# Properties

 Label 390.2.l.c.287.3 Level $390$ Weight $2$ Character 390.287 Analytic conductor $3.114$ Analytic rank $0$ Dimension $20$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$390 = 2 \cdot 3 \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 390.l (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.11416567883$$ Analytic rank: $$0$$ Dimension: $$20$$ Relative dimension: $$10$$ over $$\Q(i)$$ Coefficient field: $$\mathbb{Q}[x]/(x^{20} + \cdots)$$ Defining polynomial: $$x^{20} + 2 x^{18} - 12 x^{17} + 6 x^{16} - 24 x^{15} + 72 x^{14} - 112 x^{13} + 189 x^{12} - 356 x^{11} + 908 x^{10} - 1068 x^{9} + 1701 x^{8} - 3024 x^{7} + 5832 x^{6} - 5832 x^{5} + \cdots + 59049$$ x^20 + 2*x^18 - 12*x^17 + 6*x^16 - 24*x^15 + 72*x^14 - 112*x^13 + 189*x^12 - 356*x^11 + 908*x^10 - 1068*x^9 + 1701*x^8 - 3024*x^7 + 5832*x^6 - 5832*x^5 + 4374*x^4 - 26244*x^3 + 13122*x^2 + 59049 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2^{4}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 287.3 Root $$-0.807075 - 1.53252i$$ of defining polynomial Character $$\chi$$ $$=$$ 390.287 Dual form 390.2.l.c.53.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.707107 + 0.707107i) q^{2} +(-0.807075 - 1.53252i) q^{3} -1.00000i q^{4} +(-2.02552 - 0.947239i) q^{5} +(1.65435 + 0.512970i) q^{6} +(-1.59729 - 1.59729i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-1.69726 + 2.47372i) q^{9} +O(q^{10})$$ $$q+(-0.707107 + 0.707107i) q^{2} +(-0.807075 - 1.53252i) q^{3} -1.00000i q^{4} +(-2.02552 - 0.947239i) q^{5} +(1.65435 + 0.512970i) q^{6} +(-1.59729 - 1.59729i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-1.69726 + 2.47372i) q^{9} +(2.10206 - 0.762461i) q^{10} +2.58997i q^{11} +(-1.53252 + 0.807075i) q^{12} +(0.707107 - 0.707107i) q^{13} +2.25891 q^{14} +(0.183080 + 3.86865i) q^{15} -1.00000 q^{16} +(-0.155426 + 0.155426i) q^{17} +(-0.549041 - 2.94933i) q^{18} +6.77461i q^{19} +(-0.947239 + 2.02552i) q^{20} +(-1.15876 + 3.73703i) q^{21} +(-1.83139 - 1.83139i) q^{22} +(1.81338 + 1.81338i) q^{23} +(0.512970 - 1.65435i) q^{24} +(3.20547 + 3.83731i) q^{25} +1.00000i q^{26} +(5.16086 + 0.604615i) q^{27} +(-1.59729 + 1.59729i) q^{28} -0.890831 q^{29} +(-2.86501 - 2.60609i) q^{30} -9.39662 q^{31} +(0.707107 - 0.707107i) q^{32} +(3.96919 - 2.09030i) q^{33} -0.219806i q^{34} +(1.72233 + 4.74837i) q^{35} +(2.47372 + 1.69726i) q^{36} +(-2.88699 - 2.88699i) q^{37} +(-4.79037 - 4.79037i) q^{38} +(-1.65435 - 0.512970i) q^{39} +(-0.762461 - 2.10206i) q^{40} +2.11082i q^{41} +(-1.82311 - 3.46184i) q^{42} +(-4.38869 + 4.38869i) q^{43} +2.58997 q^{44} +(5.78105 - 3.40287i) q^{45} -2.56451 q^{46} +(-3.71800 + 3.71800i) q^{47} +(0.807075 + 1.53252i) q^{48} -1.89731i q^{49} +(-4.98000 - 0.446773i) q^{50} +(0.363635 + 0.112754i) q^{51} +(-0.707107 - 0.707107i) q^{52} +(-2.24202 - 2.24202i) q^{53} +(-4.07680 + 3.22175i) q^{54} +(2.45332 - 5.24604i) q^{55} -2.25891i q^{56} +(10.3823 - 5.46761i) q^{57} +(0.629912 - 0.629912i) q^{58} +2.75114 q^{59} +(3.86865 - 0.183080i) q^{60} -2.28989 q^{61} +(6.64441 - 6.64441i) q^{62} +(6.66228 - 1.24024i) q^{63} +1.00000i q^{64} +(-2.10206 + 0.762461i) q^{65} +(-1.32858 + 4.28471i) q^{66} +(-10.9926 - 10.9926i) q^{67} +(0.155426 + 0.155426i) q^{68} +(1.31552 - 4.24259i) q^{69} +(-4.57548 - 2.13973i) q^{70} +9.60806i q^{71} +(-2.94933 + 0.549041i) q^{72} +(-1.65186 + 1.65186i) q^{73} +4.08282 q^{74} +(3.29371 - 8.00946i) q^{75} +6.77461 q^{76} +(4.13694 - 4.13694i) q^{77} +(1.53252 - 0.807075i) q^{78} +12.1165i q^{79} +(2.02552 + 0.947239i) q^{80} +(-3.23861 - 8.39711i) q^{81} +(-1.49257 - 1.49257i) q^{82} +(-5.93928 - 5.93928i) q^{83} +(3.73703 + 1.15876i) q^{84} +(0.462045 - 0.167593i) q^{85} -6.20654i q^{86} +(0.718967 + 1.36522i) q^{87} +(-1.83139 + 1.83139i) q^{88} +6.43585 q^{89} +(-1.68163 + 6.49401i) q^{90} -2.25891 q^{91} +(1.81338 - 1.81338i) q^{92} +(7.58377 + 14.4005i) q^{93} -5.25805i q^{94} +(6.41718 - 13.7221i) q^{95} +(-1.65435 - 0.512970i) q^{96} +(8.84860 + 8.84860i) q^{97} +(1.34160 + 1.34160i) q^{98} +(-6.40687 - 4.39585i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$20 q - 4 q^{7} - 4 q^{9}+O(q^{10})$$ 20 * q - 4 * q^7 - 4 * q^9 $$20 q - 4 q^{7} - 4 q^{9} - 8 q^{10} - 4 q^{12} + 16 q^{14} + 4 q^{15} - 20 q^{16} - 12 q^{17} + 8 q^{18} - 16 q^{21} + 4 q^{22} - 16 q^{23} - 4 q^{24} + 32 q^{25} + 36 q^{27} - 4 q^{28} + 24 q^{29} - 4 q^{30} - 8 q^{31} + 36 q^{33} + 20 q^{35} - 4 q^{36} - 16 q^{37} - 24 q^{38} - 8 q^{40} + 4 q^{42} - 20 q^{43} - 16 q^{44} + 24 q^{45} - 40 q^{46} - 16 q^{47} + 12 q^{51} - 32 q^{53} - 28 q^{54} - 4 q^{55} + 16 q^{57} + 28 q^{58} - 16 q^{60} + 24 q^{61} - 40 q^{62} + 36 q^{63} + 8 q^{65} + 12 q^{68} - 72 q^{69} + 20 q^{70} + 8 q^{72} + 28 q^{73} + 48 q^{74} - 52 q^{75} + 16 q^{76} - 8 q^{77} + 4 q^{78} - 16 q^{81} - 112 q^{83} - 8 q^{85} + 4 q^{87} + 4 q^{88} + 88 q^{89} - 4 q^{90} - 16 q^{91} - 16 q^{92} + 40 q^{93} + 8 q^{95} + 36 q^{97} - 40 q^{99}+O(q^{100})$$ 20 * q - 4 * q^7 - 4 * q^9 - 8 * q^10 - 4 * q^12 + 16 * q^14 + 4 * q^15 - 20 * q^16 - 12 * q^17 + 8 * q^18 - 16 * q^21 + 4 * q^22 - 16 * q^23 - 4 * q^24 + 32 * q^25 + 36 * q^27 - 4 * q^28 + 24 * q^29 - 4 * q^30 - 8 * q^31 + 36 * q^33 + 20 * q^35 - 4 * q^36 - 16 * q^37 - 24 * q^38 - 8 * q^40 + 4 * q^42 - 20 * q^43 - 16 * q^44 + 24 * q^45 - 40 * q^46 - 16 * q^47 + 12 * q^51 - 32 * q^53 - 28 * q^54 - 4 * q^55 + 16 * q^57 + 28 * q^58 - 16 * q^60 + 24 * q^61 - 40 * q^62 + 36 * q^63 + 8 * q^65 + 12 * q^68 - 72 * q^69 + 20 * q^70 + 8 * q^72 + 28 * q^73 + 48 * q^74 - 52 * q^75 + 16 * q^76 - 8 * q^77 + 4 * q^78 - 16 * q^81 - 112 * q^83 - 8 * q^85 + 4 * q^87 + 4 * q^88 + 88 * q^89 - 4 * q^90 - 16 * q^91 - 16 * q^92 + 40 * q^93 + 8 * q^95 + 36 * q^97 - 40 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/390\mathbb{Z}\right)^\times$$.

 $$n$$ $$131$$ $$157$$ $$301$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{1}{4}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.707107 + 0.707107i −0.500000 + 0.500000i
$$3$$ −0.807075 1.53252i −0.465965 0.884803i
$$4$$ 1.00000i 0.500000i
$$5$$ −2.02552 0.947239i −0.905841 0.423618i
$$6$$ 1.65435 + 0.512970i 0.675384 + 0.209419i
$$7$$ −1.59729 1.59729i −0.603720 0.603720i 0.337578 0.941298i $$-0.390392\pi$$
−0.941298 + 0.337578i $$0.890392\pi$$
$$8$$ 0.707107 + 0.707107i 0.250000 + 0.250000i
$$9$$ −1.69726 + 2.47372i −0.565754 + 0.824574i
$$10$$ 2.10206 0.762461i 0.664730 0.241111i
$$11$$ 2.58997i 0.780905i 0.920623 + 0.390453i $$0.127681\pi$$
−0.920623 + 0.390453i $$0.872319\pi$$
$$12$$ −1.53252 + 0.807075i −0.442402 + 0.232982i
$$13$$ 0.707107 0.707107i 0.196116 0.196116i
$$14$$ 2.25891 0.603720
$$15$$ 0.183080 + 3.86865i 0.0472710 + 0.998882i
$$16$$ −1.00000 −0.250000
$$17$$ −0.155426 + 0.155426i −0.0376964 + 0.0376964i −0.725704 0.688007i $$-0.758486\pi$$
0.688007 + 0.725704i $$0.258486\pi$$
$$18$$ −0.549041 2.94933i −0.129410 0.695164i
$$19$$ 6.77461i 1.55420i 0.629376 + 0.777101i $$0.283311\pi$$
−0.629376 + 0.777101i $$0.716689\pi$$
$$20$$ −0.947239 + 2.02552i −0.211809 + 0.452920i
$$21$$ −1.15876 + 3.73703i −0.252861 + 0.815486i
$$22$$ −1.83139 1.83139i −0.390453 0.390453i
$$23$$ 1.81338 + 1.81338i 0.378116 + 0.378116i 0.870422 0.492306i $$-0.163846\pi$$
−0.492306 + 0.870422i $$0.663846\pi$$
$$24$$ 0.512970 1.65435i 0.104710 0.337692i
$$25$$ 3.20547 + 3.83731i 0.641095 + 0.767462i
$$26$$ 1.00000i 0.196116i
$$27$$ 5.16086 + 0.604615i 0.993207 + 0.116358i
$$28$$ −1.59729 + 1.59729i −0.301860 + 0.301860i
$$29$$ −0.890831 −0.165423 −0.0827115 0.996574i $$-0.526358\pi$$
−0.0827115 + 0.996574i $$0.526358\pi$$
$$30$$ −2.86501 2.60609i −0.523077 0.475806i
$$31$$ −9.39662 −1.68768 −0.843841 0.536593i $$-0.819711\pi$$
−0.843841 + 0.536593i $$0.819711\pi$$
$$32$$ 0.707107 0.707107i 0.125000 0.125000i
$$33$$ 3.96919 2.09030i 0.690947 0.363874i
$$34$$ 0.219806i 0.0376964i
$$35$$ 1.72233 + 4.74837i 0.291127 + 0.802621i
$$36$$ 2.47372 + 1.69726i 0.412287 + 0.282877i
$$37$$ −2.88699 2.88699i −0.474618 0.474618i 0.428788 0.903405i $$-0.358941\pi$$
−0.903405 + 0.428788i $$0.858941\pi$$
$$38$$ −4.79037 4.79037i −0.777101 0.777101i
$$39$$ −1.65435 0.512970i −0.264907 0.0821410i
$$40$$ −0.762461 2.10206i −0.120556 0.332365i
$$41$$ 2.11082i 0.329654i 0.986322 + 0.164827i $$0.0527067\pi$$
−0.986322 + 0.164827i $$0.947293\pi$$
$$42$$ −1.82311 3.46184i −0.281312 0.534174i
$$43$$ −4.38869 + 4.38869i −0.669269 + 0.669269i −0.957547 0.288278i $$-0.906917\pi$$
0.288278 + 0.957547i $$0.406917\pi$$
$$44$$ 2.58997 0.390453
$$45$$ 5.78105 3.40287i 0.861788 0.507269i
$$46$$ −2.56451 −0.378116
$$47$$ −3.71800 + 3.71800i −0.542326 + 0.542326i −0.924210 0.381884i $$-0.875275\pi$$
0.381884 + 0.924210i $$0.375275\pi$$
$$48$$ 0.807075 + 1.53252i 0.116491 + 0.221201i
$$49$$ 1.89731i 0.271044i
$$50$$ −4.98000 0.446773i −0.704278 0.0631833i
$$51$$ 0.363635 + 0.112754i 0.0509191 + 0.0157887i
$$52$$ −0.707107 0.707107i −0.0980581 0.0980581i
$$53$$ −2.24202 2.24202i −0.307965 0.307965i 0.536155 0.844120i $$-0.319876\pi$$
−0.844120 + 0.536155i $$0.819876\pi$$
$$54$$ −4.07680 + 3.22175i −0.554783 + 0.438425i
$$55$$ 2.45332 5.24604i 0.330806 0.707376i
$$56$$ 2.25891i 0.301860i
$$57$$ 10.3823 5.46761i 1.37516 0.724203i
$$58$$ 0.629912 0.629912i 0.0827115 0.0827115i
$$59$$ 2.75114 0.358169 0.179084 0.983834i $$-0.442687\pi$$
0.179084 + 0.983834i $$0.442687\pi$$
$$60$$ 3.86865 0.183080i 0.499441 0.0236355i
$$61$$ −2.28989 −0.293191 −0.146595 0.989197i $$-0.546831\pi$$
−0.146595 + 0.989197i $$0.546831\pi$$
$$62$$ 6.64441 6.64441i 0.843841 0.843841i
$$63$$ 6.66228 1.24024i 0.839369 0.156255i
$$64$$ 1.00000i 0.125000i
$$65$$ −2.10206 + 0.762461i −0.260728 + 0.0945716i
$$66$$ −1.32858 + 4.28471i −0.163537 + 0.527411i
$$67$$ −10.9926 10.9926i −1.34295 1.34295i −0.893104 0.449850i $$-0.851477\pi$$
−0.449850 0.893104i $$-0.648523\pi$$
$$68$$ 0.155426 + 0.155426i 0.0188482 + 0.0188482i
$$69$$ 1.31552 4.24259i 0.158370 0.510747i
$$70$$ −4.57548 2.13973i −0.546874 0.255747i
$$71$$ 9.60806i 1.14027i 0.821552 + 0.570134i $$0.193109\pi$$
−0.821552 + 0.570134i $$0.806891\pi$$
$$72$$ −2.94933 + 0.549041i −0.347582 + 0.0647052i
$$73$$ −1.65186 + 1.65186i −0.193336 + 0.193336i −0.797136 0.603800i $$-0.793653\pi$$
0.603800 + 0.797136i $$0.293653\pi$$
$$74$$ 4.08282 0.474618
$$75$$ 3.29371 8.00946i 0.380325 0.924853i
$$76$$ 6.77461 0.777101
$$77$$ 4.13694 4.13694i 0.471448 0.471448i
$$78$$ 1.53252 0.807075i 0.173524 0.0913832i
$$79$$ 12.1165i 1.36321i 0.731721 + 0.681605i $$0.238718\pi$$
−0.731721 + 0.681605i $$0.761282\pi$$
$$80$$ 2.02552 + 0.947239i 0.226460 + 0.105905i
$$81$$ −3.23861 8.39711i −0.359846 0.933012i
$$82$$ −1.49257 1.49257i −0.164827 0.164827i
$$83$$ −5.93928 5.93928i −0.651921 0.651921i 0.301534 0.953455i $$-0.402501\pi$$
−0.953455 + 0.301534i $$0.902501\pi$$
$$84$$ 3.73703 + 1.15876i 0.407743 + 0.126431i
$$85$$ 0.462045 0.167593i 0.0501158 0.0181780i
$$86$$ 6.20654i 0.669269i
$$87$$ 0.718967 + 1.36522i 0.0770813 + 0.146367i
$$88$$ −1.83139 + 1.83139i −0.195226 + 0.195226i
$$89$$ 6.43585 0.682199 0.341099 0.940027i $$-0.389201\pi$$
0.341099 + 0.940027i $$0.389201\pi$$
$$90$$ −1.68163 + 6.49401i −0.177259 + 0.684528i
$$91$$ −2.25891 −0.236798
$$92$$ 1.81338 1.81338i 0.189058 0.189058i
$$93$$ 7.58377 + 14.4005i 0.786400 + 1.49327i
$$94$$ 5.25805i 0.542326i
$$95$$ 6.41718 13.7221i 0.658388 1.40786i
$$96$$ −1.65435 0.512970i −0.168846 0.0523548i
$$97$$ 8.84860 + 8.84860i 0.898439 + 0.898439i 0.995298 0.0968592i $$-0.0308796\pi$$
−0.0968592 + 0.995298i $$0.530880\pi$$
$$98$$ 1.34160 + 1.34160i 0.135522 + 0.135522i
$$99$$ −6.40687 4.39585i −0.643914 0.441800i
$$100$$ 3.83731 3.20547i 0.383731 0.320547i
$$101$$ 16.1955i 1.61151i −0.592246 0.805757i $$-0.701759\pi$$
0.592246 0.805757i $$-0.298241\pi$$
$$102$$ −0.336858 + 0.177400i −0.0333539 + 0.0175652i
$$103$$ 11.4202 11.4202i 1.12526 1.12526i 0.134326 0.990937i $$-0.457113\pi$$
0.990937 0.134326i $$-0.0428869\pi$$
$$104$$ 1.00000 0.0980581
$$105$$ 5.88694 6.47181i 0.574507 0.631584i
$$106$$ 3.17070 0.307965
$$107$$ −10.0756 + 10.0756i −0.974043 + 0.974043i −0.999672 0.0256290i $$-0.991841\pi$$
0.0256290 + 0.999672i $$0.491841\pi$$
$$108$$ 0.604615 5.16086i 0.0581791 0.496604i
$$109$$ 9.17905i 0.879194i 0.898195 + 0.439597i $$0.144879\pi$$
−0.898195 + 0.439597i $$0.855121\pi$$
$$110$$ 1.97475 + 5.44427i 0.188285 + 0.519091i
$$111$$ −2.09436 + 6.75439i −0.198788 + 0.641098i
$$112$$ 1.59729 + 1.59729i 0.150930 + 0.150930i
$$113$$ 7.84170 + 7.84170i 0.737685 + 0.737685i 0.972130 0.234444i $$-0.0753271\pi$$
−0.234444 + 0.972130i $$0.575327\pi$$
$$114$$ −3.47517 + 11.2075i −0.325480 + 1.04968i
$$115$$ −1.95534 5.39075i −0.182336 0.502690i
$$116$$ 0.890831i 0.0827115i
$$117$$ 0.549041 + 2.94933i 0.0507589 + 0.272666i
$$118$$ −1.94535 + 1.94535i −0.179084 + 0.179084i
$$119$$ 0.496523 0.0455161
$$120$$ −2.60609 + 2.86501i −0.237903 + 0.261538i
$$121$$ 4.29206 0.390187
$$122$$ 1.61920 1.61920i 0.146595 0.146595i
$$123$$ 3.23488 1.70359i 0.291679 0.153607i
$$124$$ 9.39662i 0.843841i
$$125$$ −2.85791 10.8089i −0.255619 0.966778i
$$126$$ −3.83397 + 5.58793i −0.341557 + 0.497812i
$$127$$ −8.05797 8.05797i −0.715029 0.715029i 0.252554 0.967583i $$-0.418729\pi$$
−0.967583 + 0.252554i $$0.918729\pi$$
$$128$$ −0.707107 0.707107i −0.0625000 0.0625000i
$$129$$ 10.2678 + 3.18377i 0.904027 + 0.280315i
$$130$$ 0.947239 2.02552i 0.0830784 0.177650i
$$131$$ 14.2078i 1.24134i −0.784071 0.620671i $$-0.786860\pi$$
0.784071 0.620671i $$-0.213140\pi$$
$$132$$ −2.09030 3.96919i −0.181937 0.345474i
$$133$$ 10.8210 10.8210i 0.938303 0.938303i
$$134$$ 15.5458 1.34295
$$135$$ −9.88071 6.11323i −0.850396 0.526143i
$$136$$ −0.219806 −0.0188482
$$137$$ −10.9549 + 10.9549i −0.935939 + 0.935939i −0.998068 0.0621288i $$-0.980211\pi$$
0.0621288 + 0.998068i $$0.480211\pi$$
$$138$$ 2.06975 + 3.93017i 0.176189 + 0.334558i
$$139$$ 15.0559i 1.27703i 0.769611 + 0.638513i $$0.220450\pi$$
−0.769611 + 0.638513i $$0.779550\pi$$
$$140$$ 4.74837 1.72233i 0.401311 0.145564i
$$141$$ 8.69863 + 2.69722i 0.732557 + 0.227147i
$$142$$ −6.79393 6.79393i −0.570134 0.570134i
$$143$$ 1.83139 + 1.83139i 0.153148 + 0.153148i
$$144$$ 1.69726 2.47372i 0.141438 0.206144i
$$145$$ 1.80440 + 0.843830i 0.149847 + 0.0700763i
$$146$$ 2.33609i 0.193336i
$$147$$ −2.90767 + 1.53127i −0.239821 + 0.126297i
$$148$$ −2.88699 + 2.88699i −0.237309 + 0.237309i
$$149$$ −15.7204 −1.28787 −0.643934 0.765081i $$-0.722699\pi$$
−0.643934 + 0.765081i $$0.722699\pi$$
$$150$$ 3.33454 + 7.99255i 0.272264 + 0.652589i
$$151$$ −14.3294 −1.16611 −0.583056 0.812432i $$-0.698143\pi$$
−0.583056 + 0.812432i $$0.698143\pi$$
$$152$$ −4.79037 + 4.79037i −0.388550 + 0.388550i
$$153$$ −0.120683 0.648280i −0.00975661 0.0524104i
$$154$$ 5.85052i 0.471448i
$$155$$ 19.0330 + 8.90085i 1.52877 + 0.714933i
$$156$$ −0.512970 + 1.65435i −0.0410705 + 0.132454i
$$157$$ −9.89671 9.89671i −0.789843 0.789843i 0.191625 0.981468i $$-0.438624\pi$$
−0.981468 + 0.191625i $$0.938624\pi$$
$$158$$ −8.56764 8.56764i −0.681605 0.681605i
$$159$$ −1.62647 + 5.24543i −0.128988 + 0.415990i
$$160$$ −2.10206 + 0.762461i −0.166182 + 0.0602778i
$$161$$ 5.79300i 0.456553i
$$162$$ 8.22769 + 3.64761i 0.646429 + 0.286583i
$$163$$ −9.12788 + 9.12788i −0.714951 + 0.714951i −0.967567 0.252616i $$-0.918709\pi$$
0.252616 + 0.967567i $$0.418709\pi$$
$$164$$ 2.11082 0.164827
$$165$$ −10.0197 + 0.474171i −0.780032 + 0.0369141i
$$166$$ 8.39941 0.651921
$$167$$ −13.1748 + 13.1748i −1.01950 + 1.01950i −0.0196916 + 0.999806i $$0.506268\pi$$
−0.999806 + 0.0196916i $$0.993732\pi$$
$$168$$ −3.46184 + 1.82311i −0.267087 + 0.140656i
$$169$$ 1.00000i 0.0769231i
$$170$$ −0.208209 + 0.445222i −0.0159689 + 0.0341469i
$$171$$ −16.7585 11.4983i −1.28155 0.879295i
$$172$$ 4.38869 + 4.38869i 0.334634 + 0.334634i
$$173$$ −11.0567 11.0567i −0.840628 0.840628i 0.148312 0.988941i $$-0.452616\pi$$
−0.988941 + 0.148312i $$0.952616\pi$$
$$174$$ −1.47374 0.456970i −0.111724 0.0346428i
$$175$$ 1.00922 11.2494i 0.0762900 0.850374i
$$176$$ 2.58997i 0.195226i
$$177$$ −2.22038 4.21620i −0.166894 0.316909i
$$178$$ −4.55083 + 4.55083i −0.341099 + 0.341099i
$$179$$ −11.4964 −0.859281 −0.429641 0.903000i $$-0.641360\pi$$
−0.429641 + 0.903000i $$0.641360\pi$$
$$180$$ −3.40287 5.78105i −0.253635 0.430894i
$$181$$ 17.6773 1.31394 0.656970 0.753917i $$-0.271838\pi$$
0.656970 + 0.753917i $$0.271838\pi$$
$$182$$ 1.59729 1.59729i 0.118399 0.118399i
$$183$$ 1.84811 + 3.50931i 0.136616 + 0.259416i
$$184$$ 2.56451i 0.189058i
$$185$$ 3.11299 + 8.58232i 0.228871 + 0.630985i
$$186$$ −15.5453 4.82019i −1.13983 0.353433i
$$187$$ −0.402549 0.402549i −0.0294373 0.0294373i
$$188$$ 3.71800 + 3.71800i 0.271163 + 0.271163i
$$189$$ −7.27765 9.20915i −0.529371 0.669867i
$$190$$ 5.16537 + 14.2406i 0.374735 + 1.03312i
$$191$$ 18.0153i 1.30354i 0.758416 + 0.651771i $$0.225974\pi$$
−0.758416 + 0.651771i $$0.774026\pi$$
$$192$$ 1.53252 0.807075i 0.110600 0.0582456i
$$193$$ 3.58559 3.58559i 0.258097 0.258097i −0.566183 0.824280i $$-0.691580\pi$$
0.824280 + 0.566183i $$0.191580\pi$$
$$194$$ −12.5138 −0.898439
$$195$$ 2.86501 + 2.60609i 0.205167 + 0.186626i
$$196$$ −1.89731 −0.135522
$$197$$ −11.8377 + 11.8377i −0.843398 + 0.843398i −0.989299 0.145901i $$-0.953392\pi$$
0.145901 + 0.989299i $$0.453392\pi$$
$$198$$ 7.63868 1.42200i 0.542857 0.101057i
$$199$$ 6.88147i 0.487814i −0.969799 0.243907i $$-0.921571\pi$$
0.969799 0.243907i $$-0.0784292\pi$$
$$200$$ −0.446773 + 4.98000i −0.0315916 + 0.352139i
$$201$$ −7.97454 + 25.7182i −0.562481 + 1.81402i
$$202$$ 11.4520 + 11.4520i 0.805757 + 0.805757i
$$203$$ 1.42292 + 1.42292i 0.0998692 + 0.0998692i
$$204$$ 0.112754 0.363635i 0.00789435 0.0254595i
$$205$$ 1.99945 4.27551i 0.139648 0.298614i
$$206$$ 16.1506i 1.12526i
$$207$$ −7.56358 + 1.40802i −0.525705 + 0.0978643i
$$208$$ −0.707107 + 0.707107i −0.0490290 + 0.0490290i
$$209$$ −17.5460 −1.21368
$$210$$ 0.413561 + 8.73895i 0.0285384 + 0.603045i
$$211$$ −7.30339 −0.502786 −0.251393 0.967885i $$-0.580889\pi$$
−0.251393 + 0.967885i $$0.580889\pi$$
$$212$$ −2.24202 + 2.24202i −0.153983 + 0.153983i
$$213$$ 14.7246 7.75442i 1.00891 0.531324i
$$214$$ 14.2490i 0.974043i
$$215$$ 13.0465 4.73224i 0.889765 0.322736i
$$216$$ 3.22175 + 4.07680i 0.219212 + 0.277391i
$$217$$ 15.0092 + 15.0092i 1.01889 + 1.01889i
$$218$$ −6.49057 6.49057i −0.439597 0.439597i
$$219$$ 3.86470 + 1.19834i 0.261152 + 0.0809765i
$$220$$ −5.24604 2.45332i −0.353688 0.165403i
$$221$$ 0.219806i 0.0147857i
$$222$$ −3.29514 6.25701i −0.221155 0.419943i
$$223$$ 16.1979 16.1979i 1.08469 1.08469i 0.0886232 0.996065i $$-0.471753\pi$$
0.996065 0.0886232i $$-0.0282467\pi$$
$$224$$ −2.25891 −0.150930
$$225$$ −14.9330 + 1.41654i −0.995531 + 0.0944362i
$$226$$ −11.0898 −0.737685
$$227$$ −17.2226 + 17.2226i −1.14310 + 1.14310i −0.155223 + 0.987879i $$0.549610\pi$$
−0.987879 + 0.155223i $$0.950390\pi$$
$$228$$ −5.46761 10.3823i −0.362102 0.687581i
$$229$$ 23.5974i 1.55936i −0.626177 0.779681i $$-0.715381\pi$$
0.626177 0.779681i $$-0.284619\pi$$
$$230$$ 5.19447 + 2.42920i 0.342513 + 0.160177i
$$231$$ −9.67878 3.00114i −0.636817 0.197461i
$$232$$ −0.629912 0.629912i −0.0413558 0.0413558i
$$233$$ −7.44530 7.44530i −0.487758 0.487758i 0.419840 0.907598i $$-0.362086\pi$$
−0.907598 + 0.419840i $$0.862086\pi$$
$$234$$ −2.47372 1.69726i −0.161712 0.110953i
$$235$$ 11.0527 4.00905i 0.721000 0.261522i
$$236$$ 2.75114i 0.179084i
$$237$$ 18.5688 9.77889i 1.20617 0.635207i
$$238$$ −0.351094 + 0.351094i −0.0227581 + 0.0227581i
$$239$$ 19.2221 1.24337 0.621687 0.783266i $$-0.286448\pi$$
0.621687 + 0.783266i $$0.286448\pi$$
$$240$$ −0.183080 3.86865i −0.0118177 0.249721i
$$241$$ 16.0808 1.03586 0.517928 0.855424i $$-0.326704\pi$$
0.517928 + 0.855424i $$0.326704\pi$$
$$242$$ −3.03494 + 3.03494i −0.195094 + 0.195094i
$$243$$ −10.2550 + 11.7403i −0.657857 + 0.753143i
$$244$$ 2.28989i 0.146595i
$$245$$ −1.79721 + 3.84304i −0.114819 + 0.245523i
$$246$$ −1.08279 + 3.49202i −0.0690360 + 0.222643i
$$247$$ 4.79037 + 4.79037i 0.304804 + 0.304804i
$$248$$ −6.64441 6.64441i −0.421921 0.421921i
$$249$$ −4.30865 + 13.8955i −0.273050 + 0.880594i
$$250$$ 9.66389 + 5.62220i 0.611198 + 0.355579i
$$251$$ 25.4480i 1.60626i −0.595801 0.803132i $$-0.703165\pi$$
0.595801 0.803132i $$-0.296835\pi$$
$$252$$ −1.24024 6.66228i −0.0781276 0.419684i
$$253$$ −4.69660 + 4.69660i −0.295273 + 0.295273i
$$254$$ 11.3957 0.715029
$$255$$ −0.629746 0.572835i −0.0394362 0.0358723i
$$256$$ 1.00000 0.0625000
$$257$$ 12.1316 12.1316i 0.756749 0.756749i −0.218980 0.975729i $$-0.570273\pi$$
0.975729 + 0.218980i $$0.0702731\pi$$
$$258$$ −9.51167 + 5.00914i −0.592171 + 0.311856i
$$259$$ 9.22273i 0.573073i
$$260$$ 0.762461 + 2.10206i 0.0472858 + 0.130364i
$$261$$ 1.51197 2.20367i 0.0935887 0.136404i
$$262$$ 10.0464 + 10.0464i 0.620671 + 0.620671i
$$263$$ 3.81582 + 3.81582i 0.235294 + 0.235294i 0.814898 0.579604i $$-0.196793\pi$$
−0.579604 + 0.814898i $$0.696793\pi$$
$$264$$ 4.28471 + 1.32858i 0.263705 + 0.0817683i
$$265$$ 2.41753 + 6.66499i 0.148508 + 0.409427i
$$266$$ 15.3033i 0.938303i
$$267$$ −5.19421 9.86310i −0.317881 0.603612i
$$268$$ −10.9926 + 10.9926i −0.671477 + 0.671477i
$$269$$ −2.98732 −0.182140 −0.0910701 0.995844i $$-0.529029\pi$$
−0.0910701 + 0.995844i $$0.529029\pi$$
$$270$$ 11.3094 2.66401i 0.688270 0.162127i
$$271$$ 17.9161 1.08832 0.544162 0.838980i $$-0.316848\pi$$
0.544162 + 0.838980i $$0.316848\pi$$
$$272$$ 0.155426 0.155426i 0.00942410 0.00942410i
$$273$$ 1.82311 + 3.46184i 0.110340 + 0.209520i
$$274$$ 15.4926i 0.935939i
$$275$$ −9.93851 + 8.30208i −0.599315 + 0.500634i
$$276$$ −4.24259 1.31552i −0.255374 0.0791848i
$$277$$ 11.8188 + 11.8188i 0.710120 + 0.710120i 0.966560 0.256440i $$-0.0825496\pi$$
−0.256440 + 0.966560i $$0.582550\pi$$
$$278$$ −10.6461 10.6461i −0.638513 0.638513i
$$279$$ 15.9485 23.2446i 0.954812 1.39162i
$$280$$ −2.13973 + 4.57548i −0.127873 + 0.273437i
$$281$$ 0.763857i 0.0455679i −0.999740 0.0227839i $$-0.992747\pi$$
0.999740 0.0227839i $$-0.00725298\pi$$
$$282$$ −8.05808 + 4.24364i −0.479852 + 0.252705i
$$283$$ −3.73216 + 3.73216i −0.221854 + 0.221854i −0.809279 0.587425i $$-0.800142\pi$$
0.587425 + 0.809279i $$0.300142\pi$$
$$284$$ 9.60806 0.570134
$$285$$ −26.2086 + 1.24029i −1.55246 + 0.0734686i
$$286$$ −2.58997 −0.153148
$$287$$ 3.37160 3.37160i 0.199019 0.199019i
$$288$$ 0.549041 + 2.94933i 0.0323526 + 0.173791i
$$289$$ 16.9517i 0.997158i
$$290$$ −1.87258 + 0.679223i −0.109962 + 0.0398854i
$$291$$ 6.41921 20.7022i 0.376301 1.21358i
$$292$$ 1.65186 + 1.65186i 0.0966680 + 0.0966680i
$$293$$ 22.4543 + 22.4543i 1.31180 + 1.31180i 0.920091 + 0.391704i $$0.128114\pi$$
0.391704 + 0.920091i $$0.371886\pi$$
$$294$$ 0.973263 3.13881i 0.0567619 0.183059i
$$295$$ −5.57250 2.60599i −0.324444 0.151727i
$$296$$ 4.08282i 0.237309i
$$297$$ −1.56593 + 13.3665i −0.0908647 + 0.775601i
$$298$$ 11.1160 11.1160i 0.643934 0.643934i
$$299$$ 2.56451 0.148309
$$300$$ −8.00946 3.29371i −0.462426 0.190162i
$$301$$ 14.0200 0.808102
$$302$$ 10.1324 10.1324i 0.583056 0.583056i
$$303$$ −24.8200 + 13.0710i −1.42587 + 0.750909i
$$304$$ 6.77461i 0.388550i
$$305$$ 4.63822 + 2.16908i 0.265584 + 0.124201i
$$306$$ 0.543739 + 0.373068i 0.0310835 + 0.0213269i
$$307$$ 4.92117 + 4.92117i 0.280866 + 0.280866i 0.833454 0.552588i $$-0.186360\pi$$
−0.552588 + 0.833454i $$0.686360\pi$$
$$308$$ −4.13694 4.13694i −0.235724 0.235724i
$$309$$ −26.7186 8.28476i −1.51997 0.471304i
$$310$$ −19.7522 + 7.16455i −1.12185 + 0.406919i
$$311$$ 2.99483i 0.169821i 0.996389 + 0.0849107i $$0.0270605\pi$$
−0.996389 + 0.0849107i $$0.972940\pi$$
$$312$$ −0.807075 1.53252i −0.0456916 0.0867621i
$$313$$ −22.8829 + 22.8829i −1.29342 + 1.29342i −0.360759 + 0.932659i $$0.617482\pi$$
−0.932659 + 0.360759i $$0.882518\pi$$
$$314$$ 13.9961 0.789843
$$315$$ −14.6694 3.79865i −0.826527 0.214030i
$$316$$ 12.1165 0.681605
$$317$$ 14.7717 14.7717i 0.829659 0.829659i −0.157810 0.987469i $$-0.550444\pi$$
0.987469 + 0.157810i $$0.0504435\pi$$
$$318$$ −2.55899 4.85917i −0.143501 0.272489i
$$319$$ 2.30722i 0.129180i
$$320$$ 0.947239 2.02552i 0.0529523 0.113230i
$$321$$ 23.5728 + 7.30932i 1.31571 + 0.407967i
$$322$$ 4.09627 + 4.09627i 0.228276 + 0.228276i
$$323$$ −1.05295 1.05295i −0.0585878 0.0585878i
$$324$$ −8.39711 + 3.23861i −0.466506 + 0.179923i
$$325$$ 4.98000 + 0.446773i 0.276241 + 0.0247825i
$$326$$ 12.9088i 0.714951i
$$327$$ 14.0671 7.40818i 0.777914 0.409673i
$$328$$ −1.49257 + 1.49257i −0.0824136 + 0.0824136i
$$329$$ 11.8775 0.654826
$$330$$ 6.74971 7.42028i 0.371559 0.408473i
$$331$$ −0.111775 −0.00614372 −0.00307186 0.999995i $$-0.500978\pi$$
−0.00307186 + 0.999995i $$0.500978\pi$$
$$332$$ −5.93928 + 5.93928i −0.325960 + 0.325960i
$$333$$ 12.0416 2.24164i 0.659874 0.122841i
$$334$$ 18.6320i 1.01950i
$$335$$ 11.8531 + 32.6782i 0.647603 + 1.78540i
$$336$$ 1.15876 3.73703i 0.0632153 0.203871i
$$337$$ −8.54851 8.54851i −0.465667 0.465667i 0.434840 0.900508i $$-0.356805\pi$$
−0.900508 + 0.434840i $$0.856805\pi$$
$$338$$ 0.707107 + 0.707107i 0.0384615 + 0.0384615i
$$339$$ 5.68876 18.3464i 0.308971 0.996442i
$$340$$ −0.167593 0.462045i −0.00908902 0.0250579i
$$341$$ 24.3370i 1.31792i
$$342$$ 19.9806 3.71954i 1.08043 0.201130i
$$343$$ −14.2116 + 14.2116i −0.767355 + 0.767355i
$$344$$ −6.20654 −0.334634
$$345$$ −6.68335 + 7.34734i −0.359820 + 0.395567i
$$346$$ 15.6366 0.840628
$$347$$ 6.09851 6.09851i 0.327385 0.327385i −0.524206 0.851591i $$-0.675638\pi$$
0.851591 + 0.524206i $$0.175638\pi$$
$$348$$ 1.36522 0.718967i 0.0731834 0.0385407i
$$349$$ 4.89335i 0.261935i −0.991387 0.130967i $$-0.958192\pi$$
0.991387 0.130967i $$-0.0418083\pi$$
$$350$$ 7.24089 + 8.66815i 0.387042 + 0.463332i
$$351$$ 4.07680 3.22175i 0.217604 0.171964i
$$352$$ 1.83139 + 1.83139i 0.0976132 + 0.0976132i
$$353$$ 8.68950 + 8.68950i 0.462495 + 0.462495i 0.899473 0.436977i $$-0.143951\pi$$
−0.436977 + 0.899473i $$0.643951\pi$$
$$354$$ 4.55135 + 1.41126i 0.241901 + 0.0750074i
$$355$$ 9.10114 19.4613i 0.483038 1.03290i
$$356$$ 6.43585i 0.341099i
$$357$$ −0.400731 0.760933i −0.0212089 0.0402728i
$$358$$ 8.12918 8.12918i 0.429641 0.429641i
$$359$$ 31.8464 1.68079 0.840394 0.541975i $$-0.182323\pi$$
0.840394 + 0.541975i $$0.182323\pi$$
$$360$$ 6.49401 + 1.68163i 0.342264 + 0.0886296i
$$361$$ −26.8953 −1.41554
$$362$$ −12.4997 + 12.4997i −0.656970 + 0.656970i
$$363$$ −3.46401 6.57768i −0.181813 0.345239i
$$364$$ 2.25891i 0.118399i
$$365$$ 4.91059 1.78117i 0.257032 0.0932309i
$$366$$ −3.78827 1.17465i −0.198016 0.0613997i
$$367$$ 14.9797 + 14.9797i 0.781935 + 0.781935i 0.980157 0.198222i $$-0.0635167\pi$$
−0.198222 + 0.980157i $$0.563517\pi$$
$$368$$ −1.81338 1.81338i −0.0945290 0.0945290i
$$369$$ −5.22158 3.58261i −0.271825 0.186503i
$$370$$ −8.26983 3.86740i −0.429928 0.201057i
$$371$$ 7.16233i 0.371850i
$$372$$ 14.4005 7.58377i 0.746633 0.393200i
$$373$$ 16.2983 16.2983i 0.843893 0.843893i −0.145470 0.989363i $$-0.546469\pi$$
0.989363 + 0.145470i $$0.0464693\pi$$
$$374$$ 0.569291 0.0294373
$$375$$ −14.2584 + 13.1034i −0.736298 + 0.676657i
$$376$$ −5.25805 −0.271163
$$377$$ −0.629912 + 0.629912i −0.0324421 + 0.0324421i
$$378$$ 11.6579 + 1.36577i 0.599619 + 0.0702478i
$$379$$ 6.82263i 0.350455i −0.984528 0.175228i $$-0.943934\pi$$
0.984528 0.175228i $$-0.0560661\pi$$
$$380$$ −13.7221 6.41718i −0.703930 0.329194i
$$381$$ −5.84565 + 18.8524i −0.299482 + 0.965838i
$$382$$ −12.7388 12.7388i −0.651771 0.651771i
$$383$$ −15.1912 15.1912i −0.776235 0.776235i 0.202953 0.979188i $$-0.434946\pi$$
−0.979188 + 0.202953i $$0.934946\pi$$
$$384$$ −0.512970 + 1.65435i −0.0261774 + 0.0844230i
$$385$$ −12.2981 + 4.46079i −0.626771 + 0.227343i
$$386$$ 5.07079i 0.258097i
$$387$$ −3.40765 18.3051i −0.173220 0.930503i
$$388$$ 8.84860 8.84860i 0.449219 0.449219i
$$389$$ −2.88396 −0.146222 −0.0731112 0.997324i $$-0.523293\pi$$
−0.0731112 + 0.997324i $$0.523293\pi$$
$$390$$ −3.86865 + 0.183080i −0.195897 + 0.00927060i
$$391$$ −0.563694 −0.0285072
$$392$$ 1.34160 1.34160i 0.0677610 0.0677610i
$$393$$ −21.7738 + 11.4668i −1.09834 + 0.578422i
$$394$$ 16.7410i 0.843398i
$$395$$ 11.4772 24.5422i 0.577480 1.23485i
$$396$$ −4.39585 + 6.40687i −0.220900 + 0.321957i
$$397$$ −26.9155 26.9155i −1.35085 1.35085i −0.884712 0.466137i $$-0.845645\pi$$
−0.466137 0.884712i $$-0.654355\pi$$
$$398$$ 4.86593 + 4.86593i 0.243907 + 0.243907i
$$399$$ −25.3169 7.85012i −1.26743 0.392997i
$$400$$ −3.20547 3.83731i −0.160274 0.191865i
$$401$$ 29.6662i 1.48146i −0.671803 0.740729i $$-0.734480\pi$$
0.671803 0.740729i $$-0.265520\pi$$
$$402$$ −12.5466 23.8243i −0.625769 1.18825i
$$403$$ −6.64441 + 6.64441i −0.330982 + 0.330982i
$$404$$ −16.1955 −0.805757
$$405$$ −1.39420 + 20.0763i −0.0692782 + 0.997597i
$$406$$ −2.01231 −0.0998692
$$407$$ 7.47721 7.47721i 0.370631 0.370631i
$$408$$ 0.177400 + 0.336858i 0.00878260 + 0.0166769i
$$409$$ 3.05276i 0.150949i −0.997148 0.0754747i $$-0.975953\pi$$
0.997148 0.0754747i $$-0.0240472\pi$$
$$410$$ 1.60942 + 4.43707i 0.0794834 + 0.219131i
$$411$$ 25.6300 + 7.94722i 1.26424 + 0.392007i
$$412$$ −11.4202 11.4202i −0.562632 0.562632i
$$413$$ −4.39438 4.39438i −0.216234 0.216234i
$$414$$ 4.35264 6.34388i 0.213921 0.311785i
$$415$$ 6.40422 + 17.6561i 0.314371 + 0.866702i
$$416$$ 1.00000i 0.0490290i
$$417$$ 23.0736 12.1513i 1.12992 0.595049i
$$418$$ 12.4069 12.4069i 0.606842 0.606842i
$$419$$ 6.17929 0.301878 0.150939 0.988543i $$-0.451770\pi$$
0.150939 + 0.988543i $$0.451770\pi$$
$$420$$ −6.47181 5.88694i −0.315792 0.287253i
$$421$$ 2.65347 0.129322 0.0646610 0.997907i $$-0.479403\pi$$
0.0646610 + 0.997907i $$0.479403\pi$$
$$422$$ 5.16428 5.16428i 0.251393 0.251393i
$$423$$ −2.88688 15.5077i −0.140365 0.754011i
$$424$$ 3.17070i 0.153983i
$$425$$ −1.09463 0.0982034i −0.0530975 0.00476357i
$$426$$ −4.92865 + 15.8951i −0.238794 + 0.770118i
$$427$$ 3.65763 + 3.65763i 0.177005 + 0.177005i
$$428$$ 10.0756 + 10.0756i 0.487021 + 0.487021i
$$429$$ 1.32858 4.28471i 0.0641443 0.206868i
$$430$$ −5.87908 + 12.5715i −0.283514 + 0.606251i
$$431$$ 35.9248i 1.73043i −0.501397 0.865217i $$-0.667180\pi$$
0.501397 0.865217i $$-0.332820\pi$$
$$432$$ −5.16086 0.604615i −0.248302 0.0290895i
$$433$$ −8.25075 + 8.25075i −0.396506 + 0.396506i −0.876999 0.480493i $$-0.840458\pi$$
0.480493 + 0.876999i $$0.340458\pi$$
$$434$$ −21.2261 −1.01889
$$435$$ −0.163093 3.44632i −0.00781971 0.165238i
$$436$$ 9.17905 0.439597
$$437$$ −12.2849 + 12.2849i −0.587669 + 0.587669i
$$438$$ −3.58011 + 1.88540i −0.171064 + 0.0900877i
$$439$$ 5.36829i 0.256215i −0.991760 0.128107i $$-0.959110\pi$$
0.991760 0.128107i $$-0.0408902\pi$$
$$440$$ 5.44427 1.97475i 0.259545 0.0941425i
$$441$$ 4.69342 + 3.22023i 0.223496 + 0.153344i
$$442$$ −0.155426 0.155426i −0.00739287 0.00739287i
$$443$$ 11.3450 + 11.3450i 0.539018 + 0.539018i 0.923241 0.384223i $$-0.125530\pi$$
−0.384223 + 0.923241i $$0.625530\pi$$
$$444$$ 6.75439 + 2.09436i 0.320549 + 0.0993941i
$$445$$ −13.0360 6.09629i −0.617964 0.288992i
$$446$$ 22.9072i 1.08469i
$$447$$ 12.6876 + 24.0920i 0.600102 + 1.13951i
$$448$$ 1.59729 1.59729i 0.0754650 0.0754650i
$$449$$ −16.0281 −0.756412 −0.378206 0.925721i $$-0.623459\pi$$
−0.378206 + 0.925721i $$0.623459\pi$$
$$450$$ 9.55755 11.5608i 0.450547 0.544984i
$$451$$ −5.46696 −0.257429
$$452$$ 7.84170 7.84170i 0.368843 0.368843i
$$453$$ 11.5649 + 21.9602i 0.543367 + 1.03178i
$$454$$ 24.3564i 1.14310i
$$455$$ 4.57548 + 2.13973i 0.214502 + 0.100312i
$$456$$ 11.2075 + 3.47517i 0.524842 + 0.162740i
$$457$$ 0.963319 + 0.963319i 0.0450621 + 0.0450621i 0.729279 0.684217i $$-0.239856\pi$$
−0.684217 + 0.729279i $$0.739856\pi$$
$$458$$ 16.6859 + 16.6859i 0.779681 + 0.779681i
$$459$$ −0.896106 + 0.708160i −0.0418266 + 0.0330541i
$$460$$ −5.39075 + 1.95534i −0.251345 + 0.0911680i
$$461$$ 17.4655i 0.813447i 0.913551 + 0.406724i $$0.133329\pi$$
−0.913551 + 0.406724i $$0.866671\pi$$
$$462$$ 8.96606 4.72180i 0.417139 0.219678i
$$463$$ −0.256369 + 0.256369i −0.0119145 + 0.0119145i −0.713039 0.701124i $$-0.752682\pi$$
0.701124 + 0.713039i $$0.252682\pi$$
$$464$$ 0.890831 0.0413558
$$465$$ −1.72033 36.3523i −0.0797784 1.68580i
$$466$$ 10.5292 0.487758
$$467$$ −17.7653 + 17.7653i −0.822079 + 0.822079i −0.986406 0.164327i $$-0.947455\pi$$
0.164327 + 0.986406i $$0.447455\pi$$
$$468$$ 2.94933 0.549041i 0.136333 0.0253794i
$$469$$ 35.1167i 1.62154i
$$470$$ −4.98063 + 10.6503i −0.229739 + 0.491261i
$$471$$ −7.17956 + 23.1543i −0.330817 + 1.06690i
$$472$$ 1.94535 + 1.94535i 0.0895421 + 0.0895421i
$$473$$ −11.3666 11.3666i −0.522635 0.522635i
$$474$$ −6.21539 + 20.0448i −0.285482 + 0.920690i
$$475$$ −25.9963 + 21.7158i −1.19279 + 0.996391i
$$476$$ 0.496523i 0.0227581i
$$477$$ 9.35144 1.74084i 0.428173 0.0797078i
$$478$$ −13.5921 + 13.5921i −0.621687 + 0.621687i
$$479$$ 21.2442 0.970671 0.485336 0.874328i $$-0.338697\pi$$
0.485336 + 0.874328i $$0.338697\pi$$
$$480$$ 2.86501 + 2.60609i 0.130769 + 0.118951i
$$481$$ −4.08282 −0.186160
$$482$$ −11.3708 + 11.3708i −0.517928 + 0.517928i
$$483$$ −8.87792 + 4.67539i −0.403959 + 0.212737i
$$484$$ 4.29206i 0.195094i
$$485$$ −9.54128 26.3048i −0.433247 1.19444i
$$486$$ −1.05032 15.5530i −0.0476433 0.705500i
$$487$$ 10.4620 + 10.4620i 0.474077 + 0.474077i 0.903231 0.429154i $$-0.141188\pi$$
−0.429154 + 0.903231i $$0.641188\pi$$
$$488$$ −1.61920 1.61920i −0.0732976 0.0732976i
$$489$$ 21.3556 + 6.62182i 0.965733 + 0.299449i
$$490$$ −1.44662 3.98826i −0.0653518 0.180171i
$$491$$ 16.1195i 0.727462i 0.931504 + 0.363731i $$0.118497\pi$$
−0.931504 + 0.363731i $$0.881503\pi$$
$$492$$ −1.70359 3.23488i −0.0768037 0.145840i
$$493$$ 0.138458 0.138458i 0.00623586 0.00623586i
$$494$$ −6.77461 −0.304804
$$495$$ 8.81332 + 14.9727i 0.396129 + 0.672974i
$$496$$ 9.39662 0.421921
$$497$$ 15.3469 15.3469i 0.688402 0.688402i
$$498$$ −6.77895 12.8723i −0.303772 0.576822i
$$499$$ 0.297723i 0.0133279i −0.999978 0.00666395i $$-0.997879\pi$$
0.999978 0.00666395i $$-0.00212122\pi$$
$$500$$ −10.8089 + 2.85791i −0.483389 + 0.127810i
$$501$$ 30.8238 + 9.55766i 1.37710 + 0.427005i
$$502$$ 17.9945 + 17.9945i 0.803132 + 0.803132i
$$503$$ −7.46751 7.46751i −0.332960 0.332960i 0.520750 0.853709i $$-0.325653\pi$$
−0.853709 + 0.520750i $$0.825653\pi$$
$$504$$ 5.58793 + 3.83397i 0.248906 + 0.170778i
$$505$$ −15.3410 + 32.8044i −0.682667 + 1.45978i
$$506$$ 6.64200i 0.295273i
$$507$$ −1.53252 + 0.807075i −0.0680618 + 0.0358434i
$$508$$ −8.05797 + 8.05797i −0.357514 + 0.357514i
$$509$$ −9.67667 −0.428911 −0.214456 0.976734i $$-0.568798\pi$$
−0.214456 + 0.976734i $$0.568798\pi$$
$$510$$ 0.850353 0.0402420i 0.0376543 0.00178195i
$$511$$ 5.27702 0.233442
$$512$$ −0.707107 + 0.707107i −0.0312500 + 0.0312500i
$$513$$ −4.09603 + 34.9628i −0.180844 + 1.54364i
$$514$$ 17.1567i 0.756749i
$$515$$ −33.9494 + 12.3142i −1.49599 + 0.542627i
$$516$$ 3.18377 10.2678i 0.140158 0.452013i
$$517$$ −9.62951 9.62951i −0.423505 0.423505i
$$518$$ −6.52145 6.52145i −0.286536 0.286536i
$$519$$ −8.02111 + 25.8683i −0.352088 + 1.13549i
$$520$$ −2.02552 0.947239i −0.0888250 0.0415392i
$$521$$ 24.0972i 1.05572i 0.849332 + 0.527860i $$0.177005\pi$$
−0.849332 + 0.527860i $$0.822995\pi$$
$$522$$ 0.489103 + 2.62735i 0.0214075 + 0.114996i
$$523$$ 2.67631 2.67631i 0.117027 0.117027i −0.646168 0.763195i $$-0.723630\pi$$
0.763195 + 0.646168i $$0.223630\pi$$
$$524$$ −14.2078 −0.620671
$$525$$ −18.0545 + 7.53244i −0.787962 + 0.328743i
$$526$$ −5.39638 −0.235294
$$527$$ 1.46048 1.46048i 0.0636195 0.0636195i
$$528$$ −3.96919 + 2.09030i −0.172737 + 0.0909686i
$$529$$ 16.4233i 0.714056i
$$530$$ −6.42232 3.00341i −0.278968 0.130460i
$$531$$ −4.66941 + 6.80557i −0.202635 + 0.295337i
$$532$$ −10.8210 10.8210i −0.469151 0.469151i
$$533$$ 1.49257 + 1.49257i 0.0646506 + 0.0646506i
$$534$$ 10.6471 + 3.30140i 0.460746 + 0.142866i
$$535$$ 29.9523 10.8643i 1.29495 0.469705i
$$536$$ 15.5458i 0.671477i
$$537$$ 9.27845 + 17.6185i 0.400395 + 0.760295i
$$538$$ 2.11235 2.11235i 0.0910701 0.0910701i
$$539$$ 4.91397 0.211660
$$540$$ −6.11323 + 9.88071i −0.263071 + 0.425198i
$$541$$ −31.9887 −1.37530 −0.687650 0.726042i $$-0.741358\pi$$
−0.687650 + 0.726042i $$0.741358\pi$$
$$542$$ −12.6686 + 12.6686i −0.544162 + 0.544162i
$$543$$ −14.2669 27.0908i −0.612250 1.16258i
$$544$$ 0.219806i 0.00942410i
$$545$$ 8.69476 18.5924i 0.372443 0.796410i
$$546$$ −3.73703 1.15876i −0.159930 0.0495902i
$$547$$ 6.13891 + 6.13891i 0.262481 + 0.262481i 0.826061 0.563580i $$-0.190576\pi$$
−0.563580 + 0.826061i $$0.690576\pi$$
$$548$$ 10.9549 + 10.9549i 0.467970 + 0.467970i
$$549$$ 3.88654 5.66456i 0.165874 0.241757i
$$550$$ 1.15713 12.8980i 0.0493402 0.549975i
$$551$$ 6.03503i 0.257101i
$$552$$ 3.93017 2.06975i 0.167279 0.0880944i
$$553$$ 19.3536 19.3536i 0.822997 0.822997i
$$554$$ −16.7142 −0.710120
$$555$$ 10.6402 11.6973i 0.451652 0.496523i
$$556$$ 15.0559 0.638513
$$557$$ 6.14058 6.14058i 0.260185 0.260185i −0.564944 0.825129i $$-0.691102\pi$$
0.825129 + 0.564944i $$0.191102\pi$$
$$558$$ 5.15913 + 27.7137i 0.218403 + 1.17322i
$$559$$ 6.20654i 0.262509i
$$560$$ −1.72233 4.74837i −0.0727818 0.200655i
$$561$$ −0.292029 + 0.941804i −0.0123295 + 0.0397630i
$$562$$ 0.540129 + 0.540129i 0.0227839 + 0.0227839i
$$563$$ 24.9348 + 24.9348i 1.05088 + 1.05088i 0.998634 + 0.0522422i $$0.0166368\pi$$
0.0522422 + 0.998634i $$0.483363\pi$$
$$564$$ 2.69722 8.69863i 0.113574 0.366278i
$$565$$ −8.45557 23.3115i −0.355728 0.980722i
$$566$$ 5.27807i 0.221854i
$$567$$ −8.23963 + 18.5857i −0.346032 + 0.780524i
$$568$$ −6.79393 + 6.79393i −0.285067 + 0.285067i
$$569$$ −5.56111 −0.233134 −0.116567 0.993183i $$-0.537189\pi$$
−0.116567 + 0.993183i $$0.537189\pi$$
$$570$$ 17.6553 19.4093i 0.739498 0.812966i
$$571$$ 33.8131 1.41503 0.707517 0.706697i $$-0.249815\pi$$
0.707517 + 0.706697i $$0.249815\pi$$
$$572$$ 1.83139 1.83139i 0.0765741 0.0765741i
$$573$$ 27.6089 14.5397i 1.15338 0.607405i
$$574$$ 4.76816i 0.199019i
$$575$$ −1.14575 + 12.7713i −0.0477812 + 0.532598i
$$576$$ −2.47372 1.69726i −0.103072 0.0707192i
$$577$$ 0.174550 + 0.174550i 0.00726661 + 0.00726661i 0.710731 0.703464i $$-0.248364\pi$$
−0.703464 + 0.710731i $$0.748364\pi$$
$$578$$ −11.9867 11.9867i −0.498579 0.498579i
$$579$$ −8.38885 2.60117i −0.348629 0.108101i
$$580$$ 0.843830 1.80440i 0.0350381 0.0749235i
$$581$$ 18.9736i 0.787156i
$$582$$ 10.0996 + 19.1777i 0.418641 + 0.794942i
$$583$$ 5.80677 5.80677i 0.240492 0.240492i
$$584$$ −2.33609 −0.0966680
$$585$$ 1.68163 6.49401i 0.0695267 0.268494i
$$586$$ −31.7552 −1.31180
$$587$$ 6.55064 6.55064i 0.270374 0.270374i −0.558877 0.829251i $$-0.688768\pi$$
0.829251 + 0.558877i $$0.188768\pi$$
$$588$$ 1.53127 + 2.90767i 0.0631485 + 0.119910i
$$589$$ 63.6584i 2.62300i
$$590$$ 5.78307 2.09764i 0.238085 0.0863584i
$$591$$ 27.6954 + 8.58762i 1.13924 + 0.353248i
$$592$$ 2.88699 + 2.88699i 0.118654 + 0.118654i
$$593$$ −17.9410 17.9410i −0.736747 0.736747i 0.235200 0.971947i $$-0.424425\pi$$
−0.971947 + 0.235200i $$0.924425\pi$$
$$594$$ −8.34423 10.5588i −0.342368 0.433233i
$$595$$ −1.00572 0.470326i −0.0412304 0.0192815i
$$596$$ 15.7204i 0.643934i
$$597$$ −10.5460 + 5.55386i −0.431620 + 0.227304i
$$598$$ −1.81338 + 1.81338i −0.0741547 + 0.0741547i
$$599$$ −41.6634 −1.70232 −0.851161 0.524905i $$-0.824101\pi$$
−0.851161 + 0.524905i $$0.824101\pi$$
$$600$$ 7.99255 3.33454i 0.326294 0.136132i
$$601$$ −22.6630 −0.924444 −0.462222 0.886764i $$-0.652948\pi$$
−0.462222 + 0.886764i $$0.652948\pi$$
$$602$$ −9.91367 + 9.91367i −0.404051 + 0.404051i
$$603$$ 45.8498 8.53530i 1.86715 0.347584i
$$604$$ 14.3294i 0.583056i
$$605$$ −8.69365 4.06561i −0.353447 0.165290i
$$606$$ 8.30782 26.7930i 0.337482 1.08839i
$$607$$ 11.2274 + 11.2274i 0.455706 + 0.455706i 0.897243 0.441537i $$-0.145567\pi$$
−0.441537 + 0.897243i $$0.645567\pi$$
$$608$$ 4.79037 + 4.79037i 0.194275 + 0.194275i
$$609$$ 1.03226 3.32906i 0.0418291 0.134900i
$$610$$ −4.81349 + 1.74595i −0.194892 + 0.0706915i
$$611$$ 5.25805i 0.212718i
$$612$$ −0.648280 + 0.120683i −0.0262052 + 0.00487830i
$$613$$ 6.53782 6.53782i 0.264060 0.264060i −0.562641 0.826701i $$-0.690215\pi$$
0.826701 + 0.562641i $$0.190215\pi$$
$$614$$ −6.95958 −0.280866
$$615$$ −8.16603 + 0.386448i −0.329286 + 0.0155831i
$$616$$ 5.85052 0.235724
$$617$$ 22.7714 22.7714i 0.916744 0.916744i −0.0800471 0.996791i $$-0.525507\pi$$
0.996791 + 0.0800471i $$0.0255071\pi$$
$$618$$ 24.7511 13.0347i 0.995636 0.524333i
$$619$$ 5.97955i 0.240338i 0.992753 + 0.120169i $$0.0383437\pi$$
−0.992753 + 0.120169i $$0.961656\pi$$
$$620$$ 8.90085 19.0330i 0.357467 0.764386i
$$621$$ 8.26220 + 10.4550i 0.331551 + 0.419545i
$$622$$ −2.11767 2.11767i −0.0849107 0.0849107i
$$623$$ −10.2799 10.2799i −0.411857 0.411857i
$$624$$ 1.65435 + 0.512970i 0.0662269 + 0.0205352i
$$625$$ −4.44986 + 24.6008i −0.177994 + 0.984031i
$$626$$ 32.3613i 1.29342i
$$627$$ 14.1610 + 26.8897i 0.565534 + 1.07387i
$$628$$ −9.89671 + 9.89671i −0.394922 + 0.394922i
$$629$$ 0.897427 0.0357828
$$630$$ 13.0589 7.68678i 0.520278 0.306249i
$$631$$ −13.0508 −0.519544 −0.259772 0.965670i $$-0.583647\pi$$
−0.259772 + 0.965670i $$0.583647\pi$$
$$632$$ −8.56764 + 8.56764i −0.340802 + 0.340802i
$$633$$ 5.89438 + 11.1926i 0.234281 + 0.444867i
$$634$$ 20.8903i 0.829659i
$$635$$ 8.68876 + 23.9544i 0.344803 + 0.950602i
$$636$$ 5.24543 + 1.62647i 0.207995 + 0.0644939i
$$637$$ −1.34160 1.34160i −0.0531561 0.0531561i
$$638$$ 1.63145 + 1.63145i 0.0645899 + 0.0645899i
$$639$$ −23.7677 16.3074i −0.940235 0.645111i
$$640$$ 0.762461 + 2.10206i 0.0301389 + 0.0830912i
$$641$$ 24.2560i 0.958055i 0.877800 + 0.479027i $$0.159011\pi$$
−0.877800 + 0.479027i $$0.840989\pi$$
$$642$$ −21.8370 + 11.5000i −0.861836 + 0.453870i
$$643$$ −13.2221 + 13.2221i −0.521429 + 0.521429i −0.918003 0.396574i $$-0.870199\pi$$
0.396574 + 0.918003i $$0.370199\pi$$
$$644$$ −5.79300 −0.228276
$$645$$ −17.7818 16.1748i −0.700157 0.636883i
$$646$$ 1.48910 0.0585878
$$647$$ −8.17921 + 8.17921i −0.321558 + 0.321558i −0.849365 0.527807i $$-0.823015\pi$$
0.527807 + 0.849365i $$0.323015\pi$$
$$648$$ 3.64761 8.22769i 0.143292 0.323214i
$$649$$ 7.12538i 0.279696i
$$650$$ −3.83731 + 3.20547i −0.150512 + 0.125729i
$$651$$ 10.8884 35.1154i 0.426749 1.37628i
$$652$$ 9.12788 + 9.12788i 0.357476 + 0.357476i
$$653$$ 12.1320 + 12.1320i 0.474763 + 0.474763i 0.903452 0.428689i $$-0.141024\pi$$
−0.428689 + 0.903452i $$0.641024\pi$$
$$654$$ −4.70858 + 15.1853i −0.184120 + 0.593793i
$$655$$ −13.4582 + 28.7782i −0.525855 + 1.12446i
$$656$$ 2.11082i 0.0824136i
$$657$$ −1.28261 6.88989i −0.0500393 0.268800i
$$658$$ −8.39864 + 8.39864i −0.327413 + 0.327413i
$$659$$ 13.1366 0.511731 0.255865 0.966712i $$-0.417640\pi$$
0.255865 + 0.966712i $$0.417640\pi$$
$$660$$ 0.474171 + 10.0197i 0.0184571 + 0.390016i
$$661$$ −34.2832 −1.33346 −0.666731 0.745298i $$-0.732307\pi$$
−0.666731 + 0.745298i $$0.732307\pi$$
$$662$$ 0.0790370 0.0790370i 0.00307186 0.00307186i
$$663$$ 0.336858 0.177400i 0.0130825 0.00688964i
$$664$$ 8.39941i 0.325960i
$$665$$ −32.1684 + 11.6681i −1.24744 + 0.452471i
$$666$$ −6.92960 + 10.0998i −0.268517 + 0.391358i
$$667$$ −1.61542 1.61542i −0.0625491 0.0625491i
$$668$$ 13.1748 + 13.1748i 0.509749 + 0.509749i
$$669$$ −37.8965 11.7507i −1.46516 0.454309i
$$670$$ −31.4884 14.7256i −1.21650 0.568900i
$$671$$ 5.93075i 0.228954i
$$672$$ 1.82311 + 3.46184i 0.0703281 + 0.133543i
$$673$$ 0.645929 0.645929i 0.0248987 0.0248987i −0.694548 0.719447i $$-0.744396\pi$$
0.719447 + 0.694548i $$0.244396\pi$$
$$674$$ 12.0894 0.465667
$$675$$ 14.2229 + 21.7419i 0.547440 + 0.836845i
$$676$$ −1.00000 −0.0384615
$$677$$ 10.5020 10.5020i 0.403624 0.403624i −0.475884 0.879508i $$-0.657872\pi$$
0.879508 + 0.475884i $$0.157872\pi$$
$$678$$ 8.95033 + 16.9954i 0.343735 + 0.652706i
$$679$$ 28.2676i 1.08481i
$$680$$ 0.445222 + 0.208209i 0.0170735 + 0.00798444i
$$681$$ 40.2939 + 12.4941i 1.54407 + 0.478775i
$$682$$ 17.2088 + 17.2088i 0.658960 + 0.658960i
$$683$$ −19.5328 19.5328i −0.747401 0.747401i 0.226590 0.973990i $$-0.427242\pi$$
−0.973990 + 0.226590i $$0.927242\pi$$
$$684$$ −11.4983 + 16.7585i −0.439648 + 0.640777i
$$685$$ 32.5663 11.8125i 1.24429 0.451331i
$$686$$ 20.0983i 0.767355i
$$687$$ −36.1636 + 19.0449i −1.37973 + 0.726608i
$$688$$ 4.38869 4.38869i 0.167317 0.167317i
$$689$$ −3.17070 −0.120794
$$690$$ −0.469509 9.92120i −0.0178739 0.377693i
$$691$$ 7.28568 0.277160 0.138580 0.990351i $$-0.455746\pi$$
0.138580 + 0.990351i $$0.455746\pi$$
$$692$$ −11.0567 + 11.0567i −0.420314 + 0.420314i
$$693$$ 3.21218 + 17.2551i 0.122021 + 0.655468i
$$694$$ 8.62460i 0.327385i
$$695$$ 14.2616 30.4961i 0.540972 1.15678i
$$696$$ −0.456970 + 1.47374i −0.0173214 + 0.0558621i
$$697$$ −0.328077 0.328077i −0.0124268 0.0124268i
$$698$$ 3.46012 + 3.46012i 0.130967 + 0.130967i
$$699$$ −5.40119 + 17.4190i −0.204292 + 0.658848i
$$700$$ −11.2494 1.00922i −0.425187 0.0381450i
$$701$$ 16.4241i 0.620330i 0.950683 + 0.310165i $$0.100384\pi$$
−0.950683 + 0.310165i $$0.899616\pi$$
$$702$$ −0.604615 + 5.16086i −0.0228197 + 0.194784i
$$703$$ 19.5582 19.5582i 0.737652 0.737652i
$$704$$ −2.58997 −0.0976132
$$705$$ −15.0643 13.7030i −0.567356 0.516083i
$$706$$ −12.2888 −0.462495
$$707$$ −25.8690 + 25.8690i −0.972903 + 0.972903i
$$708$$ −4.21620 + 2.22038i −0.158454 + 0.0834470i
$$709$$ 25.9013i 0.972742i 0.873752 + 0.486371i $$0.161680\pi$$
−0.873752 + 0.486371i $$0.838320\pi$$
$$710$$ 7.32577 + 20.1967i 0.274931 + 0.757969i
$$711$$ −29.9728 20.5648i −1.12407 0.771241i
$$712$$ 4.55083 + 4.55083i 0.170550 + 0.170550i
$$713$$ −17.0396 17.0396i −0.638140 0.638140i
$$714$$ 0.821420 + 0.254701i 0.0307409 + 0.00953196i
$$715$$ −1.97475 5.44427i −0.0738515 0.203604i
$$716$$ 11.4964i 0.429641i
$$717$$ −15.5137 29.4583i −0.579368 1.10014i
$$718$$ −22.5188 + 22.5188i −0.840394 + 0.840394i
$$719$$ 7.92976 0.295730 0.147865 0.989008i $$-0.452760\pi$$
0.147865 + 0.989008i $$0.452760\pi$$
$$720$$ −5.78105 + 3.40287i −0.215447 + 0.126817i
$$721$$ −36.4827 −1.35869
$$722$$ 19.0179 19.0179i 0.707772 0.707772i
$$723$$ −12.9784 24.6442i −0.482672 0.916529i
$$724$$ 17.6773i 0.656970i
$$725$$ −2.85554 3.41839i −0.106052 0.126956i
$$726$$ 7.10055 + 2.20170i 0.263526 + 0.0817127i
$$727$$ −13.1739 13.1739i −0.488594 0.488594i 0.419268 0.907862i $$-0.362287\pi$$
−0.907862 + 0.419268i $$0.862287\pi$$
$$728$$ −1.59729 1.59729i −0.0591996 0.0591996i
$$729$$ 26.2689 + 6.24066i 0.972922 + 0.231136i
$$730$$ −2.21283 + 4.73180i −0.0819007 + 0.175132i
$$731$$ 1.36423i 0.0504580i
$$732$$ 3.50931 1.84811i 0.129708 0.0683082i
$$733$$ −4.39131 + 4.39131i −0.162197 + 0.162197i −0.783539 0.621342i $$-0.786588\pi$$
0.621342 + 0.783539i $$0.286588\pi$$
$$734$$ −21.1845 −0.781935
$$735$$ 7.34003 0.347359i 0.270741 0.0128125i
$$736$$ 2.56451 0.0945290
$$737$$ 28.4704 28.4704i 1.04872 1.04872i
$$738$$ 6.22550 1.15893i 0.229164 0.0426607i
$$739$$ 13.4115i 0.493350i 0.969098 + 0.246675i $$0.0793380\pi$$
−0.969098 + 0.246675i $$0.920662\pi$$
$$740$$ 8.58232 3.11299i 0.315492 0.114436i
$$741$$ 3.47517 11.2075i 0.127664 0.411720i
$$742$$ −5.06453 5.06453i −0.185925 0.185925i
$$743$$ 6.99293 + 6.99293i 0.256546 + 0.256546i 0.823648 0.567102i $$-0.191935\pi$$
−0.567102 + 0.823648i $$0.691935\pi$$
$$744$$ −4.82019 + 15.5453i −0.176717 + 0.569917i
$$745$$ 31.8421 + 14.8910i 1.16660 + 0.545565i
$$746$$ 23.0492i 0.843893i
$$747$$ 24.7727 4.61163i 0.906384 0.168731i
$$748$$ −0.402549 + 0.402549i −0.0147187 + 0.0147187i
$$749$$ 32.1873 1.17610
$$750$$ 0.816675 19.3477i 0.0298207 0.706478i
$$751$$ −11.5511 −0.421507 −0.210754 0.977539i $$-0.567592\pi$$
−0.210754 + 0.977539i $$0.567592\pi$$
$$752$$ 3.71800 3.71800i 0.135581 0.135581i
$$753$$ −38.9997 + 20.5384i −1.42123 + 0.748462i
$$754$$ 0.890831i 0.0324421i
$$755$$ 29.0245 + 13.5734i 1.05631 + 0.493986i
$$756$$ −9.20915 + 7.27765i −0.334933 + 0.264686i
$$757$$ −5.58355 5.58355i −0.202938 0.202938i 0.598320 0.801257i $$-0.295835\pi$$
−0.801257 + 0.598320i $$0.795835\pi$$
$$758$$ 4.82433 + 4.82433i 0.175228 + 0.175228i
$$759$$ 10.9882 + 3.40715i 0.398845 + 0.123672i
$$760$$ 14.2406 5.16537i 0.516562 0.187368i
$$761$$ 37.4923i 1.35909i −0.733632 0.679547i $$-0.762176\pi$$
0.733632 0.679547i $$-0.237824\pi$$
$$762$$ −9.19717 17.4642i −0.333178 0.632660i
$$763$$ 14.6616 14.6616i 0.530787 0.530787i
$$764$$ 18.0153 0.651771
$$765$$ −0.369632 + 1.42742i −0.0133641 + 0.0516085i
$$766$$ 21.4836 0.776235
$$767$$ 1.94535 1.94535i 0.0702426 0.0702426i
$$768$$ −0.807075 1.53252i −0.0291228 0.0553002i
$$769$$ 25.0653i 0.903880i −0.892048 0.451940i $$-0.850732\pi$$
0.892048 0.451940i $$-0.149268\pi$$
$$770$$ 5.54184 11.8503i 0.199714 0.427057i
$$771$$ −28.3831 8.80087i −1.02219 0.316956i
$$772$$ −3.58559 3.58559i −0.129048 0.129048i
$$773$$ 2.54918 + 2.54918i