Properties

Label 390.2.p.c.281.1
Level $390$
Weight $2$
Character 390.281
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(161,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 281.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.281
Dual form 390.2.p.c.161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.00000 - 1.41421i) q^{3} -1.00000i q^{4} +(0.707107 - 0.707107i) q^{5} +(1.70711 + 0.292893i) q^{6} +(2.00000 - 2.00000i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-1.00000 + 2.82843i) q^{9} +1.00000i q^{10} +(-4.24264 - 4.24264i) q^{11} +(-1.41421 + 1.00000i) q^{12} +(3.00000 + 2.00000i) q^{13} +2.82843i q^{14} +(-1.70711 - 0.292893i) q^{15} -1.00000 q^{16} -1.41421 q^{17} +(-1.29289 - 2.70711i) q^{18} +(-0.707107 - 0.707107i) q^{20} +(-4.82843 - 0.828427i) q^{21} +6.00000 q^{22} -4.24264 q^{23} +(0.292893 - 1.70711i) q^{24} -1.00000i q^{25} +(-3.53553 + 0.707107i) q^{26} +(5.00000 - 1.41421i) q^{27} +(-2.00000 - 2.00000i) q^{28} -9.89949i q^{29} +(1.41421 - 1.00000i) q^{30} +(-7.00000 - 7.00000i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-1.75736 + 10.2426i) q^{33} +(1.00000 - 1.00000i) q^{34} -2.82843i q^{35} +(2.82843 + 1.00000i) q^{36} +(3.00000 - 3.00000i) q^{37} +(-0.171573 - 6.24264i) q^{39} +1.00000 q^{40} +(-1.41421 + 1.41421i) q^{41} +(4.00000 - 2.82843i) q^{42} -4.00000i q^{43} +(-4.24264 + 4.24264i) q^{44} +(1.29289 + 2.70711i) q^{45} +(3.00000 - 3.00000i) q^{46} +(4.24264 + 4.24264i) q^{47} +(1.00000 + 1.41421i) q^{48} -1.00000i q^{49} +(0.707107 + 0.707107i) q^{50} +(1.41421 + 2.00000i) q^{51} +(2.00000 - 3.00000i) q^{52} +5.65685i q^{53} +(-2.53553 + 4.53553i) q^{54} -6.00000 q^{55} +2.82843 q^{56} +(7.00000 + 7.00000i) q^{58} +(8.48528 + 8.48528i) q^{59} +(-0.292893 + 1.70711i) q^{60} -10.0000 q^{61} +9.89949 q^{62} +(3.65685 + 7.65685i) q^{63} +1.00000i q^{64} +(3.53553 - 0.707107i) q^{65} +(-6.00000 - 8.48528i) q^{66} +(3.00000 + 3.00000i) q^{67} +1.41421i q^{68} +(4.24264 + 6.00000i) q^{69} +(2.00000 + 2.00000i) q^{70} +(2.82843 - 2.82843i) q^{71} +(-2.70711 + 1.29289i) q^{72} +4.24264i q^{74} +(-1.41421 + 1.00000i) q^{75} -16.9706 q^{77} +(4.53553 + 4.29289i) q^{78} +(-0.707107 + 0.707107i) q^{80} +(-7.00000 - 5.65685i) q^{81} -2.00000i q^{82} +(8.48528 - 8.48528i) q^{83} +(-0.828427 + 4.82843i) q^{84} +(-1.00000 + 1.00000i) q^{85} +(2.82843 + 2.82843i) q^{86} +(-14.0000 + 9.89949i) q^{87} -6.00000i q^{88} +(-7.07107 - 7.07107i) q^{89} +(-2.82843 - 1.00000i) q^{90} +(10.0000 - 2.00000i) q^{91} +4.24264i q^{92} +(-2.89949 + 16.8995i) q^{93} -6.00000 q^{94} +(-1.70711 - 0.292893i) q^{96} +(8.00000 + 8.00000i) q^{97} +(0.707107 + 0.707107i) q^{98} +(16.2426 - 7.75736i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{6} + 8 q^{7} - 4 q^{9} + 12 q^{13} - 4 q^{15} - 4 q^{16} - 8 q^{18} - 8 q^{21} + 24 q^{22} + 4 q^{24} + 20 q^{27} - 8 q^{28} - 28 q^{31} - 24 q^{33} + 4 q^{34} + 12 q^{37} - 12 q^{39}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −1.00000 1.41421i −0.577350 0.816497i
\(4\) 1.00000i 0.500000i
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) 1.70711 + 0.292893i 0.696923 + 0.119573i
\(7\) 2.00000 2.00000i 0.755929 0.755929i −0.219650 0.975579i \(-0.570491\pi\)
0.975579 + 0.219650i \(0.0704915\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) 1.00000i 0.316228i
\(11\) −4.24264 4.24264i −1.27920 1.27920i −0.941113 0.338091i \(-0.890219\pi\)
−0.338091 0.941113i \(-0.609781\pi\)
\(12\) −1.41421 + 1.00000i −0.408248 + 0.288675i
\(13\) 3.00000 + 2.00000i 0.832050 + 0.554700i
\(14\) 2.82843i 0.755929i
\(15\) −1.70711 0.292893i −0.440773 0.0756247i
\(16\) −1.00000 −0.250000
\(17\) −1.41421 −0.342997 −0.171499 0.985184i \(-0.554861\pi\)
−0.171499 + 0.985184i \(0.554861\pi\)
\(18\) −1.29289 2.70711i −0.304738 0.638071i
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) −0.707107 0.707107i −0.158114 0.158114i
\(21\) −4.82843 0.828427i −1.05365 0.180778i
\(22\) 6.00000 1.27920
\(23\) −4.24264 −0.884652 −0.442326 0.896854i \(-0.645847\pi\)
−0.442326 + 0.896854i \(0.645847\pi\)
\(24\) 0.292893 1.70711i 0.0597866 0.348462i
\(25\) 1.00000i 0.200000i
\(26\) −3.53553 + 0.707107i −0.693375 + 0.138675i
\(27\) 5.00000 1.41421i 0.962250 0.272166i
\(28\) −2.00000 2.00000i −0.377964 0.377964i
\(29\) 9.89949i 1.83829i −0.393919 0.919145i \(-0.628881\pi\)
0.393919 0.919145i \(-0.371119\pi\)
\(30\) 1.41421 1.00000i 0.258199 0.182574i
\(31\) −7.00000 7.00000i −1.25724 1.25724i −0.952407 0.304830i \(-0.901400\pi\)
−0.304830 0.952407i \(-0.598600\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −1.75736 + 10.2426i −0.305917 + 1.78301i
\(34\) 1.00000 1.00000i 0.171499 0.171499i
\(35\) 2.82843i 0.478091i
\(36\) 2.82843 + 1.00000i 0.471405 + 0.166667i
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 0 0
\(39\) −0.171573 6.24264i −0.0274736 0.999623i
\(40\) 1.00000 0.158114
\(41\) −1.41421 + 1.41421i −0.220863 + 0.220863i −0.808862 0.587999i \(-0.799916\pi\)
0.587999 + 0.808862i \(0.299916\pi\)
\(42\) 4.00000 2.82843i 0.617213 0.436436i
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) −4.24264 + 4.24264i −0.639602 + 0.639602i
\(45\) 1.29289 + 2.70711i 0.192733 + 0.403552i
\(46\) 3.00000 3.00000i 0.442326 0.442326i
\(47\) 4.24264 + 4.24264i 0.618853 + 0.618853i 0.945237 0.326384i \(-0.105830\pi\)
−0.326384 + 0.945237i \(0.605830\pi\)
\(48\) 1.00000 + 1.41421i 0.144338 + 0.204124i
\(49\) 1.00000i 0.142857i
\(50\) 0.707107 + 0.707107i 0.100000 + 0.100000i
\(51\) 1.41421 + 2.00000i 0.198030 + 0.280056i
\(52\) 2.00000 3.00000i 0.277350 0.416025i
\(53\) 5.65685i 0.777029i 0.921443 + 0.388514i \(0.127012\pi\)
−0.921443 + 0.388514i \(0.872988\pi\)
\(54\) −2.53553 + 4.53553i −0.345042 + 0.617208i
\(55\) −6.00000 −0.809040
\(56\) 2.82843 0.377964
\(57\) 0 0
\(58\) 7.00000 + 7.00000i 0.919145 + 0.919145i
\(59\) 8.48528 + 8.48528i 1.10469 + 1.10469i 0.993837 + 0.110853i \(0.0353582\pi\)
0.110853 + 0.993837i \(0.464642\pi\)
\(60\) −0.292893 + 1.70711i −0.0378124 + 0.220387i
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 9.89949 1.25724
\(63\) 3.65685 + 7.65685i 0.460720 + 0.964673i
\(64\) 1.00000i 0.125000i
\(65\) 3.53553 0.707107i 0.438529 0.0877058i
\(66\) −6.00000 8.48528i −0.738549 1.04447i
\(67\) 3.00000 + 3.00000i 0.366508 + 0.366508i 0.866202 0.499694i \(-0.166554\pi\)
−0.499694 + 0.866202i \(0.666554\pi\)
\(68\) 1.41421i 0.171499i
\(69\) 4.24264 + 6.00000i 0.510754 + 0.722315i
\(70\) 2.00000 + 2.00000i 0.239046 + 0.239046i
\(71\) 2.82843 2.82843i 0.335673 0.335673i −0.519063 0.854736i \(-0.673719\pi\)
0.854736 + 0.519063i \(0.173719\pi\)
\(72\) −2.70711 + 1.29289i −0.319036 + 0.152369i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 4.24264i 0.493197i
\(75\) −1.41421 + 1.00000i −0.163299 + 0.115470i
\(76\) 0 0
\(77\) −16.9706 −1.93398
\(78\) 4.53553 + 4.29289i 0.513548 + 0.486074i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −0.707107 + 0.707107i −0.0790569 + 0.0790569i
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 2.00000i 0.220863i
\(83\) 8.48528 8.48528i 0.931381 0.931381i −0.0664117 0.997792i \(-0.521155\pi\)
0.997792 + 0.0664117i \(0.0211551\pi\)
\(84\) −0.828427 + 4.82843i −0.0903888 + 0.526825i
\(85\) −1.00000 + 1.00000i −0.108465 + 0.108465i
\(86\) 2.82843 + 2.82843i 0.304997 + 0.304997i
\(87\) −14.0000 + 9.89949i −1.50096 + 1.06134i
\(88\) 6.00000i 0.639602i
\(89\) −7.07107 7.07107i −0.749532 0.749532i 0.224860 0.974391i \(-0.427808\pi\)
−0.974391 + 0.224860i \(0.927808\pi\)
\(90\) −2.82843 1.00000i −0.298142 0.105409i
\(91\) 10.0000 2.00000i 1.04828 0.209657i
\(92\) 4.24264i 0.442326i
\(93\) −2.89949 + 16.8995i −0.300664 + 1.75240i
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) −1.70711 0.292893i −0.174231 0.0298933i
\(97\) 8.00000 + 8.00000i 0.812277 + 0.812277i 0.984975 0.172698i \(-0.0552484\pi\)
−0.172698 + 0.984975i \(0.555248\pi\)
\(98\) 0.707107 + 0.707107i 0.0714286 + 0.0714286i
\(99\) 16.2426 7.75736i 1.63245 0.779644i
\(100\) −1.00000 −0.100000
\(101\) 15.5563 1.54791 0.773957 0.633238i \(-0.218274\pi\)
0.773957 + 0.633238i \(0.218274\pi\)
\(102\) −2.41421 0.414214i −0.239043 0.0410133i
\(103\) 8.00000i 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) 0.707107 + 3.53553i 0.0693375 + 0.346688i
\(105\) −4.00000 + 2.82843i −0.390360 + 0.276026i
\(106\) −4.00000 4.00000i −0.388514 0.388514i
\(107\) 11.3137i 1.09374i 0.837218 + 0.546869i \(0.184180\pi\)
−0.837218 + 0.546869i \(0.815820\pi\)
\(108\) −1.41421 5.00000i −0.136083 0.481125i
\(109\) 12.0000 + 12.0000i 1.14939 + 1.14939i 0.986672 + 0.162719i \(0.0520264\pi\)
0.162719 + 0.986672i \(0.447974\pi\)
\(110\) 4.24264 4.24264i 0.404520 0.404520i
\(111\) −7.24264 1.24264i −0.687441 0.117946i
\(112\) −2.00000 + 2.00000i −0.188982 + 0.188982i
\(113\) 7.07107i 0.665190i −0.943070 0.332595i \(-0.892076\pi\)
0.943070 0.332595i \(-0.107924\pi\)
\(114\) 0 0
\(115\) −3.00000 + 3.00000i −0.279751 + 0.279751i
\(116\) −9.89949 −0.919145
\(117\) −8.65685 + 6.48528i −0.800326 + 0.599564i
\(118\) −12.0000 −1.10469
\(119\) −2.82843 + 2.82843i −0.259281 + 0.259281i
\(120\) −1.00000 1.41421i −0.0912871 0.129099i
\(121\) 25.0000i 2.27273i
\(122\) 7.07107 7.07107i 0.640184 0.640184i
\(123\) 3.41421 + 0.585786i 0.307849 + 0.0528186i
\(124\) −7.00000 + 7.00000i −0.628619 + 0.628619i
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) −8.00000 2.82843i −0.712697 0.251976i
\(127\) 16.0000i 1.41977i −0.704317 0.709885i \(-0.748747\pi\)
0.704317 0.709885i \(-0.251253\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) −5.65685 + 4.00000i −0.498058 + 0.352180i
\(130\) −2.00000 + 3.00000i −0.175412 + 0.263117i
\(131\) 1.41421i 0.123560i −0.998090 0.0617802i \(-0.980322\pi\)
0.998090 0.0617802i \(-0.0196778\pi\)
\(132\) 10.2426 + 1.75736i 0.891507 + 0.152958i
\(133\) 0 0
\(134\) −4.24264 −0.366508
\(135\) 2.53553 4.53553i 0.218224 0.390357i
\(136\) −1.00000 1.00000i −0.0857493 0.0857493i
\(137\) 11.3137 + 11.3137i 0.966595 + 0.966595i 0.999460 0.0328645i \(-0.0104630\pi\)
−0.0328645 + 0.999460i \(0.510463\pi\)
\(138\) −7.24264 1.24264i −0.616535 0.105781i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) −2.82843 −0.239046
\(141\) 1.75736 10.2426i 0.147996 0.862586i
\(142\) 4.00000i 0.335673i
\(143\) −4.24264 21.2132i −0.354787 1.77394i
\(144\) 1.00000 2.82843i 0.0833333 0.235702i
\(145\) −7.00000 7.00000i −0.581318 0.581318i
\(146\) 0 0
\(147\) −1.41421 + 1.00000i −0.116642 + 0.0824786i
\(148\) −3.00000 3.00000i −0.246598 0.246598i
\(149\) 4.24264 4.24264i 0.347571 0.347571i −0.511633 0.859204i \(-0.670959\pi\)
0.859204 + 0.511633i \(0.170959\pi\)
\(150\) 0.292893 1.70711i 0.0239146 0.139385i
\(151\) −1.00000 + 1.00000i −0.0813788 + 0.0813788i −0.746625 0.665246i \(-0.768327\pi\)
0.665246 + 0.746625i \(0.268327\pi\)
\(152\) 0 0
\(153\) 1.41421 4.00000i 0.114332 0.323381i
\(154\) 12.0000 12.0000i 0.966988 0.966988i
\(155\) −9.89949 −0.795147
\(156\) −6.24264 + 0.171573i −0.499811 + 0.0137368i
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 8.00000 5.65685i 0.634441 0.448618i
\(160\) 1.00000i 0.0790569i
\(161\) −8.48528 + 8.48528i −0.668734 + 0.668734i
\(162\) 8.94975 0.949747i 0.703159 0.0746192i
\(163\) 15.0000 15.0000i 1.17489 1.17489i 0.193862 0.981029i \(-0.437899\pi\)
0.981029 0.193862i \(-0.0621013\pi\)
\(164\) 1.41421 + 1.41421i 0.110432 + 0.110432i
\(165\) 6.00000 + 8.48528i 0.467099 + 0.660578i
\(166\) 12.0000i 0.931381i
\(167\) 5.65685 + 5.65685i 0.437741 + 0.437741i 0.891251 0.453510i \(-0.149829\pi\)
−0.453510 + 0.891251i \(0.649829\pi\)
\(168\) −2.82843 4.00000i −0.218218 0.308607i
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 1.41421i 0.108465i
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 14.1421 1.07521 0.537603 0.843198i \(-0.319330\pi\)
0.537603 + 0.843198i \(0.319330\pi\)
\(174\) 2.89949 16.8995i 0.219810 1.28115i
\(175\) −2.00000 2.00000i −0.151186 0.151186i
\(176\) 4.24264 + 4.24264i 0.319801 + 0.319801i
\(177\) 3.51472 20.4853i 0.264182 1.53977i
\(178\) 10.0000 0.749532
\(179\) 12.7279 0.951330 0.475665 0.879627i \(-0.342208\pi\)
0.475665 + 0.879627i \(0.342208\pi\)
\(180\) 2.70711 1.29289i 0.201776 0.0963666i
\(181\) 22.0000i 1.63525i −0.575753 0.817624i \(-0.695291\pi\)
0.575753 0.817624i \(-0.304709\pi\)
\(182\) −5.65685 + 8.48528i −0.419314 + 0.628971i
\(183\) 10.0000 + 14.1421i 0.739221 + 1.04542i
\(184\) −3.00000 3.00000i −0.221163 0.221163i
\(185\) 4.24264i 0.311925i
\(186\) −9.89949 14.0000i −0.725866 1.02653i
\(187\) 6.00000 + 6.00000i 0.438763 + 0.438763i
\(188\) 4.24264 4.24264i 0.309426 0.309426i
\(189\) 7.17157 12.8284i 0.521655 0.933131i
\(190\) 0 0
\(191\) 8.48528i 0.613973i 0.951714 + 0.306987i \(0.0993207\pi\)
−0.951714 + 0.306987i \(0.900679\pi\)
\(192\) 1.41421 1.00000i 0.102062 0.0721688i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) −11.3137 −0.812277
\(195\) −4.53553 4.29289i −0.324796 0.307420i
\(196\) −1.00000 −0.0714286
\(197\) 1.41421 1.41421i 0.100759 0.100759i −0.654931 0.755689i \(-0.727302\pi\)
0.755689 + 0.654931i \(0.227302\pi\)
\(198\) −6.00000 + 16.9706i −0.426401 + 1.20605i
\(199\) 6.00000i 0.425329i 0.977125 + 0.212664i \(0.0682141\pi\)
−0.977125 + 0.212664i \(0.931786\pi\)
\(200\) 0.707107 0.707107i 0.0500000 0.0500000i
\(201\) 1.24264 7.24264i 0.0876491 0.510856i
\(202\) −11.0000 + 11.0000i −0.773957 + 0.773957i
\(203\) −19.7990 19.7990i −1.38962 1.38962i
\(204\) 2.00000 1.41421i 0.140028 0.0990148i
\(205\) 2.00000i 0.139686i
\(206\) 5.65685 + 5.65685i 0.394132 + 0.394132i
\(207\) 4.24264 12.0000i 0.294884 0.834058i
\(208\) −3.00000 2.00000i −0.208013 0.138675i
\(209\) 0 0
\(210\) 0.828427 4.82843i 0.0571669 0.333193i
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 5.65685 0.388514
\(213\) −6.82843 1.17157i −0.467876 0.0802749i
\(214\) −8.00000 8.00000i −0.546869 0.546869i
\(215\) −2.82843 2.82843i −0.192897 0.192897i
\(216\) 4.53553 + 2.53553i 0.308604 + 0.172521i
\(217\) −28.0000 −1.90076
\(218\) −16.9706 −1.14939
\(219\) 0 0
\(220\) 6.00000i 0.404520i
\(221\) −4.24264 2.82843i −0.285391 0.190261i
\(222\) 6.00000 4.24264i 0.402694 0.284747i
\(223\) 4.00000 + 4.00000i 0.267860 + 0.267860i 0.828237 0.560378i \(-0.189344\pi\)
−0.560378 + 0.828237i \(0.689344\pi\)
\(224\) 2.82843i 0.188982i
\(225\) 2.82843 + 1.00000i 0.188562 + 0.0666667i
\(226\) 5.00000 + 5.00000i 0.332595 + 0.332595i
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) 8.00000 8.00000i 0.528655 0.528655i −0.391516 0.920171i \(-0.628049\pi\)
0.920171 + 0.391516i \(0.128049\pi\)
\(230\) 4.24264i 0.279751i
\(231\) 16.9706 + 24.0000i 1.11658 + 1.57908i
\(232\) 7.00000 7.00000i 0.459573 0.459573i
\(233\) −4.24264 −0.277945 −0.138972 0.990296i \(-0.544380\pi\)
−0.138972 + 0.990296i \(0.544380\pi\)
\(234\) 1.53553 10.7071i 0.100381 0.699945i
\(235\) 6.00000 0.391397
\(236\) 8.48528 8.48528i 0.552345 0.552345i
\(237\) 0 0
\(238\) 4.00000i 0.259281i
\(239\) −11.3137 + 11.3137i −0.731823 + 0.731823i −0.970981 0.239158i \(-0.923129\pi\)
0.239158 + 0.970981i \(0.423129\pi\)
\(240\) 1.70711 + 0.292893i 0.110193 + 0.0189062i
\(241\) 15.0000 15.0000i 0.966235 0.966235i −0.0332133 0.999448i \(-0.510574\pi\)
0.999448 + 0.0332133i \(0.0105741\pi\)
\(242\) −17.6777 17.6777i −1.13636 1.13636i
\(243\) −1.00000 + 15.5563i −0.0641500 + 0.997940i
\(244\) 10.0000i 0.640184i
\(245\) −0.707107 0.707107i −0.0451754 0.0451754i
\(246\) −2.82843 + 2.00000i −0.180334 + 0.127515i
\(247\) 0 0
\(248\) 9.89949i 0.628619i
\(249\) −20.4853 3.51472i −1.29820 0.222736i
\(250\) 1.00000 0.0632456
\(251\) −7.07107 −0.446322 −0.223161 0.974782i \(-0.571638\pi\)
−0.223161 + 0.974782i \(0.571638\pi\)
\(252\) 7.65685 3.65685i 0.482336 0.230360i
\(253\) 18.0000 + 18.0000i 1.13165 + 1.13165i
\(254\) 11.3137 + 11.3137i 0.709885 + 0.709885i
\(255\) 2.41421 + 0.414214i 0.151184 + 0.0259391i
\(256\) 1.00000 0.0625000
\(257\) −9.89949 −0.617514 −0.308757 0.951141i \(-0.599913\pi\)
−0.308757 + 0.951141i \(0.599913\pi\)
\(258\) 1.17157 6.82843i 0.0729389 0.425119i
\(259\) 12.0000i 0.745644i
\(260\) −0.707107 3.53553i −0.0438529 0.219265i
\(261\) 28.0000 + 9.89949i 1.73316 + 0.612763i
\(262\) 1.00000 + 1.00000i 0.0617802 + 0.0617802i
\(263\) 7.07107i 0.436021i −0.975946 0.218010i \(-0.930043\pi\)
0.975946 0.218010i \(-0.0699567\pi\)
\(264\) −8.48528 + 6.00000i −0.522233 + 0.369274i
\(265\) 4.00000 + 4.00000i 0.245718 + 0.245718i
\(266\) 0 0
\(267\) −2.92893 + 17.0711i −0.179248 + 1.04473i
\(268\) 3.00000 3.00000i 0.183254 0.183254i
\(269\) 1.41421i 0.0862261i 0.999070 + 0.0431131i \(0.0137276\pi\)
−0.999070 + 0.0431131i \(0.986272\pi\)
\(270\) 1.41421 + 5.00000i 0.0860663 + 0.304290i
\(271\) −15.0000 + 15.0000i −0.911185 + 0.911185i −0.996366 0.0851804i \(-0.972853\pi\)
0.0851804 + 0.996366i \(0.472853\pi\)
\(272\) 1.41421 0.0857493
\(273\) −12.8284 12.1421i −0.776412 0.734875i
\(274\) −16.0000 −0.966595
\(275\) −4.24264 + 4.24264i −0.255841 + 0.255841i
\(276\) 6.00000 4.24264i 0.361158 0.255377i
\(277\) 4.00000i 0.240337i 0.992754 + 0.120168i \(0.0383434\pi\)
−0.992754 + 0.120168i \(0.961657\pi\)
\(278\) 0 0
\(279\) 26.7990 12.7990i 1.60441 0.766255i
\(280\) 2.00000 2.00000i 0.119523 0.119523i
\(281\) −7.07107 7.07107i −0.421825 0.421825i 0.464007 0.885832i \(-0.346411\pi\)
−0.885832 + 0.464007i \(0.846411\pi\)
\(282\) 6.00000 + 8.48528i 0.357295 + 0.505291i
\(283\) 26.0000i 1.54554i 0.634686 + 0.772770i \(0.281129\pi\)
−0.634686 + 0.772770i \(0.718871\pi\)
\(284\) −2.82843 2.82843i −0.167836 0.167836i
\(285\) 0 0
\(286\) 18.0000 + 12.0000i 1.06436 + 0.709575i
\(287\) 5.65685i 0.333914i
\(288\) 1.29289 + 2.70711i 0.0761845 + 0.159518i
\(289\) −15.0000 −0.882353
\(290\) 9.89949 0.581318
\(291\) 3.31371 19.3137i 0.194253 1.13219i
\(292\) 0 0
\(293\) −1.41421 1.41421i −0.0826192 0.0826192i 0.664589 0.747209i \(-0.268606\pi\)
−0.747209 + 0.664589i \(0.768606\pi\)
\(294\) 0.292893 1.70711i 0.0170819 0.0995605i
\(295\) 12.0000 0.698667
\(296\) 4.24264 0.246598
\(297\) −27.2132 15.2132i −1.57907 0.882760i
\(298\) 6.00000i 0.347571i
\(299\) −12.7279 8.48528i −0.736075 0.490716i
\(300\) 1.00000 + 1.41421i 0.0577350 + 0.0816497i
\(301\) −8.00000 8.00000i −0.461112 0.461112i
\(302\) 1.41421i 0.0813788i
\(303\) −15.5563 22.0000i −0.893689 1.26387i
\(304\) 0 0
\(305\) −7.07107 + 7.07107i −0.404888 + 0.404888i
\(306\) 1.82843 + 3.82843i 0.104524 + 0.218857i
\(307\) 1.00000 1.00000i 0.0570730 0.0570730i −0.677994 0.735067i \(-0.737151\pi\)
0.735067 + 0.677994i \(0.237151\pi\)
\(308\) 16.9706i 0.966988i
\(309\) −11.3137 + 8.00000i −0.643614 + 0.455104i
\(310\) 7.00000 7.00000i 0.397573 0.397573i
\(311\) 14.1421 0.801927 0.400963 0.916094i \(-0.368675\pi\)
0.400963 + 0.916094i \(0.368675\pi\)
\(312\) 4.29289 4.53553i 0.243037 0.256774i
\(313\) −34.0000 −1.92179 −0.960897 0.276907i \(-0.910691\pi\)
−0.960897 + 0.276907i \(0.910691\pi\)
\(314\) 1.41421 1.41421i 0.0798087 0.0798087i
\(315\) 8.00000 + 2.82843i 0.450749 + 0.159364i
\(316\) 0 0
\(317\) −12.7279 + 12.7279i −0.714871 + 0.714871i −0.967550 0.252679i \(-0.918688\pi\)
0.252679 + 0.967550i \(0.418688\pi\)
\(318\) −1.65685 + 9.65685i −0.0929118 + 0.541529i
\(319\) −42.0000 + 42.0000i −2.35155 + 2.35155i
\(320\) 0.707107 + 0.707107i 0.0395285 + 0.0395285i
\(321\) 16.0000 11.3137i 0.893033 0.631470i
\(322\) 12.0000i 0.668734i
\(323\) 0 0
\(324\) −5.65685 + 7.00000i −0.314270 + 0.388889i
\(325\) 2.00000 3.00000i 0.110940 0.166410i
\(326\) 21.2132i 1.17489i
\(327\) 4.97056 28.9706i 0.274873 1.60208i
\(328\) −2.00000 −0.110432
\(329\) 16.9706 0.935617
\(330\) −10.2426 1.75736i −0.563839 0.0967394i
\(331\) −6.00000 6.00000i −0.329790 0.329790i 0.522717 0.852506i \(-0.324919\pi\)
−0.852506 + 0.522717i \(0.824919\pi\)
\(332\) −8.48528 8.48528i −0.465690 0.465690i
\(333\) 5.48528 + 11.4853i 0.300592 + 0.629390i
\(334\) −8.00000 −0.437741
\(335\) 4.24264 0.231800
\(336\) 4.82843 + 0.828427i 0.263412 + 0.0451944i
\(337\) 18.0000i 0.980522i 0.871576 + 0.490261i \(0.163099\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) −12.0208 4.94975i −0.653846 0.269231i
\(339\) −10.0000 + 7.07107i −0.543125 + 0.384048i
\(340\) 1.00000 + 1.00000i 0.0542326 + 0.0542326i
\(341\) 59.3970i 3.21653i
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 2.82843 2.82843i 0.152499 0.152499i
\(345\) 7.24264 + 1.24264i 0.389931 + 0.0669015i
\(346\) −10.0000 + 10.0000i −0.537603 + 0.537603i
\(347\) 5.65685i 0.303676i −0.988405 0.151838i \(-0.951481\pi\)
0.988405 0.151838i \(-0.0485192\pi\)
\(348\) 9.89949 + 14.0000i 0.530669 + 0.750479i
\(349\) 10.0000 10.0000i 0.535288 0.535288i −0.386853 0.922141i \(-0.626438\pi\)
0.922141 + 0.386853i \(0.126438\pi\)
\(350\) 2.82843 0.151186
\(351\) 17.8284 + 5.75736i 0.951611 + 0.307305i
\(352\) −6.00000 −0.319801
\(353\) 22.6274 22.6274i 1.20434 1.20434i 0.231501 0.972835i \(-0.425636\pi\)
0.972835 0.231501i \(-0.0743638\pi\)
\(354\) 12.0000 + 16.9706i 0.637793 + 0.901975i
\(355\) 4.00000i 0.212298i
\(356\) −7.07107 + 7.07107i −0.374766 + 0.374766i
\(357\) 6.82843 + 1.17157i 0.361399 + 0.0620062i
\(358\) −9.00000 + 9.00000i −0.475665 + 0.475665i
\(359\) 14.1421 + 14.1421i 0.746393 + 0.746393i 0.973800 0.227407i \(-0.0730246\pi\)
−0.227407 + 0.973800i \(0.573025\pi\)
\(360\) −1.00000 + 2.82843i −0.0527046 + 0.149071i
\(361\) 19.0000i 1.00000i
\(362\) 15.5563 + 15.5563i 0.817624 + 0.817624i
\(363\) 35.3553 25.0000i 1.85567 1.31216i
\(364\) −2.00000 10.0000i −0.104828 0.524142i
\(365\) 0 0
\(366\) −17.0711 2.92893i −0.892319 0.153098i
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) 4.24264 0.221163
\(369\) −2.58579 5.41421i −0.134611 0.281853i
\(370\) 3.00000 + 3.00000i 0.155963 + 0.155963i
\(371\) 11.3137 + 11.3137i 0.587378 + 0.587378i
\(372\) 16.8995 + 2.89949i 0.876198 + 0.150332i
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) −8.48528 −0.438763
\(375\) −0.292893 + 1.70711i −0.0151249 + 0.0881546i
\(376\) 6.00000i 0.309426i
\(377\) 19.7990 29.6985i 1.01970 1.52955i
\(378\) 4.00000 + 14.1421i 0.205738 + 0.727393i
\(379\) 6.00000 + 6.00000i 0.308199 + 0.308199i 0.844211 0.536011i \(-0.180070\pi\)
−0.536011 + 0.844211i \(0.680070\pi\)
\(380\) 0 0
\(381\) −22.6274 + 16.0000i −1.15924 + 0.819705i
\(382\) −6.00000 6.00000i −0.306987 0.306987i
\(383\) −11.3137 + 11.3137i −0.578103 + 0.578103i −0.934380 0.356277i \(-0.884046\pi\)
0.356277 + 0.934380i \(0.384046\pi\)
\(384\) −0.292893 + 1.70711i −0.0149466 + 0.0871154i
\(385\) −12.0000 + 12.0000i −0.611577 + 0.611577i
\(386\) 0 0
\(387\) 11.3137 + 4.00000i 0.575108 + 0.203331i
\(388\) 8.00000 8.00000i 0.406138 0.406138i
\(389\) 9.89949 0.501924 0.250962 0.967997i \(-0.419253\pi\)
0.250962 + 0.967997i \(0.419253\pi\)
\(390\) 6.24264 0.171573i 0.316108 0.00868793i
\(391\) 6.00000 0.303433
\(392\) 0.707107 0.707107i 0.0357143 0.0357143i
\(393\) −2.00000 + 1.41421i −0.100887 + 0.0713376i
\(394\) 2.00000i 0.100759i
\(395\) 0 0
\(396\) −7.75736 16.2426i −0.389822 0.816223i
\(397\) −3.00000 + 3.00000i −0.150566 + 0.150566i −0.778371 0.627805i \(-0.783954\pi\)
0.627805 + 0.778371i \(0.283954\pi\)
\(398\) −4.24264 4.24264i −0.212664 0.212664i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) 9.89949 + 9.89949i 0.494357 + 0.494357i 0.909676 0.415319i \(-0.136330\pi\)
−0.415319 + 0.909676i \(0.636330\pi\)
\(402\) 4.24264 + 6.00000i 0.211604 + 0.299253i
\(403\) −7.00000 35.0000i −0.348695 1.74347i
\(404\) 15.5563i 0.773957i
\(405\) −8.94975 + 0.949747i −0.444717 + 0.0471933i
\(406\) 28.0000 1.38962
\(407\) −25.4558 −1.26180
\(408\) −0.414214 + 2.41421i −0.0205066 + 0.119521i
\(409\) 1.00000 + 1.00000i 0.0494468 + 0.0494468i 0.731398 0.681951i \(-0.238868\pi\)
−0.681951 + 0.731398i \(0.738868\pi\)
\(410\) −1.41421 1.41421i −0.0698430 0.0698430i
\(411\) 4.68629 27.3137i 0.231158 1.34729i
\(412\) −8.00000 −0.394132
\(413\) 33.9411 1.67013
\(414\) 5.48528 + 11.4853i 0.269587 + 0.564471i
\(415\) 12.0000i 0.589057i
\(416\) 3.53553 0.707107i 0.173344 0.0346688i
\(417\) 0 0
\(418\) 0 0
\(419\) 9.89949i 0.483622i −0.970323 0.241811i \(-0.922259\pi\)
0.970323 0.241811i \(-0.0777414\pi\)
\(420\) 2.82843 + 4.00000i 0.138013 + 0.195180i
\(421\) 18.0000 + 18.0000i 0.877266 + 0.877266i 0.993251 0.115985i \(-0.0370024\pi\)
−0.115985 + 0.993251i \(0.537002\pi\)
\(422\) 14.1421 14.1421i 0.688428 0.688428i
\(423\) −16.2426 + 7.75736i −0.789744 + 0.377176i
\(424\) −4.00000 + 4.00000i −0.194257 + 0.194257i
\(425\) 1.41421i 0.0685994i
\(426\) 5.65685 4.00000i 0.274075 0.193801i
\(427\) −20.0000 + 20.0000i −0.967868 + 0.967868i
\(428\) 11.3137 0.546869
\(429\) −25.7574 + 27.2132i −1.24358 + 1.31387i
\(430\) 4.00000 0.192897
\(431\) −25.4558 + 25.4558i −1.22616 + 1.22616i −0.260762 + 0.965403i \(0.583974\pi\)
−0.965403 + 0.260762i \(0.916026\pi\)
\(432\) −5.00000 + 1.41421i −0.240563 + 0.0680414i
\(433\) 10.0000i 0.480569i −0.970702 0.240285i \(-0.922759\pi\)
0.970702 0.240285i \(-0.0772408\pi\)
\(434\) 19.7990 19.7990i 0.950382 0.950382i
\(435\) −2.89949 + 16.8995i −0.139020 + 0.810269i
\(436\) 12.0000 12.0000i 0.574696 0.574696i
\(437\) 0 0
\(438\) 0 0
\(439\) 38.0000i 1.81364i −0.421517 0.906821i \(-0.638502\pi\)
0.421517 0.906821i \(-0.361498\pi\)
\(440\) −4.24264 4.24264i −0.202260 0.202260i
\(441\) 2.82843 + 1.00000i 0.134687 + 0.0476190i
\(442\) 5.00000 1.00000i 0.237826 0.0475651i
\(443\) 19.7990i 0.940678i −0.882486 0.470339i \(-0.844132\pi\)
0.882486 0.470339i \(-0.155868\pi\)
\(444\) −1.24264 + 7.24264i −0.0589731 + 0.343721i
\(445\) −10.0000 −0.474045
\(446\) −5.65685 −0.267860
\(447\) −10.2426 1.75736i −0.484460 0.0831202i
\(448\) 2.00000 + 2.00000i 0.0944911 + 0.0944911i
\(449\) 1.41421 + 1.41421i 0.0667409 + 0.0667409i 0.739689 0.672948i \(-0.234972\pi\)
−0.672948 + 0.739689i \(0.734972\pi\)
\(450\) −2.70711 + 1.29289i −0.127614 + 0.0609476i
\(451\) 12.0000 0.565058
\(452\) −7.07107 −0.332595
\(453\) 2.41421 + 0.414214i 0.113430 + 0.0194615i
\(454\) 0 0
\(455\) 5.65685 8.48528i 0.265197 0.397796i
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 11.3137i 0.528655i
\(459\) −7.07107 + 2.00000i −0.330049 + 0.0933520i
\(460\) 3.00000 + 3.00000i 0.139876 + 0.139876i
\(461\) 28.2843 28.2843i 1.31733 1.31733i 0.401448 0.915882i \(-0.368507\pi\)
0.915882 0.401448i \(-0.131493\pi\)
\(462\) −28.9706 4.97056i −1.34783 0.231252i
\(463\) −16.0000 + 16.0000i −0.743583 + 0.743583i −0.973266 0.229683i \(-0.926231\pi\)
0.229683 + 0.973266i \(0.426231\pi\)
\(464\) 9.89949i 0.459573i
\(465\) 9.89949 + 14.0000i 0.459078 + 0.649234i
\(466\) 3.00000 3.00000i 0.138972 0.138972i
\(467\) −8.48528 −0.392652 −0.196326 0.980539i \(-0.562901\pi\)
−0.196326 + 0.980539i \(0.562901\pi\)
\(468\) 6.48528 + 8.65685i 0.299782 + 0.400163i
\(469\) 12.0000 0.554109
\(470\) −4.24264 + 4.24264i −0.195698 + 0.195698i
\(471\) 2.00000 + 2.82843i 0.0921551 + 0.130327i
\(472\) 12.0000i 0.552345i
\(473\) −16.9706 + 16.9706i −0.780307 + 0.780307i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.82843 + 2.82843i 0.129641 + 0.129641i
\(477\) −16.0000 5.65685i −0.732590 0.259010i
\(478\) 16.0000i 0.731823i
\(479\) −25.4558 25.4558i −1.16311 1.16311i −0.983792 0.179316i \(-0.942612\pi\)
−0.179316 0.983792i \(-0.557388\pi\)
\(480\) −1.41421 + 1.00000i −0.0645497 + 0.0456435i
\(481\) 15.0000 3.00000i 0.683941 0.136788i
\(482\) 21.2132i 0.966235i
\(483\) 20.4853 + 3.51472i 0.932113 + 0.159925i
\(484\) 25.0000 1.13636
\(485\) 11.3137 0.513729
\(486\) −10.2929 11.7071i −0.466895 0.531045i
\(487\) −14.0000 14.0000i −0.634401 0.634401i 0.314768 0.949169i \(-0.398073\pi\)
−0.949169 + 0.314768i \(0.898073\pi\)
\(488\) −7.07107 7.07107i −0.320092 0.320092i
\(489\) −36.2132 6.21320i −1.63762 0.280971i
\(490\) 1.00000 0.0451754
\(491\) −15.5563 −0.702048 −0.351024 0.936366i \(-0.614166\pi\)
−0.351024 + 0.936366i \(0.614166\pi\)
\(492\) 0.585786 3.41421i 0.0264093 0.153925i
\(493\) 14.0000i 0.630528i
\(494\) 0 0
\(495\) 6.00000 16.9706i 0.269680 0.762770i
\(496\) 7.00000 + 7.00000i 0.314309 + 0.314309i
\(497\) 11.3137i 0.507489i
\(498\) 16.9706 12.0000i 0.760469 0.537733i
\(499\) 24.0000 + 24.0000i 1.07439 + 1.07439i 0.997001 + 0.0773864i \(0.0246575\pi\)
0.0773864 + 0.997001i \(0.475342\pi\)
\(500\) −0.707107 + 0.707107i −0.0316228 + 0.0316228i
\(501\) 2.34315 13.6569i 0.104684 0.610143i
\(502\) 5.00000 5.00000i 0.223161 0.223161i
\(503\) 35.3553i 1.57642i 0.615409 + 0.788208i \(0.288991\pi\)
−0.615409 + 0.788208i \(0.711009\pi\)
\(504\) −2.82843 + 8.00000i −0.125988 + 0.356348i
\(505\) 11.0000 11.0000i 0.489494 0.489494i
\(506\) −25.4558 −1.13165
\(507\) 11.9706 19.0711i 0.531631 0.846976i
\(508\) −16.0000 −0.709885
\(509\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(510\) −2.00000 + 1.41421i −0.0885615 + 0.0626224i
\(511\) 0 0
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 7.00000 7.00000i 0.308757 0.308757i
\(515\) −5.65685 5.65685i −0.249271 0.249271i
\(516\) 4.00000 + 5.65685i 0.176090 + 0.249029i
\(517\) 36.0000i 1.58328i
\(518\) 8.48528 + 8.48528i 0.372822 + 0.372822i
\(519\) −14.1421 20.0000i −0.620771 0.877903i
\(520\) 3.00000 + 2.00000i 0.131559 + 0.0877058i
\(521\) 11.3137i 0.495663i −0.968803 0.247831i \(-0.920282\pi\)
0.968803 0.247831i \(-0.0797179\pi\)
\(522\) −26.7990 + 12.7990i −1.17296 + 0.560197i
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) −1.41421 −0.0617802
\(525\) −0.828427 + 4.82843i −0.0361555 + 0.210730i
\(526\) 5.00000 + 5.00000i 0.218010 + 0.218010i
\(527\) 9.89949 + 9.89949i 0.431229 + 0.431229i
\(528\) 1.75736 10.2426i 0.0764792 0.445754i
\(529\) −5.00000 −0.217391
\(530\) −5.65685 −0.245718
\(531\) −32.4853 + 15.5147i −1.40974 + 0.673281i
\(532\) 0 0
\(533\) −7.07107 + 1.41421i −0.306282 + 0.0612564i
\(534\) −10.0000 14.1421i −0.432742 0.611990i
\(535\) 8.00000 + 8.00000i 0.345870 + 0.345870i
\(536\) 4.24264i 0.183254i
\(537\) −12.7279 18.0000i −0.549250 0.776757i
\(538\) −1.00000 1.00000i −0.0431131 0.0431131i
\(539\) −4.24264 + 4.24264i −0.182743 + 0.182743i
\(540\) −4.53553 2.53553i −0.195178 0.109112i
\(541\) 18.0000 18.0000i 0.773880 0.773880i −0.204902 0.978782i \(-0.565688\pi\)
0.978782 + 0.204902i \(0.0656876\pi\)
\(542\) 21.2132i 0.911185i
\(543\) −31.1127 + 22.0000i −1.33517 + 0.944110i
\(544\) −1.00000 + 1.00000i −0.0428746 + 0.0428746i
\(545\) 16.9706 0.726939
\(546\) 17.6569 0.485281i 0.755644 0.0207681i
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 11.3137 11.3137i 0.483298 0.483298i
\(549\) 10.0000 28.2843i 0.426790 1.20714i
\(550\) 6.00000i 0.255841i
\(551\) 0 0
\(552\) −1.24264 + 7.24264i −0.0528903 + 0.308267i
\(553\) 0 0
\(554\) −2.82843 2.82843i −0.120168 0.120168i
\(555\) −6.00000 + 4.24264i −0.254686 + 0.180090i
\(556\) 0 0
\(557\) −1.41421 1.41421i −0.0599222 0.0599222i 0.676511 0.736433i \(-0.263491\pi\)
−0.736433 + 0.676511i \(0.763491\pi\)
\(558\) −9.89949 + 28.0000i −0.419079 + 1.18533i
\(559\) 8.00000 12.0000i 0.338364 0.507546i
\(560\) 2.82843i 0.119523i
\(561\) 2.48528 14.4853i 0.104929 0.611569i
\(562\) 10.0000 0.421825
\(563\) −2.82843 −0.119204 −0.0596020 0.998222i \(-0.518983\pi\)
−0.0596020 + 0.998222i \(0.518983\pi\)
\(564\) −10.2426 1.75736i −0.431293 0.0739982i
\(565\) −5.00000 5.00000i −0.210352 0.210352i
\(566\) −18.3848 18.3848i −0.772770 0.772770i
\(567\) −25.3137 + 2.68629i −1.06308 + 0.112814i
\(568\) 4.00000 0.167836
\(569\) −11.3137 −0.474295 −0.237148 0.971474i \(-0.576213\pi\)
−0.237148 + 0.971474i \(0.576213\pi\)
\(570\) 0 0
\(571\) 4.00000i 0.167395i 0.996491 + 0.0836974i \(0.0266729\pi\)
−0.996491 + 0.0836974i \(0.973327\pi\)
\(572\) −21.2132 + 4.24264i −0.886969 + 0.177394i
\(573\) 12.0000 8.48528i 0.501307 0.354478i
\(574\) −4.00000 4.00000i −0.166957 0.166957i
\(575\) 4.24264i 0.176930i
\(576\) −2.82843 1.00000i −0.117851 0.0416667i
\(577\) 4.00000 + 4.00000i 0.166522 + 0.166522i 0.785449 0.618927i \(-0.212432\pi\)
−0.618927 + 0.785449i \(0.712432\pi\)
\(578\) 10.6066 10.6066i 0.441176 0.441176i
\(579\) 0 0
\(580\) −7.00000 + 7.00000i −0.290659 + 0.290659i
\(581\) 33.9411i 1.40812i
\(582\) 11.3137 + 16.0000i 0.468968 + 0.663221i
\(583\) 24.0000 24.0000i 0.993978 0.993978i
\(584\) 0 0
\(585\) −1.53553 + 10.7071i −0.0634865 + 0.442684i
\(586\) 2.00000 0.0826192
\(587\) −2.82843 + 2.82843i −0.116742 + 0.116742i −0.763064 0.646323i \(-0.776306\pi\)
0.646323 + 0.763064i \(0.276306\pi\)
\(588\) 1.00000 + 1.41421i 0.0412393 + 0.0583212i
\(589\) 0 0
\(590\) −8.48528 + 8.48528i −0.349334 + 0.349334i
\(591\) −3.41421 0.585786i −0.140442 0.0240960i
\(592\) −3.00000 + 3.00000i −0.123299 + 0.123299i
\(593\) 5.65685 + 5.65685i 0.232299 + 0.232299i 0.813652 0.581353i \(-0.197476\pi\)
−0.581353 + 0.813652i \(0.697476\pi\)
\(594\) 30.0000 8.48528i 1.23091 0.348155i
\(595\) 4.00000i 0.163984i
\(596\) −4.24264 4.24264i −0.173785 0.173785i
\(597\) 8.48528 6.00000i 0.347279 0.245564i
\(598\) 15.0000 3.00000i 0.613396 0.122679i
\(599\) 16.9706i 0.693398i 0.937976 + 0.346699i \(0.112698\pi\)
−0.937976 + 0.346699i \(0.887302\pi\)
\(600\) −1.70711 0.292893i −0.0696923 0.0119573i
\(601\) −18.0000 −0.734235 −0.367118 0.930175i \(-0.619655\pi\)
−0.367118 + 0.930175i \(0.619655\pi\)
\(602\) 11.3137 0.461112
\(603\) −11.4853 + 5.48528i −0.467717 + 0.223378i
\(604\) 1.00000 + 1.00000i 0.0406894 + 0.0406894i
\(605\) 17.6777 + 17.6777i 0.718699 + 0.718699i
\(606\) 26.5563 + 4.55635i 1.07878 + 0.185089i
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 0 0
\(609\) −8.20101 + 47.7990i −0.332322 + 1.93691i
\(610\) 10.0000i 0.404888i
\(611\) 4.24264 + 21.2132i 0.171639 + 0.858194i
\(612\) −4.00000 1.41421i −0.161690 0.0571662i
\(613\) 25.0000 + 25.0000i 1.00974 + 1.00974i 0.999952 + 0.00978840i \(0.00311579\pi\)
0.00978840 + 0.999952i \(0.496884\pi\)
\(614\) 1.41421i 0.0570730i
\(615\) 2.82843 2.00000i 0.114053 0.0806478i
\(616\) −12.0000 12.0000i −0.483494 0.483494i
\(617\) 15.5563 15.5563i 0.626275 0.626275i −0.320854 0.947129i \(-0.603970\pi\)
0.947129 + 0.320854i \(0.103970\pi\)
\(618\) 2.34315 13.6569i 0.0942551 0.549359i
\(619\) −14.0000 + 14.0000i −0.562708 + 0.562708i −0.930076 0.367368i \(-0.880259\pi\)
0.367368 + 0.930076i \(0.380259\pi\)
\(620\) 9.89949i 0.397573i
\(621\) −21.2132 + 6.00000i −0.851257 + 0.240772i
\(622\) −10.0000 + 10.0000i −0.400963 + 0.400963i
\(623\) −28.2843 −1.13319
\(624\) 0.171573 + 6.24264i 0.00686841 + 0.249906i
\(625\) −1.00000 −0.0400000
\(626\) 24.0416 24.0416i 0.960897 0.960897i
\(627\) 0 0
\(628\) 2.00000i 0.0798087i
\(629\) −4.24264 + 4.24264i −0.169165 + 0.169165i
\(630\) −7.65685 + 3.65685i −0.305056 + 0.145693i
\(631\) 17.0000 17.0000i 0.676759 0.676759i −0.282506 0.959265i \(-0.591166\pi\)
0.959265 + 0.282506i \(0.0911658\pi\)
\(632\) 0 0
\(633\) 20.0000 + 28.2843i 0.794929 + 1.12420i
\(634\) 18.0000i 0.714871i
\(635\) −11.3137 11.3137i −0.448971 0.448971i
\(636\) −5.65685 8.00000i −0.224309 0.317221i
\(637\) 2.00000 3.00000i 0.0792429 0.118864i
\(638\) 59.3970i 2.35155i
\(639\) 5.17157 + 10.8284i 0.204584 + 0.428366i
\(640\) −1.00000 −0.0395285
\(641\) −22.6274 −0.893729 −0.446865 0.894602i \(-0.647459\pi\)
−0.446865 + 0.894602i \(0.647459\pi\)
\(642\) −3.31371 + 19.3137i −0.130782 + 0.762251i
\(643\) −11.0000 11.0000i −0.433798 0.433798i 0.456120 0.889918i \(-0.349239\pi\)
−0.889918 + 0.456120i \(0.849239\pi\)
\(644\) 8.48528 + 8.48528i 0.334367 + 0.334367i
\(645\) −1.17157 + 6.82843i −0.0461306 + 0.268869i
\(646\) 0 0
\(647\) −15.5563 −0.611583 −0.305792 0.952098i \(-0.598921\pi\)
−0.305792 + 0.952098i \(0.598921\pi\)
\(648\) −0.949747 8.94975i −0.0373096 0.351579i
\(649\) 72.0000i 2.82625i
\(650\) 0.707107 + 3.53553i 0.0277350 + 0.138675i
\(651\) 28.0000 + 39.5980i 1.09741 + 1.55197i
\(652\) −15.0000 15.0000i −0.587445 0.587445i
\(653\) 16.9706i 0.664109i 0.943260 + 0.332055i \(0.107742\pi\)
−0.943260 + 0.332055i \(0.892258\pi\)
\(654\) 16.9706 + 24.0000i 0.663602 + 0.938474i
\(655\) −1.00000 1.00000i −0.0390732 0.0390732i
\(656\) 1.41421 1.41421i 0.0552158 0.0552158i
\(657\) 0 0
\(658\) −12.0000 + 12.0000i −0.467809 + 0.467809i
\(659\) 24.0416i 0.936529i −0.883588 0.468264i \(-0.844879\pi\)
0.883588 0.468264i \(-0.155121\pi\)
\(660\) 8.48528 6.00000i 0.330289 0.233550i
\(661\) 12.0000 12.0000i 0.466746 0.466746i −0.434113 0.900859i \(-0.642938\pi\)
0.900859 + 0.434113i \(0.142938\pi\)
\(662\) 8.48528 0.329790
\(663\) 0.242641 + 8.82843i 0.00942338 + 0.342868i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −12.0000 4.24264i −0.464991 0.164399i
\(667\) 42.0000i 1.62625i
\(668\) 5.65685 5.65685i 0.218870 0.218870i
\(669\) 1.65685 9.65685i 0.0640577 0.373356i
\(670\) −3.00000 + 3.00000i −0.115900 + 0.115900i
\(671\) 42.4264 + 42.4264i 1.63785 + 1.63785i
\(672\) −4.00000 + 2.82843i −0.154303 + 0.109109i
\(673\) 10.0000i 0.385472i 0.981251 + 0.192736i \(0.0617360\pi\)
−0.981251 + 0.192736i \(0.938264\pi\)
\(674\) −12.7279 12.7279i −0.490261 0.490261i
\(675\) −1.41421 5.00000i −0.0544331 0.192450i
\(676\) 12.0000 5.00000i 0.461538 0.192308i
\(677\) 31.1127i 1.19576i 0.801586 + 0.597879i \(0.203990\pi\)
−0.801586 + 0.597879i \(0.796010\pi\)
\(678\) 2.07107 12.0711i 0.0795389 0.463587i
\(679\) 32.0000 1.22805
\(680\) −1.41421 −0.0542326
\(681\) 0 0
\(682\) −42.0000 42.0000i −1.60826 1.60826i
\(683\) −25.4558 25.4558i −0.974041 0.974041i 0.0256307 0.999671i \(-0.491841\pi\)
−0.999671 + 0.0256307i \(0.991841\pi\)
\(684\) 0 0
\(685\) 16.0000 0.611329
\(686\) −16.9706 −0.647939
\(687\) −19.3137 3.31371i −0.736864 0.126426i
\(688\) 4.00000i 0.152499i
\(689\) −11.3137 + 16.9706i −0.431018 + 0.646527i
\(690\) −6.00000 + 4.24264i −0.228416 + 0.161515i
\(691\) −22.0000 22.0000i −0.836919 0.836919i 0.151533 0.988452i \(-0.451579\pi\)
−0.988452 + 0.151533i \(0.951579\pi\)
\(692\) 14.1421i 0.537603i
\(693\) 16.9706 48.0000i 0.644658 1.82337i
\(694\) 4.00000 + 4.00000i 0.151838 + 0.151838i
\(695\) 0 0
\(696\) −16.8995 2.89949i −0.640574 0.109905i
\(697\) 2.00000 2.00000i 0.0757554 0.0757554i
\(698\) 14.1421i 0.535288i
\(699\) 4.24264 + 6.00000i 0.160471 + 0.226941i
\(700\) −2.00000 + 2.00000i −0.0755929 + 0.0755929i
\(701\) 4.24264 0.160242 0.0801212 0.996785i \(-0.474469\pi\)
0.0801212 + 0.996785i \(0.474469\pi\)
\(702\) −16.6777 + 8.53553i −0.629458 + 0.322153i
\(703\) 0 0
\(704\) 4.24264 4.24264i 0.159901 0.159901i
\(705\) −6.00000 8.48528i −0.225973 0.319574i
\(706\) 32.0000i 1.20434i
\(707\) 31.1127 31.1127i 1.17011 1.17011i
\(708\) −20.4853 3.51472i −0.769884 0.132091i
\(709\) 36.0000 36.0000i 1.35201 1.35201i 0.468596 0.883413i \(-0.344760\pi\)
0.883413 0.468596i \(-0.155240\pi\)
\(710\) 2.82843 + 2.82843i 0.106149 + 0.106149i
\(711\) 0 0
\(712\) 10.0000i 0.374766i
\(713\) 29.6985 + 29.6985i 1.11222 + 1.11222i
\(714\) −5.65685 + 4.00000i −0.211702 + 0.149696i
\(715\) −18.0000 12.0000i −0.673162 0.448775i
\(716\) 12.7279i 0.475665i
\(717\) 27.3137 + 4.68629i 1.02005 + 0.175013i
\(718\) −20.0000 −0.746393
\(719\) 28.2843 1.05483 0.527413 0.849609i \(-0.323162\pi\)
0.527413 + 0.849609i \(0.323162\pi\)
\(720\) −1.29289 2.70711i −0.0481833 0.100888i
\(721\) −16.0000 16.0000i −0.595871 0.595871i
\(722\) 13.4350 + 13.4350i 0.500000 + 0.500000i
\(723\) −36.2132 6.21320i −1.34678 0.231072i
\(724\) −22.0000 −0.817624
\(725\) −9.89949 −0.367658
\(726\) −7.32233 + 42.6777i −0.271757 + 1.58392i
\(727\) 12.0000i 0.445055i 0.974926 + 0.222528i \(0.0714308\pi\)
−0.974926 + 0.222528i \(0.928569\pi\)
\(728\) 8.48528 + 5.65685i 0.314485 + 0.209657i
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 0 0
\(731\) 5.65685i 0.209226i
\(732\) 14.1421 10.0000i 0.522708 0.369611i
\(733\) 33.0000 + 33.0000i 1.21888 + 1.21888i 0.968024 + 0.250859i \(0.0807131\pi\)
0.250859 + 0.968024i \(0.419287\pi\)
\(734\) −19.7990 + 19.7990i −0.730794 + 0.730794i
\(735\) −0.292893 + 1.70711i −0.0108035 + 0.0629676i
\(736\) −3.00000 + 3.00000i −0.110581 + 0.110581i
\(737\) 25.4558i 0.937678i
\(738\) 5.65685 + 2.00000i 0.208232 + 0.0736210i
\(739\) −2.00000 + 2.00000i −0.0735712 + 0.0735712i −0.742935 0.669364i \(-0.766567\pi\)
0.669364 + 0.742935i \(0.266567\pi\)
\(740\) −4.24264 −0.155963
\(741\) 0 0
\(742\) −16.0000 −0.587378
\(743\) 4.24264 4.24264i 0.155647 0.155647i −0.624987 0.780635i \(-0.714896\pi\)
0.780635 + 0.624987i \(0.214896\pi\)
\(744\) −14.0000 + 9.89949i −0.513265 + 0.362933i
\(745\) 6.00000i 0.219823i
\(746\) 16.9706 16.9706i 0.621336 0.621336i
\(747\) 15.5147 + 32.4853i 0.567654 + 1.18857i
\(748\) 6.00000 6.00000i 0.219382 0.219382i
\(749\) 22.6274 + 22.6274i 0.826788 + 0.826788i
\(750\) −1.00000 1.41421i −0.0365148 0.0516398i
\(751\) 46.0000i 1.67856i 0.543696 + 0.839282i \(0.317024\pi\)
−0.543696 + 0.839282i \(0.682976\pi\)
\(752\) −4.24264 4.24264i −0.154713 0.154713i
\(753\) 7.07107 + 10.0000i 0.257684 + 0.364420i
\(754\) 7.00000 + 35.0000i 0.254925 + 1.27462i
\(755\) 1.41421i 0.0514685i
\(756\) −12.8284 7.17157i −0.466565 0.260828i
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) −8.48528 −0.308199
\(759\) 7.45584 43.4558i 0.270630 1.57735i
\(760\) 0 0
\(761\) −29.6985 29.6985i −1.07657 1.07657i −0.996815 0.0797547i \(-0.974586\pi\)
−0.0797547 0.996815i \(-0.525414\pi\)
\(762\) 4.68629 27.3137i 0.169766 0.989471i
\(763\) 48.0000 1.73772
\(764\) 8.48528 0.306987
\(765\) −1.82843 3.82843i −0.0661069 0.138417i
\(766\) 16.0000i 0.578103i
\(767\) 8.48528 + 42.4264i 0.306386 + 1.53193i
\(768\) −1.00000 1.41421i −0.0360844 0.0510310i
\(769\) 11.0000 + 11.0000i 0.396670 + 0.396670i 0.877057 0.480387i \(-0.159504\pi\)
−0.480387 + 0.877057i \(0.659504\pi\)
\(770\) 16.9706i 0.611577i
\(771\) 9.89949 + 14.0000i 0.356522 + 0.504198i
\(772\) 0 0
\(773\) −7.07107 + 7.07107i −0.254329 + 0.254329i −0.822743 0.568414i \(-0.807557\pi\)
0.568414 + 0.822743i \(0.307557\pi\)
\(774\) −10.8284 + 5.17157i −0.389220 + 0.185888i
\(775\) −7.00000 + 7.00000i −0.251447 + 0.251447i
\(776\) 11.3137i 0.406138i
\(777\) −16.9706 + 12.0000i −0.608816 + 0.430498i
\(778\) −7.00000 + 7.00000i −0.250962 + 0.250962i
\(779\) 0 0
\(780\) −4.29289 + 4.53553i −0.153710 + 0.162398i
\(781\) −24.0000 −0.858788
\(782\) −4.24264 + 4.24264i −0.151717 + 0.151717i
\(783\) −14.0000 49.4975i −0.500319 1.76890i
\(784\) 1.00000i 0.0357143i
\(785\) −1.41421 + 1.41421i −0.0504754 + 0.0504754i
\(786\) 0.414214 2.41421i 0.0147745 0.0861121i
\(787\) 23.0000 23.0000i 0.819861 0.819861i −0.166226 0.986088i \(-0.553158\pi\)
0.986088 + 0.166226i \(0.0531582\pi\)
\(788\) −1.41421 1.41421i −0.0503793 0.0503793i
\(789\) −10.0000 + 7.07107i −0.356009 + 0.251737i
\(790\) 0 0
\(791\) −14.1421 14.1421i −0.502836 0.502836i
\(792\) 16.9706 + 6.00000i 0.603023 + 0.213201i
\(793\) −30.0000 20.0000i −1.06533 0.710221i
\(794\) 4.24264i 0.150566i
\(795\) 1.65685 9.65685i 0.0587626 0.342493i
\(796\) 6.00000 0.212664
\(797\) −22.6274 −0.801504 −0.400752 0.916187i \(-0.631251\pi\)
−0.400752 + 0.916187i \(0.631251\pi\)
\(798\) 0 0
\(799\) −6.00000 6.00000i −0.212265 0.212265i
\(800\) −0.707107 0.707107i −0.0250000 0.0250000i
\(801\) 27.0711 12.9289i 0.956509 0.456821i
\(802\) −14.0000 −0.494357
\(803\) 0 0
\(804\) −7.24264 1.24264i −0.255428 0.0438246i
\(805\) 12.0000i 0.422944i
\(806\) 29.6985 + 19.7990i 1.04608 + 0.697390i
\(807\) 2.00000 1.41421i 0.0704033 0.0497827i
\(808\) 11.0000 + 11.0000i 0.386979 + 0.386979i
\(809\) 2.82843i 0.0994422i 0.998763 + 0.0497211i \(0.0158332\pi\)
−0.998763 + 0.0497211i \(0.984167\pi\)
\(810\) 5.65685 7.00000i 0.198762 0.245955i
\(811\) 4.00000 + 4.00000i 0.140459 + 0.140459i 0.773840 0.633381i \(-0.218333\pi\)
−0.633381 + 0.773840i \(0.718333\pi\)
\(812\) −19.7990 + 19.7990i −0.694808 + 0.694808i
\(813\) 36.2132 + 6.21320i 1.27005 + 0.217907i
\(814\) 18.0000 18.0000i 0.630900 0.630900i
\(815\) 21.2132i 0.743066i
\(816\) −1.41421 2.00000i −0.0495074 0.0700140i
\(817\) 0 0
\(818\) −1.41421 −0.0494468
\(819\) −4.34315 + 30.2843i −0.151762 + 1.05822i
\(820\) 2.00000 0.0698430
\(821\) 7.07107 7.07107i 0.246782 0.246782i −0.572867 0.819649i \(-0.694169\pi\)
0.819649 + 0.572867i \(0.194169\pi\)
\(822\) 16.0000 + 22.6274i 0.558064 + 0.789222i
\(823\) 36.0000i 1.25488i −0.778664 0.627441i \(-0.784103\pi\)
0.778664 0.627441i \(-0.215897\pi\)
\(824\) 5.65685 5.65685i 0.197066 0.197066i
\(825\) 10.2426 + 1.75736i 0.356603 + 0.0611834i
\(826\) −24.0000 + 24.0000i −0.835067 + 0.835067i
\(827\) 33.9411 + 33.9411i 1.18025 + 1.18025i 0.979680 + 0.200569i \(0.0642791\pi\)
0.200569 + 0.979680i \(0.435721\pi\)
\(828\) −12.0000 4.24264i −0.417029 0.147442i
\(829\) 22.0000i 0.764092i 0.924143 + 0.382046i \(0.124780\pi\)
−0.924143 + 0.382046i \(0.875220\pi\)
\(830\) 8.48528 + 8.48528i 0.294528 + 0.294528i
\(831\) 5.65685 4.00000i 0.196234 0.138758i
\(832\) −2.00000 + 3.00000i −0.0693375 + 0.104006i
\(833\) 1.41421i 0.0489996i
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) −44.8995 25.1005i −1.55195 0.867600i
\(838\) 7.00000 + 7.00000i 0.241811 + 0.241811i
\(839\) −25.4558 25.4558i −0.878833 0.878833i 0.114581 0.993414i \(-0.463448\pi\)
−0.993414 + 0.114581i \(0.963448\pi\)
\(840\) −4.82843 0.828427i −0.166597 0.0285835i
\(841\) −69.0000 −2.37931
\(842\) −25.4558 −0.877266
\(843\) −2.92893 + 17.0711i −0.100878 + 0.587959i
\(844\) 20.0000i 0.688428i
\(845\) 12.0208 + 4.94975i 0.413529 + 0.170276i
\(846\) 6.00000 16.9706i 0.206284 0.583460i
\(847\) 50.0000 + 50.0000i 1.71802 + 1.71802i
\(848\) 5.65685i 0.194257i
\(849\) 36.7696 26.0000i 1.26193 0.892318i
\(850\) −1.00000 1.00000i −0.0342997 0.0342997i
\(851\) −12.7279 + 12.7279i −0.436308 + 0.436308i
\(852\) −1.17157 + 6.82843i −0.0401374 + 0.233938i
\(853\) −15.0000 + 15.0000i −0.513590 + 0.513590i −0.915625 0.402034i \(-0.868303\pi\)
0.402034 + 0.915625i \(0.368303\pi\)
\(854\) 28.2843i 0.967868i
\(855\) 0 0
\(856\) −8.00000 + 8.00000i −0.273434 + 0.273434i
\(857\) 41.0122 1.40095 0.700475 0.713677i \(-0.252972\pi\)
0.700475 + 0.713677i \(0.252972\pi\)
\(858\) −1.02944 37.4558i −0.0351444 1.27872i
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) −2.82843 + 2.82843i −0.0964486 + 0.0964486i
\(861\) 8.00000 5.65685i 0.272639 0.192785i
\(862\) 36.0000i 1.22616i
\(863\) −39.5980 + 39.5980i −1.34793 + 1.34793i −0.460025 + 0.887906i \(0.652160\pi\)
−0.887906 + 0.460025i \(0.847840\pi\)
\(864\) 2.53553 4.53553i 0.0862606 0.154302i
\(865\) 10.0000 10.0000i 0.340010 0.340010i
\(866\) 7.07107 + 7.07107i 0.240285 + 0.240285i
\(867\) 15.0000 + 21.2132i 0.509427 + 0.720438i
\(868\) 28.0000i 0.950382i
\(869\) 0 0
\(870\) −9.89949 14.0000i −0.335624 0.474644i
\(871\) 3.00000 + 15.0000i 0.101651 + 0.508256i
\(872\) 16.9706i 0.574696i
\(873\) −30.6274 + 14.6274i −1.03658 + 0.495063i
\(874\) 0 0
\(875\) −2.82843 −0.0956183
\(876\) 0 0
\(877\) 11.0000 + 11.0000i 0.371444 + 0.371444i 0.868003 0.496559i \(-0.165403\pi\)
−0.496559 + 0.868003i \(0.665403\pi\)
\(878\) 26.8701 + 26.8701i 0.906821 + 0.906821i
\(879\) −0.585786 + 3.41421i −0.0197581 + 0.115159i
\(880\) 6.00000 0.202260
\(881\) 5.65685 0.190584 0.0952921 0.995449i \(-0.469621\pi\)
0.0952921 + 0.995449i \(0.469621\pi\)
\(882\) −2.70711 + 1.29289i −0.0911530 + 0.0435340i
\(883\) 4.00000i 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) −2.82843 + 4.24264i −0.0951303 + 0.142695i
\(885\) −12.0000 16.9706i −0.403376 0.570459i
\(886\) 14.0000 + 14.0000i 0.470339 + 0.470339i
\(887\) 32.5269i 1.09215i −0.837737 0.546073i \(-0.816122\pi\)
0.837737 0.546073i \(-0.183878\pi\)
\(888\) −4.24264 6.00000i −0.142374 0.201347i
\(889\) −32.0000 32.0000i −1.07325 1.07325i
\(890\) 7.07107 7.07107i 0.237023 0.237023i
\(891\) 5.69848 + 53.6985i 0.190906 + 1.79897i
\(892\) 4.00000 4.00000i 0.133930 0.133930i
\(893\) 0 0
\(894\) 8.48528 6.00000i 0.283790 0.200670i
\(895\) 9.00000 9.00000i 0.300837 0.300837i
\(896\) −2.82843 −0.0944911
\(897\) 0.727922 + 26.4853i 0.0243046 + 0.884318i
\(898\) −2.00000 −0.0667409
\(899\) −69.2965 + 69.2965i −2.31117 + 2.31117i
\(900\) 1.00000 2.82843i 0.0333333 0.0942809i
\(901\) 8.00000i 0.266519i
\(902\) −8.48528 + 8.48528i −0.282529 + 0.282529i
\(903\) −3.31371 + 19.3137i −0.110273 + 0.642720i
\(904\) 5.00000 5.00000i 0.166298 0.166298i
\(905\) −15.5563 15.5563i −0.517111 0.517111i
\(906\) −2.00000 + 1.41421i −0.0664455 + 0.0469841i
\(907\) 14.0000i 0.464862i −0.972613 0.232431i \(-0.925332\pi\)
0.972613 0.232431i \(-0.0746680\pi\)
\(908\) 0 0
\(909\) −15.5563 + 44.0000i −0.515972 + 1.45939i
\(910\) 2.00000 + 10.0000i 0.0662994 + 0.331497i
\(911\) 5.65685i 0.187420i −0.995600 0.0937100i \(-0.970127\pi\)
0.995600 0.0937100i \(-0.0298726\pi\)
\(912\) 0 0
\(913\) −72.0000 −2.38285
\(914\) 0 0
\(915\) 17.0711 + 2.92893i 0.564352 + 0.0968275i
\(916\) −8.00000 8.00000i −0.264327 0.264327i
\(917\) −2.82843 2.82843i −0.0934029 0.0934029i
\(918\) 3.58579 6.41421i 0.118349 0.211701i
\(919\) −22.0000 −0.725713 −0.362857 0.931845i \(-0.618198\pi\)
−0.362857 + 0.931845i \(0.618198\pi\)
\(920\) −4.24264 −0.139876
\(921\) −2.41421 0.414214i −0.0795510 0.0136488i
\(922\) 40.0000i 1.31733i
\(923\) 14.1421 2.82843i 0.465494 0.0930988i
\(924\) 24.0000 16.9706i 0.789542 0.558291i
\(925\) −3.00000 3.00000i −0.0986394 0.0986394i
\(926\) 22.6274i 0.743583i
\(927\) 22.6274 + 8.00000i 0.743182 + 0.262754i
\(928\) −7.00000 7.00000i −0.229786 0.229786i
\(929\) −18.3848 + 18.3848i −0.603185 + 0.603185i −0.941156 0.337971i \(-0.890259\pi\)
0.337971 + 0.941156i \(0.390259\pi\)
\(930\) −16.8995 2.89949i −0.554156 0.0950782i
\(931\) 0 0
\(932\) 4.24264i 0.138972i
\(933\) −14.1421 20.0000i −0.462993 0.654771i
\(934\) 6.00000 6.00000i 0.196326 0.196326i
\(935\) 8.48528 0.277498
\(936\) −10.7071 1.53553i −0.349973 0.0501905i
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) −8.48528 + 8.48528i −0.277054 + 0.277054i
\(939\) 34.0000 + 48.0833i 1.10955 + 1.56914i
\(940\) 6.00000i 0.195698i
\(941\) 8.48528 8.48528i 0.276612 0.276612i −0.555143 0.831755i \(-0.687336\pi\)
0.831755 + 0.555143i \(0.187336\pi\)
\(942\) −3.41421 0.585786i −0.111241 0.0190860i
\(943\) 6.00000 6.00000i 0.195387 0.195387i
\(944\) −8.48528 8.48528i −0.276172 0.276172i
\(945\) −4.00000 14.1421i −0.130120 0.460044i
\(946\) 24.0000i 0.780307i
\(947\) −2.82843 2.82843i −0.0919115 0.0919115i 0.659656 0.751568i \(-0.270702\pi\)
−0.751568 + 0.659656i \(0.770702\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 30.7279 + 5.27208i 0.996421 + 0.170959i
\(952\) −4.00000 −0.129641
\(953\) 55.1543 1.78662 0.893312 0.449437i \(-0.148375\pi\)
0.893312 + 0.449437i \(0.148375\pi\)
\(954\) 15.3137 7.31371i 0.495800 0.236790i
\(955\) 6.00000 + 6.00000i 0.194155 + 0.194155i
\(956\) 11.3137 + 11.3137i 0.365911 + 0.365911i
\(957\) 101.397 + 17.3970i 3.27770 + 0.562364i
\(958\) 36.0000 1.16311
\(959\) 45.2548 1.46135
\(960\) 0.292893 1.70711i 0.00945309 0.0550966i
\(961\) 67.0000i 2.16129i
\(962\) −8.48528 + 12.7279i −0.273576 + 0.410365i
\(963\) −32.0000 11.3137i −1.03119 0.364579i
\(964\) −15.0000 15.0000i −0.483117 0.483117i
\(965\) 0 0
\(966\) −16.9706 + 12.0000i −0.546019 + 0.386094i
\(967\) 22.0000 + 22.0000i 0.707472 + 0.707472i 0.966003 0.258531i \(-0.0832383\pi\)
−0.258531 + 0.966003i \(0.583238\pi\)
\(968\) −17.6777 + 17.6777i −0.568182 + 0.568182i
\(969\) 0 0
\(970\) −8.00000 + 8.00000i −0.256865 + 0.256865i
\(971\) 55.1543i 1.76999i −0.465604 0.884993i \(-0.654163\pi\)
0.465604 0.884993i \(-0.345837\pi\)
\(972\) 15.5563 + 1.00000i 0.498970 + 0.0320750i
\(973\) 0 0
\(974\) 19.7990 0.634401
\(975\) −6.24264 + 0.171573i −0.199925 + 0.00549473i
\(976\) 10.0000 0.320092
\(977\) 16.9706 16.9706i 0.542936 0.542936i −0.381452 0.924389i \(-0.624576\pi\)
0.924389 + 0.381452i \(0.124576\pi\)
\(978\) 30.0000 21.2132i 0.959294 0.678323i
\(979\) 60.0000i 1.91761i
\(980\) −0.707107 + 0.707107i −0.0225877 + 0.0225877i
\(981\) −45.9411 + 21.9411i −1.46679 + 0.700526i
\(982\) 11.0000 11.0000i 0.351024 0.351024i
\(983\) −21.2132 21.2132i −0.676596 0.676596i 0.282632 0.959228i \(-0.408792\pi\)
−0.959228 + 0.282632i \(0.908792\pi\)
\(984\) 2.00000 + 2.82843i 0.0637577 + 0.0901670i
\(985\) 2.00000i 0.0637253i
\(986\) −9.89949 9.89949i −0.315264 0.315264i
\(987\) −16.9706 24.0000i −0.540179 0.763928i
\(988\) 0 0
\(989\) 16.9706i 0.539633i
\(990\) 7.75736 + 16.2426i 0.246545 + 0.516225i
\(991\) −18.0000 −0.571789 −0.285894 0.958261i \(-0.592291\pi\)
−0.285894 + 0.958261i \(0.592291\pi\)
\(992\) −9.89949 −0.314309
\(993\) −2.48528 + 14.4853i −0.0788680 + 0.459677i
\(994\) 8.00000 + 8.00000i 0.253745 + 0.253745i
\(995\) 4.24264 + 4.24264i 0.134501 + 0.134501i
\(996\) −3.51472 + 20.4853i −0.111368 + 0.649101i
\(997\) 42.0000 1.33015 0.665077 0.746775i \(-0.268399\pi\)
0.665077 + 0.746775i \(0.268399\pi\)
\(998\) −33.9411 −1.07439
\(999\) 10.7574 19.2426i 0.340348 0.608810i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.p.c.281.1 yes 4
3.2 odd 2 inner 390.2.p.c.281.2 yes 4
13.5 odd 4 inner 390.2.p.c.161.2 yes 4
39.5 even 4 inner 390.2.p.c.161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.p.c.161.1 4 39.5 even 4 inner
390.2.p.c.161.2 yes 4 13.5 odd 4 inner
390.2.p.c.281.1 yes 4 1.1 even 1 trivial
390.2.p.c.281.2 yes 4 3.2 odd 2 inner