Properties

Label 390.2.p
Level $390$
Weight $2$
Character orbit 390.p
Rep. character $\chi_{390}(161,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $32$
Newform subspaces $7$
Sturm bound $168$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 7 \)
Sturm bound: \(168\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(390, [\chi])\).

Total New Old
Modular forms 184 32 152
Cusp forms 152 32 120
Eisenstein series 32 0 32

Trace form

\( 32 q + 24 q^{7} - 8 q^{15} - 32 q^{16} - 16 q^{18} + 24 q^{19} + 8 q^{21} + 48 q^{27} - 24 q^{28} - 16 q^{31} - 8 q^{33} - 8 q^{34} - 40 q^{37} - 8 q^{39} - 48 q^{42} + 16 q^{45} + 8 q^{46} - 24 q^{52}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(390, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
390.2.p.a 390.p 39.f $4$ $3.114$ \(\Q(\zeta_{8})\) None 390.2.p.a \(0\) \(-4\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}+(-1+\zeta_{8}+\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.b 390.p 39.f $4$ $3.114$ \(\Q(\zeta_{8})\) None 390.2.p.b \(0\) \(-4\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}+(-1-\zeta_{8}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.c 390.p 39.f $4$ $3.114$ \(\Q(\zeta_{8})\) None 390.2.p.c \(0\) \(-4\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}+(-1-\zeta_{8}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.d 390.p 39.f $4$ $3.114$ \(\Q(\zeta_{8})\) None 390.2.p.d \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}+(1+\zeta_{8}+\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.e 390.p 39.f $4$ $3.114$ \(\Q(\zeta_{8})\) None 390.2.p.e \(0\) \(4\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}+(1+\zeta_{8}^{2}+\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.f 390.p 39.f $4$ $3.114$ \(\Q(\zeta_{8})\) None 390.2.p.e \(0\) \(4\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}+(1+\zeta_{8}-\zeta_{8}^{2})q^{3}+\zeta_{8}^{2}q^{4}+\cdots\)
390.2.p.g 390.p 39.f $8$ $3.114$ 8.0.40960000.1 None 390.2.p.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{7}q^{2}-\beta _{6}q^{3}-\beta _{2}q^{4}-\beta _{7}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(390, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(390, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)