Properties

Label 390.2.l.c.287.3
Level $390$
Weight $2$
Character 390.287
Analytic conductor $3.114$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Defining polynomial: \( x^{20} + 2 x^{18} - 12 x^{17} + 6 x^{16} - 24 x^{15} + 72 x^{14} - 112 x^{13} + 189 x^{12} - 356 x^{11} + 908 x^{10} - 1068 x^{9} + 1701 x^{8} - 3024 x^{7} + 5832 x^{6} - 5832 x^{5} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 287.3
Root \(-0.807075 - 1.53252i\) of defining polynomial
Character \(\chi\) \(=\) 390.287
Dual form 390.2.l.c.53.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-0.807075 - 1.53252i) q^{3} -1.00000i q^{4} +(-2.02552 - 0.947239i) q^{5} +(1.65435 + 0.512970i) q^{6} +(-1.59729 - 1.59729i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-1.69726 + 2.47372i) q^{9} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} +(-0.807075 - 1.53252i) q^{3} -1.00000i q^{4} +(-2.02552 - 0.947239i) q^{5} +(1.65435 + 0.512970i) q^{6} +(-1.59729 - 1.59729i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-1.69726 + 2.47372i) q^{9} +(2.10206 - 0.762461i) q^{10} +2.58997i q^{11} +(-1.53252 + 0.807075i) q^{12} +(0.707107 - 0.707107i) q^{13} +2.25891 q^{14} +(0.183080 + 3.86865i) q^{15} -1.00000 q^{16} +(-0.155426 + 0.155426i) q^{17} +(-0.549041 - 2.94933i) q^{18} +6.77461i q^{19} +(-0.947239 + 2.02552i) q^{20} +(-1.15876 + 3.73703i) q^{21} +(-1.83139 - 1.83139i) q^{22} +(1.81338 + 1.81338i) q^{23} +(0.512970 - 1.65435i) q^{24} +(3.20547 + 3.83731i) q^{25} +1.00000i q^{26} +(5.16086 + 0.604615i) q^{27} +(-1.59729 + 1.59729i) q^{28} -0.890831 q^{29} +(-2.86501 - 2.60609i) q^{30} -9.39662 q^{31} +(0.707107 - 0.707107i) q^{32} +(3.96919 - 2.09030i) q^{33} -0.219806i q^{34} +(1.72233 + 4.74837i) q^{35} +(2.47372 + 1.69726i) q^{36} +(-2.88699 - 2.88699i) q^{37} +(-4.79037 - 4.79037i) q^{38} +(-1.65435 - 0.512970i) q^{39} +(-0.762461 - 2.10206i) q^{40} +2.11082i q^{41} +(-1.82311 - 3.46184i) q^{42} +(-4.38869 + 4.38869i) q^{43} +2.58997 q^{44} +(5.78105 - 3.40287i) q^{45} -2.56451 q^{46} +(-3.71800 + 3.71800i) q^{47} +(0.807075 + 1.53252i) q^{48} -1.89731i q^{49} +(-4.98000 - 0.446773i) q^{50} +(0.363635 + 0.112754i) q^{51} +(-0.707107 - 0.707107i) q^{52} +(-2.24202 - 2.24202i) q^{53} +(-4.07680 + 3.22175i) q^{54} +(2.45332 - 5.24604i) q^{55} -2.25891i q^{56} +(10.3823 - 5.46761i) q^{57} +(0.629912 - 0.629912i) q^{58} +2.75114 q^{59} +(3.86865 - 0.183080i) q^{60} -2.28989 q^{61} +(6.64441 - 6.64441i) q^{62} +(6.66228 - 1.24024i) q^{63} +1.00000i q^{64} +(-2.10206 + 0.762461i) q^{65} +(-1.32858 + 4.28471i) q^{66} +(-10.9926 - 10.9926i) q^{67} +(0.155426 + 0.155426i) q^{68} +(1.31552 - 4.24259i) q^{69} +(-4.57548 - 2.13973i) q^{70} +9.60806i q^{71} +(-2.94933 + 0.549041i) q^{72} +(-1.65186 + 1.65186i) q^{73} +4.08282 q^{74} +(3.29371 - 8.00946i) q^{75} +6.77461 q^{76} +(4.13694 - 4.13694i) q^{77} +(1.53252 - 0.807075i) q^{78} +12.1165i q^{79} +(2.02552 + 0.947239i) q^{80} +(-3.23861 - 8.39711i) q^{81} +(-1.49257 - 1.49257i) q^{82} +(-5.93928 - 5.93928i) q^{83} +(3.73703 + 1.15876i) q^{84} +(0.462045 - 0.167593i) q^{85} -6.20654i q^{86} +(0.718967 + 1.36522i) q^{87} +(-1.83139 + 1.83139i) q^{88} +6.43585 q^{89} +(-1.68163 + 6.49401i) q^{90} -2.25891 q^{91} +(1.81338 - 1.81338i) q^{92} +(7.58377 + 14.4005i) q^{93} -5.25805i q^{94} +(6.41718 - 13.7221i) q^{95} +(-1.65435 - 0.512970i) q^{96} +(8.84860 + 8.84860i) q^{97} +(1.34160 + 1.34160i) q^{98} +(-6.40687 - 4.39585i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 4 q^{7} - 4 q^{9} - 8 q^{10} - 4 q^{12} + 16 q^{14} + 4 q^{15} - 20 q^{16} - 12 q^{17} + 8 q^{18} - 16 q^{21} + 4 q^{22} - 16 q^{23} - 4 q^{24} + 32 q^{25} + 36 q^{27} - 4 q^{28} + 24 q^{29} - 4 q^{30} - 8 q^{31} + 36 q^{33} + 20 q^{35} - 4 q^{36} - 16 q^{37} - 24 q^{38} - 8 q^{40} + 4 q^{42} - 20 q^{43} - 16 q^{44} + 24 q^{45} - 40 q^{46} - 16 q^{47} + 12 q^{51} - 32 q^{53} - 28 q^{54} - 4 q^{55} + 16 q^{57} + 28 q^{58} - 16 q^{60} + 24 q^{61} - 40 q^{62} + 36 q^{63} + 8 q^{65} + 12 q^{68} - 72 q^{69} + 20 q^{70} + 8 q^{72} + 28 q^{73} + 48 q^{74} - 52 q^{75} + 16 q^{76} - 8 q^{77} + 4 q^{78} - 16 q^{81} - 112 q^{83} - 8 q^{85} + 4 q^{87} + 4 q^{88} + 88 q^{89} - 4 q^{90} - 16 q^{91} - 16 q^{92} + 40 q^{93} + 8 q^{95} + 36 q^{97} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −0.807075 1.53252i −0.465965 0.884803i
\(4\) 1.00000i 0.500000i
\(5\) −2.02552 0.947239i −0.905841 0.423618i
\(6\) 1.65435 + 0.512970i 0.675384 + 0.209419i
\(7\) −1.59729 1.59729i −0.603720 0.603720i 0.337578 0.941298i \(-0.390392\pi\)
−0.941298 + 0.337578i \(0.890392\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) −1.69726 + 2.47372i −0.565754 + 0.824574i
\(10\) 2.10206 0.762461i 0.664730 0.241111i
\(11\) 2.58997i 0.780905i 0.920623 + 0.390453i \(0.127681\pi\)
−0.920623 + 0.390453i \(0.872319\pi\)
\(12\) −1.53252 + 0.807075i −0.442402 + 0.232982i
\(13\) 0.707107 0.707107i 0.196116 0.196116i
\(14\) 2.25891 0.603720
\(15\) 0.183080 + 3.86865i 0.0472710 + 0.998882i
\(16\) −1.00000 −0.250000
\(17\) −0.155426 + 0.155426i −0.0376964 + 0.0376964i −0.725704 0.688007i \(-0.758486\pi\)
0.688007 + 0.725704i \(0.258486\pi\)
\(18\) −0.549041 2.94933i −0.129410 0.695164i
\(19\) 6.77461i 1.55420i 0.629376 + 0.777101i \(0.283311\pi\)
−0.629376 + 0.777101i \(0.716689\pi\)
\(20\) −0.947239 + 2.02552i −0.211809 + 0.452920i
\(21\) −1.15876 + 3.73703i −0.252861 + 0.815486i
\(22\) −1.83139 1.83139i −0.390453 0.390453i
\(23\) 1.81338 + 1.81338i 0.378116 + 0.378116i 0.870422 0.492306i \(-0.163846\pi\)
−0.492306 + 0.870422i \(0.663846\pi\)
\(24\) 0.512970 1.65435i 0.104710 0.337692i
\(25\) 3.20547 + 3.83731i 0.641095 + 0.767462i
\(26\) 1.00000i 0.196116i
\(27\) 5.16086 + 0.604615i 0.993207 + 0.116358i
\(28\) −1.59729 + 1.59729i −0.301860 + 0.301860i
\(29\) −0.890831 −0.165423 −0.0827115 0.996574i \(-0.526358\pi\)
−0.0827115 + 0.996574i \(0.526358\pi\)
\(30\) −2.86501 2.60609i −0.523077 0.475806i
\(31\) −9.39662 −1.68768 −0.843841 0.536593i \(-0.819711\pi\)
−0.843841 + 0.536593i \(0.819711\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 3.96919 2.09030i 0.690947 0.363874i
\(34\) 0.219806i 0.0376964i
\(35\) 1.72233 + 4.74837i 0.291127 + 0.802621i
\(36\) 2.47372 + 1.69726i 0.412287 + 0.282877i
\(37\) −2.88699 2.88699i −0.474618 0.474618i 0.428788 0.903405i \(-0.358941\pi\)
−0.903405 + 0.428788i \(0.858941\pi\)
\(38\) −4.79037 4.79037i −0.777101 0.777101i
\(39\) −1.65435 0.512970i −0.264907 0.0821410i
\(40\) −0.762461 2.10206i −0.120556 0.332365i
\(41\) 2.11082i 0.329654i 0.986322 + 0.164827i \(0.0527067\pi\)
−0.986322 + 0.164827i \(0.947293\pi\)
\(42\) −1.82311 3.46184i −0.281312 0.534174i
\(43\) −4.38869 + 4.38869i −0.669269 + 0.669269i −0.957547 0.288278i \(-0.906917\pi\)
0.288278 + 0.957547i \(0.406917\pi\)
\(44\) 2.58997 0.390453
\(45\) 5.78105 3.40287i 0.861788 0.507269i
\(46\) −2.56451 −0.378116
\(47\) −3.71800 + 3.71800i −0.542326 + 0.542326i −0.924210 0.381884i \(-0.875275\pi\)
0.381884 + 0.924210i \(0.375275\pi\)
\(48\) 0.807075 + 1.53252i 0.116491 + 0.221201i
\(49\) 1.89731i 0.271044i
\(50\) −4.98000 0.446773i −0.704278 0.0631833i
\(51\) 0.363635 + 0.112754i 0.0509191 + 0.0157887i
\(52\) −0.707107 0.707107i −0.0980581 0.0980581i
\(53\) −2.24202 2.24202i −0.307965 0.307965i 0.536155 0.844120i \(-0.319876\pi\)
−0.844120 + 0.536155i \(0.819876\pi\)
\(54\) −4.07680 + 3.22175i −0.554783 + 0.438425i
\(55\) 2.45332 5.24604i 0.330806 0.707376i
\(56\) 2.25891i 0.301860i
\(57\) 10.3823 5.46761i 1.37516 0.724203i
\(58\) 0.629912 0.629912i 0.0827115 0.0827115i
\(59\) 2.75114 0.358169 0.179084 0.983834i \(-0.442687\pi\)
0.179084 + 0.983834i \(0.442687\pi\)
\(60\) 3.86865 0.183080i 0.499441 0.0236355i
\(61\) −2.28989 −0.293191 −0.146595 0.989197i \(-0.546831\pi\)
−0.146595 + 0.989197i \(0.546831\pi\)
\(62\) 6.64441 6.64441i 0.843841 0.843841i
\(63\) 6.66228 1.24024i 0.839369 0.156255i
\(64\) 1.00000i 0.125000i
\(65\) −2.10206 + 0.762461i −0.260728 + 0.0945716i
\(66\) −1.32858 + 4.28471i −0.163537 + 0.527411i
\(67\) −10.9926 10.9926i −1.34295 1.34295i −0.893104 0.449850i \(-0.851477\pi\)
−0.449850 0.893104i \(-0.648523\pi\)
\(68\) 0.155426 + 0.155426i 0.0188482 + 0.0188482i
\(69\) 1.31552 4.24259i 0.158370 0.510747i
\(70\) −4.57548 2.13973i −0.546874 0.255747i
\(71\) 9.60806i 1.14027i 0.821552 + 0.570134i \(0.193109\pi\)
−0.821552 + 0.570134i \(0.806891\pi\)
\(72\) −2.94933 + 0.549041i −0.347582 + 0.0647052i
\(73\) −1.65186 + 1.65186i −0.193336 + 0.193336i −0.797136 0.603800i \(-0.793653\pi\)
0.603800 + 0.797136i \(0.293653\pi\)
\(74\) 4.08282 0.474618
\(75\) 3.29371 8.00946i 0.380325 0.924853i
\(76\) 6.77461 0.777101
\(77\) 4.13694 4.13694i 0.471448 0.471448i
\(78\) 1.53252 0.807075i 0.173524 0.0913832i
\(79\) 12.1165i 1.36321i 0.731721 + 0.681605i \(0.238718\pi\)
−0.731721 + 0.681605i \(0.761282\pi\)
\(80\) 2.02552 + 0.947239i 0.226460 + 0.105905i
\(81\) −3.23861 8.39711i −0.359846 0.933012i
\(82\) −1.49257 1.49257i −0.164827 0.164827i
\(83\) −5.93928 5.93928i −0.651921 0.651921i 0.301534 0.953455i \(-0.402501\pi\)
−0.953455 + 0.301534i \(0.902501\pi\)
\(84\) 3.73703 + 1.15876i 0.407743 + 0.126431i
\(85\) 0.462045 0.167593i 0.0501158 0.0181780i
\(86\) 6.20654i 0.669269i
\(87\) 0.718967 + 1.36522i 0.0770813 + 0.146367i
\(88\) −1.83139 + 1.83139i −0.195226 + 0.195226i
\(89\) 6.43585 0.682199 0.341099 0.940027i \(-0.389201\pi\)
0.341099 + 0.940027i \(0.389201\pi\)
\(90\) −1.68163 + 6.49401i −0.177259 + 0.684528i
\(91\) −2.25891 −0.236798
\(92\) 1.81338 1.81338i 0.189058 0.189058i
\(93\) 7.58377 + 14.4005i 0.786400 + 1.49327i
\(94\) 5.25805i 0.542326i
\(95\) 6.41718 13.7221i 0.658388 1.40786i
\(96\) −1.65435 0.512970i −0.168846 0.0523548i
\(97\) 8.84860 + 8.84860i 0.898439 + 0.898439i 0.995298 0.0968592i \(-0.0308796\pi\)
−0.0968592 + 0.995298i \(0.530880\pi\)
\(98\) 1.34160 + 1.34160i 0.135522 + 0.135522i
\(99\) −6.40687 4.39585i −0.643914 0.441800i
\(100\) 3.83731 3.20547i 0.383731 0.320547i
\(101\) 16.1955i 1.61151i −0.592246 0.805757i \(-0.701759\pi\)
0.592246 0.805757i \(-0.298241\pi\)
\(102\) −0.336858 + 0.177400i −0.0333539 + 0.0175652i
\(103\) 11.4202 11.4202i 1.12526 1.12526i 0.134326 0.990937i \(-0.457113\pi\)
0.990937 0.134326i \(-0.0428869\pi\)
\(104\) 1.00000 0.0980581
\(105\) 5.88694 6.47181i 0.574507 0.631584i
\(106\) 3.17070 0.307965
\(107\) −10.0756 + 10.0756i −0.974043 + 0.974043i −0.999672 0.0256290i \(-0.991841\pi\)
0.0256290 + 0.999672i \(0.491841\pi\)
\(108\) 0.604615 5.16086i 0.0581791 0.496604i
\(109\) 9.17905i 0.879194i 0.898195 + 0.439597i \(0.144879\pi\)
−0.898195 + 0.439597i \(0.855121\pi\)
\(110\) 1.97475 + 5.44427i 0.188285 + 0.519091i
\(111\) −2.09436 + 6.75439i −0.198788 + 0.641098i
\(112\) 1.59729 + 1.59729i 0.150930 + 0.150930i
\(113\) 7.84170 + 7.84170i 0.737685 + 0.737685i 0.972130 0.234444i \(-0.0753271\pi\)
−0.234444 + 0.972130i \(0.575327\pi\)
\(114\) −3.47517 + 11.2075i −0.325480 + 1.04968i
\(115\) −1.95534 5.39075i −0.182336 0.502690i
\(116\) 0.890831i 0.0827115i
\(117\) 0.549041 + 2.94933i 0.0507589 + 0.272666i
\(118\) −1.94535 + 1.94535i −0.179084 + 0.179084i
\(119\) 0.496523 0.0455161
\(120\) −2.60609 + 2.86501i −0.237903 + 0.261538i
\(121\) 4.29206 0.390187
\(122\) 1.61920 1.61920i 0.146595 0.146595i
\(123\) 3.23488 1.70359i 0.291679 0.153607i
\(124\) 9.39662i 0.843841i
\(125\) −2.85791 10.8089i −0.255619 0.966778i
\(126\) −3.83397 + 5.58793i −0.341557 + 0.497812i
\(127\) −8.05797 8.05797i −0.715029 0.715029i 0.252554 0.967583i \(-0.418729\pi\)
−0.967583 + 0.252554i \(0.918729\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 10.2678 + 3.18377i 0.904027 + 0.280315i
\(130\) 0.947239 2.02552i 0.0830784 0.177650i
\(131\) 14.2078i 1.24134i −0.784071 0.620671i \(-0.786860\pi\)
0.784071 0.620671i \(-0.213140\pi\)
\(132\) −2.09030 3.96919i −0.181937 0.345474i
\(133\) 10.8210 10.8210i 0.938303 0.938303i
\(134\) 15.5458 1.34295
\(135\) −9.88071 6.11323i −0.850396 0.526143i
\(136\) −0.219806 −0.0188482
\(137\) −10.9549 + 10.9549i −0.935939 + 0.935939i −0.998068 0.0621288i \(-0.980211\pi\)
0.0621288 + 0.998068i \(0.480211\pi\)
\(138\) 2.06975 + 3.93017i 0.176189 + 0.334558i
\(139\) 15.0559i 1.27703i 0.769611 + 0.638513i \(0.220450\pi\)
−0.769611 + 0.638513i \(0.779550\pi\)
\(140\) 4.74837 1.72233i 0.401311 0.145564i
\(141\) 8.69863 + 2.69722i 0.732557 + 0.227147i
\(142\) −6.79393 6.79393i −0.570134 0.570134i
\(143\) 1.83139 + 1.83139i 0.153148 + 0.153148i
\(144\) 1.69726 2.47372i 0.141438 0.206144i
\(145\) 1.80440 + 0.843830i 0.149847 + 0.0700763i
\(146\) 2.33609i 0.193336i
\(147\) −2.90767 + 1.53127i −0.239821 + 0.126297i
\(148\) −2.88699 + 2.88699i −0.237309 + 0.237309i
\(149\) −15.7204 −1.28787 −0.643934 0.765081i \(-0.722699\pi\)
−0.643934 + 0.765081i \(0.722699\pi\)
\(150\) 3.33454 + 7.99255i 0.272264 + 0.652589i
\(151\) −14.3294 −1.16611 −0.583056 0.812432i \(-0.698143\pi\)
−0.583056 + 0.812432i \(0.698143\pi\)
\(152\) −4.79037 + 4.79037i −0.388550 + 0.388550i
\(153\) −0.120683 0.648280i −0.00975661 0.0524104i
\(154\) 5.85052i 0.471448i
\(155\) 19.0330 + 8.90085i 1.52877 + 0.714933i
\(156\) −0.512970 + 1.65435i −0.0410705 + 0.132454i
\(157\) −9.89671 9.89671i −0.789843 0.789843i 0.191625 0.981468i \(-0.438624\pi\)
−0.981468 + 0.191625i \(0.938624\pi\)
\(158\) −8.56764 8.56764i −0.681605 0.681605i
\(159\) −1.62647 + 5.24543i −0.128988 + 0.415990i
\(160\) −2.10206 + 0.762461i −0.166182 + 0.0602778i
\(161\) 5.79300i 0.456553i
\(162\) 8.22769 + 3.64761i 0.646429 + 0.286583i
\(163\) −9.12788 + 9.12788i −0.714951 + 0.714951i −0.967567 0.252616i \(-0.918709\pi\)
0.252616 + 0.967567i \(0.418709\pi\)
\(164\) 2.11082 0.164827
\(165\) −10.0197 + 0.474171i −0.780032 + 0.0369141i
\(166\) 8.39941 0.651921
\(167\) −13.1748 + 13.1748i −1.01950 + 1.01950i −0.0196916 + 0.999806i \(0.506268\pi\)
−0.999806 + 0.0196916i \(0.993732\pi\)
\(168\) −3.46184 + 1.82311i −0.267087 + 0.140656i
\(169\) 1.00000i 0.0769231i
\(170\) −0.208209 + 0.445222i −0.0159689 + 0.0341469i
\(171\) −16.7585 11.4983i −1.28155 0.879295i
\(172\) 4.38869 + 4.38869i 0.334634 + 0.334634i
\(173\) −11.0567 11.0567i −0.840628 0.840628i 0.148312 0.988941i \(-0.452616\pi\)
−0.988941 + 0.148312i \(0.952616\pi\)
\(174\) −1.47374 0.456970i −0.111724 0.0346428i
\(175\) 1.00922 11.2494i 0.0762900 0.850374i
\(176\) 2.58997i 0.195226i
\(177\) −2.22038 4.21620i −0.166894 0.316909i
\(178\) −4.55083 + 4.55083i −0.341099 + 0.341099i
\(179\) −11.4964 −0.859281 −0.429641 0.903000i \(-0.641360\pi\)
−0.429641 + 0.903000i \(0.641360\pi\)
\(180\) −3.40287 5.78105i −0.253635 0.430894i
\(181\) 17.6773 1.31394 0.656970 0.753917i \(-0.271838\pi\)
0.656970 + 0.753917i \(0.271838\pi\)
\(182\) 1.59729 1.59729i 0.118399 0.118399i
\(183\) 1.84811 + 3.50931i 0.136616 + 0.259416i
\(184\) 2.56451i 0.189058i
\(185\) 3.11299 + 8.58232i 0.228871 + 0.630985i
\(186\) −15.5453 4.82019i −1.13983 0.353433i
\(187\) −0.402549 0.402549i −0.0294373 0.0294373i
\(188\) 3.71800 + 3.71800i 0.271163 + 0.271163i
\(189\) −7.27765 9.20915i −0.529371 0.669867i
\(190\) 5.16537 + 14.2406i 0.374735 + 1.03312i
\(191\) 18.0153i 1.30354i 0.758416 + 0.651771i \(0.225974\pi\)
−0.758416 + 0.651771i \(0.774026\pi\)
\(192\) 1.53252 0.807075i 0.110600 0.0582456i
\(193\) 3.58559 3.58559i 0.258097 0.258097i −0.566183 0.824280i \(-0.691580\pi\)
0.824280 + 0.566183i \(0.191580\pi\)
\(194\) −12.5138 −0.898439
\(195\) 2.86501 + 2.60609i 0.205167 + 0.186626i
\(196\) −1.89731 −0.135522
\(197\) −11.8377 + 11.8377i −0.843398 + 0.843398i −0.989299 0.145901i \(-0.953392\pi\)
0.145901 + 0.989299i \(0.453392\pi\)
\(198\) 7.63868 1.42200i 0.542857 0.101057i
\(199\) 6.88147i 0.487814i −0.969799 0.243907i \(-0.921571\pi\)
0.969799 0.243907i \(-0.0784292\pi\)
\(200\) −0.446773 + 4.98000i −0.0315916 + 0.352139i
\(201\) −7.97454 + 25.7182i −0.562481 + 1.81402i
\(202\) 11.4520 + 11.4520i 0.805757 + 0.805757i
\(203\) 1.42292 + 1.42292i 0.0998692 + 0.0998692i
\(204\) 0.112754 0.363635i 0.00789435 0.0254595i
\(205\) 1.99945 4.27551i 0.139648 0.298614i
\(206\) 16.1506i 1.12526i
\(207\) −7.56358 + 1.40802i −0.525705 + 0.0978643i
\(208\) −0.707107 + 0.707107i −0.0490290 + 0.0490290i
\(209\) −17.5460 −1.21368
\(210\) 0.413561 + 8.73895i 0.0285384 + 0.603045i
\(211\) −7.30339 −0.502786 −0.251393 0.967885i \(-0.580889\pi\)
−0.251393 + 0.967885i \(0.580889\pi\)
\(212\) −2.24202 + 2.24202i −0.153983 + 0.153983i
\(213\) 14.7246 7.75442i 1.00891 0.531324i
\(214\) 14.2490i 0.974043i
\(215\) 13.0465 4.73224i 0.889765 0.322736i
\(216\) 3.22175 + 4.07680i 0.219212 + 0.277391i
\(217\) 15.0092 + 15.0092i 1.01889 + 1.01889i
\(218\) −6.49057 6.49057i −0.439597 0.439597i
\(219\) 3.86470 + 1.19834i 0.261152 + 0.0809765i
\(220\) −5.24604 2.45332i −0.353688 0.165403i
\(221\) 0.219806i 0.0147857i
\(222\) −3.29514 6.25701i −0.221155 0.419943i
\(223\) 16.1979 16.1979i 1.08469 1.08469i 0.0886232 0.996065i \(-0.471753\pi\)
0.996065 0.0886232i \(-0.0282467\pi\)
\(224\) −2.25891 −0.150930
\(225\) −14.9330 + 1.41654i −0.995531 + 0.0944362i
\(226\) −11.0898 −0.737685
\(227\) −17.2226 + 17.2226i −1.14310 + 1.14310i −0.155223 + 0.987879i \(0.549610\pi\)
−0.987879 + 0.155223i \(0.950390\pi\)
\(228\) −5.46761 10.3823i −0.362102 0.687581i
\(229\) 23.5974i 1.55936i −0.626177 0.779681i \(-0.715381\pi\)
0.626177 0.779681i \(-0.284619\pi\)
\(230\) 5.19447 + 2.42920i 0.342513 + 0.160177i
\(231\) −9.67878 3.00114i −0.636817 0.197461i
\(232\) −0.629912 0.629912i −0.0413558 0.0413558i
\(233\) −7.44530 7.44530i −0.487758 0.487758i 0.419840 0.907598i \(-0.362086\pi\)
−0.907598 + 0.419840i \(0.862086\pi\)
\(234\) −2.47372 1.69726i −0.161712 0.110953i
\(235\) 11.0527 4.00905i 0.721000 0.261522i
\(236\) 2.75114i 0.179084i
\(237\) 18.5688 9.77889i 1.20617 0.635207i
\(238\) −0.351094 + 0.351094i −0.0227581 + 0.0227581i
\(239\) 19.2221 1.24337 0.621687 0.783266i \(-0.286448\pi\)
0.621687 + 0.783266i \(0.286448\pi\)
\(240\) −0.183080 3.86865i −0.0118177 0.249721i
\(241\) 16.0808 1.03586 0.517928 0.855424i \(-0.326704\pi\)
0.517928 + 0.855424i \(0.326704\pi\)
\(242\) −3.03494 + 3.03494i −0.195094 + 0.195094i
\(243\) −10.2550 + 11.7403i −0.657857 + 0.753143i
\(244\) 2.28989i 0.146595i
\(245\) −1.79721 + 3.84304i −0.114819 + 0.245523i
\(246\) −1.08279 + 3.49202i −0.0690360 + 0.222643i
\(247\) 4.79037 + 4.79037i 0.304804 + 0.304804i
\(248\) −6.64441 6.64441i −0.421921 0.421921i
\(249\) −4.30865 + 13.8955i −0.273050 + 0.880594i
\(250\) 9.66389 + 5.62220i 0.611198 + 0.355579i
\(251\) 25.4480i 1.60626i −0.595801 0.803132i \(-0.703165\pi\)
0.595801 0.803132i \(-0.296835\pi\)
\(252\) −1.24024 6.66228i −0.0781276 0.419684i
\(253\) −4.69660 + 4.69660i −0.295273 + 0.295273i
\(254\) 11.3957 0.715029
\(255\) −0.629746 0.572835i −0.0394362 0.0358723i
\(256\) 1.00000 0.0625000
\(257\) 12.1316 12.1316i 0.756749 0.756749i −0.218980 0.975729i \(-0.570273\pi\)
0.975729 + 0.218980i \(0.0702731\pi\)
\(258\) −9.51167 + 5.00914i −0.592171 + 0.311856i
\(259\) 9.22273i 0.573073i
\(260\) 0.762461 + 2.10206i 0.0472858 + 0.130364i
\(261\) 1.51197 2.20367i 0.0935887 0.136404i
\(262\) 10.0464 + 10.0464i 0.620671 + 0.620671i
\(263\) 3.81582 + 3.81582i 0.235294 + 0.235294i 0.814898 0.579604i \(-0.196793\pi\)
−0.579604 + 0.814898i \(0.696793\pi\)
\(264\) 4.28471 + 1.32858i 0.263705 + 0.0817683i
\(265\) 2.41753 + 6.66499i 0.148508 + 0.409427i
\(266\) 15.3033i 0.938303i
\(267\) −5.19421 9.86310i −0.317881 0.603612i
\(268\) −10.9926 + 10.9926i −0.671477 + 0.671477i
\(269\) −2.98732 −0.182140 −0.0910701 0.995844i \(-0.529029\pi\)
−0.0910701 + 0.995844i \(0.529029\pi\)
\(270\) 11.3094 2.66401i 0.688270 0.162127i
\(271\) 17.9161 1.08832 0.544162 0.838980i \(-0.316848\pi\)
0.544162 + 0.838980i \(0.316848\pi\)
\(272\) 0.155426 0.155426i 0.00942410 0.00942410i
\(273\) 1.82311 + 3.46184i 0.110340 + 0.209520i
\(274\) 15.4926i 0.935939i
\(275\) −9.93851 + 8.30208i −0.599315 + 0.500634i
\(276\) −4.24259 1.31552i −0.255374 0.0791848i
\(277\) 11.8188 + 11.8188i 0.710120 + 0.710120i 0.966560 0.256440i \(-0.0825496\pi\)
−0.256440 + 0.966560i \(0.582550\pi\)
\(278\) −10.6461 10.6461i −0.638513 0.638513i
\(279\) 15.9485 23.2446i 0.954812 1.39162i
\(280\) −2.13973 + 4.57548i −0.127873 + 0.273437i
\(281\) 0.763857i 0.0455679i −0.999740 0.0227839i \(-0.992747\pi\)
0.999740 0.0227839i \(-0.00725298\pi\)
\(282\) −8.05808 + 4.24364i −0.479852 + 0.252705i
\(283\) −3.73216 + 3.73216i −0.221854 + 0.221854i −0.809279 0.587425i \(-0.800142\pi\)
0.587425 + 0.809279i \(0.300142\pi\)
\(284\) 9.60806 0.570134
\(285\) −26.2086 + 1.24029i −1.55246 + 0.0734686i
\(286\) −2.58997 −0.153148
\(287\) 3.37160 3.37160i 0.199019 0.199019i
\(288\) 0.549041 + 2.94933i 0.0323526 + 0.173791i
\(289\) 16.9517i 0.997158i
\(290\) −1.87258 + 0.679223i −0.109962 + 0.0398854i
\(291\) 6.41921 20.7022i 0.376301 1.21358i
\(292\) 1.65186 + 1.65186i 0.0966680 + 0.0966680i
\(293\) 22.4543 + 22.4543i 1.31180 + 1.31180i 0.920091 + 0.391704i \(0.128114\pi\)
0.391704 + 0.920091i \(0.371886\pi\)
\(294\) 0.973263 3.13881i 0.0567619 0.183059i
\(295\) −5.57250 2.60599i −0.324444 0.151727i
\(296\) 4.08282i 0.237309i
\(297\) −1.56593 + 13.3665i −0.0908647 + 0.775601i
\(298\) 11.1160 11.1160i 0.643934 0.643934i
\(299\) 2.56451 0.148309
\(300\) −8.00946 3.29371i −0.462426 0.190162i
\(301\) 14.0200 0.808102
\(302\) 10.1324 10.1324i 0.583056 0.583056i
\(303\) −24.8200 + 13.0710i −1.42587 + 0.750909i
\(304\) 6.77461i 0.388550i
\(305\) 4.63822 + 2.16908i 0.265584 + 0.124201i
\(306\) 0.543739 + 0.373068i 0.0310835 + 0.0213269i
\(307\) 4.92117 + 4.92117i 0.280866 + 0.280866i 0.833454 0.552588i \(-0.186360\pi\)
−0.552588 + 0.833454i \(0.686360\pi\)
\(308\) −4.13694 4.13694i −0.235724 0.235724i
\(309\) −26.7186 8.28476i −1.51997 0.471304i
\(310\) −19.7522 + 7.16455i −1.12185 + 0.406919i
\(311\) 2.99483i 0.169821i 0.996389 + 0.0849107i \(0.0270605\pi\)
−0.996389 + 0.0849107i \(0.972940\pi\)
\(312\) −0.807075 1.53252i −0.0456916 0.0867621i
\(313\) −22.8829 + 22.8829i −1.29342 + 1.29342i −0.360759 + 0.932659i \(0.617482\pi\)
−0.932659 + 0.360759i \(0.882518\pi\)
\(314\) 13.9961 0.789843
\(315\) −14.6694 3.79865i −0.826527 0.214030i
\(316\) 12.1165 0.681605
\(317\) 14.7717 14.7717i 0.829659 0.829659i −0.157810 0.987469i \(-0.550444\pi\)
0.987469 + 0.157810i \(0.0504435\pi\)
\(318\) −2.55899 4.85917i −0.143501 0.272489i
\(319\) 2.30722i 0.129180i
\(320\) 0.947239 2.02552i 0.0529523 0.113230i
\(321\) 23.5728 + 7.30932i 1.31571 + 0.407967i
\(322\) 4.09627 + 4.09627i 0.228276 + 0.228276i
\(323\) −1.05295 1.05295i −0.0585878 0.0585878i
\(324\) −8.39711 + 3.23861i −0.466506 + 0.179923i
\(325\) 4.98000 + 0.446773i 0.276241 + 0.0247825i
\(326\) 12.9088i 0.714951i
\(327\) 14.0671 7.40818i 0.777914 0.409673i
\(328\) −1.49257 + 1.49257i −0.0824136 + 0.0824136i
\(329\) 11.8775 0.654826
\(330\) 6.74971 7.42028i 0.371559 0.408473i
\(331\) −0.111775 −0.00614372 −0.00307186 0.999995i \(-0.500978\pi\)
−0.00307186 + 0.999995i \(0.500978\pi\)
\(332\) −5.93928 + 5.93928i −0.325960 + 0.325960i
\(333\) 12.0416 2.24164i 0.659874 0.122841i
\(334\) 18.6320i 1.01950i
\(335\) 11.8531 + 32.6782i 0.647603 + 1.78540i
\(336\) 1.15876 3.73703i 0.0632153 0.203871i
\(337\) −8.54851 8.54851i −0.465667 0.465667i 0.434840 0.900508i \(-0.356805\pi\)
−0.900508 + 0.434840i \(0.856805\pi\)
\(338\) 0.707107 + 0.707107i 0.0384615 + 0.0384615i
\(339\) 5.68876 18.3464i 0.308971 0.996442i
\(340\) −0.167593 0.462045i −0.00908902 0.0250579i
\(341\) 24.3370i 1.31792i
\(342\) 19.9806 3.71954i 1.08043 0.201130i
\(343\) −14.2116 + 14.2116i −0.767355 + 0.767355i
\(344\) −6.20654 −0.334634
\(345\) −6.68335 + 7.34734i −0.359820 + 0.395567i
\(346\) 15.6366 0.840628
\(347\) 6.09851 6.09851i 0.327385 0.327385i −0.524206 0.851591i \(-0.675638\pi\)
0.851591 + 0.524206i \(0.175638\pi\)
\(348\) 1.36522 0.718967i 0.0731834 0.0385407i
\(349\) 4.89335i 0.261935i −0.991387 0.130967i \(-0.958192\pi\)
0.991387 0.130967i \(-0.0418083\pi\)
\(350\) 7.24089 + 8.66815i 0.387042 + 0.463332i
\(351\) 4.07680 3.22175i 0.217604 0.171964i
\(352\) 1.83139 + 1.83139i 0.0976132 + 0.0976132i
\(353\) 8.68950 + 8.68950i 0.462495 + 0.462495i 0.899473 0.436977i \(-0.143951\pi\)
−0.436977 + 0.899473i \(0.643951\pi\)
\(354\) 4.55135 + 1.41126i 0.241901 + 0.0750074i
\(355\) 9.10114 19.4613i 0.483038 1.03290i
\(356\) 6.43585i 0.341099i
\(357\) −0.400731 0.760933i −0.0212089 0.0402728i
\(358\) 8.12918 8.12918i 0.429641 0.429641i
\(359\) 31.8464 1.68079 0.840394 0.541975i \(-0.182323\pi\)
0.840394 + 0.541975i \(0.182323\pi\)
\(360\) 6.49401 + 1.68163i 0.342264 + 0.0886296i
\(361\) −26.8953 −1.41554
\(362\) −12.4997 + 12.4997i −0.656970 + 0.656970i
\(363\) −3.46401 6.57768i −0.181813 0.345239i
\(364\) 2.25891i 0.118399i
\(365\) 4.91059 1.78117i 0.257032 0.0932309i
\(366\) −3.78827 1.17465i −0.198016 0.0613997i
\(367\) 14.9797 + 14.9797i 0.781935 + 0.781935i 0.980157 0.198222i \(-0.0635167\pi\)
−0.198222 + 0.980157i \(0.563517\pi\)
\(368\) −1.81338 1.81338i −0.0945290 0.0945290i
\(369\) −5.22158 3.58261i −0.271825 0.186503i
\(370\) −8.26983 3.86740i −0.429928 0.201057i
\(371\) 7.16233i 0.371850i
\(372\) 14.4005 7.58377i 0.746633 0.393200i
\(373\) 16.2983 16.2983i 0.843893 0.843893i −0.145470 0.989363i \(-0.546469\pi\)
0.989363 + 0.145470i \(0.0464693\pi\)
\(374\) 0.569291 0.0294373
\(375\) −14.2584 + 13.1034i −0.736298 + 0.676657i
\(376\) −5.25805 −0.271163
\(377\) −0.629912 + 0.629912i −0.0324421 + 0.0324421i
\(378\) 11.6579 + 1.36577i 0.599619 + 0.0702478i
\(379\) 6.82263i 0.350455i −0.984528 0.175228i \(-0.943934\pi\)
0.984528 0.175228i \(-0.0560661\pi\)
\(380\) −13.7221 6.41718i −0.703930 0.329194i
\(381\) −5.84565 + 18.8524i −0.299482 + 0.965838i
\(382\) −12.7388 12.7388i −0.651771 0.651771i
\(383\) −15.1912 15.1912i −0.776235 0.776235i 0.202953 0.979188i \(-0.434946\pi\)
−0.979188 + 0.202953i \(0.934946\pi\)
\(384\) −0.512970 + 1.65435i −0.0261774 + 0.0844230i
\(385\) −12.2981 + 4.46079i −0.626771 + 0.227343i
\(386\) 5.07079i 0.258097i
\(387\) −3.40765 18.3051i −0.173220 0.930503i
\(388\) 8.84860 8.84860i 0.449219 0.449219i
\(389\) −2.88396 −0.146222 −0.0731112 0.997324i \(-0.523293\pi\)
−0.0731112 + 0.997324i \(0.523293\pi\)
\(390\) −3.86865 + 0.183080i −0.195897 + 0.00927060i
\(391\) −0.563694 −0.0285072
\(392\) 1.34160 1.34160i 0.0677610 0.0677610i
\(393\) −21.7738 + 11.4668i −1.09834 + 0.578422i
\(394\) 16.7410i 0.843398i
\(395\) 11.4772 24.5422i 0.577480 1.23485i
\(396\) −4.39585 + 6.40687i −0.220900 + 0.321957i
\(397\) −26.9155 26.9155i −1.35085 1.35085i −0.884712 0.466137i \(-0.845645\pi\)
−0.466137 0.884712i \(-0.654355\pi\)
\(398\) 4.86593 + 4.86593i 0.243907 + 0.243907i
\(399\) −25.3169 7.85012i −1.26743 0.392997i
\(400\) −3.20547 3.83731i −0.160274 0.191865i
\(401\) 29.6662i 1.48146i −0.671803 0.740729i \(-0.734480\pi\)
0.671803 0.740729i \(-0.265520\pi\)
\(402\) −12.5466 23.8243i −0.625769 1.18825i
\(403\) −6.64441 + 6.64441i −0.330982 + 0.330982i
\(404\) −16.1955 −0.805757
\(405\) −1.39420 + 20.0763i −0.0692782 + 0.997597i
\(406\) −2.01231 −0.0998692
\(407\) 7.47721 7.47721i 0.370631 0.370631i
\(408\) 0.177400 + 0.336858i 0.00878260 + 0.0166769i
\(409\) 3.05276i 0.150949i −0.997148 0.0754747i \(-0.975953\pi\)
0.997148 0.0754747i \(-0.0240472\pi\)
\(410\) 1.60942 + 4.43707i 0.0794834 + 0.219131i
\(411\) 25.6300 + 7.94722i 1.26424 + 0.392007i
\(412\) −11.4202 11.4202i −0.562632 0.562632i
\(413\) −4.39438 4.39438i −0.216234 0.216234i
\(414\) 4.35264 6.34388i 0.213921 0.311785i
\(415\) 6.40422 + 17.6561i 0.314371 + 0.866702i
\(416\) 1.00000i 0.0490290i
\(417\) 23.0736 12.1513i 1.12992 0.595049i
\(418\) 12.4069 12.4069i 0.606842 0.606842i
\(419\) 6.17929 0.301878 0.150939 0.988543i \(-0.451770\pi\)
0.150939 + 0.988543i \(0.451770\pi\)
\(420\) −6.47181 5.88694i −0.315792 0.287253i
\(421\) 2.65347 0.129322 0.0646610 0.997907i \(-0.479403\pi\)
0.0646610 + 0.997907i \(0.479403\pi\)
\(422\) 5.16428 5.16428i 0.251393 0.251393i
\(423\) −2.88688 15.5077i −0.140365 0.754011i
\(424\) 3.17070i 0.153983i
\(425\) −1.09463 0.0982034i −0.0530975 0.00476357i
\(426\) −4.92865 + 15.8951i −0.238794 + 0.770118i
\(427\) 3.65763 + 3.65763i 0.177005 + 0.177005i
\(428\) 10.0756 + 10.0756i 0.487021 + 0.487021i
\(429\) 1.32858 4.28471i 0.0641443 0.206868i
\(430\) −5.87908 + 12.5715i −0.283514 + 0.606251i
\(431\) 35.9248i 1.73043i −0.501397 0.865217i \(-0.667180\pi\)
0.501397 0.865217i \(-0.332820\pi\)
\(432\) −5.16086 0.604615i −0.248302 0.0290895i
\(433\) −8.25075 + 8.25075i −0.396506 + 0.396506i −0.876999 0.480493i \(-0.840458\pi\)
0.480493 + 0.876999i \(0.340458\pi\)
\(434\) −21.2261 −1.01889
\(435\) −0.163093 3.44632i −0.00781971 0.165238i
\(436\) 9.17905 0.439597
\(437\) −12.2849 + 12.2849i −0.587669 + 0.587669i
\(438\) −3.58011 + 1.88540i −0.171064 + 0.0900877i
\(439\) 5.36829i 0.256215i −0.991760 0.128107i \(-0.959110\pi\)
0.991760 0.128107i \(-0.0408902\pi\)
\(440\) 5.44427 1.97475i 0.259545 0.0941425i
\(441\) 4.69342 + 3.22023i 0.223496 + 0.153344i
\(442\) −0.155426 0.155426i −0.00739287 0.00739287i
\(443\) 11.3450 + 11.3450i 0.539018 + 0.539018i 0.923241 0.384223i \(-0.125530\pi\)
−0.384223 + 0.923241i \(0.625530\pi\)
\(444\) 6.75439 + 2.09436i 0.320549 + 0.0993941i
\(445\) −13.0360 6.09629i −0.617964 0.288992i
\(446\) 22.9072i 1.08469i
\(447\) 12.6876 + 24.0920i 0.600102 + 1.13951i
\(448\) 1.59729 1.59729i 0.0754650 0.0754650i
\(449\) −16.0281 −0.756412 −0.378206 0.925721i \(-0.623459\pi\)
−0.378206 + 0.925721i \(0.623459\pi\)
\(450\) 9.55755 11.5608i 0.450547 0.544984i
\(451\) −5.46696 −0.257429
\(452\) 7.84170 7.84170i 0.368843 0.368843i
\(453\) 11.5649 + 21.9602i 0.543367 + 1.03178i
\(454\) 24.3564i 1.14310i
\(455\) 4.57548 + 2.13973i 0.214502 + 0.100312i
\(456\) 11.2075 + 3.47517i 0.524842 + 0.162740i
\(457\) 0.963319 + 0.963319i 0.0450621 + 0.0450621i 0.729279 0.684217i \(-0.239856\pi\)
−0.684217 + 0.729279i \(0.739856\pi\)
\(458\) 16.6859 + 16.6859i 0.779681 + 0.779681i
\(459\) −0.896106 + 0.708160i −0.0418266 + 0.0330541i
\(460\) −5.39075 + 1.95534i −0.251345 + 0.0911680i
\(461\) 17.4655i 0.813447i 0.913551 + 0.406724i \(0.133329\pi\)
−0.913551 + 0.406724i \(0.866671\pi\)
\(462\) 8.96606 4.72180i 0.417139 0.219678i
\(463\) −0.256369 + 0.256369i −0.0119145 + 0.0119145i −0.713039 0.701124i \(-0.752682\pi\)
0.701124 + 0.713039i \(0.252682\pi\)
\(464\) 0.890831 0.0413558
\(465\) −1.72033 36.3523i −0.0797784 1.68580i
\(466\) 10.5292 0.487758
\(467\) −17.7653 + 17.7653i −0.822079 + 0.822079i −0.986406 0.164327i \(-0.947455\pi\)
0.164327 + 0.986406i \(0.447455\pi\)
\(468\) 2.94933 0.549041i 0.136333 0.0253794i
\(469\) 35.1167i 1.62154i
\(470\) −4.98063 + 10.6503i −0.229739 + 0.491261i
\(471\) −7.17956 + 23.1543i −0.330817 + 1.06690i
\(472\) 1.94535 + 1.94535i 0.0895421 + 0.0895421i
\(473\) −11.3666 11.3666i −0.522635 0.522635i
\(474\) −6.21539 + 20.0448i −0.285482 + 0.920690i
\(475\) −25.9963 + 21.7158i −1.19279 + 0.996391i
\(476\) 0.496523i 0.0227581i
\(477\) 9.35144 1.74084i 0.428173 0.0797078i
\(478\) −13.5921 + 13.5921i −0.621687 + 0.621687i
\(479\) 21.2442 0.970671 0.485336 0.874328i \(-0.338697\pi\)
0.485336 + 0.874328i \(0.338697\pi\)
\(480\) 2.86501 + 2.60609i 0.130769 + 0.118951i
\(481\) −4.08282 −0.186160
\(482\) −11.3708 + 11.3708i −0.517928 + 0.517928i
\(483\) −8.87792 + 4.67539i −0.403959 + 0.212737i
\(484\) 4.29206i 0.195094i
\(485\) −9.54128 26.3048i −0.433247 1.19444i
\(486\) −1.05032 15.5530i −0.0476433 0.705500i
\(487\) 10.4620 + 10.4620i 0.474077 + 0.474077i 0.903231 0.429154i \(-0.141188\pi\)
−0.429154 + 0.903231i \(0.641188\pi\)
\(488\) −1.61920 1.61920i −0.0732976 0.0732976i
\(489\) 21.3556 + 6.62182i 0.965733 + 0.299449i
\(490\) −1.44662 3.98826i −0.0653518 0.180171i
\(491\) 16.1195i 0.727462i 0.931504 + 0.363731i \(0.118497\pi\)
−0.931504 + 0.363731i \(0.881503\pi\)
\(492\) −1.70359 3.23488i −0.0768037 0.145840i
\(493\) 0.138458 0.138458i 0.00623586 0.00623586i
\(494\) −6.77461 −0.304804
\(495\) 8.81332 + 14.9727i 0.396129 + 0.672974i
\(496\) 9.39662 0.421921
\(497\) 15.3469 15.3469i 0.688402 0.688402i
\(498\) −6.77895 12.8723i −0.303772 0.576822i
\(499\) 0.297723i 0.0133279i −0.999978 0.00666395i \(-0.997879\pi\)
0.999978 0.00666395i \(-0.00212122\pi\)
\(500\) −10.8089 + 2.85791i −0.483389 + 0.127810i
\(501\) 30.8238 + 9.55766i 1.37710 + 0.427005i
\(502\) 17.9945 + 17.9945i 0.803132 + 0.803132i
\(503\) −7.46751 7.46751i −0.332960 0.332960i 0.520750 0.853709i \(-0.325653\pi\)
−0.853709 + 0.520750i \(0.825653\pi\)
\(504\) 5.58793 + 3.83397i 0.248906 + 0.170778i
\(505\) −15.3410 + 32.8044i −0.682667 + 1.45978i
\(506\) 6.64200i 0.295273i
\(507\) −1.53252 + 0.807075i −0.0680618 + 0.0358434i
\(508\) −8.05797 + 8.05797i −0.357514 + 0.357514i
\(509\) −9.67667 −0.428911 −0.214456 0.976734i \(-0.568798\pi\)
−0.214456 + 0.976734i \(0.568798\pi\)
\(510\) 0.850353 0.0402420i 0.0376543 0.00178195i
\(511\) 5.27702 0.233442
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −4.09603 + 34.9628i −0.180844 + 1.54364i
\(514\) 17.1567i 0.756749i
\(515\) −33.9494 + 12.3142i −1.49599 + 0.542627i
\(516\) 3.18377 10.2678i 0.140158 0.452013i
\(517\) −9.62951 9.62951i −0.423505 0.423505i
\(518\) −6.52145 6.52145i −0.286536 0.286536i
\(519\) −8.02111 + 25.8683i −0.352088 + 1.13549i
\(520\) −2.02552 0.947239i −0.0888250 0.0415392i
\(521\) 24.0972i 1.05572i 0.849332 + 0.527860i \(0.177005\pi\)
−0.849332 + 0.527860i \(0.822995\pi\)
\(522\) 0.489103 + 2.62735i 0.0214075 + 0.114996i
\(523\) 2.67631 2.67631i 0.117027 0.117027i −0.646168 0.763195i \(-0.723630\pi\)
0.763195 + 0.646168i \(0.223630\pi\)
\(524\) −14.2078 −0.620671
\(525\) −18.0545 + 7.53244i −0.787962 + 0.328743i
\(526\) −5.39638 −0.235294
\(527\) 1.46048 1.46048i 0.0636195 0.0636195i
\(528\) −3.96919 + 2.09030i −0.172737 + 0.0909686i
\(529\) 16.4233i 0.714056i
\(530\) −6.42232 3.00341i −0.278968 0.130460i
\(531\) −4.66941 + 6.80557i −0.202635 + 0.295337i
\(532\) −10.8210 10.8210i −0.469151 0.469151i
\(533\) 1.49257 + 1.49257i 0.0646506 + 0.0646506i
\(534\) 10.6471 + 3.30140i 0.460746 + 0.142866i
\(535\) 29.9523 10.8643i 1.29495 0.469705i
\(536\) 15.5458i 0.671477i
\(537\) 9.27845 + 17.6185i 0.400395 + 0.760295i
\(538\) 2.11235 2.11235i 0.0910701 0.0910701i
\(539\) 4.91397 0.211660
\(540\) −6.11323 + 9.88071i −0.263071 + 0.425198i
\(541\) −31.9887 −1.37530 −0.687650 0.726042i \(-0.741358\pi\)
−0.687650 + 0.726042i \(0.741358\pi\)
\(542\) −12.6686 + 12.6686i −0.544162 + 0.544162i
\(543\) −14.2669 27.0908i −0.612250 1.16258i
\(544\) 0.219806i 0.00942410i
\(545\) 8.69476 18.5924i 0.372443 0.796410i
\(546\) −3.73703 1.15876i −0.159930 0.0495902i
\(547\) 6.13891 + 6.13891i 0.262481 + 0.262481i 0.826061 0.563580i \(-0.190576\pi\)
−0.563580 + 0.826061i \(0.690576\pi\)
\(548\) 10.9549 + 10.9549i 0.467970 + 0.467970i
\(549\) 3.88654 5.66456i 0.165874 0.241757i
\(550\) 1.15713 12.8980i 0.0493402 0.549975i
\(551\) 6.03503i 0.257101i
\(552\) 3.93017 2.06975i 0.167279 0.0880944i
\(553\) 19.3536 19.3536i 0.822997 0.822997i
\(554\) −16.7142 −0.710120
\(555\) 10.6402 11.6973i 0.451652 0.496523i
\(556\) 15.0559 0.638513
\(557\) 6.14058 6.14058i 0.260185 0.260185i −0.564944 0.825129i \(-0.691102\pi\)
0.825129 + 0.564944i \(0.191102\pi\)
\(558\) 5.15913 + 27.7137i 0.218403 + 1.17322i
\(559\) 6.20654i 0.262509i
\(560\) −1.72233 4.74837i −0.0727818 0.200655i
\(561\) −0.292029 + 0.941804i −0.0123295 + 0.0397630i
\(562\) 0.540129 + 0.540129i 0.0227839 + 0.0227839i
\(563\) 24.9348 + 24.9348i 1.05088 + 1.05088i 0.998634 + 0.0522422i \(0.0166368\pi\)
0.0522422 + 0.998634i \(0.483363\pi\)
\(564\) 2.69722 8.69863i 0.113574 0.366278i
\(565\) −8.45557 23.3115i −0.355728 0.980722i
\(566\) 5.27807i 0.221854i
\(567\) −8.23963 + 18.5857i −0.346032 + 0.780524i
\(568\) −6.79393 + 6.79393i −0.285067 + 0.285067i
\(569\) −5.56111 −0.233134 −0.116567 0.993183i \(-0.537189\pi\)
−0.116567 + 0.993183i \(0.537189\pi\)
\(570\) 17.6553 19.4093i 0.739498 0.812966i
\(571\) 33.8131 1.41503 0.707517 0.706697i \(-0.249815\pi\)
0.707517 + 0.706697i \(0.249815\pi\)
\(572\) 1.83139 1.83139i 0.0765741 0.0765741i
\(573\) 27.6089 14.5397i 1.15338 0.607405i
\(574\) 4.76816i 0.199019i
\(575\) −1.14575 + 12.7713i −0.0477812 + 0.532598i
\(576\) −2.47372 1.69726i −0.103072 0.0707192i
\(577\) 0.174550 + 0.174550i 0.00726661 + 0.00726661i 0.710731 0.703464i \(-0.248364\pi\)
−0.703464 + 0.710731i \(0.748364\pi\)
\(578\) −11.9867 11.9867i −0.498579 0.498579i
\(579\) −8.38885 2.60117i −0.348629 0.108101i
\(580\) 0.843830 1.80440i 0.0350381 0.0749235i
\(581\) 18.9736i 0.787156i
\(582\) 10.0996 + 19.1777i 0.418641 + 0.794942i
\(583\) 5.80677 5.80677i 0.240492 0.240492i
\(584\) −2.33609 −0.0966680
\(585\) 1.68163 6.49401i 0.0695267 0.268494i
\(586\) −31.7552 −1.31180
\(587\) 6.55064 6.55064i 0.270374 0.270374i −0.558877 0.829251i \(-0.688768\pi\)
0.829251 + 0.558877i \(0.188768\pi\)
\(588\) 1.53127 + 2.90767i 0.0631485 + 0.119910i
\(589\) 63.6584i 2.62300i
\(590\) 5.78307 2.09764i 0.238085 0.0863584i
\(591\) 27.6954 + 8.58762i 1.13924 + 0.353248i
\(592\) 2.88699 + 2.88699i 0.118654 + 0.118654i
\(593\) −17.9410 17.9410i −0.736747 0.736747i 0.235200 0.971947i \(-0.424425\pi\)
−0.971947 + 0.235200i \(0.924425\pi\)
\(594\) −8.34423 10.5588i −0.342368 0.433233i
\(595\) −1.00572 0.470326i −0.0412304 0.0192815i
\(596\) 15.7204i 0.643934i
\(597\) −10.5460 + 5.55386i −0.431620 + 0.227304i
\(598\) −1.81338 + 1.81338i −0.0741547 + 0.0741547i
\(599\) −41.6634 −1.70232 −0.851161 0.524905i \(-0.824101\pi\)
−0.851161 + 0.524905i \(0.824101\pi\)
\(600\) 7.99255 3.33454i 0.326294 0.136132i
\(601\) −22.6630 −0.924444 −0.462222 0.886764i \(-0.652948\pi\)
−0.462222 + 0.886764i \(0.652948\pi\)
\(602\) −9.91367 + 9.91367i −0.404051 + 0.404051i
\(603\) 45.8498 8.53530i 1.86715 0.347584i
\(604\) 14.3294i 0.583056i
\(605\) −8.69365 4.06561i −0.353447 0.165290i
\(606\) 8.30782 26.7930i 0.337482 1.08839i
\(607\) 11.2274 + 11.2274i 0.455706 + 0.455706i 0.897243 0.441537i \(-0.145567\pi\)
−0.441537 + 0.897243i \(0.645567\pi\)
\(608\) 4.79037 + 4.79037i 0.194275 + 0.194275i
\(609\) 1.03226 3.32906i 0.0418291 0.134900i
\(610\) −4.81349 + 1.74595i −0.194892 + 0.0706915i
\(611\) 5.25805i 0.212718i
\(612\) −0.648280 + 0.120683i −0.0262052 + 0.00487830i
\(613\) 6.53782 6.53782i 0.264060 0.264060i −0.562641 0.826701i \(-0.690215\pi\)
0.826701 + 0.562641i \(0.190215\pi\)
\(614\) −6.95958 −0.280866
\(615\) −8.16603 + 0.386448i −0.329286 + 0.0155831i
\(616\) 5.85052 0.235724
\(617\) 22.7714 22.7714i 0.916744 0.916744i −0.0800471 0.996791i \(-0.525507\pi\)
0.996791 + 0.0800471i \(0.0255071\pi\)
\(618\) 24.7511 13.0347i 0.995636 0.524333i
\(619\) 5.97955i 0.240338i 0.992753 + 0.120169i \(0.0383437\pi\)
−0.992753 + 0.120169i \(0.961656\pi\)
\(620\) 8.90085 19.0330i 0.357467 0.764386i
\(621\) 8.26220 + 10.4550i 0.331551 + 0.419545i
\(622\) −2.11767 2.11767i −0.0849107 0.0849107i
\(623\) −10.2799 10.2799i −0.411857 0.411857i
\(624\) 1.65435 + 0.512970i 0.0662269 + 0.0205352i
\(625\) −4.44986 + 24.6008i −0.177994 + 0.984031i
\(626\) 32.3613i 1.29342i
\(627\) 14.1610 + 26.8897i 0.565534 + 1.07387i
\(628\) −9.89671 + 9.89671i −0.394922 + 0.394922i
\(629\) 0.897427 0.0357828
\(630\) 13.0589 7.68678i 0.520278 0.306249i
\(631\) −13.0508 −0.519544 −0.259772 0.965670i \(-0.583647\pi\)
−0.259772 + 0.965670i \(0.583647\pi\)
\(632\) −8.56764 + 8.56764i −0.340802 + 0.340802i
\(633\) 5.89438 + 11.1926i 0.234281 + 0.444867i
\(634\) 20.8903i 0.829659i
\(635\) 8.68876 + 23.9544i 0.344803 + 0.950602i
\(636\) 5.24543 + 1.62647i 0.207995 + 0.0644939i
\(637\) −1.34160 1.34160i −0.0531561 0.0531561i
\(638\) 1.63145 + 1.63145i 0.0645899 + 0.0645899i
\(639\) −23.7677 16.3074i −0.940235 0.645111i
\(640\) 0.762461 + 2.10206i 0.0301389 + 0.0830912i
\(641\) 24.2560i 0.958055i 0.877800 + 0.479027i \(0.159011\pi\)
−0.877800 + 0.479027i \(0.840989\pi\)
\(642\) −21.8370 + 11.5000i −0.861836 + 0.453870i
\(643\) −13.2221 + 13.2221i −0.521429 + 0.521429i −0.918003 0.396574i \(-0.870199\pi\)
0.396574 + 0.918003i \(0.370199\pi\)
\(644\) −5.79300 −0.228276
\(645\) −17.7818 16.1748i −0.700157 0.636883i
\(646\) 1.48910 0.0585878
\(647\) −8.17921 + 8.17921i −0.321558 + 0.321558i −0.849365 0.527807i \(-0.823015\pi\)
0.527807 + 0.849365i \(0.323015\pi\)
\(648\) 3.64761 8.22769i 0.143292 0.323214i
\(649\) 7.12538i 0.279696i
\(650\) −3.83731 + 3.20547i −0.150512 + 0.125729i
\(651\) 10.8884 35.1154i 0.426749 1.37628i
\(652\) 9.12788 + 9.12788i 0.357476 + 0.357476i
\(653\) 12.1320 + 12.1320i 0.474763 + 0.474763i 0.903452 0.428689i \(-0.141024\pi\)
−0.428689 + 0.903452i \(0.641024\pi\)
\(654\) −4.70858 + 15.1853i −0.184120 + 0.593793i
\(655\) −13.4582 + 28.7782i −0.525855 + 1.12446i
\(656\) 2.11082i 0.0824136i
\(657\) −1.28261 6.88989i −0.0500393 0.268800i
\(658\) −8.39864 + 8.39864i −0.327413 + 0.327413i
\(659\) 13.1366 0.511731 0.255865 0.966712i \(-0.417640\pi\)
0.255865 + 0.966712i \(0.417640\pi\)
\(660\) 0.474171 + 10.0197i 0.0184571 + 0.390016i
\(661\) −34.2832 −1.33346 −0.666731 0.745298i \(-0.732307\pi\)
−0.666731 + 0.745298i \(0.732307\pi\)
\(662\) 0.0790370 0.0790370i 0.00307186 0.00307186i
\(663\) 0.336858 0.177400i 0.0130825 0.00688964i
\(664\) 8.39941i 0.325960i
\(665\) −32.1684 + 11.6681i −1.24744 + 0.452471i
\(666\) −6.92960 + 10.0998i −0.268517 + 0.391358i
\(667\) −1.61542 1.61542i −0.0625491 0.0625491i
\(668\) 13.1748 + 13.1748i 0.509749 + 0.509749i
\(669\) −37.8965 11.7507i −1.46516 0.454309i
\(670\) −31.4884 14.7256i −1.21650 0.568900i
\(671\) 5.93075i 0.228954i
\(672\) 1.82311 + 3.46184i 0.0703281 + 0.133543i
\(673\) 0.645929 0.645929i 0.0248987 0.0248987i −0.694548 0.719447i \(-0.744396\pi\)
0.719447 + 0.694548i \(0.244396\pi\)
\(674\) 12.0894 0.465667
\(675\) 14.2229 + 21.7419i 0.547440 + 0.836845i
\(676\) −1.00000 −0.0384615
\(677\) 10.5020 10.5020i 0.403624 0.403624i −0.475884 0.879508i \(-0.657872\pi\)
0.879508 + 0.475884i \(0.157872\pi\)
\(678\) 8.95033 + 16.9954i 0.343735 + 0.652706i
\(679\) 28.2676i 1.08481i
\(680\) 0.445222 + 0.208209i 0.0170735 + 0.00798444i
\(681\) 40.2939 + 12.4941i 1.54407 + 0.478775i
\(682\) 17.2088 + 17.2088i 0.658960 + 0.658960i
\(683\) −19.5328 19.5328i −0.747401 0.747401i 0.226590 0.973990i \(-0.427242\pi\)
−0.973990 + 0.226590i \(0.927242\pi\)
\(684\) −11.4983 + 16.7585i −0.439648 + 0.640777i
\(685\) 32.5663 11.8125i 1.24429 0.451331i
\(686\) 20.0983i 0.767355i
\(687\) −36.1636 + 19.0449i −1.37973 + 0.726608i
\(688\) 4.38869 4.38869i 0.167317 0.167317i
\(689\) −3.17070 −0.120794
\(690\) −0.469509 9.92120i −0.0178739 0.377693i
\(691\) 7.28568 0.277160 0.138580 0.990351i \(-0.455746\pi\)
0.138580 + 0.990351i \(0.455746\pi\)
\(692\) −11.0567 + 11.0567i −0.420314 + 0.420314i
\(693\) 3.21218 + 17.2551i 0.122021 + 0.655468i
\(694\) 8.62460i 0.327385i
\(695\) 14.2616 30.4961i 0.540972 1.15678i
\(696\) −0.456970 + 1.47374i −0.0173214 + 0.0558621i
\(697\) −0.328077 0.328077i −0.0124268 0.0124268i
\(698\) 3.46012 + 3.46012i 0.130967 + 0.130967i
\(699\) −5.40119 + 17.4190i −0.204292 + 0.658848i
\(700\) −11.2494 1.00922i −0.425187 0.0381450i
\(701\) 16.4241i 0.620330i 0.950683 + 0.310165i \(0.100384\pi\)
−0.950683 + 0.310165i \(0.899616\pi\)
\(702\) −0.604615 + 5.16086i −0.0228197 + 0.194784i
\(703\) 19.5582 19.5582i 0.737652 0.737652i
\(704\) −2.58997 −0.0976132
\(705\) −15.0643 13.7030i −0.567356 0.516083i
\(706\) −12.2888 −0.462495
\(707\) −25.8690 + 25.8690i −0.972903 + 0.972903i
\(708\) −4.21620 + 2.22038i −0.158454 + 0.0834470i
\(709\) 25.9013i 0.972742i 0.873752 + 0.486371i \(0.161680\pi\)
−0.873752 + 0.486371i \(0.838320\pi\)
\(710\) 7.32577 + 20.1967i 0.274931 + 0.757969i
\(711\) −29.9728 20.5648i −1.12407 0.771241i
\(712\) 4.55083 + 4.55083i 0.170550 + 0.170550i
\(713\) −17.0396 17.0396i −0.638140 0.638140i
\(714\) 0.821420 + 0.254701i 0.0307409 + 0.00953196i
\(715\) −1.97475 5.44427i −0.0738515 0.203604i
\(716\) 11.4964i 0.429641i
\(717\) −15.5137 29.4583i −0.579368 1.10014i
\(718\) −22.5188 + 22.5188i −0.840394 + 0.840394i
\(719\) 7.92976 0.295730 0.147865 0.989008i \(-0.452760\pi\)
0.147865 + 0.989008i \(0.452760\pi\)
\(720\) −5.78105 + 3.40287i −0.215447 + 0.126817i
\(721\) −36.4827 −1.35869
\(722\) 19.0179 19.0179i 0.707772 0.707772i
\(723\) −12.9784 24.6442i −0.482672 0.916529i
\(724\) 17.6773i 0.656970i
\(725\) −2.85554 3.41839i −0.106052 0.126956i
\(726\) 7.10055 + 2.20170i 0.263526 + 0.0817127i
\(727\) −13.1739 13.1739i −0.488594 0.488594i 0.419268 0.907862i \(-0.362287\pi\)
−0.907862 + 0.419268i \(0.862287\pi\)
\(728\) −1.59729 1.59729i −0.0591996 0.0591996i
\(729\) 26.2689 + 6.24066i 0.972922 + 0.231136i
\(730\) −2.21283 + 4.73180i −0.0819007 + 0.175132i
\(731\) 1.36423i 0.0504580i
\(732\) 3.50931 1.84811i 0.129708 0.0683082i
\(733\) −4.39131 + 4.39131i −0.162197 + 0.162197i −0.783539 0.621342i \(-0.786588\pi\)
0.621342 + 0.783539i \(0.286588\pi\)
\(734\) −21.1845 −0.781935
\(735\) 7.34003 0.347359i 0.270741 0.0128125i
\(736\) 2.56451 0.0945290
\(737\) 28.4704 28.4704i 1.04872 1.04872i
\(738\) 6.22550 1.15893i 0.229164 0.0426607i
\(739\) 13.4115i 0.493350i 0.969098 + 0.246675i \(0.0793380\pi\)
−0.969098 + 0.246675i \(0.920662\pi\)
\(740\) 8.58232 3.11299i 0.315492 0.114436i
\(741\) 3.47517 11.2075i 0.127664 0.411720i
\(742\) −5.06453 5.06453i −0.185925 0.185925i
\(743\) 6.99293 + 6.99293i 0.256546 + 0.256546i 0.823648 0.567102i \(-0.191935\pi\)
−0.567102 + 0.823648i \(0.691935\pi\)
\(744\) −4.82019 + 15.5453i −0.176717 + 0.569917i
\(745\) 31.8421 + 14.8910i 1.16660 + 0.545565i
\(746\) 23.0492i 0.843893i
\(747\) 24.7727 4.61163i 0.906384 0.168731i
\(748\) −0.402549 + 0.402549i −0.0147187 + 0.0147187i
\(749\) 32.1873 1.17610
\(750\) 0.816675 19.3477i 0.0298207 0.706478i
\(751\) −11.5511 −0.421507 −0.210754 0.977539i \(-0.567592\pi\)
−0.210754 + 0.977539i \(0.567592\pi\)
\(752\) 3.71800 3.71800i 0.135581 0.135581i
\(753\) −38.9997 + 20.5384i −1.42123 + 0.748462i
\(754\) 0.890831i 0.0324421i
\(755\) 29.0245 + 13.5734i 1.05631 + 0.493986i
\(756\) −9.20915 + 7.27765i −0.334933 + 0.264686i
\(757\) −5.58355 5.58355i −0.202938 0.202938i 0.598320 0.801257i \(-0.295835\pi\)
−0.801257 + 0.598320i \(0.795835\pi\)
\(758\) 4.82433 + 4.82433i 0.175228 + 0.175228i
\(759\) 10.9882 + 3.40715i 0.398845 + 0.123672i
\(760\) 14.2406 5.16537i 0.516562 0.187368i
\(761\) 37.4923i 1.35909i −0.733632 0.679547i \(-0.762176\pi\)
0.733632 0.679547i \(-0.237824\pi\)
\(762\) −9.19717 17.4642i −0.333178 0.632660i
\(763\) 14.6616 14.6616i 0.530787 0.530787i
\(764\) 18.0153 0.651771
\(765\) −0.369632 + 1.42742i −0.0133641 + 0.0516085i
\(766\) 21.4836 0.776235
\(767\) 1.94535 1.94535i 0.0702426 0.0702426i
\(768\) −0.807075 1.53252i −0.0291228 0.0553002i
\(769\) 25.0653i 0.903880i −0.892048 0.451940i \(-0.850732\pi\)
0.892048 0.451940i \(-0.149268\pi\)
\(770\) 5.54184 11.8503i 0.199714 0.427057i
\(771\) −28.3831 8.80087i −1.02219 0.316956i
\(772\) −3.58559 3.58559i −0.129048 0.129048i
\(773\) 2.54918 + 2.54918i