −0.0395285
\(641\) 22.6274 0.893729 0.446865 0.894602i \(-0.352541\pi\)
0.446865 + 0.894602i \(0.352541\pi\)
\(642\) 19.3137 3.31371i 0.762251 0.130782i
\(643\) −11.0000 11.0000i −0.433798 0.433798i 0.456120 0.889918i \(-0.349239\pi\)
−0.889918 + 0.456120i \(0.849239\pi\)
\(644\) −8.48528 8.48528i −0.334367 0.334367i
\(645\) −6.82843 + 1.17157i −0.268869 + 0.0461306i
\(646\) 0 0
\(647\) 15.5563 0.611583 0.305792 0.952098i \(-0.401079\pi\)
0.305792 + 0.952098i \(0.401079\pi\)
\(648\) 8.94975 + 0.949747i 0.351579 + 0.0373096i
\(649\) 72.0000i 2.82625i
\(650\) −0.707107 3.53553i −0.0277350 0.138675i
\(651\) 28.0000 39.5980i 1.09741 1.55197i
\(652\) −15.0000 15.0000i −0.587445 0.587445i
\(653\) 16.9706i 0.664109i −0.943260 0.332055i \(-0.892258\pi\)
0.943260 0.332055i \(-0.107742\pi\)
\(654\) −16.9706 + 24.0000i −0.663602 + 0.938474i
\(655\) −1.00000 1.00000i −0.0390732 0.0390732i
\(656\) −1.41421 + 1.41421i −0.0552158 + 0.0552158i
\(657\) 0 0
\(658\) −12.0000 + 12.0000i −0.467809 + 0.467809i
\(659\) 24.0416i 0.936529i 0.883588 + 0.468264i \(0.155121\pi\)
−0.883588 + 0.468264i \(0.844879\pi\)
\(660\) −8.48528 6.00000i −0.330289 0.233550i
\(661\) 12.0000 12.0000i 0.466746 0.466746i −0.434113 0.900859i \(-0.642938\pi\)
0.900859 + 0.434113i \(0.142938\pi\)
\(662\) −8.48528 −0.329790
\(663\) −8.24264 + 3.17157i −0.320118 + 0.123174i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −12.0000 + 4.24264i −0.464991 + 0.164399i
\(667\) 42.0000i 1.62625i
\(668\) −5.65685 + 5.65685i −0.218870 + 0.218870i
\(669\) −9.65685 + 1.65685i −0.373356 + 0.0640577i
\(670\) −3.00000 + 3.00000i −0.115900 + 0.115900i
\(671\) −42.4264 42.4264i −1.63785 1.63785i
\(672\) −4.00000 2.82843i −0.154303 0.109109i
\(673\) 10.0000i 0.385472i 0.981251 + 0.192736i \(0.0617360\pi\)
−0.981251 + 0.192736i \(0.938264\pi\)
\(674\) 12.7279 + 12.7279i 0.490261 + 0.490261i
\(675\) 1.41421 5.00000i 0.0544331 0.192450i
\(676\) 12.0000 5.00000i 0.461538 0.192308i
\(677\) 31.1127i 1.19576i −0.801586 0.597879i \(-0.796010\pi\)
0.801586 0.597879i \(-0.203990\pi\)
\(678\) −12.0711 + 2.07107i −0.463587 + 0.0795389i
\(679\) 32.0000 1.22805
\(680\) 1.41421 0.0542326
\(681\) 0 0
\(682\) −42.0000 42.0000i −1.60826 1.60826i
\(683\) 25.4558 + 25.4558i 0.974041 + 0.974041i 0.999671 0.0256307i \(-0.00815939\pi\)
−0.0256307 + 0.999671i \(0.508159\pi\)
\(684\) 0 0
\(685\) 16.0000 0.611329
\(686\) 16.9706 0.647939
\(687\) 3.31371 + 19.3137i 0.126426 + 0.736864i
\(688\) 4.00000i 0.152499i
\(689\) 11.3137 16.9706i 0.431018 0.646527i
\(690\) −6.00000 4.24264i −0.228416 0.161515i
\(691\) −22.0000 22.0000i −0.836919 0.836919i 0.151533 0.988452i \(-0.451579\pi\)
−0.988452 + 0.151533i \(0.951579\pi\)
\(692\) 14.1421i 0.537603i
\(693\) −16.9706 48.0000i −0.644658 1.82337i
\(694\) 4.00000 + 4.00000i 0.151838 + 0.151838i
\(695\) 0 0
\(696\) 2.89949 + 16.8995i 0.109905 + 0.640574i
\(697\) 2.00000 2.00000i 0.0757554 0.0757554i
\(698\) 14.1421i 0.535288i
\(699\) −4.24264 + 6.00000i −0.160471 + 0.226941i
\(700\) −2.00000 + 2.00000i −0.0755929 + 0.0755929i
\(701\) −4.24264 −0.160242 −0.0801212 0.996785i \(-0.525531\pi\)
−0.0801212 + 0.996785i \(0.525531\pi\)
\(702\) 18.6777 + 1.46447i 0.704943 + 0.0552727i
\(703\) 0 0
\(704\) −4.24264 + 4.24264i −0.159901 + 0.159901i
\(705\) −6.00000 + 8.48528i −0.225973 + 0.319574i
\(706\) 32.0000i 1.20434i
\(707\) −31.1127 + 31.1127i −1.17011 + 1.17011i
\(708\) −3.51472 20.4853i −0.132091 0.769884i
\(709\) 36.0000 36.0000i 1.35201 1.35201i 0.468596 0.883413i \(-0.344760\pi\)
0.883413 0.468596i \(-0.155240\pi\)
\(710\) −2.82843 2.82843i −0.106149 0.106149i
\(711\) 0 0
\(712\) 10.0000i 0.374766i
\(713\) −29.6985 29.6985i −1.11222 1.11222i
\(714\) 5.65685 + 4.00000i 0.211702 + 0.149696i
\(715\) −18.0000 12.0000i −0.673162 0.448775i
\(716\) 12.7279i 0.475665i
\(717\) 4.68629 + 27.3137i 0.175013 + 1.02005i
\(718\) −20.0000 −0.746393
\(719\) −28.2843 −1.05483 −0.527413 0.849609i \(-0.676838\pi\)
−0.527413 + 0.849609i \(0.676838\pi\)
\(720\) −2.70711 1.29289i −0.100888 0.0481833i
\(721\) −16.0000 16.0000i −0.595871 0.595871i
\(722\) −13.4350 13.4350i −0.500000 0.500000i
\(723\) 6.21320 + 36.2132i 0.231072 + 1.34678i
\(724\) −22.0000 −0.817624
\(725\) 9.89949 0.367658
\(726\) −42.6777 + 7.32233i −1.58392 + 0.271757i
\(727\) 12.0000i 0.445055i 0.974926 + 0.222528i \(0.0714308\pi\)
−0.974926 + 0.222528i \(0.928569\pi\)
\(728\) −8.48528 5.65685i −0.314485 0.209657i
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) 0 0
\(731\) 5.65685i 0.209226i
\(732\) −14.1421 10.0000i −0.522708 0.369611i
\(733\) 33.0000 + 33.0000i 1.21888 + 1.21888i 0.968024 + 0.250859i \(0.0807131\pi\)
0.250859 + 0.968024i \(0.419287\pi\)
\(734\) 19.7990 19.7990i 0.730794 0.730794i
\(735\) −1.70711 + 0.292893i −0.0629676 + 0.0108035i
\(736\) −3.00000 + 3.00000i −0.110581 + 0.110581i
\(737\) 25.4558i 0.937678i
\(738\) −5.65685 + 2.00000i −0.208232 + 0.0736210i
\(739\) −2.00000 + 2.00000i −0.0735712 + 0.0735712i −0.742935 0.669364i \(-0.766567\pi\)
0.669364 + 0.742935i \(0.266567\pi\)
\(740\) 4.24264 0.155963
\(741\) 0 0
\(742\) −16.0000 −0.587378
\(743\) −4.24264 + 4.24264i −0.155647 + 0.155647i −0.780635 0.624987i \(-0.785104\pi\)
0.624987 + 0.780635i \(0.285104\pi\)
\(744\) −14.0000 9.89949i −0.513265 0.362933i
\(745\) 6.00000i 0.219823i
\(746\) −16.9706 + 16.9706i −0.621336 + 0.621336i
\(747\) 32.4853 + 15.5147i 1.18857 + 0.567654i
\(748\) 6.00000 6.00000i 0.219382 0.219382i
\(749\) −22.6274 22.6274i −0.826788 0.826788i
\(750\) −1.00000 + 1.41421i −0.0365148 + 0.0516398i
\(751\) 46.0000i 1.67856i 0.543696 + 0.839282i \(0.317024\pi\)
−0.543696 + 0.839282i \(0.682976\pi\)
\(752\) 4.24264 + 4.24264i 0.154713 + 0.154713i
\(753\) −7.07107 + 10.0000i −0.257684 + 0.364420i
\(754\) 7.00000 + 35.0000i 0.254925 + 1.27462i
\(755\) 1.41421i 0.0514685i
\(756\) −7.17157 12.8284i −0.260828 0.466565i
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 8.48528 0.308199
\(759\) −43.4558 + 7.45584i −1.57735 + 0.270630i
\(760\) 0 0
\(761\) 29.6985 + 29.6985i 1.07657 + 1.07657i 0.996815 + 0.0797547i \(0.0254137\pi\)
0.0797547 + 0.996815i \(0.474586\pi\)
\(762\) 27.3137 4.68629i 0.989471 0.169766i
\(763\) 48.0000 1.73772
\(764\) −8.48528 −0.306987
\(765\) 3.82843 + 1.82843i 0.138417 + 0.0661069i
\(766\) 16.0000i 0.578103i
\(767\) −8.48528 42.4264i −0.306386 1.53193i
\(768\) −1.00000 + 1.41421i −0.0360844 + 0.0510310i
\(769\) 11.0000 + 11.0000i 0.396670 + 0.396670i 0.877057 0.480387i \(-0.159504\pi\)
−0.480387 + 0.877057i \(0.659504\pi\)
\(770\) 16.9706i 0.611577i
\(771\) −9.89949 + 14.0000i −0.356522 + 0.504198i
\(772\) 0 0
\(773\) 7.07107 7.07107i 0.254329 0.254329i −0.568414 0.822743i \(-0.692443\pi\)
0.822743 + 0.568414i \(0.192443\pi\)
\(774\) −5.17157 + 10.8284i −0.185888 + 0.389220i
\(775\) −7.00000 + 7.00000i −0.251447 + 0.251447i
\(776\) 11.3137i 0.406138i
\(777\) 16.9706 + 12.0000i 0.608816 + 0.430498i
\(778\) −7.00000 + 7.00000i −0.250962 + 0.250962i
\(779\) 0 0
\(780\) −5.70711 2.53553i −0.204347 0.0907867i
\(781\) −24.0000 −0.858788
\(782\) 4.24264 4.24264i 0.151717 0.151717i
\(783\) −14.0000 + 49.4975i −0.500319 + 1.76890i
\(784\) 1.00000i 0.0357143i
\(785\) 1.41421 1.41421i 0.0504754 0.0504754i
\(786\) −2.41421 + 0.414214i −0.0861121 + 0.0147745i
\(787\) 23.0000 23.0000i 0.819861 0.819861i −0.166226 0.986088i \(-0.553158\pi\)
0.986088 + 0.166226i \(0.0531582\pi\)
\(788\) 1.41421 + 1.41421i 0.0503793 + 0.0503793i
\(789\) −10.0000 7.07107i −0.356009 0.251737i
\(790\) 0 0
\(791\) 14.1421 + 14.1421i 0.502836 + 0.502836i
\(792\) −16.9706 + 6.00000i −0.603023 + 0.213201i
\(793\) −30.0000 20.0000i −1.06533 0.710221i
\(794\) 4.24264i 0.150566i
\(795\) −9.65685 + 1.65685i −0.342493 + 0.0587626i
\(796\) 6.00000 0.212664
\(797\) 22.6274 0.801504 0.400752 0.916187i \(-0.368749\pi\)
0.400752 + 0.916187i \(0.368749\pi\)
\(798\) 0 0
\(799\) −6.00000 6.00000i −0.212265 0.212265i
\(800\) 0.707107 + 0.707107i 0.0250000 + 0.0250000i
\(801\) 12.9289 27.0711i 0.456821 0.956509i
\(802\) −14.0000 −0.494357
\(803\) 0 0
\(804\) 1.24264 + 7.24264i 0.0438246 + 0.255428i
\(805\) 12.0000i 0.422944i
\(806\) −29.6985 19.7990i −1.04608 0.697390i
\(807\) 2.00000 + 1.41421i 0.0704033 + 0.0497827i
\(808\) 11.0000 + 11.0000i 0.386979 + 0.386979i
\(809\) 2.82843i 0.0994422i −0.998763 0.0497211i \(-0.984167\pi\)
0.998763 0.0497211i \(-0.0158332\pi\)
\(810\) −5.65685 7.00000i −0.198762 0.245955i
\(811\) 4.00000 + 4.00000i 0.140459 + 0.140459i 0.773840 0.633381i \(-0.218333\pi\)
−0.633381 + 0.773840i \(0.718333\pi\)
\(812\) 19.7990 19.7990i 0.694808 0.694808i
\(813\) −6.21320 36.2132i −0.217907 1.27005i
\(814\) 18.0000 18.0000i 0.630900 0.630900i
\(815\) 21.2132i 0.743066i
\(816\) 1.41421 2.00000i 0.0495074 0.0700140i
\(817\) 0 0
\(818\) 1.41421 0.0494468
\(819\) −15.6569 26.2843i −0.547095 0.918447i
\(820\) 2.00000 0.0698430
\(821\) −7.07107 + 7.07107i −0.246782 + 0.246782i −0.819649 0.572867i \(-0.805831\pi\)
0.572867 + 0.819649i \(0.305831\pi\)
\(822\) 16.0000 22.6274i 0.558064 0.789222i
\(823\) 36.0000i 1.25488i −0.778664 0.627441i \(-0.784103\pi\)
0.778664 0.627441i \(-0.215897\pi\)
\(824\) −5.65685 + 5.65685i −0.197066 + 0.197066i
\(825\) 1.75736 + 10.2426i 0.0611834 + 0.356603i
\(826\) −24.0000 + 24.0000i −0.835067 + 0.835067i
\(827\) −33.9411 33.9411i −1.18025 1.18025i −0.979680 0.200569i \(-0.935721\pi\)
−0.200569 0.979680i \(-0.564279\pi\)
\(828\) −12.0000 + 4.24264i −0.417029 + 0.147442i
\(829\) 22.0000i 0.764092i 0.924143 + 0.382046i \(0.124780\pi\)
−0.924143 + 0.382046i \(0.875220\pi\)
\(830\) −8.48528 8.48528i −0.294528 0.294528i
\(831\) −5.65685 4.00000i −0.196234 0.138758i
\(832\) −2.00000 + 3.00000i −0.0693375 + 0.104006i
\(833\) 1.41421i 0.0489996i
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) −25.1005 44.8995i −0.867600 1.55195i
\(838\) 7.00000 + 7.00000i 0.241811 + 0.241811i
\(839\) 25.4558 + 25.4558i 0.878833 + 0.878833i 0.993414 0.114581i \(-0.0365524\pi\)
−0.114581 + 0.993414i \(0.536552\pi\)
\(840\) 0.828427 + 4.82843i 0.0285835 + 0.166597i
\(841\) −69.0000 −2.37931
\(842\) 25.4558 0.877266
\(843\) −17.0711 + 2.92893i −0.587959 + 0.100878i
\(844\) 20.0000i 0.688428i
\(845\) −12.0208 4.94975i −0.413529 0.170276i
\(846\) 6.00000 + 16.9706i 0.206284 + 0.583460i
\(847\) 50.0000 + 50.0000i 1.71802 + 1.71802i
\(848\) 5.65685i 0.194257i
\(849\) −36.7696 26.0000i −1.26193 0.892318i
\(850\) −1.00000 1.00000i −0.0342997 0.0342997i
\(851\) 12.7279 12.7279i 0.436308 0.436308i
\(852\) −6.82843 + 1.17157i −0.233938 + 0.0401374i
\(853\) −15.0000 + 15.0000i −0.513590 + 0.513590i −0.915625 0.402034i \(-0.868303\pi\)
0.402034 + 0.915625i \(0.368303\pi\)
\(854\) 28.2843i 0.967868i
\(855\) 0 0
\(856\) −8.00000 + 8.00000i −0.273434 + 0.273434i
\(857\) −41.0122 −1.40095 −0.700475 0.713677i \(-0.747028\pi\)
−0.700475 + 0.713677i \(0.747028\pi\)
\(858\) −34.9706 + 13.4558i −1.19388 + 0.459375i
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 2.82843 2.82843i 0.0964486 0.0964486i
\(861\) 8.00000 + 5.65685i 0.272639 + 0.192785i
\(862\) 36.0000i 1.22616i
\(863\) 39.5980 39.5980i 1.34793 1.34793i 0.460025 0.887906i \(-0.347840\pi\)
0.887906 0.460025i \(-0.152160\pi\)
\(864\) −4.53553 + 2.53553i −0.154302 + 0.0862606i
\(865\) 10.0000 10.0000i 0.340010 0.340010i
\(866\) −7.07107 7.07107i −0.240285 0.240285i
\(867\) 15.0000 21.2132i 0.509427 0.720438i
\(868\) 28.0000i 0.950382i
\(869\) 0 0
\(870\) 9.89949 14.0000i 0.335624 0.474644i
\(871\) 3.00000 + 15.0000i 0.101651 + 0.508256i
\(872\) 16.9706i 0.574696i
\(873\) 14.6274 30.6274i 0.495063 1.03658i
\(874\) 0 0
\(875\) 2.82843 0.0956183
\(876\) 0 0
\(877\) 11.0000 + 11.0000i 0.371444 + 0.371444i 0.868003 0.496559i \(-0.165403\pi\)
−0.496559 + 0.868003i \(0.665403\pi\)
\(878\) −26.8701 26.8701i −0.906821 0.906821i
\(879\) −3.41421 + 0.585786i −0.115159 + 0.0197581i
\(880\) 6.00000 0.202260
\(881\) −5.65685 −0.190584 −0.0952921 0.995449i \(-0.530379\pi\)
−0.0952921 + 0.995449i \(0.530379\pi\)
\(882\) −1.29289 + 2.70711i −0.0435340 + 0.0911530i
\(883\) 4.00000i 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) 2.82843 4.24264i 0.0951303 0.142695i
\(885\) −12.0000 + 16.9706i −0.403376 + 0.570459i
\(886\) 14.0000 + 14.0000i 0.470339 + 0.470339i
\(887\) 32.5269i 1.09215i 0.837737 + 0.546073i \(0.183878\pi\)
−0.837737 + 0.546073i \(0.816122\pi\)
\(888\) 4.24264 6.00000i 0.142374 0.201347i
\(889\) −32.0000 32.0000i −1.07325 1.07325i
\(890\) −7.07107 + 7.07107i −0.237023 + 0.237023i
\(891\) −53.6985 5.69848i −1.79897 0.190906i
\(892\) 4.00000 4.00000i 0.133930 0.133930i
\(893\) 0 0
\(894\) −8.48528 6.00000i −0.283790 0.200670i
\(895\) 9.00000 9.00000i 0.300837 0.300837i
\(896\) 2.82843 0.0944911
\(897\) −24.7279 + 9.51472i −0.825641 + 0.317687i
\(898\) −2.00000 −0.0667409
\(899\) 69.2965 69.2965i 2.31117 2.31117i
\(900\) 1.00000 + 2.82843i 0.0333333 + 0.0942809i
\(901\) 8.00000i 0.266519i
\(902\) 8.48528 8.48528i 0.282529 0.282529i
\(903\) 19.3137 3.31371i 0.642720 0.110273i
\(904\) 5.00000 5.00000i 0.166298 0.166298i
\(905\) 15.5563 + 15.5563i 0.517111 + 0.517111i
\(906\) −2.00000 1.41421i −0.0664455 0.0469841i
\(907\) 14.0000i 0.464862i −0.972613 0.232431i \(-0.925332\pi\)
0.972613 0.232431i \(-0.0746680\pi\)
\(908\) 0 0
\(909\) 15.5563 + 44.0000i 0.515972 + 1.45939i
\(910\) 2.00000 + 10.0000i 0.0662994 + 0.331497i
\(911\) 5.65685i 0.187420i 0.995600 + 0.0937100i \(0.0298726\pi\)
−0.995600 + 0.0937100i \(0.970127\pi\)
\(912\) 0 0
\(913\) −72.0000 −2.38285
\(914\) 0 0
\(915\) 2.92893 + 17.0711i 0.0968275 + 0.564352i
\(916\) −8.00000 8.00000i −0.264327 0.264327i
\(917\) 2.82843 + 2.82843i 0.0934029 + 0.0934029i
\(918\) 6.41421 3.58579i 0.211701 0.118349i
\(919\) −22.0000 −0.725713 −0.362857 0.931845i \(-0.618198\pi\)
−0.362857 + 0.931845i \(0.618198\pi\)
\(920\) 4.24264 0.139876
\(921\) 0.414214 + 2.41421i 0.0136488 + 0.0795510i
\(922\) 40.0000i 1.31733i
\(923\) −14.1421 + 2.82843i −0.465494 + 0.0930988i
\(924\) 24.0000 + 16.9706i 0.789542 + 0.558291i
\(925\) −3.00000 3.00000i −0.0986394 0.0986394i
\(926\) 22.6274i 0.743583i
\(927\) −22.6274 + 8.00000i −0.743182 + 0.262754i
\(928\) −7.00000 7.00000i −0.229786 0.229786i
\(929\) 18.3848 18.3848i 0.603185 0.603185i −0.337971 0.941156i \(-0.609741\pi\)
0.941156 + 0.337971i \(0.109741\pi\)
\(930\) 2.89949 + 16.8995i 0.0950782 + 0.554156i
\(931\) 0 0
\(932\) 4.24264i 0.138972i
\(933\) 14.1421 20.0000i 0.462993 0.654771i
\(934\) 6.00000 6.00000i 0.196326 0.196326i
\(935\) −8.48528 −0.277498
\(936\) −9.29289 + 5.53553i −0.303748 + 0.180935i
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 8.48528 8.48528i 0.277054 0.277054i
\(939\) 34.0000 48.0833i 1.10955 1.56914i
\(940\) 6.00000i 0.195698i
\(941\) −8.48528 + 8.48528i −0.276612 + 0.276612i −0.831755 0.555143i \(-0.812664\pi\)
0.555143 + 0.831755i \(0.312664\pi\)
\(942\) −0.585786 3.41421i −0.0190860 0.111241i
\(943\) 6.00000 6.00000i 0.195387 0.195387i
\(944\) 8.48528 + 8.48528i 0.276172 + 0.276172i
\(945\) −4.00000 + 14.1421i −0.130120 + 0.460044i
\(946\) 24.0000i 0.780307i
\(947\) 2.82843 + 2.82843i 0.0919115 + 0.0919115i 0.751568 0.659656i \(-0.229298\pi\)
−0.659656 + 0.751568i \(0.729298\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 5.27208 + 30.7279i 0.170959 + 0.996421i
\(952\) −4.00000 −0.129641
\(953\) −55.1543 −1.78662 −0.893312 0.449437i \(-0.851625\pi\)
−0.893312 + 0.449437i \(0.851625\pi\)
\(954\) −7.31371 + 15.3137i −0.236790 + 0.495800i
\(955\) 6.00000 + 6.00000i 0.194155 + 0.194155i
\(956\) −11.3137 11.3137i −0.365911 0.365911i
\(957\) −17.3970 101.397i −0.562364 3.27770i
\(958\) 36.0000 1.16311
\(959\) −45.2548 −1.46135
\(960\) 1.70711 0.292893i 0.0550966 0.00945309i
\(961\) 67.0000i 2.16129i
\(962\) 8.48528 12.7279i 0.273576 0.410365i
\(963\) −32.0000 + 11.3137i −1.03119 + 0.364579i
\(964\) −15.0000 15.0000i −0.483117 0.483117i
\(965\) 0 0
\(966\) 16.9706 + 12.0000i 0.546019 + 0.386094i
\(967\) 22.0000 + 22.0000i 0.707472 + 0.707472i 0.966003 0.258531i \(-0.0832383\pi\)
−0.258531 + 0.966003i \(0.583238\pi\)
\(968\) 17.6777 17.6777i 0.568182 0.568182i
\(969\) 0 0
\(970\) −8.00000 + 8.00000i −0.256865 + 0.256865i
\(971\) 55.1543i 1.76999i 0.465604 + 0.884993i \(0.345837\pi\)
−0.465604 + 0.884993i \(0.654163\pi\)
\(972\) −15.5563 + 1.00000i −0.498970 + 0.0320750i
\(973\) 0 0
\(974\) −19.7990 −0.634401
\(975\) 2.24264 + 5.82843i 0.0718220 + 0.186659i
\(976\) 10.0000 0.320092
\(977\) −16.9706 + 16.9706i −0.542936 + 0.542936i −0.924389 0.381452i \(-0.875424\pi\)
0.381452 + 0.924389i \(0.375424\pi\)
\(978\) 30.0000 + 21.2132i 0.959294 + 0.678323i
\(979\) 60.0000i 1.91761i
\(980\) 0.707107 0.707107i 0.0225877 0.0225877i
\(981\) 21.9411 45.9411i 0.700526 1.46679i
\(982\) 11.0000 11.0000i 0.351024 0.351024i
\(983\) 21.2132 + 21.2132i 0.676596 + 0.676596i 0.959228 0.282632i \(-0.0912076\pi\)
−0.282632 + 0.959228i \(0.591208\pi\)
\(984\) 2.00000 2.82843i 0.0637577 0.0901670i
\(985\) 2.00000i 0.0637253i
\(986\) 9.89949 + 9.89949i 0.315264 + 0.315264i
\(987\) 16.9706 24.0000i 0.540179 0.763928i
\(988\) 0 0
\(989\) 16.9706i 0.539633i
\(990\) 16.2426 + 7.75736i 0.516225 + 0.246545i
\(991\) −18.0000 −0.571789 −0.285894 0.958261i \(-0.592291\pi\)
−0.285894 + 0.958261i \(0.592291\pi\)
\(992\) 9.89949 0.314309
\(993\) 14.4853 2.48528i 0.459677 0.0788680i
\(994\) 8.00000 + 8.00000i 0.253745 + 0.253745i
\(995\) −4.24264 4.24264i −0.134501 0.134501i
\(996\) −20.4853 + 3.51472i −0.649101 + 0.111368i
\(997\) 42.0000 1.33015 0.665077 0.746775i \(-0.268399\pi\)
0.665077 + 0.746775i \(0.268399\pi\)
\(998\) 33.9411 1.07439
\(999\) 19.2426 10.7574i 0.608810 0.340348i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.p.c.281.2 yes 4
3.2 odd 2 inner 390.2.p.c.281.1 yes 4
13.5 odd 4 inner 390.2.p.c.161.1 4
39.5 even 4 inner 390.2.p.c.161.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.p.c.161.1 4 13.5 odd 4 inner
390.2.p.c.161.2 yes 4 39.5 even 4 inner
390.2.p.c.281.1 yes 4 3.2 odd 2 inner
390.2.p.c.281.2 yes 4 1.1 even 1 trivial