Properties

Label 390.2.p.c.161.1
Level $390$
Weight $2$
Character 390.161
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(161,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.161
Dual form 390.2.p.c.281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(-1.00000 + 1.41421i) q^{3} +1.00000i q^{4} +(0.707107 + 0.707107i) q^{5} +(1.70711 - 0.292893i) q^{6} +(2.00000 + 2.00000i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-1.00000 - 2.82843i) q^{9} -1.00000i q^{10} +(-4.24264 + 4.24264i) q^{11} +(-1.41421 - 1.00000i) q^{12} +(3.00000 - 2.00000i) q^{13} -2.82843i q^{14} +(-1.70711 + 0.292893i) q^{15} -1.00000 q^{16} -1.41421 q^{17} +(-1.29289 + 2.70711i) q^{18} +(-0.707107 + 0.707107i) q^{20} +(-4.82843 + 0.828427i) q^{21} +6.00000 q^{22} -4.24264 q^{23} +(0.292893 + 1.70711i) q^{24} +1.00000i q^{25} +(-3.53553 - 0.707107i) q^{26} +(5.00000 + 1.41421i) q^{27} +(-2.00000 + 2.00000i) q^{28} +9.89949i q^{29} +(1.41421 + 1.00000i) q^{30} +(-7.00000 + 7.00000i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-1.75736 - 10.2426i) q^{33} +(1.00000 + 1.00000i) q^{34} +2.82843i q^{35} +(2.82843 - 1.00000i) q^{36} +(3.00000 + 3.00000i) q^{37} +(-0.171573 + 6.24264i) q^{39} +1.00000 q^{40} +(-1.41421 - 1.41421i) q^{41} +(4.00000 + 2.82843i) q^{42} +4.00000i q^{43} +(-4.24264 - 4.24264i) q^{44} +(1.29289 - 2.70711i) q^{45} +(3.00000 + 3.00000i) q^{46} +(4.24264 - 4.24264i) q^{47} +(1.00000 - 1.41421i) q^{48} +1.00000i q^{49} +(0.707107 - 0.707107i) q^{50} +(1.41421 - 2.00000i) q^{51} +(2.00000 + 3.00000i) q^{52} -5.65685i q^{53} +(-2.53553 - 4.53553i) q^{54} -6.00000 q^{55} +2.82843 q^{56} +(7.00000 - 7.00000i) q^{58} +(8.48528 - 8.48528i) q^{59} +(-0.292893 - 1.70711i) q^{60} -10.0000 q^{61} +9.89949 q^{62} +(3.65685 - 7.65685i) q^{63} -1.00000i q^{64} +(3.53553 + 0.707107i) q^{65} +(-6.00000 + 8.48528i) q^{66} +(3.00000 - 3.00000i) q^{67} -1.41421i q^{68} +(4.24264 - 6.00000i) q^{69} +(2.00000 - 2.00000i) q^{70} +(2.82843 + 2.82843i) q^{71} +(-2.70711 - 1.29289i) q^{72} -4.24264i q^{74} +(-1.41421 - 1.00000i) q^{75} -16.9706 q^{77} +(4.53553 - 4.29289i) q^{78} +(-0.707107 - 0.707107i) q^{80} +(-7.00000 + 5.65685i) q^{81} +2.00000i q^{82} +(8.48528 + 8.48528i) q^{83} +(-0.828427 - 4.82843i) q^{84} +(-1.00000 - 1.00000i) q^{85} +(2.82843 - 2.82843i) q^{86} +(-14.0000 - 9.89949i) q^{87} +6.00000i q^{88} +(-7.07107 + 7.07107i) q^{89} +(-2.82843 + 1.00000i) q^{90} +(10.0000 + 2.00000i) q^{91} -4.24264i q^{92} +(-2.89949 - 16.8995i) q^{93} -6.00000 q^{94} +(-1.70711 + 0.292893i) q^{96} +(8.00000 - 8.00000i) q^{97} +(0.707107 - 0.707107i) q^{98} +(16.2426 + 7.75736i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{6} + 8 q^{7} - 4 q^{9} + 12 q^{13} - 4 q^{15} - 4 q^{16} - 8 q^{18} - 8 q^{21} + 24 q^{22} + 4 q^{24} + 20 q^{27} - 8 q^{28} - 28 q^{31} - 24 q^{33} + 4 q^{34} + 12 q^{37} - 12 q^{39}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) −1.00000 + 1.41421i −0.577350 + 0.816497i
\(4\) 1.00000i 0.500000i
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 1.70711 0.292893i 0.696923 0.119573i
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) −1.00000 2.82843i −0.333333 0.942809i
\(10\) 1.00000i 0.316228i
\(11\) −4.24264 + 4.24264i −1.27920 + 1.27920i −0.338091 + 0.941113i \(0.609781\pi\)
−0.941113 + 0.338091i \(0.890219\pi\)
\(12\) −1.41421 1.00000i −0.408248 0.288675i
\(13\) 3.00000 2.00000i 0.832050 0.554700i
\(14\) 2.82843i 0.755929i
\(15\) −1.70711 + 0.292893i −0.440773 + 0.0756247i
\(16\) −1.00000 −0.250000
\(17\) −1.41421 −0.342997 −0.171499 0.985184i \(-0.554861\pi\)
−0.171499 + 0.985184i \(0.554861\pi\)
\(18\) −1.29289 + 2.70711i −0.304738 + 0.638071i
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) −0.707107 + 0.707107i −0.158114 + 0.158114i
\(21\) −4.82843 + 0.828427i −1.05365 + 0.180778i
\(22\) 6.00000 1.27920
\(23\) −4.24264 −0.884652 −0.442326 0.896854i \(-0.645847\pi\)
−0.442326 + 0.896854i \(0.645847\pi\)
\(24\) 0.292893 + 1.70711i 0.0597866 + 0.348462i
\(25\) 1.00000i 0.200000i
\(26\) −3.53553 0.707107i −0.693375 0.138675i
\(27\) 5.00000 + 1.41421i 0.962250 + 0.272166i
\(28\) −2.00000 + 2.00000i −0.377964 + 0.377964i
\(29\) 9.89949i 1.83829i 0.393919 + 0.919145i \(0.371119\pi\)
−0.393919 + 0.919145i \(0.628881\pi\)
\(30\) 1.41421 + 1.00000i 0.258199 + 0.182574i
\(31\) −7.00000 + 7.00000i −1.25724 + 1.25724i −0.304830 + 0.952407i \(0.598600\pi\)
−0.952407 + 0.304830i \(0.901400\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) −1.75736 10.2426i −0.305917 1.78301i
\(34\) 1.00000 + 1.00000i 0.171499 + 0.171499i
\(35\) 2.82843i 0.478091i
\(36\) 2.82843 1.00000i 0.471405 0.166667i
\(37\) 3.00000 + 3.00000i 0.493197 + 0.493197i 0.909312 0.416115i \(-0.136609\pi\)
−0.416115 + 0.909312i \(0.636609\pi\)
\(38\) 0 0
\(39\) −0.171573 + 6.24264i −0.0274736 + 0.999623i
\(40\) 1.00000 0.158114
\(41\) −1.41421 1.41421i −0.220863 0.220863i 0.587999 0.808862i \(-0.299916\pi\)
−0.808862 + 0.587999i \(0.799916\pi\)
\(42\) 4.00000 + 2.82843i 0.617213 + 0.436436i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −4.24264 4.24264i −0.639602 0.639602i
\(45\) 1.29289 2.70711i 0.192733 0.403552i
\(46\) 3.00000 + 3.00000i 0.442326 + 0.442326i
\(47\) 4.24264 4.24264i 0.618853 0.618853i −0.326384 0.945237i \(-0.605830\pi\)
0.945237 + 0.326384i \(0.105830\pi\)
\(48\) 1.00000 1.41421i 0.144338 0.204124i
\(49\) 1.00000i 0.142857i
\(50\) 0.707107 0.707107i 0.100000 0.100000i
\(51\) 1.41421 2.00000i 0.198030 0.280056i
\(52\) 2.00000 + 3.00000i 0.277350 + 0.416025i
\(53\) 5.65685i 0.777029i −0.921443 0.388514i \(-0.872988\pi\)
0.921443 0.388514i \(-0.127012\pi\)
\(54\) −2.53553 4.53553i −0.345042 0.617208i
\(55\) −6.00000 −0.809040
\(56\) 2.82843 0.377964
\(57\) 0 0
\(58\) 7.00000 7.00000i 0.919145 0.919145i
\(59\) 8.48528 8.48528i 1.10469 1.10469i 0.110853 0.993837i \(-0.464642\pi\)
0.993837 0.110853i \(-0.0353582\pi\)
\(60\) −0.292893 1.70711i −0.0378124 0.220387i
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 9.89949 1.25724
\(63\) 3.65685 7.65685i 0.460720 0.964673i
\(64\) 1.00000i 0.125000i
\(65\) 3.53553 + 0.707107i 0.438529 + 0.0877058i
\(66\) −6.00000 + 8.48528i −0.738549 + 1.04447i
\(67\) 3.00000 3.00000i 0.366508 0.366508i −0.499694 0.866202i \(-0.666554\pi\)
0.866202 + 0.499694i \(0.166554\pi\)
\(68\) 1.41421i 0.171499i
\(69\) 4.24264 6.00000i 0.510754 0.722315i
\(70\) 2.00000 2.00000i 0.239046 0.239046i
\(71\) 2.82843 + 2.82843i 0.335673 + 0.335673i 0.854736 0.519063i \(-0.173719\pi\)
−0.519063 + 0.854736i \(0.673719\pi\)
\(72\) −2.70711 1.29289i −0.319036 0.152369i
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 4.24264i 0.493197i
\(75\) −1.41421 1.00000i −0.163299 0.115470i
\(76\) 0 0
\(77\) −16.9706 −1.93398
\(78\) 4.53553 4.29289i 0.513548 0.486074i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −0.707107 0.707107i −0.0790569 0.0790569i
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) 2.00000i 0.220863i
\(83\) 8.48528 + 8.48528i 0.931381 + 0.931381i 0.997792 0.0664117i \(-0.0211551\pi\)
−0.0664117 + 0.997792i \(0.521155\pi\)
\(84\) −0.828427 4.82843i −0.0903888 0.526825i
\(85\) −1.00000 1.00000i −0.108465 0.108465i
\(86\) 2.82843 2.82843i 0.304997 0.304997i
\(87\) −14.0000 9.89949i −1.50096 1.06134i
\(88\) 6.00000i 0.639602i
\(89\) −7.07107 + 7.07107i −0.749532 + 0.749532i −0.974391 0.224860i \(-0.927808\pi\)
0.224860 + 0.974391i \(0.427808\pi\)
\(90\) −2.82843 + 1.00000i −0.298142 + 0.105409i
\(91\) 10.0000 + 2.00000i 1.04828 + 0.209657i
\(92\) 4.24264i 0.442326i
\(93\) −2.89949 16.8995i −0.300664 1.75240i
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) −1.70711 + 0.292893i −0.174231 + 0.0298933i
\(97\) 8.00000 8.00000i 0.812277 0.812277i −0.172698 0.984975i \(-0.555248\pi\)
0.984975 + 0.172698i \(0.0552484\pi\)
\(98\) 0.707107 0.707107i 0.0714286 0.0714286i
\(99\) 16.2426 + 7.75736i 1.63245 + 0.779644i
\(100\) −1.00000 −0.100000
\(101\) 15.5563 1.54791 0.773957 0.633238i \(-0.218274\pi\)
0.773957 + 0.633238i \(0.218274\pi\)
\(102\) −2.41421 + 0.414214i −0.239043 + 0.0410133i
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 0.707107 3.53553i 0.0693375 0.346688i
\(105\) −4.00000 2.82843i −0.390360 0.276026i
\(106\) −4.00000 + 4.00000i −0.388514 + 0.388514i
\(107\) 11.3137i 1.09374i −0.837218 0.546869i \(-0.815820\pi\)
0.837218 0.546869i \(-0.184180\pi\)
\(108\) −1.41421 + 5.00000i −0.136083 + 0.481125i
\(109\) 12.0000 12.0000i 1.14939 1.14939i 0.162719 0.986672i \(-0.447974\pi\)
0.986672 0.162719i \(-0.0520264\pi\)
\(110\) 4.24264 + 4.24264i 0.404520 + 0.404520i
\(111\) −7.24264 + 1.24264i −0.687441 + 0.117946i
\(112\) −2.00000 2.00000i −0.188982 0.188982i
\(113\) 7.07107i 0.665190i 0.943070 + 0.332595i \(0.107924\pi\)
−0.943070 + 0.332595i \(0.892076\pi\)
\(114\) 0 0
\(115\) −3.00000 3.00000i −0.279751 0.279751i
\(116\) −9.89949 −0.919145
\(117\) −8.65685 6.48528i −0.800326 0.599564i
\(118\) −12.0000 −1.10469
\(119\) −2.82843 2.82843i −0.259281 0.259281i
\(120\) −1.00000 + 1.41421i −0.0912871 + 0.129099i
\(121\) 25.0000i 2.27273i
\(122\) 7.07107 + 7.07107i 0.640184 + 0.640184i
\(123\) 3.41421 0.585786i 0.307849 0.0528186i
\(124\) −7.00000 7.00000i −0.628619 0.628619i
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) −8.00000 + 2.82843i −0.712697 + 0.251976i
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) −5.65685 4.00000i −0.498058 0.352180i
\(130\) −2.00000 3.00000i −0.175412 0.263117i
\(131\) 1.41421i 0.123560i 0.998090 + 0.0617802i \(0.0196778\pi\)
−0.998090 + 0.0617802i \(0.980322\pi\)
\(132\) 10.2426 1.75736i 0.891507 0.152958i
\(133\) 0 0
\(134\) −4.24264 −0.366508
\(135\) 2.53553 + 4.53553i 0.218224 + 0.390357i
\(136\) −1.00000 + 1.00000i −0.0857493 + 0.0857493i
\(137\) 11.3137 11.3137i 0.966595 0.966595i −0.0328645 0.999460i \(-0.510463\pi\)
0.999460 + 0.0328645i \(0.0104630\pi\)
\(138\) −7.24264 + 1.24264i −0.616535 + 0.105781i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) −2.82843 −0.239046
\(141\) 1.75736 + 10.2426i 0.147996 + 0.862586i
\(142\) 4.00000i 0.335673i
\(143\) −4.24264 + 21.2132i −0.354787 + 1.77394i
\(144\) 1.00000 + 2.82843i 0.0833333 + 0.235702i
\(145\) −7.00000 + 7.00000i −0.581318 + 0.581318i
\(146\) 0 0
\(147\) −1.41421 1.00000i −0.116642 0.0824786i
\(148\) −3.00000 + 3.00000i −0.246598 + 0.246598i
\(149\) 4.24264 + 4.24264i 0.347571 + 0.347571i 0.859204 0.511633i \(-0.170959\pi\)
−0.511633 + 0.859204i \(0.670959\pi\)
\(150\) 0.292893 + 1.70711i 0.0239146 + 0.139385i
\(151\) −1.00000 1.00000i −0.0813788 0.0813788i 0.665246 0.746625i \(-0.268327\pi\)
−0.746625 + 0.665246i \(0.768327\pi\)
\(152\) 0 0
\(153\) 1.41421 + 4.00000i 0.114332 + 0.323381i
\(154\) 12.0000 + 12.0000i 0.966988 + 0.966988i
\(155\) −9.89949 −0.795147
\(156\) −6.24264 0.171573i −0.499811 0.0137368i
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 8.00000 + 5.65685i 0.634441 + 0.448618i
\(160\) 1.00000i 0.0790569i
\(161\) −8.48528 8.48528i −0.668734 0.668734i
\(162\) 8.94975 + 0.949747i 0.703159 + 0.0746192i
\(163\) 15.0000 + 15.0000i 1.17489 + 1.17489i 0.981029 + 0.193862i \(0.0621013\pi\)
0.193862 + 0.981029i \(0.437899\pi\)
\(164\) 1.41421 1.41421i 0.110432 0.110432i
\(165\) 6.00000 8.48528i 0.467099 0.660578i
\(166\) 12.0000i 0.931381i
\(167\) 5.65685 5.65685i 0.437741 0.437741i −0.453510 0.891251i \(-0.649829\pi\)
0.891251 + 0.453510i \(0.149829\pi\)
\(168\) −2.82843 + 4.00000i −0.218218 + 0.308607i
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 1.41421i 0.108465i
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 14.1421 1.07521 0.537603 0.843198i \(-0.319330\pi\)
0.537603 + 0.843198i \(0.319330\pi\)
\(174\) 2.89949 + 16.8995i 0.219810 + 1.28115i
\(175\) −2.00000 + 2.00000i −0.151186 + 0.151186i
\(176\) 4.24264 4.24264i 0.319801 0.319801i
\(177\) 3.51472 + 20.4853i 0.264182 + 1.53977i
\(178\) 10.0000 0.749532
\(179\) 12.7279 0.951330 0.475665 0.879627i \(-0.342208\pi\)
0.475665 + 0.879627i \(0.342208\pi\)
\(180\) 2.70711 + 1.29289i 0.201776 + 0.0963666i
\(181\) 22.0000i 1.63525i 0.575753 + 0.817624i \(0.304709\pi\)
−0.575753 + 0.817624i \(0.695291\pi\)
\(182\) −5.65685 8.48528i −0.419314 0.628971i
\(183\) 10.0000 14.1421i 0.739221 1.04542i
\(184\) −3.00000 + 3.00000i −0.221163 + 0.221163i
\(185\) 4.24264i 0.311925i
\(186\) −9.89949 + 14.0000i −0.725866 + 1.02653i
\(187\) 6.00000 6.00000i 0.438763 0.438763i
\(188\) 4.24264 + 4.24264i 0.309426 + 0.309426i
\(189\) 7.17157 + 12.8284i 0.521655 + 0.933131i
\(190\) 0 0
\(191\) 8.48528i 0.613973i −0.951714 0.306987i \(-0.900679\pi\)
0.951714 0.306987i \(-0.0993207\pi\)
\(192\) 1.41421 + 1.00000i 0.102062 + 0.0721688i
\(193\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) −11.3137 −0.812277
\(195\) −4.53553 + 4.29289i −0.324796 + 0.307420i
\(196\) −1.00000 −0.0714286
\(197\) 1.41421 + 1.41421i 0.100759 + 0.100759i 0.755689 0.654931i \(-0.227302\pi\)
−0.654931 + 0.755689i \(0.727302\pi\)
\(198\) −6.00000 16.9706i −0.426401 1.20605i
\(199\) 6.00000i 0.425329i −0.977125 0.212664i \(-0.931786\pi\)
0.977125 0.212664i \(-0.0682141\pi\)
\(200\) 0.707107 + 0.707107i 0.0500000 + 0.0500000i
\(201\) 1.24264 + 7.24264i 0.0876491 + 0.510856i
\(202\) −11.0000 11.0000i −0.773957 0.773957i
\(203\) −19.7990 + 19.7990i −1.38962 + 1.38962i
\(204\) 2.00000 + 1.41421i 0.140028 + 0.0990148i
\(205\) 2.00000i 0.139686i
\(206\) 5.65685 5.65685i 0.394132 0.394132i
\(207\) 4.24264 + 12.0000i 0.294884 + 0.834058i
\(208\) −3.00000 + 2.00000i −0.208013 + 0.138675i
\(209\) 0 0
\(210\) 0.828427 + 4.82843i 0.0571669 + 0.333193i
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 5.65685 0.388514
\(213\) −6.82843 + 1.17157i −0.467876 + 0.0802749i
\(214\) −8.00000 + 8.00000i −0.546869 + 0.546869i
\(215\) −2.82843 + 2.82843i −0.192897 + 0.192897i
\(216\) 4.53553 2.53553i 0.308604 0.172521i
\(217\) −28.0000 −1.90076
\(218\) −16.9706 −1.14939
\(219\) 0 0
\(220\) 6.00000i 0.404520i
\(221\) −4.24264 + 2.82843i −0.285391 + 0.190261i
\(222\) 6.00000 + 4.24264i 0.402694 + 0.284747i
\(223\) 4.00000 4.00000i 0.267860 0.267860i −0.560378 0.828237i \(-0.689344\pi\)
0.828237 + 0.560378i \(0.189344\pi\)
\(224\) 2.82843i 0.188982i
\(225\) 2.82843 1.00000i 0.188562 0.0666667i
\(226\) 5.00000 5.00000i 0.332595 0.332595i
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 8.00000 + 8.00000i 0.528655 + 0.528655i 0.920171 0.391516i \(-0.128049\pi\)
−0.391516 + 0.920171i \(0.628049\pi\)
\(230\) 4.24264i 0.279751i
\(231\) 16.9706 24.0000i 1.11658 1.57908i
\(232\) 7.00000 + 7.00000i 0.459573 + 0.459573i
\(233\) −4.24264 −0.277945 −0.138972 0.990296i \(-0.544380\pi\)
−0.138972 + 0.990296i \(0.544380\pi\)
\(234\) 1.53553 + 10.7071i 0.100381 + 0.699945i
\(235\) 6.00000 0.391397
\(236\) 8.48528 + 8.48528i 0.552345 + 0.552345i
\(237\) 0 0
\(238\) 4.00000i 0.259281i
\(239\) −11.3137 11.3137i −0.731823 0.731823i 0.239158 0.970981i \(-0.423129\pi\)
−0.970981 + 0.239158i \(0.923129\pi\)
\(240\) 1.70711 0.292893i 0.110193 0.0189062i
\(241\) 15.0000 + 15.0000i 0.966235 + 0.966235i 0.999448 0.0332133i \(-0.0105741\pi\)
−0.0332133 + 0.999448i \(0.510574\pi\)
\(242\) −17.6777 + 17.6777i −1.13636 + 1.13636i
\(243\) −1.00000 15.5563i −0.0641500 0.997940i
\(244\) 10.0000i 0.640184i
\(245\) −0.707107 + 0.707107i −0.0451754 + 0.0451754i
\(246\) −2.82843 2.00000i −0.180334 0.127515i
\(247\) 0 0
\(248\) 9.89949i 0.628619i
\(249\) −20.4853 + 3.51472i −1.29820 + 0.222736i
\(250\) 1.00000 0.0632456
\(251\) −7.07107 −0.446322 −0.223161 0.974782i \(-0.571638\pi\)
−0.223161 + 0.974782i \(0.571638\pi\)
\(252\) 7.65685 + 3.65685i 0.482336 + 0.230360i
\(253\) 18.0000 18.0000i 1.13165 1.13165i
\(254\) 11.3137 11.3137i 0.709885 0.709885i
\(255\) 2.41421 0.414214i 0.151184 0.0259391i
\(256\) 1.00000 0.0625000
\(257\) −9.89949 −0.617514 −0.308757 0.951141i \(-0.599913\pi\)
−0.308757 + 0.951141i \(0.599913\pi\)
\(258\) 1.17157 + 6.82843i 0.0729389 + 0.425119i
\(259\) 12.0000i 0.745644i
\(260\) −0.707107 + 3.53553i −0.0438529 + 0.219265i
\(261\) 28.0000 9.89949i 1.73316 0.612763i
\(262\) 1.00000 1.00000i 0.0617802 0.0617802i
\(263\) 7.07107i 0.436021i 0.975946 + 0.218010i \(0.0699567\pi\)
−0.975946 + 0.218010i \(0.930043\pi\)
\(264\) −8.48528 6.00000i −0.522233 0.369274i
\(265\) 4.00000 4.00000i 0.245718 0.245718i
\(266\) 0 0
\(267\) −2.92893 17.0711i −0.179248 1.04473i
\(268\) 3.00000 + 3.00000i 0.183254 + 0.183254i
\(269\) 1.41421i 0.0862261i −0.999070 0.0431131i \(-0.986272\pi\)
0.999070 0.0431131i \(-0.0137276\pi\)
\(270\) 1.41421 5.00000i 0.0860663 0.304290i
\(271\) −15.0000 15.0000i −0.911185 0.911185i 0.0851804 0.996366i \(-0.472853\pi\)
−0.996366 + 0.0851804i \(0.972853\pi\)
\(272\) 1.41421 0.0857493
\(273\) −12.8284 + 12.1421i −0.776412 + 0.734875i
\(274\) −16.0000 −0.966595
\(275\) −4.24264 4.24264i −0.255841 0.255841i
\(276\) 6.00000 + 4.24264i 0.361158 + 0.255377i
\(277\) 4.00000i 0.240337i −0.992754 0.120168i \(-0.961657\pi\)
0.992754 0.120168i \(-0.0383434\pi\)
\(278\) 0 0
\(279\) 26.7990 + 12.7990i 1.60441 + 0.766255i
\(280\) 2.00000 + 2.00000i 0.119523 + 0.119523i
\(281\) −7.07107 + 7.07107i −0.421825 + 0.421825i −0.885832 0.464007i \(-0.846411\pi\)
0.464007 + 0.885832i \(0.346411\pi\)
\(282\) 6.00000 8.48528i 0.357295 0.505291i
\(283\) 26.0000i 1.54554i −0.634686 0.772770i \(-0.718871\pi\)
0.634686 0.772770i \(-0.281129\pi\)
\(284\) −2.82843 + 2.82843i −0.167836 + 0.167836i
\(285\) 0 0
\(286\) 18.0000 12.0000i 1.06436 0.709575i
\(287\) 5.65685i 0.333914i
\(288\) 1.29289 2.70711i 0.0761845 0.159518i
\(289\) −15.0000 −0.882353
\(290\) 9.89949 0.581318
\(291\) 3.31371 + 19.3137i 0.194253 + 1.13219i
\(292\) 0 0
\(293\) −1.41421 + 1.41421i −0.0826192 + 0.0826192i −0.747209 0.664589i \(-0.768606\pi\)
0.664589 + 0.747209i \(0.268606\pi\)
\(294\) 0.292893 + 1.70711i 0.0170819 + 0.0995605i
\(295\) 12.0000 0.698667
\(296\) 4.24264 0.246598
\(297\) −27.2132 + 15.2132i −1.57907 + 0.882760i
\(298\) 6.00000i 0.347571i
\(299\) −12.7279 + 8.48528i −0.736075 + 0.490716i
\(300\) 1.00000 1.41421i 0.0577350 0.0816497i
\(301\) −8.00000 + 8.00000i −0.461112 + 0.461112i
\(302\) 1.41421i 0.0813788i
\(303\) −15.5563 + 22.0000i −0.893689 + 1.26387i
\(304\) 0 0
\(305\) −7.07107 7.07107i −0.404888 0.404888i
\(306\) 1.82843 3.82843i 0.104524 0.218857i
\(307\) 1.00000 + 1.00000i 0.0570730 + 0.0570730i 0.735067 0.677994i \(-0.237151\pi\)
−0.677994 + 0.735067i \(0.737151\pi\)
\(308\) 16.9706i 0.966988i
\(309\) −11.3137 8.00000i −0.643614 0.455104i
\(310\) 7.00000 + 7.00000i 0.397573 + 0.397573i
\(311\) 14.1421 0.801927 0.400963 0.916094i \(-0.368675\pi\)
0.400963 + 0.916094i \(0.368675\pi\)
\(312\) 4.29289 + 4.53553i 0.243037 + 0.256774i
\(313\) −34.0000 −1.92179 −0.960897 0.276907i \(-0.910691\pi\)
−0.960897 + 0.276907i \(0.910691\pi\)
\(314\) 1.41421 + 1.41421i 0.0798087 + 0.0798087i
\(315\) 8.00000 2.82843i 0.450749 0.159364i
\(316\) 0 0
\(317\) −12.7279 12.7279i −0.714871 0.714871i 0.252679 0.967550i \(-0.418688\pi\)
−0.967550 + 0.252679i \(0.918688\pi\)
\(318\) −1.65685 9.65685i −0.0929118 0.541529i
\(319\) −42.0000 42.0000i −2.35155 2.35155i
\(320\) 0.707107 0.707107i 0.0395285 0.0395285i
\(321\) 16.0000 + 11.3137i 0.893033 + 0.631470i
\(322\) 12.0000i 0.668734i
\(323\) 0 0
\(324\) −5.65685 7.00000i −0.314270 0.388889i
\(325\) 2.00000 + 3.00000i 0.110940 + 0.166410i
\(326\) 21.2132i 1.17489i
\(327\) 4.97056 + 28.9706i 0.274873 + 1.60208i
\(328\) −2.00000 −0.110432
\(329\) 16.9706 0.935617
\(330\) −10.2426 + 1.75736i −0.563839 + 0.0967394i
\(331\) −6.00000 + 6.00000i −0.329790 + 0.329790i −0.852506 0.522717i \(-0.824919\pi\)
0.522717 + 0.852506i \(0.324919\pi\)
\(332\) −8.48528 + 8.48528i −0.465690 + 0.465690i
\(333\) 5.48528 11.4853i 0.300592 0.629390i
\(334\) −8.00000 −0.437741
\(335\) 4.24264 0.231800
\(336\) 4.82843 0.828427i 0.263412 0.0451944i
\(337\) 18.0000i 0.980522i −0.871576 0.490261i \(-0.836901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) −12.0208 + 4.94975i −0.653846 + 0.269231i
\(339\) −10.0000 7.07107i −0.543125 0.384048i
\(340\) 1.00000 1.00000i 0.0542326 0.0542326i
\(341\) 59.3970i 3.21653i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 2.82843 + 2.82843i 0.152499 + 0.152499i
\(345\) 7.24264 1.24264i 0.389931 0.0669015i
\(346\) −10.0000 10.0000i −0.537603 0.537603i
\(347\) 5.65685i 0.303676i 0.988405 + 0.151838i \(0.0485192\pi\)
−0.988405 + 0.151838i \(0.951481\pi\)
\(348\) 9.89949 14.0000i 0.530669 0.750479i
\(349\) 10.0000 + 10.0000i 0.535288 + 0.535288i 0.922141 0.386853i \(-0.126438\pi\)
−0.386853 + 0.922141i \(0.626438\pi\)
\(350\) 2.82843 0.151186
\(351\) 17.8284 5.75736i 0.951611 0.307305i
\(352\) −6.00000 −0.319801
\(353\) 22.6274 + 22.6274i 1.20434 + 1.20434i 0.972835 + 0.231501i \(0.0743638\pi\)
0.231501 + 0.972835i \(0.425636\pi\)
\(354\) 12.0000 16.9706i 0.637793 0.901975i
\(355\) 4.00000i 0.212298i
\(356\) −7.07107 7.07107i −0.374766 0.374766i
\(357\) 6.82843 1.17157i 0.361399 0.0620062i
\(358\) −9.00000 9.00000i −0.475665 0.475665i
\(359\) 14.1421 14.1421i 0.746393 0.746393i −0.227407 0.973800i \(-0.573025\pi\)
0.973800 + 0.227407i \(0.0730246\pi\)
\(360\) −1.00000 2.82843i −0.0527046 0.149071i
\(361\) 19.0000i 1.00000i
\(362\) 15.5563 15.5563i 0.817624 0.817624i
\(363\) 35.3553 + 25.0000i 1.85567 + 1.31216i
\(364\) −2.00000 + 10.0000i −0.104828 + 0.524142i
\(365\) 0 0
\(366\) −17.0711 + 2.92893i −0.892319 + 0.153098i
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) 4.24264 0.221163
\(369\) −2.58579 + 5.41421i −0.134611 + 0.281853i
\(370\) 3.00000 3.00000i 0.155963 0.155963i
\(371\) 11.3137 11.3137i 0.587378 0.587378i
\(372\) 16.8995 2.89949i 0.876198 0.150332i
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) −8.48528 −0.438763
\(375\) −0.292893 1.70711i −0.0151249 0.0881546i
\(376\) 6.00000i 0.309426i
\(377\) 19.7990 + 29.6985i 1.01970 + 1.52955i
\(378\) 4.00000 14.1421i 0.205738 0.727393i
\(379\) 6.00000 6.00000i 0.308199 0.308199i −0.536011 0.844211i \(-0.680070\pi\)
0.844211 + 0.536011i \(0.180070\pi\)
\(380\) 0 0
\(381\) −22.6274 16.0000i −1.15924 0.819705i
\(382\) −6.00000 + 6.00000i −0.306987 + 0.306987i
\(383\) −11.3137 11.3137i −0.578103 0.578103i 0.356277 0.934380i \(-0.384046\pi\)
−0.934380 + 0.356277i \(0.884046\pi\)
\(384\) −0.292893 1.70711i −0.0149466 0.0871154i
\(385\) −12.0000 12.0000i −0.611577 0.611577i
\(386\) 0 0
\(387\) 11.3137 4.00000i 0.575108 0.203331i
\(388\) 8.00000 + 8.00000i 0.406138 + 0.406138i
\(389\) 9.89949 0.501924 0.250962 0.967997i \(-0.419253\pi\)
0.250962 + 0.967997i \(0.419253\pi\)
\(390\) 6.24264 + 0.171573i 0.316108 + 0.00868793i
\(391\) 6.00000 0.303433
\(392\) 0.707107 + 0.707107i 0.0357143 + 0.0357143i
\(393\) −2.00000 1.41421i −0.100887 0.0713376i
\(394\) 2.00000i 0.100759i
\(395\) 0 0
\(396\) −7.75736 + 16.2426i −0.389822 + 0.816223i
\(397\) −3.00000 3.00000i −0.150566 0.150566i 0.627805 0.778371i \(-0.283954\pi\)
−0.778371 + 0.627805i \(0.783954\pi\)
\(398\) −4.24264 + 4.24264i −0.212664 + 0.212664i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) 9.89949 9.89949i 0.494357 0.494357i −0.415319 0.909676i \(-0.636330\pi\)
0.909676 + 0.415319i \(0.136330\pi\)
\(402\) 4.24264 6.00000i 0.211604 0.299253i
\(403\) −7.00000 + 35.0000i −0.348695 + 1.74347i
\(404\) 15.5563i 0.773957i
\(405\) −8.94975 0.949747i −0.444717 0.0471933i
\(406\) 28.0000 1.38962
\(407\) −25.4558 −1.26180
\(408\) −0.414214 2.41421i −0.0205066 0.119521i
\(409\) 1.00000 1.00000i 0.0494468 0.0494468i −0.681951 0.731398i \(-0.738868\pi\)
0.731398 + 0.681951i \(0.238868\pi\)
\(410\) −1.41421 + 1.41421i −0.0698430 + 0.0698430i
\(411\) 4.68629 + 27.3137i 0.231158 + 1.34729i
\(412\) −8.00000 −0.394132
\(413\) 33.9411 1.67013
\(414\) 5.48528 11.4853i 0.269587 0.564471i
\(415\) 12.0000i 0.589057i
\(416\) 3.53553 + 0.707107i 0.173344 + 0.0346688i
\(417\) 0 0
\(418\) 0 0
\(419\) 9.89949i 0.483622i 0.970323 + 0.241811i \(0.0777414\pi\)
−0.970323 + 0.241811i \(0.922259\pi\)
\(420\) 2.82843 4.00000i 0.138013 0.195180i
\(421\) 18.0000 18.0000i 0.877266 0.877266i −0.115985 0.993251i \(-0.537002\pi\)
0.993251 + 0.115985i \(0.0370024\pi\)
\(422\) 14.1421 + 14.1421i 0.688428 + 0.688428i
\(423\) −16.2426 7.75736i −0.789744 0.377176i
\(424\) −4.00000 4.00000i −0.194257 0.194257i
\(425\) 1.41421i 0.0685994i
\(426\) 5.65685 + 4.00000i 0.274075 + 0.193801i
\(427\) −20.0000 20.0000i −0.967868 0.967868i
\(428\) 11.3137 0.546869
\(429\) −25.7574 27.2132i −1.24358 1.31387i
\(430\) 4.00000 0.192897
\(431\) −25.4558 25.4558i −1.22616 1.22616i −0.965403 0.260762i \(-0.916026\pi\)
−0.260762 0.965403i \(-0.583974\pi\)
\(432\) −5.00000 1.41421i −0.240563 0.0680414i
\(433\) 10.0000i 0.480569i 0.970702 + 0.240285i \(0.0772408\pi\)
−0.970702 + 0.240285i \(0.922759\pi\)
\(434\) 19.7990 + 19.7990i 0.950382 + 0.950382i
\(435\) −2.89949 16.8995i −0.139020 0.810269i
\(436\) 12.0000 + 12.0000i 0.574696 + 0.574696i
\(437\) 0 0
\(438\) 0 0
\(439\) 38.0000i 1.81364i 0.421517 + 0.906821i \(0.361498\pi\)
−0.421517 + 0.906821i \(0.638502\pi\)
\(440\) −4.24264 + 4.24264i −0.202260 + 0.202260i
\(441\) 2.82843 1.00000i 0.134687 0.0476190i
\(442\) 5.00000 + 1.00000i 0.237826 + 0.0475651i
\(443\) 19.7990i 0.940678i 0.882486 + 0.470339i \(0.155868\pi\)
−0.882486 + 0.470339i \(0.844132\pi\)
\(444\) −1.24264 7.24264i −0.0589731 0.343721i
\(445\) −10.0000 −0.474045
\(446\) −5.65685 −0.267860
\(447\) −10.2426 + 1.75736i −0.484460 + 0.0831202i
\(448\) 2.00000 2.00000i 0.0944911 0.0944911i
\(449\) 1.41421 1.41421i 0.0667409 0.0667409i −0.672948 0.739689i \(-0.734972\pi\)
0.739689 + 0.672948i \(0.234972\pi\)
\(450\) −2.70711 1.29289i −0.127614 0.0609476i
\(451\) 12.0000 0.565058
\(452\) −7.07107 −0.332595
\(453\) 2.41421 0.414214i 0.113430 0.0194615i
\(454\) 0 0
\(455\) 5.65685 + 8.48528i 0.265197 + 0.397796i
\(456\) 0 0
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) 11.3137i 0.528655i
\(459\) −7.07107 2.00000i −0.330049 0.0933520i
\(460\) 3.00000 3.00000i 0.139876 0.139876i
\(461\) 28.2843 + 28.2843i 1.31733 + 1.31733i 0.915882 + 0.401448i \(0.131493\pi\)
0.401448 + 0.915882i \(0.368507\pi\)
\(462\) −28.9706 + 4.97056i −1.34783 + 0.231252i
\(463\) −16.0000 16.0000i −0.743583 0.743583i 0.229683 0.973266i \(-0.426231\pi\)
−0.973266 + 0.229683i \(0.926231\pi\)
\(464\) 9.89949i 0.459573i
\(465\) 9.89949 14.0000i 0.459078 0.649234i
\(466\) 3.00000 + 3.00000i 0.138972 + 0.138972i
\(467\) −8.48528 −0.392652 −0.196326 0.980539i \(-0.562901\pi\)
−0.196326 + 0.980539i \(0.562901\pi\)
\(468\) 6.48528 8.65685i 0.299782 0.400163i
\(469\) 12.0000 0.554109
\(470\) −4.24264 4.24264i −0.195698 0.195698i
\(471\) 2.00000 2.82843i 0.0921551 0.130327i
\(472\) 12.0000i 0.552345i
\(473\) −16.9706 16.9706i −0.780307 0.780307i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.82843 2.82843i 0.129641 0.129641i
\(477\) −16.0000 + 5.65685i −0.732590 + 0.259010i
\(478\) 16.0000i 0.731823i
\(479\) −25.4558 + 25.4558i −1.16311 + 1.16311i −0.179316 + 0.983792i \(0.557388\pi\)
−0.983792 + 0.179316i \(0.942612\pi\)
\(480\) −1.41421 1.00000i −0.0645497 0.0456435i
\(481\) 15.0000 + 3.00000i 0.683941 + 0.136788i
\(482\) 21.2132i 0.966235i
\(483\) 20.4853 3.51472i 0.932113 0.159925i
\(484\) 25.0000 1.13636
\(485\) 11.3137 0.513729
\(486\) −10.2929 + 11.7071i −0.466895 + 0.531045i
\(487\) −14.0000 + 14.0000i −0.634401 + 0.634401i −0.949169 0.314768i \(-0.898073\pi\)
0.314768 + 0.949169i \(0.398073\pi\)
\(488\) −7.07107 + 7.07107i −0.320092 + 0.320092i
\(489\) −36.2132 + 6.21320i −1.63762 + 0.280971i
\(490\) 1.00000 0.0451754
\(491\) −15.5563 −0.702048 −0.351024 0.936366i \(-0.614166\pi\)
−0.351024 + 0.936366i \(0.614166\pi\)
\(492\) 0.585786 + 3.41421i 0.0264093 + 0.153925i
\(493\) 14.0000i 0.630528i
\(494\) 0 0
\(495\) 6.00000 + 16.9706i 0.269680 + 0.762770i
\(496\) 7.00000 7.00000i 0.314309 0.314309i
\(497\) 11.3137i 0.507489i
\(498\) 16.9706 + 12.0000i 0.760469 + 0.537733i
\(499\) 24.0000 24.0000i 1.07439 1.07439i 0.0773864 0.997001i \(-0.475342\pi\)
0.997001 0.0773864i \(-0.0246575\pi\)
\(500\) −0.707107 0.707107i −0.0316228 0.0316228i
\(501\) 2.34315 + 13.6569i 0.104684 + 0.610143i
\(502\) 5.00000 + 5.00000i 0.223161 + 0.223161i
\(503\) 35.3553i 1.57642i −0.615409 0.788208i \(-0.711009\pi\)
0.615409 0.788208i \(-0.288991\pi\)
\(504\) −2.82843 8.00000i −0.125988 0.356348i
\(505\) 11.0000 + 11.0000i 0.489494 + 0.489494i
\(506\) −25.4558 −1.13165
\(507\) 11.9706 + 19.0711i 0.531631 + 0.846976i
\(508\) −16.0000 −0.709885
\(509\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(510\) −2.00000 1.41421i −0.0885615 0.0626224i
\(511\) 0 0
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 7.00000 + 7.00000i 0.308757 + 0.308757i
\(515\) −5.65685 + 5.65685i −0.249271 + 0.249271i
\(516\) 4.00000 5.65685i 0.176090 0.249029i
\(517\) 36.0000i 1.58328i
\(518\) 8.48528 8.48528i 0.372822 0.372822i
\(519\) −14.1421 + 20.0000i −0.620771 + 0.877903i
\(520\) 3.00000 2.00000i 0.131559 0.0877058i
\(521\) 11.3137i 0.495663i 0.968803 + 0.247831i \(0.0797179\pi\)
−0.968803 + 0.247831i \(0.920282\pi\)
\(522\) −26.7990 12.7990i −1.17296 0.560197i
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) −1.41421 −0.0617802
\(525\) −0.828427 4.82843i −0.0361555 0.210730i
\(526\) 5.00000 5.00000i 0.218010 0.218010i
\(527\) 9.89949 9.89949i 0.431229 0.431229i
\(528\) 1.75736 + 10.2426i 0.0764792 + 0.445754i
\(529\) −5.00000 −0.217391
\(530\) −5.65685 −0.245718
\(531\) −32.4853 15.5147i −1.40974 0.673281i
\(532\) 0 0
\(533\) −7.07107 1.41421i −0.306282 0.0612564i
\(534\) −10.0000 + 14.1421i −0.432742 + 0.611990i
\(535\) 8.00000 8.00000i 0.345870 0.345870i
\(536\) 4.24264i 0.183254i
\(537\) −12.7279 + 18.0000i −0.549250 + 0.776757i
\(538\) −1.00000 + 1.00000i −0.0431131 + 0.0431131i
\(539\) −4.24264 4.24264i −0.182743 0.182743i
\(540\) −4.53553 + 2.53553i −0.195178 + 0.109112i
\(541\) 18.0000 + 18.0000i 0.773880 + 0.773880i 0.978782 0.204902i \(-0.0656876\pi\)
−0.204902 + 0.978782i \(0.565688\pi\)
\(542\) 21.2132i 0.911185i
\(543\) −31.1127 22.0000i −1.33517 0.944110i
\(544\) −1.00000 1.00000i −0.0428746 0.0428746i
\(545\) 16.9706 0.726939
\(546\) 17.6569 + 0.485281i 0.755644 + 0.0207681i
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 11.3137 + 11.3137i 0.483298 + 0.483298i
\(549\) 10.0000 + 28.2843i 0.426790 + 1.20714i
\(550\) 6.00000i 0.255841i
\(551\) 0 0
\(552\) −1.24264 7.24264i −0.0528903 0.308267i
\(553\) 0 0
\(554\) −2.82843 + 2.82843i −0.120168 + 0.120168i
\(555\) −6.00000 4.24264i −0.254686 0.180090i
\(556\) 0 0
\(557\) −1.41421 + 1.41421i −0.0599222 + 0.0599222i −0.736433 0.676511i \(-0.763491\pi\)
0.676511 + 0.736433i \(0.263491\pi\)
\(558\) −9.89949 28.0000i −0.419079 1.18533i
\(559\) 8.00000 + 12.0000i 0.338364 + 0.507546i
\(560\) 2.82843i 0.119523i
\(561\) 2.48528 + 14.4853i 0.104929 + 0.611569i
\(562\) 10.0000 0.421825
\(563\) −2.82843 −0.119204 −0.0596020 0.998222i \(-0.518983\pi\)
−0.0596020 + 0.998222i \(0.518983\pi\)
\(564\) −10.2426 + 1.75736i −0.431293 + 0.0739982i
\(565\) −5.00000 + 5.00000i −0.210352 + 0.210352i
\(566\) −18.3848 + 18.3848i −0.772770 + 0.772770i
\(567\) −25.3137 2.68629i −1.06308 0.112814i
\(568\) 4.00000 0.167836
\(569\) −11.3137 −0.474295 −0.237148 0.971474i \(-0.576213\pi\)
−0.237148 + 0.971474i \(0.576213\pi\)
\(570\) 0 0
\(571\) 4.00000i 0.167395i −0.996491 0.0836974i \(-0.973327\pi\)
0.996491 0.0836974i \(-0.0266729\pi\)
\(572\) −21.2132 4.24264i −0.886969 0.177394i
\(573\) 12.0000 + 8.48528i 0.501307 + 0.354478i
\(574\) −4.00000 + 4.00000i −0.166957 + 0.166957i
\(575\) 4.24264i 0.176930i
\(576\) −2.82843 + 1.00000i −0.117851 + 0.0416667i
\(577\) 4.00000 4.00000i 0.166522 0.166522i −0.618927 0.785449i \(-0.712432\pi\)
0.785449 + 0.618927i \(0.212432\pi\)
\(578\) 10.6066 + 10.6066i 0.441176 + 0.441176i
\(579\) 0 0
\(580\) −7.00000 7.00000i −0.290659 0.290659i
\(581\) 33.9411i 1.40812i
\(582\) 11.3137 16.0000i 0.468968 0.663221i
\(583\) 24.0000 + 24.0000i 0.993978 + 0.993978i
\(584\) 0 0
\(585\) −1.53553 10.7071i −0.0634865 0.442684i
\(586\) 2.00000 0.0826192
\(587\) −2.82843 2.82843i −0.116742 0.116742i 0.646323 0.763064i \(-0.276306\pi\)
−0.763064 + 0.646323i \(0.776306\pi\)
\(588\) 1.00000 1.41421i 0.0412393 0.0583212i
\(589\) 0 0
\(590\) −8.48528 8.48528i −0.349334 0.349334i
\(591\) −3.41421 + 0.585786i −0.140442 + 0.0240960i
\(592\) −3.00000 3.00000i −0.123299 0.123299i
\(593\) 5.65685 5.65685i 0.232299 0.232299i −0.581353 0.813652i \(-0.697476\pi\)
0.813652 + 0.581353i \(0.197476\pi\)
\(594\) 30.0000 + 8.48528i 1.23091 + 0.348155i
\(595\) 4.00000i 0.163984i
\(596\) −4.24264 + 4.24264i −0.173785 + 0.173785i
\(597\) 8.48528 + 6.00000i 0.347279 + 0.245564i
\(598\) 15.0000 + 3.00000i 0.613396 + 0.122679i
\(599\) 16.9706i 0.693398i −0.937976 0.346699i \(-0.887302\pi\)
0.937976 0.346699i \(-0.112698\pi\)
\(600\) −1.70711 + 0.292893i −0.0696923 + 0.0119573i
\(601\) −18.0000 −0.734235 −0.367118 0.930175i \(-0.619655\pi\)
−0.367118 + 0.930175i \(0.619655\pi\)
\(602\) 11.3137 0.461112
\(603\) −11.4853 5.48528i −0.467717 0.223378i
\(604\) 1.00000 1.00000i 0.0406894 0.0406894i
\(605\) 17.6777 17.6777i 0.718699 0.718699i
\(606\) 26.5563 4.55635i 1.07878 0.185089i
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 0 0
\(609\) −8.20101 47.7990i −0.332322 1.93691i
\(610\) 10.0000i 0.404888i
\(611\) 4.24264 21.2132i 0.171639 0.858194i
\(612\) −4.00000 + 1.41421i −0.161690 + 0.0571662i
\(613\) 25.0000 25.0000i 1.00974 1.00974i 0.00978840 0.999952i \(-0.496884\pi\)
0.999952 0.00978840i \(-0.00311579\pi\)
\(614\) 1.41421i 0.0570730i
\(615\) 2.82843 + 2.00000i 0.114053 + 0.0806478i
\(616\) −12.0000 + 12.0000i −0.483494 + 0.483494i
\(617\) 15.5563 + 15.5563i 0.626275 + 0.626275i 0.947129 0.320854i \(-0.103970\pi\)
−0.320854 + 0.947129i \(0.603970\pi\)
\(618\) 2.34315 + 13.6569i 0.0942551 + 0.549359i
\(619\) −14.0000 14.0000i −0.562708 0.562708i 0.367368 0.930076i \(-0.380259\pi\)
−0.930076 + 0.367368i \(0.880259\pi\)
\(620\) 9.89949i 0.397573i
\(621\) −21.2132 6.00000i −0.851257 0.240772i
\(622\) −10.0000 10.0000i −0.400963 0.400963i
\(623\) −28.2843 −1.13319
\(624\) 0.171573 6.24264i 0.00686841 0.249906i
\(625\) −1.00000 −0.0400000
\(626\) 24.0416 + 24.0416i 0.960897 + 0.960897i
\(627\) 0 0
\(628\) 2.00000i 0.0798087i
\(629\) −4.24264 4.24264i −0.169165 0.169165i
\(630\) −7.65685 3.65685i −0.305056 0.145693i
\(631\) 17.0000 + 17.0000i 0.676759 + 0.676759i 0.959265 0.282506i \(-0.0911658\pi\)
−0.282506 + 0.959265i \(0.591166\pi\)
\(632\) 0 0
\(633\) 20.0000 28.2843i 0.794929 1.12420i
\(634\) 18.0000i 0.714871i
\(635\) −11.3137 + 11.3137i −0.448971 + 0.448971i
\(636\) −5.65685 + 8.00000i −0.224309 + 0.317221i
\(637\) 2.00000 + 3.00000i 0.0792429 + 0.118864i
\(638\) 59.3970i 2.35155i
\(639\) 5.17157 10.8284i 0.204584 0.428366i
\(640\) −1.00000 −0.0395285
\(641\) −22.6274 −0.893729 −0.446865 0.894602i \(-0.647459\pi\)
−0.446865 + 0.894602i \(0.647459\pi\)
\(642\) −3.31371 19.3137i −0.130782 0.762251i
\(643\) −11.0000 + 11.0000i −0.433798 + 0.433798i −0.889918 0.456120i \(-0.849239\pi\)
0.456120 + 0.889918i \(0.349239\pi\)
\(644\) 8.48528 8.48528i 0.334367 0.334367i
\(645\) −1.17157 6.82843i −0.0461306 0.268869i
\(646\) 0 0
\(647\) −15.5563 −0.611583 −0.305792 0.952098i \(-0.598921\pi\)
−0.305792 + 0.952098i \(0.598921\pi\)
\(648\) −0.949747 + 8.94975i −0.0373096 + 0.351579i
\(649\) 72.0000i 2.82625i
\(650\) 0.707107 3.53553i 0.0277350 0.138675i
\(651\) 28.0000 39.5980i 1.09741 1.55197i
\(652\) −15.0000 + 15.0000i −0.587445 + 0.587445i
\(653\) 16.9706i 0.664109i −0.943260 0.332055i \(-0.892258\pi\)
0.943260 0.332055i \(-0.107742\pi\)
\(654\) 16.9706 24.0000i 0.663602 0.938474i
\(655\) −1.00000 + 1.00000i −0.0390732 + 0.0390732i
\(656\) 1.41421 + 1.41421i 0.0552158 + 0.0552158i
\(657\) 0 0
\(658\) −12.0000 12.0000i −0.467809 0.467809i
\(659\) 24.0416i 0.936529i 0.883588 + 0.468264i \(0.155121\pi\)
−0.883588 + 0.468264i \(0.844879\pi\)
\(660\) 8.48528 + 6.00000i 0.330289 + 0.233550i
\(661\) 12.0000 + 12.0000i 0.466746 + 0.466746i 0.900859 0.434113i \(-0.142938\pi\)
−0.434113 + 0.900859i \(0.642938\pi\)
\(662\) 8.48528 0.329790
\(663\) 0.242641 8.82843i 0.00942338 0.342868i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −12.0000 + 4.24264i −0.464991 + 0.164399i
\(667\) 42.0000i 1.62625i
\(668\) 5.65685 + 5.65685i 0.218870 + 0.218870i
\(669\) 1.65685 + 9.65685i 0.0640577 + 0.373356i
\(670\) −3.00000 3.00000i −0.115900 0.115900i
\(671\) 42.4264 42.4264i 1.63785 1.63785i
\(672\) −4.00000 2.82843i −0.154303 0.109109i
\(673\) 10.0000i 0.385472i −0.981251 0.192736i \(-0.938264\pi\)
0.981251 0.192736i \(-0.0617360\pi\)
\(674\) −12.7279 + 12.7279i −0.490261 + 0.490261i
\(675\) −1.41421 + 5.00000i −0.0544331 + 0.192450i
\(676\) 12.0000 + 5.00000i 0.461538 + 0.192308i
\(677\) 31.1127i 1.19576i −0.801586 0.597879i \(-0.796010\pi\)
0.801586 0.597879i \(-0.203990\pi\)
\(678\) 2.07107 + 12.0711i 0.0795389 + 0.463587i
\(679\) 32.0000 1.22805
\(680\) −1.41421 −0.0542326
\(681\) 0 0
\(682\) −42.0000 + 42.0000i −1.60826 + 1.60826i
\(683\) −25.4558 + 25.4558i −0.974041 + 0.974041i −0.999671 0.0256307i \(-0.991841\pi\)
0.0256307 + 0.999671i \(0.491841\pi\)
\(684\) 0 0
\(685\) 16.0000 0.611329
\(686\) −16.9706 −0.647939
\(687\) −19.3137 + 3.31371i −0.736864 + 0.126426i
\(688\) 4.00000i 0.152499i
\(689\) −11.3137 16.9706i −0.431018 0.646527i
\(690\) −6.00000 4.24264i −0.228416 0.161515i
\(691\) −22.0000 + 22.0000i −0.836919 + 0.836919i −0.988452 0.151533i \(-0.951579\pi\)
0.151533 + 0.988452i \(0.451579\pi\)
\(692\) 14.1421i 0.537603i
\(693\) 16.9706 + 48.0000i 0.644658 + 1.82337i
\(694\) 4.00000 4.00000i 0.151838 0.151838i
\(695\) 0 0
\(696\) −16.8995 + 2.89949i −0.640574 + 0.109905i
\(697\) 2.00000 + 2.00000i 0.0757554 + 0.0757554i
\(698\) 14.1421i 0.535288i
\(699\) 4.24264 6.00000i 0.160471 0.226941i
\(700\) −2.00000 2.00000i −0.0755929 0.0755929i
\(701\) 4.24264 0.160242 0.0801212 0.996785i \(-0.474469\pi\)
0.0801212 + 0.996785i \(0.474469\pi\)
\(702\) −16.6777 8.53553i −0.629458 0.322153i
\(703\) 0 0
\(704\) 4.24264 + 4.24264i 0.159901 + 0.159901i
\(705\) −6.00000 + 8.48528i −0.225973 + 0.319574i
\(706\) 32.0000i 1.20434i
\(707\) 31.1127 + 31.1127i 1.17011 + 1.17011i
\(708\) −20.4853 + 3.51472i −0.769884 + 0.132091i
\(709\) 36.0000 + 36.0000i 1.35201 + 1.35201i 0.883413 + 0.468596i \(0.155240\pi\)
0.468596 + 0.883413i \(0.344760\pi\)
\(710\) 2.82843 2.82843i 0.106149 0.106149i
\(711\) 0 0
\(712\) 10.0000i 0.374766i
\(713\) 29.6985 29.6985i 1.11222 1.11222i
\(714\) −5.65685 4.00000i −0.211702 0.149696i
\(715\) −18.0000 + 12.0000i −0.673162 + 0.448775i
\(716\) 12.7279i 0.475665i
\(717\) 27.3137 4.68629i 1.02005 0.175013i
\(718\) −20.0000 −0.746393
\(719\) 28.2843 1.05483 0.527413 0.849609i \(-0.323162\pi\)
0.527413 + 0.849609i \(0.323162\pi\)
\(720\) −1.29289 + 2.70711i −0.0481833 + 0.100888i
\(721\) −16.0000 + 16.0000i −0.595871 + 0.595871i
\(722\) 13.4350 13.4350i 0.500000 0.500000i
\(723\) −36.2132 + 6.21320i −1.34678 + 0.231072i
\(724\) −22.0000 −0.817624
\(725\) −9.89949 −0.367658
\(726\) −7.32233 42.6777i −0.271757 1.58392i
\(727\) 12.0000i 0.445055i −0.974926 0.222528i \(-0.928569\pi\)
0.974926 0.222528i \(-0.0714308\pi\)
\(728\) 8.48528 5.65685i 0.314485 0.209657i
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) 0 0
\(731\) 5.65685i 0.209226i
\(732\) 14.1421 + 10.0000i 0.522708 + 0.369611i
\(733\) 33.0000 33.0000i 1.21888 1.21888i 0.250859 0.968024i \(-0.419287\pi\)
0.968024 0.250859i \(-0.0807131\pi\)
\(734\) −19.7990 19.7990i −0.730794 0.730794i
\(735\) −0.292893 1.70711i −0.0108035 0.0629676i
\(736\) −3.00000 3.00000i −0.110581 0.110581i
\(737\) 25.4558i 0.937678i
\(738\) 5.65685 2.00000i 0.208232 0.0736210i
\(739\) −2.00000 2.00000i −0.0735712 0.0735712i 0.669364 0.742935i \(-0.266567\pi\)
−0.742935 + 0.669364i \(0.766567\pi\)
\(740\) −4.24264 −0.155963
\(741\) 0 0
\(742\) −16.0000 −0.587378
\(743\) 4.24264 + 4.24264i 0.155647 + 0.155647i 0.780635 0.624987i \(-0.214896\pi\)
−0.624987 + 0.780635i \(0.714896\pi\)
\(744\) −14.0000 9.89949i −0.513265 0.362933i
\(745\) 6.00000i 0.219823i
\(746\) 16.9706 + 16.9706i 0.621336 + 0.621336i
\(747\) 15.5147 32.4853i 0.567654 1.18857i
\(748\) 6.00000 + 6.00000i 0.219382 + 0.219382i
\(749\) 22.6274 22.6274i 0.826788 0.826788i
\(750\) −1.00000 + 1.41421i −0.0365148 + 0.0516398i
\(751\) 46.0000i 1.67856i −0.543696 0.839282i \(-0.682976\pi\)
0.543696 0.839282i \(-0.317024\pi\)
\(752\) −4.24264 + 4.24264i −0.154713 + 0.154713i
\(753\) 7.07107 10.0000i 0.257684 0.364420i
\(754\) 7.00000 35.0000i 0.254925 1.27462i
\(755\) 1.41421i 0.0514685i
\(756\) −12.8284 + 7.17157i −0.466565 + 0.260828i
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) −8.48528 −0.308199
\(759\) 7.45584 + 43.4558i 0.270630 + 1.57735i
\(760\) 0 0
\(761\) −29.6985 + 29.6985i −1.07657 + 1.07657i −0.0797547 + 0.996815i \(0.525414\pi\)
−0.996815 + 0.0797547i \(0.974586\pi\)
\(762\) 4.68629 + 27.3137i 0.169766 + 0.989471i
\(763\) 48.0000 1.73772
\(764\) 8.48528 0.306987
\(765\) −1.82843 + 3.82843i −0.0661069 + 0.138417i
\(766\) 16.0000i 0.578103i
\(767\) 8.48528 42.4264i 0.306386 1.53193i
\(768\) −1.00000 + 1.41421i −0.0360844 + 0.0510310i
\(769\) 11.0000 11.0000i 0.396670 0.396670i −0.480387 0.877057i \(-0.659504\pi\)
0.877057 + 0.480387i \(0.159504\pi\)
\(770\) 16.9706i 0.611577i
\(771\) 9.89949 14.0000i 0.356522 0.504198i
\(772\) 0 0
\(773\) −7.07107 7.07107i −0.254329 0.254329i 0.568414 0.822743i \(-0.307557\pi\)
−0.822743 + 0.568414i \(0.807557\pi\)
\(774\) −10.8284 5.17157i −0.389220 0.185888i
\(775\) −7.00000 7.00000i −0.251447 0.251447i
\(776\) 11.3137i 0.406138i
\(777\) −16.9706 12.0000i −0.608816 0.430498i
\(778\) −7.00000 7.00000i −0.250962 0.250962i
\(779\) 0 0
\(780\) −4.29289 4.53553i −0.153710 0.162398i
\(781\) −24.0000 −0.858788
\(782\) −4.24264 4.24264i −0.151717 0.151717i
\(783\) −14.0000 + 49.4975i −0.500319 + 1.76890i
\(784\) 1.00000i 0.0357143i
\(785\) −1.41421 1.41421i −0.0504754 0.0504754i
\(786\) 0.414214 + 2.41421i 0.0147745 + 0.0861121i
\(787\) 23.0000 + 23.0000i 0.819861 + 0.819861i 0.986088 0.166226i \(-0.0531582\pi\)
−0.166226 + 0.986088i \(0.553158\pi\)
\(788\) −1.41421 + 1.41421i −0.0503793 + 0.0503793i
\(789\) −10.0000 7.07107i −0.356009 0.251737i
\(790\) 0 0
\(791\) −14.1421 + 14.1421i −0.502836 + 0.502836i
\(792\) 16.9706 6.00000i 0.603023 0.213201i
\(793\) −30.0000 + 20.0000i −1.06533 + 0.710221i
\(794\) 4.24264i 0.150566i
\(795\) 1.65685 + 9.65685i 0.0587626 + 0.342493i
\(796\) 6.00000 0.212664
\(797\) −22.6274 −0.801504 −0.400752 0.916187i \(-0.631251\pi\)
−0.400752 + 0.916187i \(0.631251\pi\)
\(798\) 0 0
\(799\) −6.00000 + 6.00000i −0.212265 + 0.212265i
\(800\) −0.707107 + 0.707107i −0.0250000 + 0.0250000i
\(801\) 27.0711 + 12.9289i 0.956509 + 0.456821i
\(802\) −14.0000 −0.494357
\(803\) 0 0
\(804\) −7.24264 + 1.24264i −0.255428 + 0.0438246i
\(805\) 12.0000i 0.422944i
\(806\) 29.6985 19.7990i 1.04608 0.697390i
\(807\) 2.00000 + 1.41421i 0.0704033 + 0.0497827i
\(808\) 11.0000 11.0000i 0.386979 0.386979i
\(809\) 2.82843i 0.0994422i −0.998763 0.0497211i \(-0.984167\pi\)
0.998763 0.0497211i \(-0.0158332\pi\)
\(810\) 5.65685 + 7.00000i 0.198762 + 0.245955i
\(811\) 4.00000 4.00000i 0.140459 0.140459i −0.633381 0.773840i \(-0.718333\pi\)
0.773840 + 0.633381i \(0.218333\pi\)
\(812\) −19.7990 19.7990i −0.694808 0.694808i
\(813\) 36.2132 6.21320i 1.27005 0.217907i
\(814\) 18.0000 + 18.0000i 0.630900 + 0.630900i
\(815\) 21.2132i 0.743066i
\(816\) −1.41421 + 2.00000i −0.0495074 + 0.0700140i
\(817\) 0 0
\(818\) −1.41421 −0.0494468
\(819\) −4.34315 30.2843i −0.151762 1.05822i
\(820\) 2.00000 0.0698430
\(821\) 7.07107 + 7.07107i 0.246782 + 0.246782i 0.819649 0.572867i \(-0.194169\pi\)
−0.572867 + 0.819649i \(0.694169\pi\)
\(822\) 16.0000 22.6274i 0.558064 0.789222i
\(823\) 36.0000i 1.25488i 0.778664 + 0.627441i \(0.215897\pi\)
−0.778664 + 0.627441i \(0.784103\pi\)
\(824\) 5.65685 + 5.65685i 0.197066 + 0.197066i
\(825\) 10.2426 1.75736i 0.356603 0.0611834i
\(826\) −24.0000 24.0000i −0.835067 0.835067i
\(827\) 33.9411 33.9411i 1.18025 1.18025i 0.200569 0.979680i \(-0.435721\pi\)
0.979680 0.200569i \(-0.0642791\pi\)
\(828\) −12.0000 + 4.24264i −0.417029 + 0.147442i
\(829\) 22.0000i 0.764092i −0.924143 0.382046i \(-0.875220\pi\)
0.924143 0.382046i \(-0.124780\pi\)
\(830\) 8.48528 8.48528i 0.294528 0.294528i
\(831\) 5.65685 + 4.00000i 0.196234 + 0.138758i
\(832\) −2.00000 3.00000i −0.0693375 0.104006i
\(833\) 1.41421i 0.0489996i
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) −44.8995 + 25.1005i −1.55195 + 0.867600i
\(838\) 7.00000 7.00000i 0.241811 0.241811i
\(839\) −25.4558 + 25.4558i −0.878833 + 0.878833i −0.993414 0.114581i \(-0.963448\pi\)
0.114581 + 0.993414i \(0.463448\pi\)
\(840\) −4.82843 + 0.828427i −0.166597 + 0.0285835i
\(841\) −69.0000 −2.37931
\(842\) −25.4558 −0.877266
\(843\) −2.92893 17.0711i −0.100878 0.587959i
\(844\) 20.0000i 0.688428i
\(845\) 12.0208 4.94975i 0.413529 0.170276i
\(846\) 6.00000 + 16.9706i 0.206284 + 0.583460i
\(847\) 50.0000 50.0000i 1.71802 1.71802i
\(848\) 5.65685i 0.194257i
\(849\) 36.7696 + 26.0000i 1.26193 + 0.892318i
\(850\) −1.00000 + 1.00000i −0.0342997 + 0.0342997i
\(851\) −12.7279 12.7279i −0.436308 0.436308i
\(852\) −1.17157 6.82843i −0.0401374 0.233938i
\(853\) −15.0000 15.0000i −0.513590 0.513590i 0.402034 0.915625i \(-0.368303\pi\)
−0.915625 + 0.402034i \(0.868303\pi\)
\(854\) 28.2843i 0.967868i
\(855\) 0 0
\(856\) −8.00000 8.00000i −0.273434 0.273434i
\(857\) 41.0122 1.40095 0.700475 0.713677i \(-0.252972\pi\)
0.700475 + 0.713677i \(0.252972\pi\)
\(858\) −1.02944 + 37.4558i −0.0351444 + 1.27872i
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) −2.82843 2.82843i −0.0964486 0.0964486i
\(861\) 8.00000 + 5.65685i 0.272639 + 0.192785i
\(862\) 36.0000i 1.22616i
\(863\) −39.5980 39.5980i −1.34793 1.34793i −0.887906 0.460025i \(-0.847840\pi\)
−0.460025 0.887906i \(-0.652160\pi\)
\(864\) 2.53553 + 4.53553i 0.0862606 + 0.154302i
\(865\) 10.0000 + 10.0000i 0.340010 + 0.340010i
\(866\) 7.07107 7.07107i 0.240285 0.240285i
\(867\) 15.0000 21.2132i 0.509427 0.720438i
\(868\) 28.0000i 0.950382i
\(869\) 0 0
\(870\) −9.89949 + 14.0000i −0.335624 + 0.474644i
\(871\) 3.00000 15.0000i 0.101651 0.508256i
\(872\) 16.9706i 0.574696i
\(873\) −30.6274 14.6274i −1.03658 0.495063i
\(874\) 0 0
\(875\) −2.82843 −0.0956183
\(876\) 0 0
\(877\) 11.0000 11.0000i 0.371444 0.371444i −0.496559 0.868003i \(-0.665403\pi\)
0.868003 + 0.496559i \(0.165403\pi\)
\(878\) 26.8701 26.8701i 0.906821 0.906821i
\(879\) −0.585786 3.41421i −0.0197581 0.115159i
\(880\) 6.00000 0.202260
\(881\) 5.65685 0.190584 0.0952921 0.995449i \(-0.469621\pi\)
0.0952921 + 0.995449i \(0.469621\pi\)
\(882\) −2.70711 1.29289i −0.0911530 0.0435340i
\(883\) 4.00000i 0.134611i 0.997732 + 0.0673054i \(0.0214402\pi\)
−0.997732 + 0.0673054i \(0.978560\pi\)
\(884\) −2.82843 4.24264i −0.0951303 0.142695i
\(885\) −12.0000 + 16.9706i −0.403376 + 0.570459i
\(886\) 14.0000 14.0000i 0.470339 0.470339i
\(887\) 32.5269i 1.09215i 0.837737 + 0.546073i \(0.183878\pi\)
−0.837737 + 0.546073i \(0.816122\pi\)
\(888\) −4.24264 + 6.00000i −0.142374 + 0.201347i
\(889\) −32.0000 + 32.0000i −1.07325 + 1.07325i
\(890\) 7.07107 + 7.07107i 0.237023 + 0.237023i
\(891\) 5.69848 53.6985i 0.190906 1.79897i
\(892\) 4.00000 + 4.00000i 0.133930 + 0.133930i
\(893\) 0 0
\(894\) 8.48528 + 6.00000i 0.283790 + 0.200670i
\(895\) 9.00000 + 9.00000i 0.300837 + 0.300837i
\(896\) −2.82843 −0.0944911
\(897\) 0.727922 26.4853i 0.0243046 0.884318i
\(898\) −2.00000 −0.0667409
\(899\) −69.2965 69.2965i −2.31117 2.31117i
\(900\) 1.00000 + 2.82843i 0.0333333 + 0.0942809i
\(901\) 8.00000i 0.266519i
\(902\) −8.48528 8.48528i −0.282529 0.282529i
\(903\) −3.31371 19.3137i −0.110273 0.642720i
\(904\) 5.00000 + 5.00000i 0.166298 + 0.166298i
\(905\) −15.5563 + 15.5563i −0.517111 + 0.517111i
\(906\) −2.00000 1.41421i −0.0664455 0.0469841i
\(907\) 14.0000i 0.464862i 0.972613 + 0.232431i \(0.0746680\pi\)
−0.972613 + 0.232431i \(0.925332\pi\)
\(908\) 0 0
\(909\) −15.5563 44.0000i −0.515972 1.45939i
\(910\) 2.00000 10.0000i 0.0662994 0.331497i
\(911\) 5.65685i 0.187420i 0.995600 + 0.0937100i \(0.0298726\pi\)
−0.995600 + 0.0937100i \(0.970127\pi\)
\(912\) 0 0
\(913\) −72.0000 −2.38285
\(914\) 0 0
\(915\) 17.0711 2.92893i 0.564352 0.0968275i
\(916\) −8.00000 + 8.00000i −0.264327 + 0.264327i
\(917\) −2.82843 + 2.82843i −0.0934029 + 0.0934029i
\(918\) 3.58579 + 6.41421i 0.118349 + 0.211701i
\(919\) −22.0000 −0.725713 −0.362857 0.931845i \(-0.618198\pi\)
−0.362857 + 0.931845i \(0.618198\pi\)
\(920\) −4.24264 −0.139876
\(921\) −2.41421 + 0.414214i −0.0795510 + 0.0136488i
\(922\) 40.0000i 1.31733i
\(923\) 14.1421 + 2.82843i 0.465494 + 0.0930988i
\(924\) 24.0000 + 16.9706i 0.789542 + 0.558291i
\(925\) −3.00000 + 3.00000i −0.0986394 + 0.0986394i
\(926\) 22.6274i 0.743583i
\(927\) 22.6274 8.00000i 0.743182 0.262754i
\(928\) −7.00000 + 7.00000i −0.229786 + 0.229786i
\(929\) −18.3848 18.3848i −0.603185 0.603185i 0.337971 0.941156i \(-0.390259\pi\)
−0.941156 + 0.337971i \(0.890259\pi\)
\(930\) −16.8995 + 2.89949i −0.554156 + 0.0950782i
\(931\) 0 0
\(932\) 4.24264i 0.138972i
\(933\) −14.1421 + 20.0000i −0.462993 + 0.654771i
\(934\) 6.00000 + 6.00000i 0.196326 + 0.196326i
\(935\) 8.48528 0.277498
\(936\) −10.7071 + 1.53553i −0.349973 + 0.0501905i
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) −8.48528 8.48528i −0.277054 0.277054i
\(939\) 34.0000 48.0833i 1.10955 1.56914i
\(940\) 6.00000i 0.195698i
\(941\) 8.48528 + 8.48528i 0.276612 + 0.276612i 0.831755 0.555143i \(-0.187336\pi\)
−0.555143 + 0.831755i \(0.687336\pi\)
\(942\) −3.41421 + 0.585786i −0.111241 + 0.0190860i
\(943\) 6.00000 + 6.00000i 0.195387 + 0.195387i
\(944\) −8.48528 + 8.48528i −0.276172 + 0.276172i
\(945\) −4.00000 + 14.1421i −0.130120 + 0.460044i
\(946\) 24.0000i 0.780307i
\(947\) −2.82843 + 2.82843i −0.0919115 + 0.0919115i −0.751568 0.659656i \(-0.770702\pi\)
0.659656 + 0.751568i \(0.270702\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 30.7279 5.27208i 0.996421 0.170959i
\(952\) −4.00000 −0.129641
\(953\) 55.1543 1.78662 0.893312 0.449437i \(-0.148375\pi\)
0.893312 + 0.449437i \(0.148375\pi\)
\(954\) 15.3137 + 7.31371i 0.495800 + 0.236790i
\(955\) 6.00000 6.00000i 0.194155 0.194155i
\(956\) 11.3137 11.3137i 0.365911 0.365911i
\(957\) 101.397 17.3970i 3.27770 0.562364i
\(958\) 36.0000 1.16311
\(959\) 45.2548 1.46135
\(960\) 0.292893 + 1.70711i 0.00945309 + 0.0550966i
\(961\) 67.0000i 2.16129i
\(962\) −8.48528 12.7279i −0.273576 0.410365i
\(963\) −32.0000 + 11.3137i −1.03119 + 0.364579i
\(964\) −15.0000 + 15.0000i −0.483117 + 0.483117i
\(965\) 0 0
\(966\) −16.9706 12.0000i −0.546019 0.386094i
\(967\) 22.0000 22.0000i 0.707472 0.707472i −0.258531 0.966003i \(-0.583238\pi\)
0.966003 + 0.258531i \(0.0832383\pi\)
\(968\) −17.6777 17.6777i −0.568182 0.568182i
\(969\) 0 0
\(970\) −8.00000 8.00000i −0.256865 0.256865i
\(971\) 55.1543i 1.76999i 0.465604 + 0.884993i \(0.345837\pi\)
−0.465604 + 0.884993i \(0.654163\pi\)
\(972\) 15.5563 1.00000i 0.498970 0.0320750i
\(973\) 0 0
\(974\) 19.7990 0.634401
\(975\) −6.24264 0.171573i −0.199925 0.00549473i
\(976\) 10.0000 0.320092
\(977\) 16.9706 + 16.9706i 0.542936 + 0.542936i 0.924389 0.381452i \(-0.124576\pi\)
−0.381452 + 0.924389i \(0.624576\pi\)
\(978\) 30.0000 + 21.2132i 0.959294 + 0.678323i
\(979\) 60.0000i 1.91761i
\(980\) −0.707107 0.707107i −0.0225877 0.0225877i
\(981\) −45.9411 21.9411i −1.46679 0.700526i
\(982\) 11.0000 + 11.0000i 0.351024 + 0.351024i
\(983\) −21.2132 + 21.2132i −0.676596 + 0.676596i −0.959228 0.282632i \(-0.908792\pi\)
0.282632 + 0.959228i \(0.408792\pi\)
\(984\) 2.00000 2.82843i 0.0637577 0.0901670i
\(985\) 2.00000i 0.0637253i
\(986\) −9.89949 + 9.89949i −0.315264 + 0.315264i
\(987\) −16.9706 + 24.0000i −0.540179 + 0.763928i
\(988\) 0 0
\(989\) 16.9706i 0.539633i
\(990\) 7.75736 16.2426i 0.246545 0.516225i
\(991\) −18.0000 −0.571789 −0.285894 0.958261i \(-0.592291\pi\)
−0.285894 + 0.958261i \(0.592291\pi\)
\(992\) −9.89949 −0.314309
\(993\) −2.48528 14.4853i −0.0788680 0.459677i
\(994\) 8.00000 8.00000i 0.253745 0.253745i
\(995\) 4.24264 4.24264i 0.134501 0.134501i
\(996\) −3.51472 20.4853i −0.111368 0.649101i
\(997\) 42.0000 1.33015 0.665077 0.746775i \(-0.268399\pi\)
0.665077 + 0.746775i \(0.268399\pi\)
\(998\) −33.9411 −1.07439
\(999\) 10.7574 + 19.2426i 0.340348 + 0.608810i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.p.c.161.1 4
3.2 odd 2 inner 390.2.p.c.161.2 yes 4
13.8 odd 4 inner 390.2.p.c.281.2 yes 4
39.8 even 4 inner 390.2.p.c.281.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.p.c.161.1 4 1.1 even 1 trivial
390.2.p.c.161.2 yes 4 3.2 odd 2 inner
390.2.p.c.281.1 yes 4 39.8 even 4 inner
390.2.p.c.281.2 yes 4 13.8 odd 4 inner