Properties

Label 390.2.p.c.161.2
Level $390$
Weight $2$
Character 390.161
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(161,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.2
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.161
Dual form 390.2.p.c.281.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(-1.00000 - 1.41421i) q^{3} +1.00000i q^{4} +(-0.707107 - 0.707107i) q^{5} +(0.292893 - 1.70711i) q^{6} +(2.00000 + 2.00000i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-1.00000 + 2.82843i) q^{9} -1.00000i q^{10} +(4.24264 - 4.24264i) q^{11} +(1.41421 - 1.00000i) q^{12} +(3.00000 - 2.00000i) q^{13} +2.82843i q^{14} +(-0.292893 + 1.70711i) q^{15} -1.00000 q^{16} +1.41421 q^{17} +(-2.70711 + 1.29289i) q^{18} +(0.707107 - 0.707107i) q^{20} +(0.828427 - 4.82843i) q^{21} +6.00000 q^{22} +4.24264 q^{23} +(1.70711 + 0.292893i) q^{24} +1.00000i q^{25} +(3.53553 + 0.707107i) q^{26} +(5.00000 - 1.41421i) q^{27} +(-2.00000 + 2.00000i) q^{28} -9.89949i q^{29} +(-1.41421 + 1.00000i) q^{30} +(-7.00000 + 7.00000i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-10.2426 - 1.75736i) q^{33} +(1.00000 + 1.00000i) q^{34} -2.82843i q^{35} +(-2.82843 - 1.00000i) q^{36} +(3.00000 + 3.00000i) q^{37} +(-5.82843 - 2.24264i) q^{39} +1.00000 q^{40} +(1.41421 + 1.41421i) q^{41} +(4.00000 - 2.82843i) q^{42} +4.00000i q^{43} +(4.24264 + 4.24264i) q^{44} +(2.70711 - 1.29289i) q^{45} +(3.00000 + 3.00000i) q^{46} +(-4.24264 + 4.24264i) q^{47} +(1.00000 + 1.41421i) q^{48} +1.00000i q^{49} +(-0.707107 + 0.707107i) q^{50} +(-1.41421 - 2.00000i) q^{51} +(2.00000 + 3.00000i) q^{52} +5.65685i q^{53} +(4.53553 + 2.53553i) q^{54} -6.00000 q^{55} -2.82843 q^{56} +(7.00000 - 7.00000i) q^{58} +(-8.48528 + 8.48528i) q^{59} +(-1.70711 - 0.292893i) q^{60} -10.0000 q^{61} -9.89949 q^{62} +(-7.65685 + 3.65685i) q^{63} -1.00000i q^{64} +(-3.53553 - 0.707107i) q^{65} +(-6.00000 - 8.48528i) q^{66} +(3.00000 - 3.00000i) q^{67} +1.41421i q^{68} +(-4.24264 - 6.00000i) q^{69} +(2.00000 - 2.00000i) q^{70} +(-2.82843 - 2.82843i) q^{71} +(-1.29289 - 2.70711i) q^{72} +4.24264i q^{74} +(1.41421 - 1.00000i) q^{75} +16.9706 q^{77} +(-2.53553 - 5.70711i) q^{78} +(0.707107 + 0.707107i) q^{80} +(-7.00000 - 5.65685i) q^{81} +2.00000i q^{82} +(-8.48528 - 8.48528i) q^{83} +(4.82843 + 0.828427i) q^{84} +(-1.00000 - 1.00000i) q^{85} +(-2.82843 + 2.82843i) q^{86} +(-14.0000 + 9.89949i) q^{87} +6.00000i q^{88} +(7.07107 - 7.07107i) q^{89} +(2.82843 + 1.00000i) q^{90} +(10.0000 + 2.00000i) q^{91} +4.24264i q^{92} +(16.8995 + 2.89949i) q^{93} -6.00000 q^{94} +(-0.292893 + 1.70711i) q^{96} +(8.00000 - 8.00000i) q^{97} +(-0.707107 + 0.707107i) q^{98} +(7.75736 + 16.2426i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{6} + 8 q^{7} - 4 q^{9} + 12 q^{13} - 4 q^{15} - 4 q^{16} - 8 q^{18} - 8 q^{21} + 24 q^{22} + 4 q^{24} + 20 q^{27} - 8 q^{28} - 28 q^{31} - 24 q^{33} + 4 q^{34} + 12 q^{37} - 12 q^{39}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) −1.00000 1.41421i −0.577350 0.816497i
\(4\) 1.00000i 0.500000i
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) 0.292893 1.70711i 0.119573 0.696923i
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) 1.00000i 0.316228i
\(11\) 4.24264 4.24264i 1.27920 1.27920i 0.338091 0.941113i \(-0.390219\pi\)
0.941113 0.338091i \(-0.109781\pi\)
\(12\) 1.41421 1.00000i 0.408248 0.288675i
\(13\) 3.00000 2.00000i 0.832050 0.554700i
\(14\) 2.82843i 0.755929i
\(15\) −0.292893 + 1.70711i −0.0756247 + 0.440773i
\(16\) −1.00000 −0.250000
\(17\) 1.41421 0.342997 0.171499 0.985184i \(-0.445139\pi\)
0.171499 + 0.985184i \(0.445139\pi\)
\(18\) −2.70711 + 1.29289i −0.638071 + 0.304738i
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0.707107 0.707107i 0.158114 0.158114i
\(21\) 0.828427 4.82843i 0.180778 1.05365i
\(22\) 6.00000 1.27920
\(23\) 4.24264 0.884652 0.442326 0.896854i \(-0.354153\pi\)
0.442326 + 0.896854i \(0.354153\pi\)
\(24\) 1.70711 + 0.292893i 0.348462 + 0.0597866i
\(25\) 1.00000i 0.200000i
\(26\) 3.53553 + 0.707107i 0.693375 + 0.138675i
\(27\) 5.00000 1.41421i 0.962250 0.272166i
\(28\) −2.00000 + 2.00000i −0.377964 + 0.377964i
\(29\) 9.89949i 1.83829i −0.393919 0.919145i \(-0.628881\pi\)
0.393919 0.919145i \(-0.371119\pi\)
\(30\) −1.41421 + 1.00000i −0.258199 + 0.182574i
\(31\) −7.00000 + 7.00000i −1.25724 + 1.25724i −0.304830 + 0.952407i \(0.598600\pi\)
−0.952407 + 0.304830i \(0.901400\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) −10.2426 1.75736i −1.78301 0.305917i
\(34\) 1.00000 + 1.00000i 0.171499 + 0.171499i
\(35\) 2.82843i 0.478091i
\(36\) −2.82843 1.00000i −0.471405 0.166667i
\(37\) 3.00000 + 3.00000i 0.493197 + 0.493197i 0.909312 0.416115i \(-0.136609\pi\)
−0.416115 + 0.909312i \(0.636609\pi\)
\(38\) 0 0
\(39\) −5.82843 2.24264i −0.933295 0.359110i
\(40\) 1.00000 0.158114
\(41\) 1.41421 + 1.41421i 0.220863 + 0.220863i 0.808862 0.587999i \(-0.200084\pi\)
−0.587999 + 0.808862i \(0.700084\pi\)
\(42\) 4.00000 2.82843i 0.617213 0.436436i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 4.24264 + 4.24264i 0.639602 + 0.639602i
\(45\) 2.70711 1.29289i 0.403552 0.192733i
\(46\) 3.00000 + 3.00000i 0.442326 + 0.442326i
\(47\) −4.24264 + 4.24264i −0.618853 + 0.618853i −0.945237 0.326384i \(-0.894170\pi\)
0.326384 + 0.945237i \(0.394170\pi\)
\(48\) 1.00000 + 1.41421i 0.144338 + 0.204124i
\(49\) 1.00000i 0.142857i
\(50\) −0.707107 + 0.707107i −0.100000 + 0.100000i
\(51\) −1.41421 2.00000i −0.198030 0.280056i
\(52\) 2.00000 + 3.00000i 0.277350 + 0.416025i
\(53\) 5.65685i 0.777029i 0.921443 + 0.388514i \(0.127012\pi\)
−0.921443 + 0.388514i \(0.872988\pi\)
\(54\) 4.53553 + 2.53553i 0.617208 + 0.345042i
\(55\) −6.00000 −0.809040
\(56\) −2.82843 −0.377964
\(57\) 0 0
\(58\) 7.00000 7.00000i 0.919145 0.919145i
\(59\) −8.48528 + 8.48528i −1.10469 + 1.10469i −0.110853 + 0.993837i \(0.535358\pi\)
−0.993837 + 0.110853i \(0.964642\pi\)
\(60\) −1.70711 0.292893i −0.220387 0.0378124i
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) −9.89949 −1.25724
\(63\) −7.65685 + 3.65685i −0.964673 + 0.460720i
\(64\) 1.00000i 0.125000i
\(65\) −3.53553 0.707107i −0.438529 0.0877058i
\(66\) −6.00000 8.48528i −0.738549 1.04447i
\(67\) 3.00000 3.00000i 0.366508 0.366508i −0.499694 0.866202i \(-0.666554\pi\)
0.866202 + 0.499694i \(0.166554\pi\)
\(68\) 1.41421i 0.171499i
\(69\) −4.24264 6.00000i −0.510754 0.722315i
\(70\) 2.00000 2.00000i 0.239046 0.239046i
\(71\) −2.82843 2.82843i −0.335673 0.335673i 0.519063 0.854736i \(-0.326281\pi\)
−0.854736 + 0.519063i \(0.826281\pi\)
\(72\) −1.29289 2.70711i −0.152369 0.319036i
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 4.24264i 0.493197i
\(75\) 1.41421 1.00000i 0.163299 0.115470i
\(76\) 0 0
\(77\) 16.9706 1.93398
\(78\) −2.53553 5.70711i −0.287093 0.646203i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0.707107 + 0.707107i 0.0790569 + 0.0790569i
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 2.00000i 0.220863i
\(83\) −8.48528 8.48528i −0.931381 0.931381i 0.0664117 0.997792i \(-0.478845\pi\)
−0.997792 + 0.0664117i \(0.978845\pi\)
\(84\) 4.82843 + 0.828427i 0.526825 + 0.0903888i
\(85\) −1.00000 1.00000i −0.108465 0.108465i
\(86\) −2.82843 + 2.82843i −0.304997 + 0.304997i
\(87\) −14.0000 + 9.89949i −1.50096 + 1.06134i
\(88\) 6.00000i 0.639602i
\(89\) 7.07107 7.07107i 0.749532 0.749532i −0.224860 0.974391i \(-0.572192\pi\)
0.974391 + 0.224860i \(0.0721923\pi\)
\(90\) 2.82843 + 1.00000i 0.298142 + 0.105409i
\(91\) 10.0000 + 2.00000i 1.04828 + 0.209657i
\(92\) 4.24264i 0.442326i
\(93\) 16.8995 + 2.89949i 1.75240 + 0.300664i
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) −0.292893 + 1.70711i −0.0298933 + 0.174231i
\(97\) 8.00000 8.00000i 0.812277 0.812277i −0.172698 0.984975i \(-0.555248\pi\)
0.984975 + 0.172698i \(0.0552484\pi\)
\(98\) −0.707107 + 0.707107i −0.0714286 + 0.0714286i
\(99\) 7.75736 + 16.2426i 0.779644 + 1.63245i
\(100\) −1.00000 −0.100000
\(101\) −15.5563 −1.54791 −0.773957 0.633238i \(-0.781726\pi\)
−0.773957 + 0.633238i \(0.781726\pi\)
\(102\) 0.414214 2.41421i 0.0410133 0.239043i
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) −0.707107 + 3.53553i −0.0693375 + 0.346688i
\(105\) −4.00000 + 2.82843i −0.390360 + 0.276026i
\(106\) −4.00000 + 4.00000i −0.388514 + 0.388514i
\(107\) 11.3137i 1.09374i 0.837218 + 0.546869i \(0.184180\pi\)
−0.837218 + 0.546869i \(0.815820\pi\)
\(108\) 1.41421 + 5.00000i 0.136083 + 0.481125i
\(109\) 12.0000 12.0000i 1.14939 1.14939i 0.162719 0.986672i \(-0.447974\pi\)
0.986672 0.162719i \(-0.0520264\pi\)
\(110\) −4.24264 4.24264i −0.404520 0.404520i
\(111\) 1.24264 7.24264i 0.117946 0.687441i
\(112\) −2.00000 2.00000i −0.188982 0.188982i
\(113\) 7.07107i 0.665190i −0.943070 0.332595i \(-0.892076\pi\)
0.943070 0.332595i \(-0.107924\pi\)
\(114\) 0 0
\(115\) −3.00000 3.00000i −0.279751 0.279751i
\(116\) 9.89949 0.919145
\(117\) 2.65685 + 10.4853i 0.245626 + 0.969365i
\(118\) −12.0000 −1.10469
\(119\) 2.82843 + 2.82843i 0.259281 + 0.259281i
\(120\) −1.00000 1.41421i −0.0912871 0.129099i
\(121\) 25.0000i 2.27273i
\(122\) −7.07107 7.07107i −0.640184 0.640184i
\(123\) 0.585786 3.41421i 0.0528186 0.307849i
\(124\) −7.00000 7.00000i −0.628619 0.628619i
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) −8.00000 2.82843i −0.712697 0.251976i
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 5.65685 4.00000i 0.498058 0.352180i
\(130\) −2.00000 3.00000i −0.175412 0.263117i
\(131\) 1.41421i 0.123560i −0.998090 0.0617802i \(-0.980322\pi\)
0.998090 0.0617802i \(-0.0196778\pi\)
\(132\) 1.75736 10.2426i 0.152958 0.891507i
\(133\) 0 0
\(134\) 4.24264 0.366508
\(135\) −4.53553 2.53553i −0.390357 0.218224i
\(136\) −1.00000 + 1.00000i −0.0857493 + 0.0857493i
\(137\) −11.3137 + 11.3137i −0.966595 + 0.966595i −0.999460 0.0328645i \(-0.989537\pi\)
0.0328645 + 0.999460i \(0.489537\pi\)
\(138\) 1.24264 7.24264i 0.105781 0.616535i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 2.82843 0.239046
\(141\) 10.2426 + 1.75736i 0.862586 + 0.147996i
\(142\) 4.00000i 0.335673i
\(143\) 4.24264 21.2132i 0.354787 1.77394i
\(144\) 1.00000 2.82843i 0.0833333 0.235702i
\(145\) −7.00000 + 7.00000i −0.581318 + 0.581318i
\(146\) 0 0
\(147\) 1.41421 1.00000i 0.116642 0.0824786i
\(148\) −3.00000 + 3.00000i −0.246598 + 0.246598i
\(149\) −4.24264 4.24264i −0.347571 0.347571i 0.511633 0.859204i \(-0.329041\pi\)
−0.859204 + 0.511633i \(0.829041\pi\)
\(150\) 1.70711 + 0.292893i 0.139385 + 0.0239146i
\(151\) −1.00000 1.00000i −0.0813788 0.0813788i 0.665246 0.746625i \(-0.268327\pi\)
−0.746625 + 0.665246i \(0.768327\pi\)
\(152\) 0 0
\(153\) −1.41421 + 4.00000i −0.114332 + 0.323381i
\(154\) 12.0000 + 12.0000i 0.966988 + 0.966988i
\(155\) 9.89949 0.795147
\(156\) 2.24264 5.82843i 0.179555 0.466648i
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 8.00000 5.65685i 0.634441 0.448618i
\(160\) 1.00000i 0.0790569i
\(161\) 8.48528 + 8.48528i 0.668734 + 0.668734i
\(162\) −0.949747 8.94975i −0.0746192 0.703159i
\(163\) 15.0000 + 15.0000i 1.17489 + 1.17489i 0.981029 + 0.193862i \(0.0621013\pi\)
0.193862 + 0.981029i \(0.437899\pi\)
\(164\) −1.41421 + 1.41421i −0.110432 + 0.110432i
\(165\) 6.00000 + 8.48528i 0.467099 + 0.660578i
\(166\) 12.0000i 0.931381i
\(167\) −5.65685 + 5.65685i −0.437741 + 0.437741i −0.891251 0.453510i \(-0.850171\pi\)
0.453510 + 0.891251i \(0.350171\pi\)
\(168\) 2.82843 + 4.00000i 0.218218 + 0.308607i
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 1.41421i 0.108465i
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −14.1421 −1.07521 −0.537603 0.843198i \(-0.680670\pi\)
−0.537603 + 0.843198i \(0.680670\pi\)
\(174\) −16.8995 2.89949i −1.28115 0.219810i
\(175\) −2.00000 + 2.00000i −0.151186 + 0.151186i
\(176\) −4.24264 + 4.24264i −0.319801 + 0.319801i
\(177\) 20.4853 + 3.51472i 1.53977 + 0.264182i
\(178\) 10.0000 0.749532
\(179\) −12.7279 −0.951330 −0.475665 0.879627i \(-0.657792\pi\)
−0.475665 + 0.879627i \(0.657792\pi\)
\(180\) 1.29289 + 2.70711i 0.0963666 + 0.201776i
\(181\) 22.0000i 1.63525i 0.575753 + 0.817624i \(0.304709\pi\)
−0.575753 + 0.817624i \(0.695291\pi\)
\(182\) 5.65685 + 8.48528i 0.419314 + 0.628971i
\(183\) 10.0000 + 14.1421i 0.739221 + 1.04542i
\(184\) −3.00000 + 3.00000i −0.221163 + 0.221163i
\(185\) 4.24264i 0.311925i
\(186\) 9.89949 + 14.0000i 0.725866 + 1.02653i
\(187\) 6.00000 6.00000i 0.438763 0.438763i
\(188\) −4.24264 4.24264i −0.309426 0.309426i
\(189\) 12.8284 + 7.17157i 0.933131 + 0.521655i
\(190\) 0 0
\(191\) 8.48528i 0.613973i 0.951714 + 0.306987i \(0.0993207\pi\)
−0.951714 + 0.306987i \(0.900679\pi\)
\(192\) −1.41421 + 1.00000i −0.102062 + 0.0721688i
\(193\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 11.3137 0.812277
\(195\) 2.53553 + 5.70711i 0.181573 + 0.408694i
\(196\) −1.00000 −0.0714286
\(197\) −1.41421 1.41421i −0.100759 0.100759i 0.654931 0.755689i \(-0.272698\pi\)
−0.755689 + 0.654931i \(0.772698\pi\)
\(198\) −6.00000 + 16.9706i −0.426401 + 1.20605i
\(199\) 6.00000i 0.425329i −0.977125 0.212664i \(-0.931786\pi\)
0.977125 0.212664i \(-0.0682141\pi\)
\(200\) −0.707107 0.707107i −0.0500000 0.0500000i
\(201\) −7.24264 1.24264i −0.510856 0.0876491i
\(202\) −11.0000 11.0000i −0.773957 0.773957i
\(203\) 19.7990 19.7990i 1.38962 1.38962i
\(204\) 2.00000 1.41421i 0.140028 0.0990148i
\(205\) 2.00000i 0.139686i
\(206\) −5.65685 + 5.65685i −0.394132 + 0.394132i
\(207\) −4.24264 + 12.0000i −0.294884 + 0.834058i
\(208\) −3.00000 + 2.00000i −0.208013 + 0.138675i
\(209\) 0 0
\(210\) −4.82843 0.828427i −0.333193 0.0571669i
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) −5.65685 −0.388514
\(213\) −1.17157 + 6.82843i −0.0802749 + 0.467876i
\(214\) −8.00000 + 8.00000i −0.546869 + 0.546869i
\(215\) 2.82843 2.82843i 0.192897 0.192897i
\(216\) −2.53553 + 4.53553i −0.172521 + 0.308604i
\(217\) −28.0000 −1.90076
\(218\) 16.9706 1.14939
\(219\) 0 0
\(220\) 6.00000i 0.404520i
\(221\) 4.24264 2.82843i 0.285391 0.190261i
\(222\) 6.00000 4.24264i 0.402694 0.284747i
\(223\) 4.00000 4.00000i 0.267860 0.267860i −0.560378 0.828237i \(-0.689344\pi\)
0.828237 + 0.560378i \(0.189344\pi\)
\(224\) 2.82843i 0.188982i
\(225\) −2.82843 1.00000i −0.188562 0.0666667i
\(226\) 5.00000 5.00000i 0.332595 0.332595i
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 8.00000 + 8.00000i 0.528655 + 0.528655i 0.920171 0.391516i \(-0.128049\pi\)
−0.391516 + 0.920171i \(0.628049\pi\)
\(230\) 4.24264i 0.279751i
\(231\) −16.9706 24.0000i −1.11658 1.57908i
\(232\) 7.00000 + 7.00000i 0.459573 + 0.459573i
\(233\) 4.24264 0.277945 0.138972 0.990296i \(-0.455620\pi\)
0.138972 + 0.990296i \(0.455620\pi\)
\(234\) −5.53553 + 9.29289i −0.361869 + 0.607495i
\(235\) 6.00000 0.391397
\(236\) −8.48528 8.48528i −0.552345 0.552345i
\(237\) 0 0
\(238\) 4.00000i 0.259281i
\(239\) 11.3137 + 11.3137i 0.731823 + 0.731823i 0.970981 0.239158i \(-0.0768713\pi\)
−0.239158 + 0.970981i \(0.576871\pi\)
\(240\) 0.292893 1.70711i 0.0189062 0.110193i
\(241\) 15.0000 + 15.0000i 0.966235 + 0.966235i 0.999448 0.0332133i \(-0.0105741\pi\)
−0.0332133 + 0.999448i \(0.510574\pi\)
\(242\) 17.6777 17.6777i 1.13636 1.13636i
\(243\) −1.00000 + 15.5563i −0.0641500 + 0.997940i
\(244\) 10.0000i 0.640184i
\(245\) 0.707107 0.707107i 0.0451754 0.0451754i
\(246\) 2.82843 2.00000i 0.180334 0.127515i
\(247\) 0 0
\(248\) 9.89949i 0.628619i
\(249\) −3.51472 + 20.4853i −0.222736 + 1.29820i
\(250\) 1.00000 0.0632456
\(251\) 7.07107 0.446322 0.223161 0.974782i \(-0.428362\pi\)
0.223161 + 0.974782i \(0.428362\pi\)
\(252\) −3.65685 7.65685i −0.230360 0.482336i
\(253\) 18.0000 18.0000i 1.13165 1.13165i
\(254\) −11.3137 + 11.3137i −0.709885 + 0.709885i
\(255\) −0.414214 + 2.41421i −0.0259391 + 0.151184i
\(256\) 1.00000 0.0625000
\(257\) 9.89949 0.617514 0.308757 0.951141i \(-0.400087\pi\)
0.308757 + 0.951141i \(0.400087\pi\)
\(258\) 6.82843 + 1.17157i 0.425119 + 0.0729389i
\(259\) 12.0000i 0.745644i
\(260\) 0.707107 3.53553i 0.0438529 0.219265i
\(261\) 28.0000 + 9.89949i 1.73316 + 0.612763i
\(262\) 1.00000 1.00000i 0.0617802 0.0617802i
\(263\) 7.07107i 0.436021i −0.975946 0.218010i \(-0.930043\pi\)
0.975946 0.218010i \(-0.0699567\pi\)
\(264\) 8.48528 6.00000i 0.522233 0.369274i
\(265\) 4.00000 4.00000i 0.245718 0.245718i
\(266\) 0 0
\(267\) −17.0711 2.92893i −1.04473 0.179248i
\(268\) 3.00000 + 3.00000i 0.183254 + 0.183254i
\(269\) 1.41421i 0.0862261i 0.999070 + 0.0431131i \(0.0137276\pi\)
−0.999070 + 0.0431131i \(0.986272\pi\)
\(270\) −1.41421 5.00000i −0.0860663 0.304290i
\(271\) −15.0000 15.0000i −0.911185 0.911185i 0.0851804 0.996366i \(-0.472853\pi\)
−0.996366 + 0.0851804i \(0.972853\pi\)
\(272\) −1.41421 −0.0857493
\(273\) −7.17157 16.1421i −0.434043 0.976966i
\(274\) −16.0000 −0.966595
\(275\) 4.24264 + 4.24264i 0.255841 + 0.255841i
\(276\) 6.00000 4.24264i 0.361158 0.255377i
\(277\) 4.00000i 0.240337i −0.992754 0.120168i \(-0.961657\pi\)
0.992754 0.120168i \(-0.0383434\pi\)
\(278\) 0 0
\(279\) −12.7990 26.7990i −0.766255 1.60441i
\(280\) 2.00000 + 2.00000i 0.119523 + 0.119523i
\(281\) 7.07107 7.07107i 0.421825 0.421825i −0.464007 0.885832i \(-0.653589\pi\)
0.885832 + 0.464007i \(0.153589\pi\)
\(282\) 6.00000 + 8.48528i 0.357295 + 0.505291i
\(283\) 26.0000i 1.54554i −0.634686 0.772770i \(-0.718871\pi\)
0.634686 0.772770i \(-0.281129\pi\)
\(284\) 2.82843 2.82843i 0.167836 0.167836i
\(285\) 0 0
\(286\) 18.0000 12.0000i 1.06436 0.709575i
\(287\) 5.65685i 0.333914i
\(288\) 2.70711 1.29289i 0.159518 0.0761845i
\(289\) −15.0000 −0.882353
\(290\) −9.89949 −0.581318
\(291\) −19.3137 3.31371i −1.13219 0.194253i
\(292\) 0 0
\(293\) 1.41421 1.41421i 0.0826192 0.0826192i −0.664589 0.747209i \(-0.731394\pi\)
0.747209 + 0.664589i \(0.231394\pi\)
\(294\) 1.70711 + 0.292893i 0.0995605 + 0.0170819i
\(295\) 12.0000 0.698667
\(296\) −4.24264 −0.246598
\(297\) 15.2132 27.2132i 0.882760 1.57907i
\(298\) 6.00000i 0.347571i
\(299\) 12.7279 8.48528i 0.736075 0.490716i
\(300\) 1.00000 + 1.41421i 0.0577350 + 0.0816497i
\(301\) −8.00000 + 8.00000i −0.461112 + 0.461112i
\(302\) 1.41421i 0.0813788i
\(303\) 15.5563 + 22.0000i 0.893689 + 1.26387i
\(304\) 0 0
\(305\) 7.07107 + 7.07107i 0.404888 + 0.404888i
\(306\) −3.82843 + 1.82843i −0.218857 + 0.104524i
\(307\) 1.00000 + 1.00000i 0.0570730 + 0.0570730i 0.735067 0.677994i \(-0.237151\pi\)
−0.677994 + 0.735067i \(0.737151\pi\)
\(308\) 16.9706i 0.966988i
\(309\) 11.3137 8.00000i 0.643614 0.455104i
\(310\) 7.00000 + 7.00000i 0.397573 + 0.397573i
\(311\) −14.1421 −0.801927 −0.400963 0.916094i \(-0.631325\pi\)
−0.400963 + 0.916094i \(0.631325\pi\)
\(312\) 5.70711 2.53553i 0.323101 0.143546i
\(313\) −34.0000 −1.92179 −0.960897 0.276907i \(-0.910691\pi\)
−0.960897 + 0.276907i \(0.910691\pi\)
\(314\) −1.41421 1.41421i −0.0798087 0.0798087i
\(315\) 8.00000 + 2.82843i 0.450749 + 0.159364i
\(316\) 0 0
\(317\) 12.7279 + 12.7279i 0.714871 + 0.714871i 0.967550 0.252679i \(-0.0813116\pi\)
−0.252679 + 0.967550i \(0.581312\pi\)
\(318\) 9.65685 + 1.65685i 0.541529 + 0.0929118i
\(319\) −42.0000 42.0000i −2.35155 2.35155i
\(320\) −0.707107 + 0.707107i −0.0395285 + 0.0395285i
\(321\) 16.0000 11.3137i 0.893033 0.631470i
\(322\) 12.0000i 0.668734i
\(323\) 0 0
\(324\) 5.65685 7.00000i 0.314270 0.388889i
\(325\) 2.00000 + 3.00000i 0.110940 + 0.166410i
\(326\) 21.2132i 1.17489i
\(327\) −28.9706 4.97056i −1.60208 0.274873i
\(328\) −2.00000 −0.110432
\(329\) −16.9706 −0.935617
\(330\) −1.75736 + 10.2426i −0.0967394 + 0.563839i
\(331\) −6.00000 + 6.00000i −0.329790 + 0.329790i −0.852506 0.522717i \(-0.824919\pi\)
0.522717 + 0.852506i \(0.324919\pi\)
\(332\) 8.48528 8.48528i 0.465690 0.465690i
\(333\) −11.4853 + 5.48528i −0.629390 + 0.300592i
\(334\) −8.00000 −0.437741
\(335\) −4.24264 −0.231800
\(336\) −0.828427 + 4.82843i −0.0451944 + 0.263412i
\(337\) 18.0000i 0.980522i −0.871576 0.490261i \(-0.836901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) 12.0208 4.94975i 0.653846 0.269231i
\(339\) −10.0000 + 7.07107i −0.543125 + 0.384048i
\(340\) 1.00000 1.00000i 0.0542326 0.0542326i
\(341\) 59.3970i 3.21653i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) −2.82843 2.82843i −0.152499 0.152499i
\(345\) −1.24264 + 7.24264i −0.0669015 + 0.389931i
\(346\) −10.0000 10.0000i −0.537603 0.537603i
\(347\) 5.65685i 0.303676i −0.988405 0.151838i \(-0.951481\pi\)
0.988405 0.151838i \(-0.0485192\pi\)
\(348\) −9.89949 14.0000i −0.530669 0.750479i
\(349\) 10.0000 + 10.0000i 0.535288 + 0.535288i 0.922141 0.386853i \(-0.126438\pi\)
−0.386853 + 0.922141i \(0.626438\pi\)
\(350\) −2.82843 −0.151186
\(351\) 12.1716 14.2426i 0.649670 0.760216i
\(352\) −6.00000 −0.319801
\(353\) −22.6274 22.6274i −1.20434 1.20434i −0.972835 0.231501i \(-0.925636\pi\)
−0.231501 0.972835i \(-0.574364\pi\)
\(354\) 12.0000 + 16.9706i 0.637793 + 0.901975i
\(355\) 4.00000i 0.212298i
\(356\) 7.07107 + 7.07107i 0.374766 + 0.374766i
\(357\) 1.17157 6.82843i 0.0620062 0.361399i
\(358\) −9.00000 9.00000i −0.475665 0.475665i
\(359\) −14.1421 + 14.1421i −0.746393 + 0.746393i −0.973800 0.227407i \(-0.926975\pi\)
0.227407 + 0.973800i \(0.426975\pi\)
\(360\) −1.00000 + 2.82843i −0.0527046 + 0.149071i
\(361\) 19.0000i 1.00000i
\(362\) −15.5563 + 15.5563i −0.817624 + 0.817624i
\(363\) −35.3553 + 25.0000i −1.85567 + 1.31216i
\(364\) −2.00000 + 10.0000i −0.104828 + 0.524142i
\(365\) 0 0
\(366\) −2.92893 + 17.0711i −0.153098 + 0.892319i
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) −4.24264 −0.221163
\(369\) −5.41421 + 2.58579i −0.281853 + 0.134611i
\(370\) 3.00000 3.00000i 0.155963 0.155963i
\(371\) −11.3137 + 11.3137i −0.587378 + 0.587378i
\(372\) −2.89949 + 16.8995i −0.150332 + 0.876198i
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) 8.48528 0.438763
\(375\) −1.70711 0.292893i −0.0881546 0.0151249i
\(376\) 6.00000i 0.309426i
\(377\) −19.7990 29.6985i −1.01970 1.52955i
\(378\) 4.00000 + 14.1421i 0.205738 + 0.727393i
\(379\) 6.00000 6.00000i 0.308199 0.308199i −0.536011 0.844211i \(-0.680070\pi\)
0.844211 + 0.536011i \(0.180070\pi\)
\(380\) 0 0
\(381\) 22.6274 16.0000i 1.15924 0.819705i
\(382\) −6.00000 + 6.00000i −0.306987 + 0.306987i
\(383\) 11.3137 + 11.3137i 0.578103 + 0.578103i 0.934380 0.356277i \(-0.115954\pi\)
−0.356277 + 0.934380i \(0.615954\pi\)
\(384\) −1.70711 0.292893i −0.0871154 0.0149466i
\(385\) −12.0000 12.0000i −0.611577 0.611577i
\(386\) 0 0
\(387\) −11.3137 4.00000i −0.575108 0.203331i
\(388\) 8.00000 + 8.00000i 0.406138 + 0.406138i
\(389\) −9.89949 −0.501924 −0.250962 0.967997i \(-0.580747\pi\)
−0.250962 + 0.967997i \(0.580747\pi\)
\(390\) −2.24264 + 5.82843i −0.113561 + 0.295134i
\(391\) 6.00000 0.303433
\(392\) −0.707107 0.707107i −0.0357143 0.0357143i
\(393\) −2.00000 + 1.41421i −0.100887 + 0.0713376i
\(394\) 2.00000i 0.100759i
\(395\) 0 0
\(396\) −16.2426 + 7.75736i −0.816223 + 0.389822i
\(397\) −3.00000 3.00000i −0.150566 0.150566i 0.627805 0.778371i \(-0.283954\pi\)
−0.778371 + 0.627805i \(0.783954\pi\)
\(398\) 4.24264 4.24264i 0.212664 0.212664i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) −9.89949 + 9.89949i −0.494357 + 0.494357i −0.909676 0.415319i \(-0.863670\pi\)
0.415319 + 0.909676i \(0.363670\pi\)
\(402\) −4.24264 6.00000i −0.211604 0.299253i
\(403\) −7.00000 + 35.0000i −0.348695 + 1.74347i
\(404\) 15.5563i 0.773957i
\(405\) 0.949747 + 8.94975i 0.0471933 + 0.444717i
\(406\) 28.0000 1.38962
\(407\) 25.4558 1.26180
\(408\) 2.41421 + 0.414214i 0.119521 + 0.0205066i
\(409\) 1.00000 1.00000i 0.0494468 0.0494468i −0.681951 0.731398i \(-0.738868\pi\)
0.731398 + 0.681951i \(0.238868\pi\)
\(410\) 1.41421 1.41421i 0.0698430 0.0698430i
\(411\) 27.3137 + 4.68629i 1.34729 + 0.231158i
\(412\) −8.00000 −0.394132
\(413\) −33.9411 −1.67013
\(414\) −11.4853 + 5.48528i −0.564471 + 0.269587i
\(415\) 12.0000i 0.589057i
\(416\) −3.53553 0.707107i −0.173344 0.0346688i
\(417\) 0 0
\(418\) 0 0
\(419\) 9.89949i 0.483622i −0.970323 0.241811i \(-0.922259\pi\)
0.970323 0.241811i \(-0.0777414\pi\)
\(420\) −2.82843 4.00000i −0.138013 0.195180i
\(421\) 18.0000 18.0000i 0.877266 0.877266i −0.115985 0.993251i \(-0.537002\pi\)
0.993251 + 0.115985i \(0.0370024\pi\)
\(422\) −14.1421 14.1421i −0.688428 0.688428i
\(423\) −7.75736 16.2426i −0.377176 0.789744i
\(424\) −4.00000 4.00000i −0.194257 0.194257i
\(425\) 1.41421i 0.0685994i
\(426\) −5.65685 + 4.00000i −0.274075 + 0.193801i
\(427\) −20.0000 20.0000i −0.967868 0.967868i
\(428\) −11.3137 −0.546869
\(429\) −34.2426 + 15.2132i −1.65325 + 0.734500i
\(430\) 4.00000 0.192897
\(431\) 25.4558 + 25.4558i 1.22616 + 1.22616i 0.965403 + 0.260762i \(0.0839737\pi\)
0.260762 + 0.965403i \(0.416026\pi\)
\(432\) −5.00000 + 1.41421i −0.240563 + 0.0680414i
\(433\) 10.0000i 0.480569i 0.970702 + 0.240285i \(0.0772408\pi\)
−0.970702 + 0.240285i \(0.922759\pi\)
\(434\) −19.7990 19.7990i −0.950382 0.950382i
\(435\) 16.8995 + 2.89949i 0.810269 + 0.139020i
\(436\) 12.0000 + 12.0000i 0.574696 + 0.574696i
\(437\) 0 0
\(438\) 0 0
\(439\) 38.0000i 1.81364i 0.421517 + 0.906821i \(0.361498\pi\)
−0.421517 + 0.906821i \(0.638502\pi\)
\(440\) 4.24264 4.24264i 0.202260 0.202260i
\(441\) −2.82843 1.00000i −0.134687 0.0476190i
\(442\) 5.00000 + 1.00000i 0.237826 + 0.0475651i
\(443\) 19.7990i 0.940678i −0.882486 0.470339i \(-0.844132\pi\)
0.882486 0.470339i \(-0.155868\pi\)
\(444\) 7.24264 + 1.24264i 0.343721 + 0.0589731i
\(445\) −10.0000 −0.474045
\(446\) 5.65685 0.267860
\(447\) −1.75736 + 10.2426i −0.0831202 + 0.484460i
\(448\) 2.00000 2.00000i 0.0944911 0.0944911i
\(449\) −1.41421 + 1.41421i −0.0667409 + 0.0667409i −0.739689 0.672948i \(-0.765028\pi\)
0.672948 + 0.739689i \(0.265028\pi\)
\(450\) −1.29289 2.70711i −0.0609476 0.127614i
\(451\) 12.0000 0.565058
\(452\) 7.07107 0.332595
\(453\) −0.414214 + 2.41421i −0.0194615 + 0.113430i
\(454\) 0 0
\(455\) −5.65685 8.48528i −0.265197 0.397796i
\(456\) 0 0
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) 11.3137i 0.528655i
\(459\) 7.07107 2.00000i 0.330049 0.0933520i
\(460\) 3.00000 3.00000i 0.139876 0.139876i
\(461\) −28.2843 28.2843i −1.31733 1.31733i −0.915882 0.401448i \(-0.868507\pi\)
−0.401448 0.915882i \(-0.631493\pi\)
\(462\) 4.97056 28.9706i 0.231252 1.34783i
\(463\) −16.0000 16.0000i −0.743583 0.743583i 0.229683 0.973266i \(-0.426231\pi\)
−0.973266 + 0.229683i \(0.926231\pi\)
\(464\) 9.89949i 0.459573i
\(465\) −9.89949 14.0000i −0.459078 0.649234i
\(466\) 3.00000 + 3.00000i 0.138972 + 0.138972i
\(467\) 8.48528 0.392652 0.196326 0.980539i \(-0.437099\pi\)
0.196326 + 0.980539i \(0.437099\pi\)
\(468\) −10.4853 + 2.65685i −0.484682 + 0.122813i
\(469\) 12.0000 0.554109
\(470\) 4.24264 + 4.24264i 0.195698 + 0.195698i
\(471\) 2.00000 + 2.82843i 0.0921551 + 0.130327i
\(472\) 12.0000i 0.552345i
\(473\) 16.9706 + 16.9706i 0.780307 + 0.780307i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.82843 + 2.82843i −0.129641 + 0.129641i
\(477\) −16.0000 5.65685i −0.732590 0.259010i
\(478\) 16.0000i 0.731823i
\(479\) 25.4558 25.4558i 1.16311 1.16311i 0.179316 0.983792i \(-0.442612\pi\)
0.983792 0.179316i \(-0.0573883\pi\)
\(480\) 1.41421 1.00000i 0.0645497 0.0456435i
\(481\) 15.0000 + 3.00000i 0.683941 + 0.136788i
\(482\) 21.2132i 0.966235i
\(483\) 3.51472 20.4853i 0.159925 0.932113i
\(484\) 25.0000 1.13636
\(485\) −11.3137 −0.513729
\(486\) −11.7071 + 10.2929i −0.531045 + 0.466895i
\(487\) −14.0000 + 14.0000i −0.634401 + 0.634401i −0.949169 0.314768i \(-0.898073\pi\)
0.314768 + 0.949169i \(0.398073\pi\)
\(488\) 7.07107 7.07107i 0.320092 0.320092i
\(489\) 6.21320 36.2132i 0.280971 1.63762i
\(490\) 1.00000 0.0451754
\(491\) 15.5563 0.702048 0.351024 0.936366i \(-0.385834\pi\)
0.351024 + 0.936366i \(0.385834\pi\)
\(492\) 3.41421 + 0.585786i 0.153925 + 0.0264093i
\(493\) 14.0000i 0.630528i
\(494\) 0 0
\(495\) 6.00000 16.9706i 0.269680 0.762770i
\(496\) 7.00000 7.00000i 0.314309 0.314309i
\(497\) 11.3137i 0.507489i
\(498\) −16.9706 + 12.0000i −0.760469 + 0.537733i
\(499\) 24.0000 24.0000i 1.07439 1.07439i 0.0773864 0.997001i \(-0.475342\pi\)
0.997001 0.0773864i \(-0.0246575\pi\)
\(500\) 0.707107 + 0.707107i 0.0316228 + 0.0316228i
\(501\) 13.6569 + 2.34315i 0.610143 + 0.104684i
\(502\) 5.00000 + 5.00000i 0.223161 + 0.223161i
\(503\) 35.3553i 1.57642i 0.615409 + 0.788208i \(0.288991\pi\)
−0.615409 + 0.788208i \(0.711009\pi\)
\(504\) 2.82843 8.00000i 0.125988 0.356348i
\(505\) 11.0000 + 11.0000i 0.489494 + 0.489494i
\(506\) 25.4558 1.13165
\(507\) −21.9706 + 4.92893i −0.975747 + 0.218902i
\(508\) −16.0000 −0.709885
\(509\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(510\) −2.00000 + 1.41421i −0.0885615 + 0.0626224i
\(511\) 0 0
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 7.00000 + 7.00000i 0.308757 + 0.308757i
\(515\) 5.65685 5.65685i 0.249271 0.249271i
\(516\) 4.00000 + 5.65685i 0.176090 + 0.249029i
\(517\) 36.0000i 1.58328i
\(518\) −8.48528 + 8.48528i −0.372822 + 0.372822i
\(519\) 14.1421 + 20.0000i 0.620771 + 0.877903i
\(520\) 3.00000 2.00000i 0.131559 0.0877058i
\(521\) 11.3137i 0.495663i −0.968803 0.247831i \(-0.920282\pi\)
0.968803 0.247831i \(-0.0797179\pi\)
\(522\) 12.7990 + 26.7990i 0.560197 + 1.17296i
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) 1.41421 0.0617802
\(525\) 4.82843 + 0.828427i 0.210730 + 0.0361555i
\(526\) 5.00000 5.00000i 0.218010 0.218010i
\(527\) −9.89949 + 9.89949i −0.431229 + 0.431229i
\(528\) 10.2426 + 1.75736i 0.445754 + 0.0764792i
\(529\) −5.00000 −0.217391
\(530\) 5.65685 0.245718
\(531\) −15.5147 32.4853i −0.673281 1.40974i
\(532\) 0 0
\(533\) 7.07107 + 1.41421i 0.306282 + 0.0612564i
\(534\) −10.0000 14.1421i −0.432742 0.611990i
\(535\) 8.00000 8.00000i 0.345870 0.345870i
\(536\) 4.24264i 0.183254i
\(537\) 12.7279 + 18.0000i 0.549250 + 0.776757i
\(538\) −1.00000 + 1.00000i −0.0431131 + 0.0431131i
\(539\) 4.24264 + 4.24264i 0.182743 + 0.182743i
\(540\) 2.53553 4.53553i 0.109112 0.195178i
\(541\) 18.0000 + 18.0000i 0.773880 + 0.773880i 0.978782 0.204902i \(-0.0656876\pi\)
−0.204902 + 0.978782i \(0.565688\pi\)
\(542\) 21.2132i 0.911185i
\(543\) 31.1127 22.0000i 1.33517 0.944110i
\(544\) −1.00000 1.00000i −0.0428746 0.0428746i
\(545\) −16.9706 −0.726939
\(546\) 6.34315 16.4853i 0.271462 0.705505i
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) −11.3137 11.3137i −0.483298 0.483298i
\(549\) 10.0000 28.2843i 0.426790 1.20714i
\(550\) 6.00000i 0.255841i
\(551\) 0 0
\(552\) 7.24264 + 1.24264i 0.308267 + 0.0528903i
\(553\) 0 0
\(554\) 2.82843 2.82843i 0.120168 0.120168i
\(555\) −6.00000 + 4.24264i −0.254686 + 0.180090i
\(556\) 0 0
\(557\) 1.41421 1.41421i 0.0599222 0.0599222i −0.676511 0.736433i \(-0.736509\pi\)
0.736433 + 0.676511i \(0.236509\pi\)
\(558\) 9.89949 28.0000i 0.419079 1.18533i
\(559\) 8.00000 + 12.0000i 0.338364 + 0.507546i
\(560\) 2.82843i 0.119523i
\(561\) −14.4853 2.48528i −0.611569 0.104929i
\(562\) 10.0000 0.421825
\(563\) 2.82843 0.119204 0.0596020 0.998222i \(-0.481017\pi\)
0.0596020 + 0.998222i \(0.481017\pi\)
\(564\) −1.75736 + 10.2426i −0.0739982 + 0.431293i
\(565\) −5.00000 + 5.00000i −0.210352 + 0.210352i
\(566\) 18.3848 18.3848i 0.772770 0.772770i
\(567\) −2.68629 25.3137i −0.112814 1.06308i
\(568\) 4.00000 0.167836
\(569\) 11.3137 0.474295 0.237148 0.971474i \(-0.423787\pi\)
0.237148 + 0.971474i \(0.423787\pi\)
\(570\) 0 0
\(571\) 4.00000i 0.167395i −0.996491 0.0836974i \(-0.973327\pi\)
0.996491 0.0836974i \(-0.0266729\pi\)
\(572\) 21.2132 + 4.24264i 0.886969 + 0.177394i
\(573\) 12.0000 8.48528i 0.501307 0.354478i
\(574\) −4.00000 + 4.00000i −0.166957 + 0.166957i
\(575\) 4.24264i 0.176930i
\(576\) 2.82843 + 1.00000i 0.117851 + 0.0416667i
\(577\) 4.00000 4.00000i 0.166522 0.166522i −0.618927 0.785449i \(-0.712432\pi\)
0.785449 + 0.618927i \(0.212432\pi\)
\(578\) −10.6066 10.6066i −0.441176 0.441176i
\(579\) 0 0
\(580\) −7.00000 7.00000i −0.290659 0.290659i
\(581\) 33.9411i 1.40812i
\(582\) −11.3137 16.0000i −0.468968 0.663221i
\(583\) 24.0000 + 24.0000i 0.993978 + 0.993978i
\(584\) 0 0
\(585\) 5.53553 9.29289i 0.228866 0.384214i
\(586\) 2.00000 0.0826192
\(587\) 2.82843 + 2.82843i 0.116742 + 0.116742i 0.763064 0.646323i \(-0.223694\pi\)
−0.646323 + 0.763064i \(0.723694\pi\)
\(588\) 1.00000 + 1.41421i 0.0412393 + 0.0583212i
\(589\) 0 0
\(590\) 8.48528 + 8.48528i 0.349334 + 0.349334i
\(591\) −0.585786 + 3.41421i −0.0240960 + 0.140442i
\(592\) −3.00000 3.00000i −0.123299 0.123299i
\(593\) −5.65685 + 5.65685i −0.232299 + 0.232299i −0.813652 0.581353i \(-0.802524\pi\)
0.581353 + 0.813652i \(0.302524\pi\)
\(594\) 30.0000 8.48528i 1.23091 0.348155i
\(595\) 4.00000i 0.163984i
\(596\) 4.24264 4.24264i 0.173785 0.173785i
\(597\) −8.48528 + 6.00000i −0.347279 + 0.245564i
\(598\) 15.0000 + 3.00000i 0.613396 + 0.122679i
\(599\) 16.9706i 0.693398i 0.937976 + 0.346699i \(0.112698\pi\)
−0.937976 + 0.346699i \(0.887302\pi\)
\(600\) −0.292893 + 1.70711i −0.0119573 + 0.0696923i
\(601\) −18.0000 −0.734235 −0.367118 0.930175i \(-0.619655\pi\)
−0.367118 + 0.930175i \(0.619655\pi\)
\(602\) −11.3137 −0.461112
\(603\) 5.48528 + 11.4853i 0.223378 + 0.467717i
\(604\) 1.00000 1.00000i 0.0406894 0.0406894i
\(605\) −17.6777 + 17.6777i −0.718699 + 0.718699i
\(606\) −4.55635 + 26.5563i −0.185089 + 1.07878i
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 0 0
\(609\) −47.7990 8.20101i −1.93691 0.332322i
\(610\) 10.0000i 0.404888i
\(611\) −4.24264 + 21.2132i −0.171639 + 0.858194i
\(612\) −4.00000 1.41421i −0.161690 0.0571662i
\(613\) 25.0000 25.0000i 1.00974 1.00974i 0.00978840 0.999952i \(-0.496884\pi\)
0.999952 0.00978840i \(-0.00311579\pi\)
\(614\) 1.41421i 0.0570730i
\(615\) −2.82843 + 2.00000i −0.114053 + 0.0806478i
\(616\) −12.0000 + 12.0000i −0.483494 + 0.483494i
\(617\) −15.5563 15.5563i −0.626275 0.626275i 0.320854 0.947129i \(-0.396030\pi\)
−0.947129 + 0.320854i \(0.896030\pi\)
\(618\) 13.6569 + 2.34315i 0.549359 + 0.0942551i
\(619\) −14.0000 14.0000i −0.562708 0.562708i 0.367368 0.930076i \(-0.380259\pi\)
−0.930076 + 0.367368i \(0.880259\pi\)
\(620\) 9.89949i 0.397573i
\(621\) 21.2132 6.00000i 0.851257 0.240772i
\(622\) −10.0000 10.0000i −0.400963 0.400963i
\(623\) 28.2843 1.13319
\(624\) 5.82843 + 2.24264i 0.233324 + 0.0897775i
\(625\) −1.00000 −0.0400000
\(626\) −24.0416 24.0416i −0.960897 0.960897i
\(627\) 0 0
\(628\) 2.00000i 0.0798087i
\(629\) 4.24264 + 4.24264i 0.169165 + 0.169165i
\(630\) 3.65685 + 7.65685i 0.145693 + 0.305056i
\(631\) 17.0000 + 17.0000i 0.676759 + 0.676759i 0.959265 0.282506i \(-0.0911658\pi\)
−0.282506 + 0.959265i \(0.591166\pi\)
\(632\) 0 0
\(633\) 20.0000 + 28.2843i 0.794929 + 1.12420i
\(634\) 18.0000i 0.714871i
\(635\) 11.3137 11.3137i 0.448971 0.448971i
\(636\) 5.65685 + 8.00000i 0.224309 + 0.317221i
\(637\) 2.00000 + 3.00000i 0.0792429 + 0.118864i
\(638\) 59.3970i 2.35155i
\(639\) 10.8284 5.17157i 0.428366 0.204584i
\(640\) −1.00000 −0.0395285
\(641\) 22.6274 0.893729 0.446865 0.894602i \(-0.352541\pi\)
0.446865 + 0.894602i \(0.352541\pi\)
\(642\) 19.3137 + 3.31371i 0.762251 + 0.130782i
\(643\) −11.0000 + 11.0000i −0.433798 + 0.433798i −0.889918 0.456120i \(-0.849239\pi\)
0.456120 + 0.889918i \(0.349239\pi\)
\(644\) −8.48528 + 8.48528i −0.334367 + 0.334367i
\(645\) −6.82843 1.17157i −0.268869 0.0461306i
\(646\) 0 0
\(647\) 15.5563 0.611583 0.305792 0.952098i \(-0.401079\pi\)
0.305792 + 0.952098i \(0.401079\pi\)
\(648\) 8.94975 0.949747i 0.351579 0.0373096i
\(649\) 72.0000i 2.82625i
\(650\) −0.707107 + 3.53553i −0.0277350 + 0.138675i
\(651\) 28.0000 + 39.5980i 1.09741 + 1.55197i
\(652\) −15.0000 + 15.0000i −0.587445 + 0.587445i
\(653\) 16.9706i 0.664109i 0.943260 + 0.332055i \(0.107742\pi\)
−0.943260 + 0.332055i \(0.892258\pi\)
\(654\) −16.9706 24.0000i −0.663602 0.938474i
\(655\) −1.00000 + 1.00000i −0.0390732 + 0.0390732i
\(656\) −1.41421 1.41421i −0.0552158 0.0552158i
\(657\) 0 0
\(658\) −12.0000 12.0000i −0.467809 0.467809i
\(659\) 24.0416i 0.936529i −0.883588 0.468264i \(-0.844879\pi\)
0.883588 0.468264i \(-0.155121\pi\)
\(660\) −8.48528 + 6.00000i −0.330289 + 0.233550i
\(661\) 12.0000 + 12.0000i 0.466746 + 0.466746i 0.900859 0.434113i \(-0.142938\pi\)
−0.434113 + 0.900859i \(0.642938\pi\)
\(662\) −8.48528 −0.329790
\(663\) −8.24264 3.17157i −0.320118 0.123174i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −12.0000 4.24264i −0.464991 0.164399i
\(667\) 42.0000i 1.62625i
\(668\) −5.65685 5.65685i −0.218870 0.218870i
\(669\) −9.65685 1.65685i −0.373356 0.0640577i
\(670\) −3.00000 3.00000i −0.115900 0.115900i
\(671\) −42.4264 + 42.4264i −1.63785 + 1.63785i
\(672\) −4.00000 + 2.82843i −0.154303 + 0.109109i
\(673\) 10.0000i 0.385472i −0.981251 0.192736i \(-0.938264\pi\)
0.981251 0.192736i \(-0.0617360\pi\)
\(674\) 12.7279 12.7279i 0.490261 0.490261i
\(675\) 1.41421 + 5.00000i 0.0544331 + 0.192450i
\(676\) 12.0000 + 5.00000i 0.461538 + 0.192308i
\(677\) 31.1127i 1.19576i 0.801586 + 0.597879i \(0.203990\pi\)
−0.801586 + 0.597879i \(0.796010\pi\)
\(678\) −12.0711 2.07107i −0.463587 0.0795389i
\(679\) 32.0000 1.22805
\(680\) 1.41421 0.0542326
\(681\) 0 0
\(682\) −42.0000 + 42.0000i −1.60826 + 1.60826i
\(683\) 25.4558 25.4558i 0.974041 0.974041i −0.0256307 0.999671i \(-0.508159\pi\)
0.999671 + 0.0256307i \(0.00815939\pi\)
\(684\) 0 0
\(685\) 16.0000 0.611329
\(686\) 16.9706 0.647939
\(687\) 3.31371 19.3137i 0.126426 0.736864i
\(688\) 4.00000i 0.152499i
\(689\) 11.3137 + 16.9706i 0.431018 + 0.646527i
\(690\) −6.00000 + 4.24264i −0.228416 + 0.161515i
\(691\) −22.0000 + 22.0000i −0.836919 + 0.836919i −0.988452 0.151533i \(-0.951579\pi\)
0.151533 + 0.988452i \(0.451579\pi\)
\(692\) 14.1421i 0.537603i
\(693\) −16.9706 + 48.0000i −0.644658 + 1.82337i
\(694\) 4.00000 4.00000i 0.151838 0.151838i
\(695\) 0 0
\(696\) 2.89949 16.8995i 0.109905 0.640574i
\(697\) 2.00000 + 2.00000i 0.0757554 + 0.0757554i
\(698\) 14.1421i 0.535288i
\(699\) −4.24264 6.00000i −0.160471 0.226941i
\(700\) −2.00000 2.00000i −0.0755929 0.0755929i
\(701\) −4.24264 −0.160242 −0.0801212 0.996785i \(-0.525531\pi\)
−0.0801212 + 0.996785i \(0.525531\pi\)
\(702\) 18.6777 1.46447i 0.704943 0.0552727i
\(703\) 0 0
\(704\) −4.24264 4.24264i −0.159901 0.159901i
\(705\) −6.00000 8.48528i −0.225973 0.319574i
\(706\) 32.0000i 1.20434i
\(707\) −31.1127 31.1127i −1.17011 1.17011i
\(708\) −3.51472 + 20.4853i −0.132091 + 0.769884i
\(709\) 36.0000 + 36.0000i 1.35201 + 1.35201i 0.883413 + 0.468596i \(0.155240\pi\)
0.468596 + 0.883413i \(0.344760\pi\)
\(710\) −2.82843 + 2.82843i −0.106149 + 0.106149i
\(711\) 0 0
\(712\) 10.0000i 0.374766i
\(713\) −29.6985 + 29.6985i −1.11222 + 1.11222i
\(714\) 5.65685 4.00000i 0.211702 0.149696i
\(715\) −18.0000 + 12.0000i −0.673162 + 0.448775i
\(716\) 12.7279i 0.475665i
\(717\) 4.68629 27.3137i 0.175013 1.02005i
\(718\) −20.0000 −0.746393
\(719\) −28.2843 −1.05483 −0.527413 0.849609i \(-0.676838\pi\)
−0.527413 + 0.849609i \(0.676838\pi\)
\(720\) −2.70711 + 1.29289i −0.100888 + 0.0481833i
\(721\) −16.0000 + 16.0000i −0.595871 + 0.595871i
\(722\) −13.4350 + 13.4350i −0.500000 + 0.500000i
\(723\) 6.21320 36.2132i 0.231072 1.34678i
\(724\) −22.0000 −0.817624
\(725\) 9.89949 0.367658
\(726\) −42.6777 7.32233i −1.58392 0.271757i
\(727\) 12.0000i 0.445055i −0.974926 0.222528i \(-0.928569\pi\)
0.974926 0.222528i \(-0.0714308\pi\)
\(728\) −8.48528 + 5.65685i −0.314485 + 0.209657i
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 0 0
\(731\) 5.65685i 0.209226i
\(732\) −14.1421 + 10.0000i −0.522708 + 0.369611i
\(733\) 33.0000 33.0000i 1.21888 1.21888i 0.250859 0.968024i \(-0.419287\pi\)
0.968024 0.250859i \(-0.0807131\pi\)
\(734\) 19.7990 + 19.7990i 0.730794 + 0.730794i
\(735\) −1.70711 0.292893i −0.0629676 0.0108035i
\(736\) −3.00000 3.00000i −0.110581 0.110581i
\(737\) 25.4558i 0.937678i
\(738\) −5.65685 2.00000i −0.208232 0.0736210i
\(739\) −2.00000 2.00000i −0.0735712 0.0735712i 0.669364 0.742935i \(-0.266567\pi\)
−0.742935 + 0.669364i \(0.766567\pi\)
\(740\) 4.24264 0.155963
\(741\) 0 0
\(742\) −16.0000 −0.587378
\(743\) −4.24264 4.24264i −0.155647 0.155647i 0.624987 0.780635i \(-0.285104\pi\)
−0.780635 + 0.624987i \(0.785104\pi\)
\(744\) −14.0000 + 9.89949i −0.513265 + 0.362933i
\(745\) 6.00000i 0.219823i
\(746\) −16.9706 16.9706i −0.621336 0.621336i
\(747\) 32.4853 15.5147i 1.18857 0.567654i
\(748\) 6.00000 + 6.00000i 0.219382 + 0.219382i
\(749\) −22.6274 + 22.6274i −0.826788 + 0.826788i
\(750\) −1.00000 1.41421i −0.0365148 0.0516398i
\(751\) 46.0000i 1.67856i −0.543696 0.839282i \(-0.682976\pi\)
0.543696 0.839282i \(-0.317024\pi\)
\(752\) 4.24264 4.24264i 0.154713 0.154713i
\(753\) −7.07107 10.0000i −0.257684 0.364420i
\(754\) 7.00000 35.0000i 0.254925 1.27462i
\(755\) 1.41421i 0.0514685i
\(756\) −7.17157 + 12.8284i −0.260828 + 0.466565i
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 8.48528 0.308199
\(759\) −43.4558 7.45584i −1.57735 0.270630i
\(760\) 0 0
\(761\) 29.6985 29.6985i 1.07657 1.07657i 0.0797547 0.996815i \(-0.474586\pi\)
0.996815 0.0797547i \(-0.0254137\pi\)
\(762\) 27.3137 + 4.68629i 0.989471 + 0.169766i
\(763\) 48.0000 1.73772
\(764\) −8.48528 −0.306987
\(765\) 3.82843 1.82843i 0.138417 0.0661069i
\(766\) 16.0000i 0.578103i
\(767\) −8.48528 + 42.4264i −0.306386 + 1.53193i
\(768\) −1.00000 1.41421i −0.0360844 0.0510310i
\(769\) 11.0000 11.0000i 0.396670 0.396670i −0.480387 0.877057i \(-0.659504\pi\)
0.877057 + 0.480387i \(0.159504\pi\)
\(770\) 16.9706i 0.611577i
\(771\) −9.89949 14.0000i −0.356522 0.504198i
\(772\) 0 0
\(773\) 7.07107 + 7.07107i 0.254329 + 0.254329i 0.822743 0.568414i \(-0.192443\pi\)
−0.568414 + 0.822743i \(0.692443\pi\)
\(774\) −5.17157 10.8284i −0.185888 0.389220i
\(775\) −7.00000 7.00000i −0.251447 0.251447i
\(776\) 11.3137i 0.406138i
\(777\) 16.9706 12.0000i 0.608816 0.430498i
\(778\) −7.00000 7.00000i −0.250962 0.250962i
\(779\) 0 0
\(780\) −5.70711 + 2.53553i −0.204347 + 0.0907867i
\(781\) −24.0000 −0.858788
\(782\) 4.24264 + 4.24264i 0.151717 + 0.151717i
\(783\) −14.0000 49.4975i −0.500319 1.76890i
\(784\) 1.00000i 0.0357143i
\(785\) 1.41421 + 1.41421i 0.0504754 + 0.0504754i
\(786\) −2.41421 0.414214i −0.0861121 0.0147745i
\(787\) 23.0000 + 23.0000i 0.819861 + 0.819861i 0.986088 0.166226i \(-0.0531582\pi\)
−0.166226 + 0.986088i \(0.553158\pi\)
\(788\) 1.41421 1.41421i 0.0503793 0.0503793i
\(789\) −10.0000 + 7.07107i −0.356009 + 0.251737i
\(790\) 0 0
\(791\) 14.1421 14.1421i 0.502836 0.502836i
\(792\) −16.9706 6.00000i −0.603023 0.213201i
\(793\) −30.0000 + 20.0000i −1.06533 + 0.710221i
\(794\) 4.24264i 0.150566i
\(795\) −9.65685 1.65685i −0.342493 0.0587626i
\(796\) 6.00000 0.212664
\(797\) 22.6274 0.801504 0.400752 0.916187i \(-0.368749\pi\)
0.400752 + 0.916187i \(0.368749\pi\)
\(798\) 0 0
\(799\) −6.00000 + 6.00000i −0.212265 + 0.212265i
\(800\) 0.707107 0.707107i 0.0250000 0.0250000i
\(801\) 12.9289 + 27.0711i 0.456821 + 0.956509i
\(802\) −14.0000 −0.494357
\(803\) 0 0
\(804\) 1.24264 7.24264i 0.0438246 0.255428i
\(805\) 12.0000i 0.422944i
\(806\) −29.6985 + 19.7990i −1.04608 + 0.697390i
\(807\) 2.00000 1.41421i 0.0704033 0.0497827i
\(808\) 11.0000 11.0000i 0.386979 0.386979i
\(809\) 2.82843i 0.0994422i 0.998763 + 0.0497211i \(0.0158332\pi\)
−0.998763 + 0.0497211i \(0.984167\pi\)
\(810\) −5.65685 + 7.00000i −0.198762 + 0.245955i
\(811\) 4.00000 4.00000i 0.140459 0.140459i −0.633381 0.773840i \(-0.718333\pi\)
0.773840 + 0.633381i \(0.218333\pi\)
\(812\) 19.7990 + 19.7990i 0.694808 + 0.694808i
\(813\) −6.21320 + 36.2132i −0.217907 + 1.27005i
\(814\) 18.0000 + 18.0000i 0.630900 + 0.630900i
\(815\) 21.2132i 0.743066i
\(816\) 1.41421 + 2.00000i 0.0495074 + 0.0700140i
\(817\) 0 0
\(818\) 1.41421 0.0494468
\(819\) −15.6569 + 26.2843i −0.547095 + 0.918447i
\(820\) 2.00000 0.0698430
\(821\) −7.07107 7.07107i −0.246782 0.246782i 0.572867 0.819649i \(-0.305831\pi\)
−0.819649 + 0.572867i \(0.805831\pi\)
\(822\) 16.0000 + 22.6274i 0.558064 + 0.789222i
\(823\) 36.0000i 1.25488i 0.778664 + 0.627441i \(0.215897\pi\)
−0.778664 + 0.627441i \(0.784103\pi\)
\(824\) −5.65685 5.65685i −0.197066 0.197066i
\(825\) 1.75736 10.2426i 0.0611834 0.356603i
\(826\) −24.0000 24.0000i −0.835067 0.835067i
\(827\) −33.9411 + 33.9411i −1.18025 + 1.18025i −0.200569 + 0.979680i \(0.564279\pi\)
−0.979680 + 0.200569i \(0.935721\pi\)
\(828\) −12.0000 4.24264i −0.417029 0.147442i
\(829\) 22.0000i 0.764092i −0.924143 0.382046i \(-0.875220\pi\)
0.924143 0.382046i \(-0.124780\pi\)
\(830\) −8.48528 + 8.48528i −0.294528 + 0.294528i
\(831\) −5.65685 + 4.00000i −0.196234 + 0.138758i
\(832\) −2.00000 3.00000i −0.0693375 0.104006i
\(833\) 1.41421i 0.0489996i
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) −25.1005 + 44.8995i −0.867600 + 1.55195i
\(838\) 7.00000 7.00000i 0.241811 0.241811i
\(839\) 25.4558 25.4558i 0.878833 0.878833i −0.114581 0.993414i \(-0.536552\pi\)
0.993414 + 0.114581i \(0.0365524\pi\)
\(840\) 0.828427 4.82843i 0.0285835 0.166597i
\(841\) −69.0000 −2.37931
\(842\) 25.4558 0.877266
\(843\) −17.0711 2.92893i −0.587959 0.100878i
\(844\) 20.0000i 0.688428i
\(845\) −12.0208 + 4.94975i −0.413529 + 0.170276i
\(846\) 6.00000 16.9706i 0.206284 0.583460i
\(847\) 50.0000 50.0000i 1.71802 1.71802i
\(848\) 5.65685i 0.194257i
\(849\) −36.7696 + 26.0000i −1.26193 + 0.892318i
\(850\) −1.00000 + 1.00000i −0.0342997 + 0.0342997i
\(851\) 12.7279 + 12.7279i 0.436308 + 0.436308i
\(852\) −6.82843 1.17157i −0.233938 0.0401374i
\(853\) −15.0000 15.0000i −0.513590 0.513590i 0.402034 0.915625i \(-0.368303\pi\)
−0.915625 + 0.402034i \(0.868303\pi\)
\(854\) 28.2843i 0.967868i
\(855\) 0 0
\(856\) −8.00000 8.00000i −0.273434 0.273434i
\(857\) −41.0122 −1.40095 −0.700475 0.713677i \(-0.747028\pi\)
−0.700475 + 0.713677i \(0.747028\pi\)
\(858\) −34.9706 13.4558i −1.19388 0.459375i
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 2.82843 + 2.82843i 0.0964486 + 0.0964486i
\(861\) 8.00000 5.65685i 0.272639 0.192785i
\(862\) 36.0000i 1.22616i
\(863\) 39.5980 + 39.5980i 1.34793 + 1.34793i 0.887906 + 0.460025i \(0.152160\pi\)
0.460025 + 0.887906i \(0.347840\pi\)
\(864\) −4.53553 2.53553i −0.154302 0.0862606i
\(865\) 10.0000 + 10.0000i 0.340010 + 0.340010i
\(866\) −7.07107 + 7.07107i −0.240285 + 0.240285i
\(867\) 15.0000 + 21.2132i 0.509427 + 0.720438i
\(868\) 28.0000i 0.950382i
\(869\) 0 0
\(870\) 9.89949 + 14.0000i 0.335624 + 0.474644i
\(871\) 3.00000 15.0000i 0.101651 0.508256i
\(872\) 16.9706i 0.574696i
\(873\) 14.6274 + 30.6274i 0.495063 + 1.03658i
\(874\) 0 0
\(875\) 2.82843 0.0956183
\(876\) 0 0
\(877\) 11.0000 11.0000i 0.371444 0.371444i −0.496559 0.868003i \(-0.665403\pi\)
0.868003 + 0.496559i \(0.165403\pi\)
\(878\) −26.8701 + 26.8701i −0.906821 + 0.906821i
\(879\) −3.41421 0.585786i −0.115159 0.0197581i
\(880\) 6.00000 0.202260
\(881\) −5.65685 −0.190584 −0.0952921 0.995449i \(-0.530379\pi\)
−0.0952921 + 0.995449i \(0.530379\pi\)
\(882\) −1.29289 2.70711i −0.0435340 0.0911530i
\(883\) 4.00000i 0.134611i 0.997732 + 0.0673054i \(0.0214402\pi\)
−0.997732 + 0.0673054i \(0.978560\pi\)
\(884\) 2.82843 + 4.24264i 0.0951303 + 0.142695i
\(885\) −12.0000 16.9706i −0.403376 0.570459i
\(886\) 14.0000 14.0000i 0.470339 0.470339i
\(887\) 32.5269i 1.09215i −0.837737 0.546073i \(-0.816122\pi\)
0.837737 0.546073i \(-0.183878\pi\)
\(888\) 4.24264 + 6.00000i 0.142374 + 0.201347i
\(889\) −32.0000 + 32.0000i −1.07325 + 1.07325i
\(890\) −7.07107 7.07107i −0.237023 0.237023i
\(891\) −53.6985 + 5.69848i −1.79897 + 0.190906i
\(892\) 4.00000 + 4.00000i 0.133930 + 0.133930i
\(893\) 0 0
\(894\) −8.48528 + 6.00000i −0.283790 + 0.200670i
\(895\) 9.00000 + 9.00000i 0.300837 + 0.300837i
\(896\) 2.82843 0.0944911
\(897\) −24.7279 9.51472i −0.825641 0.317687i
\(898\) −2.00000 −0.0667409
\(899\) 69.2965 + 69.2965i 2.31117 + 2.31117i
\(900\) 1.00000 2.82843i 0.0333333 0.0942809i
\(901\) 8.00000i 0.266519i
\(902\) 8.48528 + 8.48528i 0.282529 + 0.282529i
\(903\) 19.3137 + 3.31371i 0.642720 + 0.110273i
\(904\) 5.00000 + 5.00000i 0.166298 + 0.166298i
\(905\) 15.5563 15.5563i 0.517111 0.517111i
\(906\) −2.00000 + 1.41421i −0.0664455 + 0.0469841i
\(907\) 14.0000i 0.464862i 0.972613 + 0.232431i \(0.0746680\pi\)
−0.972613 + 0.232431i \(0.925332\pi\)
\(908\) 0 0
\(909\) 15.5563 44.0000i 0.515972 1.45939i
\(910\) 2.00000 10.0000i 0.0662994 0.331497i
\(911\) 5.65685i 0.187420i −0.995600 0.0937100i \(-0.970127\pi\)
0.995600 0.0937100i \(-0.0298726\pi\)
\(912\) 0 0
\(913\) −72.0000 −2.38285
\(914\) 0 0
\(915\) 2.92893 17.0711i 0.0968275 0.564352i
\(916\) −8.00000 + 8.00000i −0.264327 + 0.264327i
\(917\) 2.82843 2.82843i 0.0934029 0.0934029i
\(918\) 6.41421 + 3.58579i 0.211701 + 0.118349i
\(919\) −22.0000 −0.725713 −0.362857 0.931845i \(-0.618198\pi\)
−0.362857 + 0.931845i \(0.618198\pi\)
\(920\) 4.24264 0.139876
\(921\) 0.414214 2.41421i 0.0136488 0.0795510i
\(922\) 40.0000i 1.31733i
\(923\) −14.1421 2.82843i −0.465494 0.0930988i
\(924\) 24.0000 16.9706i 0.789542 0.558291i
\(925\) −3.00000 + 3.00000i −0.0986394 + 0.0986394i
\(926\) 22.6274i 0.743583i
\(927\) −22.6274 8.00000i −0.743182 0.262754i
\(928\) −7.00000 + 7.00000i −0.229786 + 0.229786i
\(929\) 18.3848 + 18.3848i 0.603185 + 0.603185i 0.941156 0.337971i \(-0.109741\pi\)
−0.337971 + 0.941156i \(0.609741\pi\)
\(930\) 2.89949 16.8995i 0.0950782 0.554156i
\(931\) 0 0
\(932\) 4.24264i 0.138972i
\(933\) 14.1421 + 20.0000i 0.462993 + 0.654771i
\(934\) 6.00000 + 6.00000i 0.196326 + 0.196326i
\(935\) −8.48528 −0.277498
\(936\) −9.29289 5.53553i −0.303748 0.180935i
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 8.48528 + 8.48528i 0.277054 + 0.277054i
\(939\) 34.0000 + 48.0833i 1.10955 + 1.56914i
\(940\) 6.00000i 0.195698i
\(941\) −8.48528 8.48528i −0.276612 0.276612i 0.555143 0.831755i \(-0.312664\pi\)
−0.831755 + 0.555143i \(0.812664\pi\)
\(942\) −0.585786 + 3.41421i −0.0190860 + 0.111241i
\(943\) 6.00000 + 6.00000i 0.195387 + 0.195387i
\(944\) 8.48528 8.48528i 0.276172 0.276172i
\(945\) −4.00000 14.1421i −0.130120 0.460044i
\(946\) 24.0000i 0.780307i
\(947\) 2.82843 2.82843i 0.0919115 0.0919115i −0.659656 0.751568i \(-0.729298\pi\)
0.751568 + 0.659656i \(0.229298\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 5.27208 30.7279i 0.170959 0.996421i
\(952\) −4.00000 −0.129641
\(953\) −55.1543 −1.78662 −0.893312 0.449437i \(-0.851625\pi\)
−0.893312 + 0.449437i \(0.851625\pi\)
\(954\) −7.31371 15.3137i −0.236790 0.495800i
\(955\) 6.00000 6.00000i 0.194155 0.194155i
\(956\) −11.3137 + 11.3137i −0.365911 + 0.365911i
\(957\) −17.3970 + 101.397i −0.562364 + 3.27770i
\(958\) 36.0000 1.16311
\(959\) −45.2548 −1.46135
\(960\) 1.70711 + 0.292893i 0.0550966 + 0.00945309i
\(961\) 67.0000i 2.16129i
\(962\) 8.48528 + 12.7279i 0.273576 + 0.410365i
\(963\) −32.0000 11.3137i −1.03119 0.364579i
\(964\) −15.0000 + 15.0000i −0.483117 + 0.483117i
\(965\) 0 0
\(966\) 16.9706 12.0000i 0.546019 0.386094i
\(967\) 22.0000 22.0000i 0.707472 0.707472i −0.258531 0.966003i \(-0.583238\pi\)
0.966003 + 0.258531i \(0.0832383\pi\)
\(968\) 17.6777 + 17.6777i 0.568182 + 0.568182i
\(969\) 0 0
\(970\) −8.00000 8.00000i −0.256865 0.256865i
\(971\) 55.1543i 1.76999i −0.465604 0.884993i \(-0.654163\pi\)
0.465604 0.884993i \(-0.345837\pi\)
\(972\) −15.5563 1.00000i −0.498970 0.0320750i
\(973\) 0 0
\(974\) −19.7990 −0.634401
\(975\) 2.24264 5.82843i 0.0718220 0.186659i
\(976\) 10.0000 0.320092
\(977\) −16.9706 16.9706i −0.542936 0.542936i 0.381452 0.924389i \(-0.375424\pi\)
−0.924389 + 0.381452i \(0.875424\pi\)
\(978\) 30.0000 21.2132i 0.959294 0.678323i
\(979\) 60.0000i 1.91761i
\(980\) 0.707107 + 0.707107i 0.0225877 + 0.0225877i
\(981\) 21.9411 + 45.9411i 0.700526 + 1.46679i
\(982\) 11.0000 + 11.0000i 0.351024 + 0.351024i
\(983\) 21.2132 21.2132i 0.676596 0.676596i −0.282632 0.959228i \(-0.591208\pi\)
0.959228 + 0.282632i \(0.0912076\pi\)
\(984\) 2.00000 + 2.82843i 0.0637577 + 0.0901670i
\(985\) 2.00000i 0.0637253i
\(986\) 9.89949 9.89949i 0.315264 0.315264i
\(987\) 16.9706 + 24.0000i 0.540179 + 0.763928i
\(988\) 0 0
\(989\) 16.9706i 0.539633i
\(990\) 16.2426 7.75736i 0.516225 0.246545i
\(991\) −18.0000 −0.571789 −0.285894 0.958261i \(-0.592291\pi\)
−0.285894 + 0.958261i \(0.592291\pi\)
\(992\) 9.89949 0.314309
\(993\) 14.4853 + 2.48528i 0.459677 + 0.0788680i
\(994\) 8.00000 8.00000i 0.253745 0.253745i
\(995\) −4.24264 + 4.24264i −0.134501 + 0.134501i
\(996\) −20.4853 3.51472i −0.649101 0.111368i
\(997\) 42.0000 1.33015 0.665077 0.746775i \(-0.268399\pi\)
0.665077 + 0.746775i \(0.268399\pi\)
\(998\) 33.9411 1.07439
\(999\) 19.2426 + 10.7574i 0.608810 + 0.340348i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.p.c.161.2 yes 4
3.2 odd 2 inner 390.2.p.c.161.1 4
13.8 odd 4 inner 390.2.p.c.281.1 yes 4
39.8 even 4 inner 390.2.p.c.281.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.p.c.161.1 4 3.2 odd 2 inner
390.2.p.c.161.2 yes 4 1.1 even 1 trivial
390.2.p.c.281.1 yes 4 13.8 odd 4 inner
390.2.p.c.281.2 yes 4 39.8 even 4 inner