Properties

Label 390.2.l.b.287.2
Level $390$
Weight $2$
Character 390.287
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 287.2
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.287
Dual form 390.2.l.b.53.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(1.00000 + 1.41421i) q^{3} -1.00000i q^{4} +(-0.707107 + 2.12132i) q^{5} +(1.70711 + 0.292893i) q^{6} +(0.585786 + 0.585786i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-1.00000 + 2.82843i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(1.00000 + 1.41421i) q^{3} -1.00000i q^{4} +(-0.707107 + 2.12132i) q^{5} +(1.70711 + 0.292893i) q^{6} +(0.585786 + 0.585786i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-1.00000 + 2.82843i) q^{9} +(1.00000 + 2.00000i) q^{10} +4.00000i q^{11} +(1.41421 - 1.00000i) q^{12} +(-0.707107 + 0.707107i) q^{13} +0.828427 q^{14} +(-3.70711 + 1.12132i) q^{15} -1.00000 q^{16} +(3.00000 - 3.00000i) q^{17} +(1.29289 + 2.70711i) q^{18} -6.82843i q^{19} +(2.12132 + 0.707107i) q^{20} +(-0.242641 + 1.41421i) q^{21} +(2.82843 + 2.82843i) q^{22} +(2.82843 + 2.82843i) q^{23} +(0.292893 - 1.70711i) q^{24} +(-4.00000 - 3.00000i) q^{25} +1.00000i q^{26} +(-5.00000 + 1.41421i) q^{27} +(0.585786 - 0.585786i) q^{28} +6.00000 q^{29} +(-1.82843 + 3.41421i) q^{30} +3.41421 q^{31} +(-0.707107 + 0.707107i) q^{32} +(-5.65685 + 4.00000i) q^{33} -4.24264i q^{34} +(-1.65685 + 0.828427i) q^{35} +(2.82843 + 1.00000i) q^{36} +(-2.58579 - 2.58579i) q^{37} +(-4.82843 - 4.82843i) q^{38} +(-1.70711 - 0.292893i) q^{39} +(2.00000 - 1.00000i) q^{40} +2.00000i q^{41} +(0.828427 + 1.17157i) q^{42} +(1.24264 - 1.24264i) q^{43} +4.00000 q^{44} +(-5.29289 - 4.12132i) q^{45} +4.00000 q^{46} +(2.24264 - 2.24264i) q^{47} +(-1.00000 - 1.41421i) q^{48} -6.31371i q^{49} +(-4.94975 + 0.707107i) q^{50} +(7.24264 + 1.24264i) q^{51} +(0.707107 + 0.707107i) q^{52} +(-0.585786 - 0.585786i) q^{53} +(-2.53553 + 4.53553i) q^{54} +(-8.48528 - 2.82843i) q^{55} -0.828427i q^{56} +(9.65685 - 6.82843i) q^{57} +(4.24264 - 4.24264i) q^{58} -4.48528 q^{59} +(1.12132 + 3.70711i) q^{60} +4.82843 q^{61} +(2.41421 - 2.41421i) q^{62} +(-2.24264 + 1.07107i) q^{63} +1.00000i q^{64} +(-1.00000 - 2.00000i) q^{65} +(-1.17157 + 6.82843i) q^{66} +(-0.828427 - 0.828427i) q^{67} +(-3.00000 - 3.00000i) q^{68} +(-1.17157 + 6.82843i) q^{69} +(-0.585786 + 1.75736i) q^{70} -14.2426i q^{71} +(2.70711 - 1.29289i) q^{72} +(-11.0711 + 11.0711i) q^{73} -3.65685 q^{74} +(0.242641 - 8.65685i) q^{75} -6.82843 q^{76} +(-2.34315 + 2.34315i) q^{77} +(-1.41421 + 1.00000i) q^{78} -12.4853i q^{79} +(0.707107 - 2.12132i) q^{80} +(-7.00000 - 5.65685i) q^{81} +(1.41421 + 1.41421i) q^{82} +(6.82843 + 6.82843i) q^{83} +(1.41421 + 0.242641i) q^{84} +(4.24264 + 8.48528i) q^{85} -1.75736i q^{86} +(6.00000 + 8.48528i) q^{87} +(2.82843 - 2.82843i) q^{88} -11.1716 q^{89} +(-6.65685 + 0.828427i) q^{90} -0.828427 q^{91} +(2.82843 - 2.82843i) q^{92} +(3.41421 + 4.82843i) q^{93} -3.17157i q^{94} +(14.4853 + 4.82843i) q^{95} +(-1.70711 - 0.292893i) q^{96} +(9.07107 + 9.07107i) q^{97} +(-4.46447 - 4.46447i) q^{98} +(-11.3137 - 4.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{6} + 8 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{3} + 4 q^{6} + 8 q^{7} - 4 q^{9} + 4 q^{10} - 8 q^{14} - 12 q^{15} - 4 q^{16} + 12 q^{17} + 8 q^{18} + 16 q^{21} + 4 q^{24} - 16 q^{25} - 20 q^{27} + 8 q^{28} + 24 q^{29} + 4 q^{30} + 8 q^{31} + 16 q^{35} - 16 q^{37} - 8 q^{38} - 4 q^{39} + 8 q^{40} - 8 q^{42} - 12 q^{43} + 16 q^{44} - 24 q^{45} + 16 q^{46} - 8 q^{47} - 4 q^{48} + 12 q^{51} - 8 q^{53} + 4 q^{54} + 16 q^{57} + 16 q^{59} - 4 q^{60} + 8 q^{61} + 4 q^{62} + 8 q^{63} - 4 q^{65} - 16 q^{66} + 8 q^{67} - 12 q^{68} - 16 q^{69} - 8 q^{70} + 8 q^{72} - 16 q^{73} + 8 q^{74} - 16 q^{75} - 16 q^{76} - 32 q^{77} - 28 q^{81} + 16 q^{83} + 24 q^{87} - 56 q^{89} - 4 q^{90} + 8 q^{91} + 8 q^{93} + 24 q^{95} - 4 q^{96} + 8 q^{97} - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 1.00000 + 1.41421i 0.577350 + 0.816497i
\(4\) 1.00000i 0.500000i
\(5\) −0.707107 + 2.12132i −0.316228 + 0.948683i
\(6\) 1.70711 + 0.292893i 0.696923 + 0.119573i
\(7\) 0.585786 + 0.585786i 0.221406 + 0.221406i 0.809091 0.587684i \(-0.199960\pi\)
−0.587684 + 0.809091i \(0.699960\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) 1.00000 + 2.00000i 0.316228 + 0.632456i
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 1.41421 1.00000i 0.408248 0.288675i
\(13\) −0.707107 + 0.707107i −0.196116 + 0.196116i
\(14\) 0.828427 0.221406
\(15\) −3.70711 + 1.12132i −0.957171 + 0.289524i
\(16\) −1.00000 −0.250000
\(17\) 3.00000 3.00000i 0.727607 0.727607i −0.242536 0.970143i \(-0.577979\pi\)
0.970143 + 0.242536i \(0.0779791\pi\)
\(18\) 1.29289 + 2.70711i 0.304738 + 0.638071i
\(19\) 6.82843i 1.56655i −0.621676 0.783274i \(-0.713548\pi\)
0.621676 0.783274i \(-0.286452\pi\)
\(20\) 2.12132 + 0.707107i 0.474342 + 0.158114i
\(21\) −0.242641 + 1.41421i −0.0529485 + 0.308607i
\(22\) 2.82843 + 2.82843i 0.603023 + 0.603023i
\(23\) 2.82843 + 2.82843i 0.589768 + 0.589768i 0.937568 0.347801i \(-0.113071\pi\)
−0.347801 + 0.937568i \(0.613071\pi\)
\(24\) 0.292893 1.70711i 0.0597866 0.348462i
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 1.00000i 0.196116i
\(27\) −5.00000 + 1.41421i −0.962250 + 0.272166i
\(28\) 0.585786 0.585786i 0.110703 0.110703i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) −1.82843 + 3.41421i −0.333824 + 0.623347i
\(31\) 3.41421 0.613211 0.306605 0.951837i \(-0.400807\pi\)
0.306605 + 0.951837i \(0.400807\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −5.65685 + 4.00000i −0.984732 + 0.696311i
\(34\) 4.24264i 0.727607i
\(35\) −1.65685 + 0.828427i −0.280059 + 0.140030i
\(36\) 2.82843 + 1.00000i 0.471405 + 0.166667i
\(37\) −2.58579 2.58579i −0.425101 0.425101i 0.461855 0.886956i \(-0.347184\pi\)
−0.886956 + 0.461855i \(0.847184\pi\)
\(38\) −4.82843 4.82843i −0.783274 0.783274i
\(39\) −1.70711 0.292893i −0.273356 0.0469005i
\(40\) 2.00000 1.00000i 0.316228 0.158114i
\(41\) 2.00000i 0.312348i 0.987730 + 0.156174i \(0.0499160\pi\)
−0.987730 + 0.156174i \(0.950084\pi\)
\(42\) 0.828427 + 1.17157i 0.127829 + 0.180778i
\(43\) 1.24264 1.24264i 0.189501 0.189501i −0.605979 0.795480i \(-0.707219\pi\)
0.795480 + 0.605979i \(0.207219\pi\)
\(44\) 4.00000 0.603023
\(45\) −5.29289 4.12132i −0.789018 0.614370i
\(46\) 4.00000 0.589768
\(47\) 2.24264 2.24264i 0.327123 0.327123i −0.524369 0.851491i \(-0.675699\pi\)
0.851491 + 0.524369i \(0.175699\pi\)
\(48\) −1.00000 1.41421i −0.144338 0.204124i
\(49\) 6.31371i 0.901958i
\(50\) −4.94975 + 0.707107i −0.700000 + 0.100000i
\(51\) 7.24264 + 1.24264i 1.01417 + 0.174005i
\(52\) 0.707107 + 0.707107i 0.0980581 + 0.0980581i
\(53\) −0.585786 0.585786i −0.0804640 0.0804640i 0.665729 0.746193i \(-0.268121\pi\)
−0.746193 + 0.665729i \(0.768121\pi\)
\(54\) −2.53553 + 4.53553i −0.345042 + 0.617208i
\(55\) −8.48528 2.82843i −1.14416 0.381385i
\(56\) 0.828427i 0.110703i
\(57\) 9.65685 6.82843i 1.27908 0.904447i
\(58\) 4.24264 4.24264i 0.557086 0.557086i
\(59\) −4.48528 −0.583934 −0.291967 0.956428i \(-0.594310\pi\)
−0.291967 + 0.956428i \(0.594310\pi\)
\(60\) 1.12132 + 3.70711i 0.144762 + 0.478585i
\(61\) 4.82843 0.618217 0.309108 0.951027i \(-0.399969\pi\)
0.309108 + 0.951027i \(0.399969\pi\)
\(62\) 2.41421 2.41421i 0.306605 0.306605i
\(63\) −2.24264 + 1.07107i −0.282546 + 0.134942i
\(64\) 1.00000i 0.125000i
\(65\) −1.00000 2.00000i −0.124035 0.248069i
\(66\) −1.17157 + 6.82843i −0.144211 + 0.840521i
\(67\) −0.828427 0.828427i −0.101208 0.101208i 0.654689 0.755898i \(-0.272799\pi\)
−0.755898 + 0.654689i \(0.772799\pi\)
\(68\) −3.00000 3.00000i −0.363803 0.363803i
\(69\) −1.17157 + 6.82843i −0.141041 + 0.822046i
\(70\) −0.585786 + 1.75736i −0.0700149 + 0.210045i
\(71\) 14.2426i 1.69029i −0.534537 0.845145i \(-0.679514\pi\)
0.534537 0.845145i \(-0.320486\pi\)
\(72\) 2.70711 1.29289i 0.319036 0.152369i
\(73\) −11.0711 + 11.0711i −1.29577 + 1.29577i −0.364610 + 0.931160i \(0.618798\pi\)
−0.931160 + 0.364610i \(0.881202\pi\)
\(74\) −3.65685 −0.425101
\(75\) 0.242641 8.65685i 0.0280177 0.999607i
\(76\) −6.82843 −0.783274
\(77\) −2.34315 + 2.34315i −0.267026 + 0.267026i
\(78\) −1.41421 + 1.00000i −0.160128 + 0.113228i
\(79\) 12.4853i 1.40470i −0.711830 0.702352i \(-0.752133\pi\)
0.711830 0.702352i \(-0.247867\pi\)
\(80\) 0.707107 2.12132i 0.0790569 0.237171i
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 1.41421 + 1.41421i 0.156174 + 0.156174i
\(83\) 6.82843 + 6.82843i 0.749517 + 0.749517i 0.974388 0.224871i \(-0.0721961\pi\)
−0.224871 + 0.974388i \(0.572196\pi\)
\(84\) 1.41421 + 0.242641i 0.154303 + 0.0264743i
\(85\) 4.24264 + 8.48528i 0.460179 + 0.920358i
\(86\) 1.75736i 0.189501i
\(87\) 6.00000 + 8.48528i 0.643268 + 0.909718i
\(88\) 2.82843 2.82843i 0.301511 0.301511i
\(89\) −11.1716 −1.18418 −0.592092 0.805870i \(-0.701698\pi\)
−0.592092 + 0.805870i \(0.701698\pi\)
\(90\) −6.65685 + 0.828427i −0.701694 + 0.0873239i
\(91\) −0.828427 −0.0868428
\(92\) 2.82843 2.82843i 0.294884 0.294884i
\(93\) 3.41421 + 4.82843i 0.354037 + 0.500685i
\(94\) 3.17157i 0.327123i
\(95\) 14.4853 + 4.82843i 1.48616 + 0.495386i
\(96\) −1.70711 0.292893i −0.174231 0.0298933i
\(97\) 9.07107 + 9.07107i 0.921027 + 0.921027i 0.997102 0.0760747i \(-0.0242388\pi\)
−0.0760747 + 0.997102i \(0.524239\pi\)
\(98\) −4.46447 4.46447i −0.450979 0.450979i
\(99\) −11.3137 4.00000i −1.13707 0.402015i
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 3.17157i 0.315583i 0.987472 + 0.157792i \(0.0504374\pi\)
−0.987472 + 0.157792i \(0.949563\pi\)
\(102\) 6.00000 4.24264i 0.594089 0.420084i
\(103\) 12.4853 12.4853i 1.23021 1.23021i 0.266329 0.963882i \(-0.414189\pi\)
0.963882 0.266329i \(-0.0858108\pi\)
\(104\) 1.00000 0.0980581
\(105\) −2.82843 1.51472i −0.276026 0.147821i
\(106\) −0.828427 −0.0804640
\(107\) −12.0711 + 12.0711i −1.16695 + 1.16695i −0.184034 + 0.982920i \(0.558916\pi\)
−0.982920 + 0.184034i \(0.941084\pi\)
\(108\) 1.41421 + 5.00000i 0.136083 + 0.481125i
\(109\) 4.92893i 0.472106i 0.971740 + 0.236053i \(0.0758539\pi\)
−0.971740 + 0.236053i \(0.924146\pi\)
\(110\) −8.00000 + 4.00000i −0.762770 + 0.381385i
\(111\) 1.07107 6.24264i 0.101661 0.592525i
\(112\) −0.585786 0.585786i −0.0553516 0.0553516i
\(113\) −7.00000 7.00000i −0.658505 0.658505i 0.296522 0.955026i \(-0.404173\pi\)
−0.955026 + 0.296522i \(0.904173\pi\)
\(114\) 2.00000 11.6569i 0.187317 1.09176i
\(115\) −8.00000 + 4.00000i −0.746004 + 0.373002i
\(116\) 6.00000i 0.557086i
\(117\) −1.29289 2.70711i −0.119528 0.250272i
\(118\) −3.17157 + 3.17157i −0.291967 + 0.291967i
\(119\) 3.51472 0.322194
\(120\) 3.41421 + 1.82843i 0.311674 + 0.166912i
\(121\) −5.00000 −0.454545
\(122\) 3.41421 3.41421i 0.309108 0.309108i
\(123\) −2.82843 + 2.00000i −0.255031 + 0.180334i
\(124\) 3.41421i 0.306605i
\(125\) 9.19239 6.36396i 0.822192 0.569210i
\(126\) −0.828427 + 2.34315i −0.0738022 + 0.208744i
\(127\) −3.17157 3.17157i −0.281432 0.281432i 0.552248 0.833680i \(-0.313770\pi\)
−0.833680 + 0.552248i \(0.813770\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 3.00000 + 0.514719i 0.264135 + 0.0453184i
\(130\) −2.12132 0.707107i −0.186052 0.0620174i
\(131\) 12.9706i 1.13324i −0.823978 0.566622i \(-0.808250\pi\)
0.823978 0.566622i \(-0.191750\pi\)
\(132\) 4.00000 + 5.65685i 0.348155 + 0.492366i
\(133\) 4.00000 4.00000i 0.346844 0.346844i
\(134\) −1.17157 −0.101208
\(135\) 0.535534 11.6066i 0.0460914 0.998937i
\(136\) −4.24264 −0.363803
\(137\) −15.0711 + 15.0711i −1.28761 + 1.28761i −0.351372 + 0.936236i \(0.614285\pi\)
−0.936236 + 0.351372i \(0.885715\pi\)
\(138\) 4.00000 + 5.65685i 0.340503 + 0.481543i
\(139\) 1.65685i 0.140533i 0.997528 + 0.0702663i \(0.0223849\pi\)
−0.997528 + 0.0702663i \(0.977615\pi\)
\(140\) 0.828427 + 1.65685i 0.0700149 + 0.140030i
\(141\) 5.41421 + 0.928932i 0.455959 + 0.0782302i
\(142\) −10.0711 10.0711i −0.845145 0.845145i
\(143\) −2.82843 2.82843i −0.236525 0.236525i
\(144\) 1.00000 2.82843i 0.0833333 0.235702i
\(145\) −4.24264 + 12.7279i −0.352332 + 1.05700i
\(146\) 15.6569i 1.29577i
\(147\) 8.92893 6.31371i 0.736446 0.520746i
\(148\) −2.58579 + 2.58579i −0.212550 + 0.212550i
\(149\) −22.3848 −1.83383 −0.916916 0.399080i \(-0.869330\pi\)
−0.916916 + 0.399080i \(0.869330\pi\)
\(150\) −5.94975 6.29289i −0.485795 0.513813i
\(151\) 1.07107 0.0871623 0.0435811 0.999050i \(-0.486123\pi\)
0.0435811 + 0.999050i \(0.486123\pi\)
\(152\) −4.82843 + 4.82843i −0.391637 + 0.391637i
\(153\) 5.48528 + 11.4853i 0.443459 + 0.928530i
\(154\) 3.31371i 0.267026i
\(155\) −2.41421 + 7.24264i −0.193914 + 0.581743i
\(156\) −0.292893 + 1.70711i −0.0234502 + 0.136678i
\(157\) 16.2426 + 16.2426i 1.29630 + 1.29630i 0.930816 + 0.365488i \(0.119098\pi\)
0.365488 + 0.930816i \(0.380902\pi\)
\(158\) −8.82843 8.82843i −0.702352 0.702352i
\(159\) 0.242641 1.41421i 0.0192427 0.112154i
\(160\) −1.00000 2.00000i −0.0790569 0.158114i
\(161\) 3.31371i 0.261157i
\(162\) −8.94975 + 0.949747i −0.703159 + 0.0746192i
\(163\) 2.34315 2.34315i 0.183529 0.183529i −0.609362 0.792892i \(-0.708575\pi\)
0.792892 + 0.609362i \(0.208575\pi\)
\(164\) 2.00000 0.156174
\(165\) −4.48528 14.8284i −0.349179 1.15439i
\(166\) 9.65685 0.749517
\(167\) −3.41421 + 3.41421i −0.264200 + 0.264200i −0.826758 0.562558i \(-0.809817\pi\)
0.562558 + 0.826758i \(0.309817\pi\)
\(168\) 1.17157 0.828427i 0.0903888 0.0639145i
\(169\) 1.00000i 0.0769231i
\(170\) 9.00000 + 3.00000i 0.690268 + 0.230089i
\(171\) 19.3137 + 6.82843i 1.47696 + 0.522183i
\(172\) −1.24264 1.24264i −0.0947505 0.0947505i
\(173\) 17.0711 + 17.0711i 1.29789 + 1.29789i 0.929784 + 0.368105i \(0.119993\pi\)
0.368105 + 0.929784i \(0.380007\pi\)
\(174\) 10.2426 + 1.75736i 0.776493 + 0.133225i
\(175\) −0.585786 4.10051i −0.0442813 0.309969i
\(176\) 4.00000i 0.301511i
\(177\) −4.48528 6.34315i −0.337134 0.476780i
\(178\) −7.89949 + 7.89949i −0.592092 + 0.592092i
\(179\) 17.6569 1.31974 0.659868 0.751382i \(-0.270612\pi\)
0.659868 + 0.751382i \(0.270612\pi\)
\(180\) −4.12132 + 5.29289i −0.307185 + 0.394509i
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) −0.585786 + 0.585786i −0.0434214 + 0.0434214i
\(183\) 4.82843 + 6.82843i 0.356928 + 0.504772i
\(184\) 4.00000i 0.294884i
\(185\) 7.31371 3.65685i 0.537715 0.268857i
\(186\) 5.82843 + 1.00000i 0.427361 + 0.0733236i
\(187\) 12.0000 + 12.0000i 0.877527 + 0.877527i
\(188\) −2.24264 2.24264i −0.163561 0.163561i
\(189\) −3.75736 2.10051i −0.273308 0.152789i
\(190\) 13.6569 6.82843i 0.990772 0.495386i
\(191\) 2.82843i 0.204658i −0.994751 0.102329i \(-0.967371\pi\)
0.994751 0.102329i \(-0.0326294\pi\)
\(192\) −1.41421 + 1.00000i −0.102062 + 0.0721688i
\(193\) 11.4142 11.4142i 0.821613 0.821613i −0.164726 0.986339i \(-0.552674\pi\)
0.986339 + 0.164726i \(0.0526741\pi\)
\(194\) 12.8284 0.921027
\(195\) 1.82843 3.41421i 0.130936 0.244497i
\(196\) −6.31371 −0.450979
\(197\) −3.75736 + 3.75736i −0.267701 + 0.267701i −0.828173 0.560472i \(-0.810620\pi\)
0.560472 + 0.828173i \(0.310620\pi\)
\(198\) −10.8284 + 5.17157i −0.769543 + 0.367528i
\(199\) 22.1421i 1.56961i −0.619740 0.784807i \(-0.712762\pi\)
0.619740 0.784807i \(-0.287238\pi\)
\(200\) 0.707107 + 4.94975i 0.0500000 + 0.350000i
\(201\) 0.343146 2.00000i 0.0242036 0.141069i
\(202\) 2.24264 + 2.24264i 0.157792 + 0.157792i
\(203\) 3.51472 + 3.51472i 0.246685 + 0.246685i
\(204\) 1.24264 7.24264i 0.0870023 0.507086i
\(205\) −4.24264 1.41421i −0.296319 0.0987730i
\(206\) 17.6569i 1.23021i
\(207\) −10.8284 + 5.17157i −0.752628 + 0.359449i
\(208\) 0.707107 0.707107i 0.0490290 0.0490290i
\(209\) 27.3137 1.88933
\(210\) −3.07107 + 0.928932i −0.211924 + 0.0641024i
\(211\) 1.65685 0.114063 0.0570313 0.998372i \(-0.481837\pi\)
0.0570313 + 0.998372i \(0.481837\pi\)
\(212\) −0.585786 + 0.585786i −0.0402320 + 0.0402320i
\(213\) 20.1421 14.2426i 1.38012 0.975890i
\(214\) 17.0711i 1.16695i
\(215\) 1.75736 + 3.51472i 0.119851 + 0.239702i
\(216\) 4.53553 + 2.53553i 0.308604 + 0.172521i
\(217\) 2.00000 + 2.00000i 0.135769 + 0.135769i
\(218\) 3.48528 + 3.48528i 0.236053 + 0.236053i
\(219\) −26.7279 4.58579i −1.80611 0.309879i
\(220\) −2.82843 + 8.48528i −0.190693 + 0.572078i
\(221\) 4.24264i 0.285391i
\(222\) −3.65685 5.17157i −0.245432 0.347093i
\(223\) −9.65685 + 9.65685i −0.646671 + 0.646671i −0.952187 0.305516i \(-0.901171\pi\)
0.305516 + 0.952187i \(0.401171\pi\)
\(224\) −0.828427 −0.0553516
\(225\) 12.4853 8.31371i 0.832352 0.554247i
\(226\) −9.89949 −0.658505
\(227\) −2.00000 + 2.00000i −0.132745 + 0.132745i −0.770357 0.637613i \(-0.779922\pi\)
0.637613 + 0.770357i \(0.279922\pi\)
\(228\) −6.82843 9.65685i −0.452224 0.639541i
\(229\) 17.8995i 1.18283i 0.806367 + 0.591416i \(0.201431\pi\)
−0.806367 + 0.591416i \(0.798569\pi\)
\(230\) −2.82843 + 8.48528i −0.186501 + 0.559503i
\(231\) −5.65685 0.970563i −0.372194 0.0638583i
\(232\) −4.24264 4.24264i −0.278543 0.278543i
\(233\) 8.65685 + 8.65685i 0.567129 + 0.567129i 0.931323 0.364194i \(-0.118655\pi\)
−0.364194 + 0.931323i \(0.618655\pi\)
\(234\) −2.82843 1.00000i −0.184900 0.0653720i
\(235\) 3.17157 + 6.34315i 0.206891 + 0.413781i
\(236\) 4.48528i 0.291967i
\(237\) 17.6569 12.4853i 1.14694 0.811006i
\(238\) 2.48528 2.48528i 0.161097 0.161097i
\(239\) 19.8995 1.28719 0.643596 0.765366i \(-0.277442\pi\)
0.643596 + 0.765366i \(0.277442\pi\)
\(240\) 3.70711 1.12132i 0.239293 0.0723809i
\(241\) −3.65685 −0.235559 −0.117779 0.993040i \(-0.537578\pi\)
−0.117779 + 0.993040i \(0.537578\pi\)
\(242\) −3.53553 + 3.53553i −0.227273 + 0.227273i
\(243\) 1.00000 15.5563i 0.0641500 0.997940i
\(244\) 4.82843i 0.309108i
\(245\) 13.3934 + 4.46447i 0.855673 + 0.285224i
\(246\) −0.585786 + 3.41421i −0.0373484 + 0.217682i
\(247\) 4.82843 + 4.82843i 0.307225 + 0.307225i
\(248\) −2.41421 2.41421i −0.153303 0.153303i
\(249\) −2.82843 + 16.4853i −0.179244 + 1.04471i
\(250\) 2.00000 11.0000i 0.126491 0.695701i
\(251\) 14.3431i 0.905331i −0.891680 0.452666i \(-0.850473\pi\)
0.891680 0.452666i \(-0.149527\pi\)
\(252\) 1.07107 + 2.24264i 0.0674709 + 0.141273i
\(253\) −11.3137 + 11.3137i −0.711287 + 0.711287i
\(254\) −4.48528 −0.281432
\(255\) −7.75736 + 14.4853i −0.485785 + 0.907104i
\(256\) 1.00000 0.0625000
\(257\) −7.00000 + 7.00000i −0.436648 + 0.436648i −0.890882 0.454234i \(-0.849913\pi\)
0.454234 + 0.890882i \(0.349913\pi\)
\(258\) 2.48528 1.75736i 0.154727 0.109408i
\(259\) 3.02944i 0.188240i
\(260\) −2.00000 + 1.00000i −0.124035 + 0.0620174i
\(261\) −6.00000 + 16.9706i −0.371391 + 1.05045i
\(262\) −9.17157 9.17157i −0.566622 0.566622i
\(263\) −16.0000 16.0000i −0.986602 0.986602i 0.0133092 0.999911i \(-0.495763\pi\)
−0.999911 + 0.0133092i \(0.995763\pi\)
\(264\) 6.82843 + 1.17157i 0.420261 + 0.0721053i
\(265\) 1.65685 0.828427i 0.101780 0.0508899i
\(266\) 5.65685i 0.346844i
\(267\) −11.1716 15.7990i −0.683689 0.966882i
\(268\) −0.828427 + 0.828427i −0.0506042 + 0.0506042i
\(269\) −15.1716 −0.925027 −0.462514 0.886612i \(-0.653052\pi\)
−0.462514 + 0.886612i \(0.653052\pi\)
\(270\) −7.82843 8.58579i −0.476423 0.522514i
\(271\) −2.24264 −0.136231 −0.0681154 0.997677i \(-0.521699\pi\)
−0.0681154 + 0.997677i \(0.521699\pi\)
\(272\) −3.00000 + 3.00000i −0.181902 + 0.181902i
\(273\) −0.828427 1.17157i −0.0501387 0.0709068i
\(274\) 21.3137i 1.28761i
\(275\) 12.0000 16.0000i 0.723627 0.964836i
\(276\) 6.82843 + 1.17157i 0.411023 + 0.0705204i
\(277\) −15.8995 15.8995i −0.955308 0.955308i 0.0437351 0.999043i \(-0.486074\pi\)
−0.999043 + 0.0437351i \(0.986074\pi\)
\(278\) 1.17157 + 1.17157i 0.0702663 + 0.0702663i
\(279\) −3.41421 + 9.65685i −0.204404 + 0.578141i
\(280\) 1.75736 + 0.585786i 0.105022 + 0.0350074i
\(281\) 0.828427i 0.0494198i 0.999695 + 0.0247099i \(0.00786621\pi\)
−0.999695 + 0.0247099i \(0.992134\pi\)
\(282\) 4.48528 3.17157i 0.267095 0.188864i
\(283\) −17.2426 + 17.2426i −1.02497 + 1.02497i −0.0252884 + 0.999680i \(0.508050\pi\)
−0.999680 + 0.0252884i \(0.991950\pi\)
\(284\) −14.2426 −0.845145
\(285\) 7.65685 + 25.3137i 0.453553 + 1.49945i
\(286\) −4.00000 −0.236525
\(287\) −1.17157 + 1.17157i −0.0691558 + 0.0691558i
\(288\) −1.29289 2.70711i −0.0761845 0.159518i
\(289\) 1.00000i 0.0588235i
\(290\) 6.00000 + 12.0000i 0.352332 + 0.704664i
\(291\) −3.75736 + 21.8995i −0.220260 + 1.28377i
\(292\) 11.0711 + 11.0711i 0.647885 + 0.647885i
\(293\) 4.48528 + 4.48528i 0.262033 + 0.262033i 0.825880 0.563847i \(-0.190679\pi\)
−0.563847 + 0.825880i \(0.690679\pi\)
\(294\) 1.84924 10.7782i 0.107850 0.628596i
\(295\) 3.17157 9.51472i 0.184656 0.553968i
\(296\) 3.65685i 0.212550i
\(297\) −5.65685 20.0000i −0.328244 1.16052i
\(298\) −15.8284 + 15.8284i −0.916916 + 0.916916i
\(299\) −4.00000 −0.231326
\(300\) −8.65685 0.242641i −0.499804 0.0140089i
\(301\) 1.45584 0.0839135
\(302\) 0.757359 0.757359i 0.0435811 0.0435811i
\(303\) −4.48528 + 3.17157i −0.257673 + 0.182202i
\(304\) 6.82843i 0.391637i
\(305\) −3.41421 + 10.2426i −0.195497 + 0.586492i
\(306\) 12.0000 + 4.24264i 0.685994 + 0.242536i
\(307\) 7.17157 + 7.17157i 0.409303 + 0.409303i 0.881496 0.472192i \(-0.156537\pi\)
−0.472192 + 0.881496i \(0.656537\pi\)
\(308\) 2.34315 + 2.34315i 0.133513 + 0.133513i
\(309\) 30.1421 + 5.17157i 1.71473 + 0.294201i
\(310\) 3.41421 + 6.82843i 0.193914 + 0.387829i
\(311\) 28.0000i 1.58773i −0.608091 0.793867i \(-0.708065\pi\)
0.608091 0.793867i \(-0.291935\pi\)
\(312\) 1.00000 + 1.41421i 0.0566139 + 0.0800641i
\(313\) 1.34315 1.34315i 0.0759191 0.0759191i −0.668128 0.744047i \(-0.732904\pi\)
0.744047 + 0.668128i \(0.232904\pi\)
\(314\) 22.9706 1.29630
\(315\) −0.686292 5.51472i −0.0386681 0.310719i
\(316\) −12.4853 −0.702352
\(317\) 1.65685 1.65685i 0.0930582 0.0930582i −0.659045 0.752103i \(-0.729039\pi\)
0.752103 + 0.659045i \(0.229039\pi\)
\(318\) −0.828427 1.17157i −0.0464559 0.0656985i
\(319\) 24.0000i 1.34374i
\(320\) −2.12132 0.707107i −0.118585 0.0395285i
\(321\) −29.1421 5.00000i −1.62656 0.279073i
\(322\) 2.34315 + 2.34315i 0.130578 + 0.130578i
\(323\) −20.4853 20.4853i −1.13983 1.13983i
\(324\) −5.65685 + 7.00000i −0.314270 + 0.388889i
\(325\) 4.94975 0.707107i 0.274563 0.0392232i
\(326\) 3.31371i 0.183529i
\(327\) −6.97056 + 4.92893i −0.385473 + 0.272571i
\(328\) 1.41421 1.41421i 0.0780869 0.0780869i
\(329\) 2.62742 0.144854
\(330\) −13.6569 7.31371i −0.751785 0.402606i
\(331\) −32.2843 −1.77450 −0.887252 0.461285i \(-0.847389\pi\)
−0.887252 + 0.461285i \(0.847389\pi\)
\(332\) 6.82843 6.82843i 0.374759 0.374759i
\(333\) 9.89949 4.72792i 0.542489 0.259089i
\(334\) 4.82843i 0.264200i
\(335\) 2.34315 1.17157i 0.128020 0.0640099i
\(336\) 0.242641 1.41421i 0.0132371 0.0771517i
\(337\) −23.0000 23.0000i −1.25289 1.25289i −0.954419 0.298471i \(-0.903523\pi\)
−0.298471 0.954419i \(-0.596477\pi\)
\(338\) −0.707107 0.707107i −0.0384615 0.0384615i
\(339\) 2.89949 16.8995i 0.157479 0.917855i
\(340\) 8.48528 4.24264i 0.460179 0.230089i
\(341\) 13.6569i 0.739560i
\(342\) 18.4853 8.82843i 0.999570 0.477387i
\(343\) 7.79899 7.79899i 0.421106 0.421106i
\(344\) −1.75736 −0.0947505
\(345\) −13.6569 7.31371i −0.735260 0.393757i
\(346\) 24.1421 1.29789
\(347\) −10.5563 + 10.5563i −0.566695 + 0.566695i −0.931201 0.364506i \(-0.881238\pi\)
0.364506 + 0.931201i \(0.381238\pi\)
\(348\) 8.48528 6.00000i 0.454859 0.321634i
\(349\) 32.7279i 1.75189i 0.482415 + 0.875943i \(0.339760\pi\)
−0.482415 + 0.875943i \(0.660240\pi\)
\(350\) −3.31371 2.48528i −0.177125 0.132844i
\(351\) 2.53553 4.53553i 0.135337 0.242089i
\(352\) −2.82843 2.82843i −0.150756 0.150756i
\(353\) −25.5563 25.5563i −1.36023 1.36023i −0.873622 0.486605i \(-0.838235\pi\)
−0.486605 0.873622i \(-0.661765\pi\)
\(354\) −7.65685 1.31371i −0.406957 0.0698228i
\(355\) 30.2132 + 10.0711i 1.60355 + 0.534517i
\(356\) 11.1716i 0.592092i
\(357\) 3.51472 + 4.97056i 0.186019 + 0.263070i
\(358\) 12.4853 12.4853i 0.659868 0.659868i
\(359\) −23.4142 −1.23575 −0.617877 0.786274i \(-0.712007\pi\)
−0.617877 + 0.786274i \(0.712007\pi\)
\(360\) 0.828427 + 6.65685i 0.0436619 + 0.350847i
\(361\) −27.6274 −1.45407
\(362\) 4.24264 4.24264i 0.222988 0.222988i
\(363\) −5.00000 7.07107i −0.262432 0.371135i
\(364\) 0.828427i 0.0434214i
\(365\) −15.6569 31.3137i −0.819517 1.63903i
\(366\) 8.24264 + 1.41421i 0.430850 + 0.0739221i
\(367\) 14.1421 + 14.1421i 0.738213 + 0.738213i 0.972232 0.234019i \(-0.0751877\pi\)
−0.234019 + 0.972232i \(0.575188\pi\)
\(368\) −2.82843 2.82843i −0.147442 0.147442i
\(369\) −5.65685 2.00000i −0.294484 0.104116i
\(370\) 2.58579 7.75736i 0.134429 0.403286i
\(371\) 0.686292i 0.0356305i
\(372\) 4.82843 3.41421i 0.250342 0.177019i
\(373\) 4.92893 4.92893i 0.255210 0.255210i −0.567892 0.823103i \(-0.692241\pi\)
0.823103 + 0.567892i \(0.192241\pi\)
\(374\) 16.9706 0.877527
\(375\) 18.1924 + 6.63604i 0.939451 + 0.342684i
\(376\) −3.17157 −0.163561
\(377\) −4.24264 + 4.24264i −0.218507 + 0.218507i
\(378\) −4.14214 + 1.17157i −0.213048 + 0.0602592i
\(379\) 38.1421i 1.95923i −0.200884 0.979615i \(-0.564382\pi\)
0.200884 0.979615i \(-0.435618\pi\)
\(380\) 4.82843 14.4853i 0.247693 0.743079i
\(381\) 1.31371 7.65685i 0.0673033 0.392273i
\(382\) −2.00000 2.00000i −0.102329 0.102329i
\(383\) −1.65685 1.65685i −0.0846613 0.0846613i 0.663508 0.748169i \(-0.269067\pi\)
−0.748169 + 0.663508i \(0.769067\pi\)
\(384\) −0.292893 + 1.70711i −0.0149466 + 0.0871154i
\(385\) −3.31371 6.62742i −0.168882 0.337764i
\(386\) 16.1421i 0.821613i
\(387\) 2.27208 + 4.75736i 0.115496 + 0.241830i
\(388\) 9.07107 9.07107i 0.460514 0.460514i
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) −1.12132 3.70711i −0.0567803 0.187717i
\(391\) 16.9706 0.858238
\(392\) −4.46447 + 4.46447i −0.225490 + 0.225490i
\(393\) 18.3431 12.9706i 0.925289 0.654278i
\(394\) 5.31371i 0.267701i
\(395\) 26.4853 + 8.82843i 1.33262 + 0.444206i
\(396\) −4.00000 + 11.3137i −0.201008 + 0.568535i
\(397\) −9.17157 9.17157i −0.460308 0.460308i 0.438448 0.898756i \(-0.355528\pi\)
−0.898756 + 0.438448i \(0.855528\pi\)
\(398\) −15.6569 15.6569i −0.784807 0.784807i
\(399\) 9.65685 + 1.65685i 0.483447 + 0.0829465i
\(400\) 4.00000 + 3.00000i 0.200000 + 0.150000i
\(401\) 1.79899i 0.0898373i 0.998991 + 0.0449186i \(0.0143029\pi\)
−0.998991 + 0.0449186i \(0.985697\pi\)
\(402\) −1.17157 1.65685i −0.0584327 0.0826364i
\(403\) −2.41421 + 2.41421i −0.120261 + 0.120261i
\(404\) 3.17157 0.157792
\(405\) 16.9497 10.8492i 0.842240 0.539103i
\(406\) 4.97056 0.246685
\(407\) 10.3431 10.3431i 0.512691 0.512691i
\(408\) −4.24264 6.00000i −0.210042 0.297044i
\(409\) 3.17157i 0.156824i −0.996921 0.0784121i \(-0.975015\pi\)
0.996921 0.0784121i \(-0.0249850\pi\)
\(410\) −4.00000 + 2.00000i −0.197546 + 0.0987730i
\(411\) −36.3848 6.24264i −1.79473 0.307927i
\(412\) −12.4853 12.4853i −0.615106 0.615106i
\(413\) −2.62742 2.62742i −0.129287 0.129287i
\(414\) −4.00000 + 11.3137i −0.196589 + 0.556038i
\(415\) −19.3137 + 9.65685i −0.948073 + 0.474036i
\(416\) 1.00000i 0.0490290i
\(417\) −2.34315 + 1.65685i −0.114744 + 0.0811365i
\(418\) 19.3137 19.3137i 0.944664 0.944664i
\(419\) 5.51472 0.269412 0.134706 0.990886i \(-0.456991\pi\)
0.134706 + 0.990886i \(0.456991\pi\)
\(420\) −1.51472 + 2.82843i −0.0739107 + 0.138013i
\(421\) 27.0711 1.31936 0.659682 0.751545i \(-0.270691\pi\)
0.659682 + 0.751545i \(0.270691\pi\)
\(422\) 1.17157 1.17157i 0.0570313 0.0570313i
\(423\) 4.10051 + 8.58579i 0.199373 + 0.417455i
\(424\) 0.828427i 0.0402320i
\(425\) −21.0000 + 3.00000i −1.01865 + 0.145521i
\(426\) 4.17157 24.3137i 0.202113 1.17800i
\(427\) 2.82843 + 2.82843i 0.136877 + 0.136877i
\(428\) 12.0711 + 12.0711i 0.583477 + 0.583477i
\(429\) 1.17157 6.82843i 0.0565641 0.329680i
\(430\) 3.72792 + 1.24264i 0.179776 + 0.0599255i
\(431\) 10.9289i 0.526428i 0.964737 + 0.263214i \(0.0847826\pi\)
−0.964737 + 0.263214i \(0.915217\pi\)
\(432\) 5.00000 1.41421i 0.240563 0.0680414i
\(433\) −16.3137 + 16.3137i −0.783987 + 0.783987i −0.980501 0.196514i \(-0.937038\pi\)
0.196514 + 0.980501i \(0.437038\pi\)
\(434\) 2.82843 0.135769
\(435\) −22.2426 + 6.72792i −1.06645 + 0.322579i
\(436\) 4.92893 0.236053
\(437\) 19.3137 19.3137i 0.923900 0.923900i
\(438\) −22.1421 + 15.6569i −1.05799 + 0.748113i
\(439\) 18.3431i 0.875471i 0.899104 + 0.437735i \(0.144219\pi\)
−0.899104 + 0.437735i \(0.855781\pi\)
\(440\) 4.00000 + 8.00000i 0.190693 + 0.381385i
\(441\) 17.8579 + 6.31371i 0.850374 + 0.300653i
\(442\) 3.00000 + 3.00000i 0.142695 + 0.142695i
\(443\) 0.899495 + 0.899495i 0.0427363 + 0.0427363i 0.728152 0.685416i \(-0.240379\pi\)
−0.685416 + 0.728152i \(0.740379\pi\)
\(444\) −6.24264 1.07107i −0.296263 0.0508306i
\(445\) 7.89949 23.6985i 0.374472 1.12342i
\(446\) 13.6569i 0.646671i
\(447\) −22.3848 31.6569i −1.05876 1.49732i
\(448\) −0.585786 + 0.585786i −0.0276758 + 0.0276758i
\(449\) −17.7990 −0.839986 −0.419993 0.907527i \(-0.637968\pi\)
−0.419993 + 0.907527i \(0.637968\pi\)
\(450\) 2.94975 14.7071i 0.139052 0.693300i
\(451\) −8.00000 −0.376705
\(452\) −7.00000 + 7.00000i −0.329252 + 0.329252i
\(453\) 1.07107 + 1.51472i 0.0503232 + 0.0711677i
\(454\) 2.82843i 0.132745i
\(455\) 0.585786 1.75736i 0.0274621 0.0823863i
\(456\) −11.6569 2.00000i −0.545882 0.0936586i
\(457\) −21.0711 21.0711i −0.985663 0.985663i 0.0142357 0.999899i \(-0.495468\pi\)
−0.999899 + 0.0142357i \(0.995468\pi\)
\(458\) 12.6569 + 12.6569i 0.591416 + 0.591416i
\(459\) −10.7574 + 19.2426i −0.502111 + 0.898170i
\(460\) 4.00000 + 8.00000i 0.186501 + 0.373002i
\(461\) 21.6985i 1.01060i −0.862944 0.505300i \(-0.831382\pi\)
0.862944 0.505300i \(-0.168618\pi\)
\(462\) −4.68629 + 3.31371i −0.218026 + 0.154168i
\(463\) 5.65685 5.65685i 0.262896 0.262896i −0.563333 0.826230i \(-0.690481\pi\)
0.826230 + 0.563333i \(0.190481\pi\)
\(464\) −6.00000 −0.278543
\(465\) −12.6569 + 3.82843i −0.586948 + 0.177539i
\(466\) 12.2426 0.567129
\(467\) −16.8995 + 16.8995i −0.782015 + 0.782015i −0.980171 0.198155i \(-0.936505\pi\)
0.198155 + 0.980171i \(0.436505\pi\)
\(468\) −2.70711 + 1.29289i −0.125136 + 0.0597640i
\(469\) 0.970563i 0.0448164i
\(470\) 6.72792 + 2.24264i 0.310336 + 0.103445i
\(471\) −6.72792 + 39.2132i −0.310006 + 1.80685i
\(472\) 3.17157 + 3.17157i 0.145983 + 0.145983i
\(473\) 4.97056 + 4.97056i 0.228547 + 0.228547i
\(474\) 3.65685 21.3137i 0.167965 0.978971i
\(475\) −20.4853 + 27.3137i −0.939929 + 1.25324i
\(476\) 3.51472i 0.161097i
\(477\) 2.24264 1.07107i 0.102683 0.0490408i
\(478\) 14.0711 14.0711i 0.643596 0.643596i
\(479\) 24.3848 1.11417 0.557084 0.830456i \(-0.311920\pi\)
0.557084 + 0.830456i \(0.311920\pi\)
\(480\) 1.82843 3.41421i 0.0834559 0.155837i
\(481\) 3.65685 0.166738
\(482\) −2.58579 + 2.58579i −0.117779 + 0.117779i
\(483\) −4.68629 + 3.31371i −0.213234 + 0.150779i
\(484\) 5.00000i 0.227273i
\(485\) −25.6569 + 12.8284i −1.16502 + 0.582509i
\(486\) −10.2929 11.7071i −0.466895 0.531045i
\(487\) 2.92893 + 2.92893i 0.132723 + 0.132723i 0.770347 0.637625i \(-0.220083\pi\)
−0.637625 + 0.770347i \(0.720083\pi\)
\(488\) −3.41421 3.41421i −0.154554 0.154554i
\(489\) 5.65685 + 0.970563i 0.255812 + 0.0438904i
\(490\) 12.6274 6.31371i 0.570449 0.285224i
\(491\) 13.7990i 0.622740i 0.950289 + 0.311370i \(0.100788\pi\)
−0.950289 + 0.311370i \(0.899212\pi\)
\(492\) 2.00000 + 2.82843i 0.0901670 + 0.127515i
\(493\) 18.0000 18.0000i 0.810679 0.810679i
\(494\) 6.82843 0.307225
\(495\) 16.4853 21.1716i 0.740958 0.951591i
\(496\) −3.41421 −0.153303
\(497\) 8.34315 8.34315i 0.374241 0.374241i
\(498\) 9.65685 + 13.6569i 0.432734 + 0.611978i
\(499\) 8.00000i 0.358129i −0.983837 0.179065i \(-0.942693\pi\)
0.983837 0.179065i \(-0.0573071\pi\)
\(500\) −6.36396 9.19239i −0.284605 0.411096i
\(501\) −8.24264 1.41421i −0.368254 0.0631824i
\(502\) −10.1421 10.1421i −0.452666 0.452666i
\(503\) 16.1421 + 16.1421i 0.719742 + 0.719742i 0.968552 0.248810i \(-0.0800395\pi\)
−0.248810 + 0.968552i \(0.580039\pi\)
\(504\) 2.34315 + 0.828427i 0.104372 + 0.0369011i
\(505\) −6.72792 2.24264i −0.299389 0.0997962i
\(506\) 16.0000i 0.711287i
\(507\) 1.41421 1.00000i 0.0628074 0.0444116i
\(508\) −3.17157 + 3.17157i −0.140716 + 0.140716i
\(509\) −41.2132 −1.82674 −0.913372 0.407127i \(-0.866531\pi\)
−0.913372 + 0.407127i \(0.866531\pi\)
\(510\) 4.75736 + 15.7279i 0.210659 + 0.696444i
\(511\) −12.9706 −0.573784
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 9.65685 + 34.1421i 0.426361 + 1.50741i
\(514\) 9.89949i 0.436648i
\(515\) 17.6569 + 35.3137i 0.778054 + 1.55611i
\(516\) 0.514719 3.00000i 0.0226592 0.132068i
\(517\) 8.97056 + 8.97056i 0.394525 + 0.394525i
\(518\) −2.14214 2.14214i −0.0941200 0.0941200i
\(519\) −7.07107 + 41.2132i −0.310385 + 1.80906i
\(520\) −0.707107 + 2.12132i −0.0310087 + 0.0930261i
\(521\) 24.9706i 1.09398i 0.837139 + 0.546990i \(0.184226\pi\)
−0.837139 + 0.546990i \(0.815774\pi\)
\(522\) 7.75736 + 16.2426i 0.339530 + 0.710921i
\(523\) −6.07107 + 6.07107i −0.265469 + 0.265469i −0.827272 0.561802i \(-0.810108\pi\)
0.561802 + 0.827272i \(0.310108\pi\)
\(524\) −12.9706 −0.566622
\(525\) 5.21320 4.92893i 0.227523 0.215116i
\(526\) −22.6274 −0.986602
\(527\) 10.2426 10.2426i 0.446176 0.446176i
\(528\) 5.65685 4.00000i 0.246183 0.174078i
\(529\) 7.00000i 0.304348i
\(530\) 0.585786 1.75736i 0.0254449 0.0763348i
\(531\) 4.48528 12.6863i 0.194645 0.550538i
\(532\) −4.00000 4.00000i −0.173422 0.173422i
\(533\) −1.41421 1.41421i −0.0612564 0.0612564i
\(534\) −19.0711 3.27208i −0.825286 0.141597i
\(535\) −17.0711 34.1421i −0.738047 1.47609i
\(536\) 1.17157i 0.0506042i
\(537\) 17.6569 + 24.9706i 0.761950 + 1.07756i
\(538\) −10.7279 + 10.7279i −0.462514 + 0.462514i
\(539\) 25.2548 1.08780
\(540\) −11.6066 0.535534i −0.499469 0.0230457i
\(541\) −4.24264 −0.182405 −0.0912027 0.995832i \(-0.529071\pi\)
−0.0912027 + 0.995832i \(0.529071\pi\)
\(542\) −1.58579 + 1.58579i −0.0681154 + 0.0681154i
\(543\) 6.00000 + 8.48528i 0.257485 + 0.364138i
\(544\) 4.24264i 0.181902i
\(545\) −10.4558 3.48528i −0.447879 0.149293i
\(546\) −1.41421 0.242641i −0.0605228 0.0103841i
\(547\) −20.4142 20.4142i −0.872849 0.872849i 0.119933 0.992782i \(-0.461732\pi\)
−0.992782 + 0.119933i \(0.961732\pi\)
\(548\) 15.0711 + 15.0711i 0.643804 + 0.643804i
\(549\) −4.82843 + 13.6569i −0.206072 + 0.582860i
\(550\) −2.82843 19.7990i −0.120605 0.844232i
\(551\) 40.9706i 1.74540i
\(552\) 5.65685 4.00000i 0.240772 0.170251i
\(553\) 7.31371 7.31371i 0.311011 0.311011i
\(554\) −22.4853 −0.955308
\(555\) 12.4853 + 6.68629i 0.529971 + 0.283817i
\(556\) 1.65685 0.0702663
\(557\) −0.928932 + 0.928932i −0.0393601 + 0.0393601i −0.726513 0.687153i \(-0.758860\pi\)
0.687153 + 0.726513i \(0.258860\pi\)
\(558\) 4.41421 + 9.24264i 0.186869 + 0.391272i
\(559\) 1.75736i 0.0743284i
\(560\) 1.65685 0.828427i 0.0700149 0.0350074i
\(561\) −4.97056 + 28.9706i −0.209857 + 1.22314i
\(562\) 0.585786 + 0.585786i 0.0247099 + 0.0247099i
\(563\) 19.2426 + 19.2426i 0.810981 + 0.810981i 0.984781 0.173800i \(-0.0556047\pi\)
−0.173800 + 0.984781i \(0.555605\pi\)
\(564\) 0.928932 5.41421i 0.0391151 0.227980i
\(565\) 19.7990 9.89949i 0.832950 0.416475i
\(566\) 24.3848i 1.02497i
\(567\) −0.786797 7.41421i −0.0330423 0.311368i
\(568\) −10.0711 + 10.0711i −0.422573 + 0.422573i
\(569\) 18.3431 0.768985 0.384492 0.923128i \(-0.374377\pi\)
0.384492 + 0.923128i \(0.374377\pi\)
\(570\) 23.3137 + 12.4853i 0.976504 + 0.522951i
\(571\) 34.4853 1.44316 0.721582 0.692329i \(-0.243415\pi\)
0.721582 + 0.692329i \(0.243415\pi\)
\(572\) −2.82843 + 2.82843i −0.118262 + 0.118262i
\(573\) 4.00000 2.82843i 0.167102 0.118159i
\(574\) 1.65685i 0.0691558i
\(575\) −2.82843 19.7990i −0.117954 0.825675i
\(576\) −2.82843 1.00000i −0.117851 0.0416667i
\(577\) −16.0416 16.0416i −0.667822 0.667822i 0.289390 0.957211i \(-0.406548\pi\)
−0.957211 + 0.289390i \(0.906548\pi\)
\(578\) −0.707107 0.707107i −0.0294118 0.0294118i
\(579\) 27.5563 + 4.72792i 1.14520 + 0.196486i
\(580\) 12.7279 + 4.24264i 0.528498 + 0.176166i
\(581\) 8.00000i 0.331896i
\(582\) 12.8284 + 18.1421i 0.531755 + 0.752016i
\(583\) 2.34315 2.34315i 0.0970432 0.0970432i
\(584\) 15.6569 0.647885
\(585\) 6.65685 0.828427i 0.275227 0.0342512i
\(586\) 6.34315 0.262033
\(587\) 7.79899 7.79899i 0.321899 0.321899i −0.527596 0.849495i \(-0.676907\pi\)
0.849495 + 0.527596i \(0.176907\pi\)
\(588\) −6.31371 8.92893i −0.260373 0.368223i
\(589\) 23.3137i 0.960625i
\(590\) −4.48528 8.97056i −0.184656 0.369312i
\(591\) −9.07107 1.55635i −0.373134 0.0640197i
\(592\) 2.58579 + 2.58579i 0.106275 + 0.106275i
\(593\) −7.41421 7.41421i −0.304465 0.304465i 0.538293 0.842758i \(-0.319069\pi\)
−0.842758 + 0.538293i \(0.819069\pi\)
\(594\) −18.1421 10.1421i −0.744381 0.416137i
\(595\) −2.48528 + 7.45584i −0.101887 + 0.305660i
\(596\) 22.3848i 0.916916i
\(597\) 31.3137 22.1421i 1.28158 0.906217i
\(598\) −2.82843 + 2.82843i −0.115663 + 0.115663i
\(599\) −16.4853 −0.673570 −0.336785 0.941582i \(-0.609340\pi\)
−0.336785 + 0.941582i \(0.609340\pi\)
\(600\) −6.29289 + 5.94975i −0.256906 + 0.242897i
\(601\) −17.6569 −0.720238 −0.360119 0.932906i \(-0.617264\pi\)
−0.360119 + 0.932906i \(0.617264\pi\)
\(602\) 1.02944 1.02944i 0.0419567 0.0419567i
\(603\) 3.17157 1.51472i 0.129156 0.0616841i
\(604\) 1.07107i 0.0435811i
\(605\) 3.53553 10.6066i 0.143740 0.431220i
\(606\) −0.928932 + 5.41421i −0.0377353 + 0.219937i
\(607\) 14.4853 + 14.4853i 0.587939 + 0.587939i 0.937073 0.349134i \(-0.113524\pi\)
−0.349134 + 0.937073i \(0.613524\pi\)
\(608\) 4.82843 + 4.82843i 0.195819 + 0.195819i
\(609\) −1.45584 + 8.48528i −0.0589938 + 0.343841i
\(610\) 4.82843 + 9.65685i 0.195497 + 0.390995i
\(611\) 3.17157i 0.128308i
\(612\) 11.4853 5.48528i 0.464265 0.221729i
\(613\) 10.3431 10.3431i 0.417756 0.417756i −0.466674 0.884430i \(-0.654548\pi\)
0.884430 + 0.466674i \(0.154548\pi\)
\(614\) 10.1421 0.409303
\(615\) −2.24264 7.41421i −0.0904320 0.298970i
\(616\) 3.31371 0.133513
\(617\) 10.9289 10.9289i 0.439982 0.439982i −0.452024 0.892006i \(-0.649298\pi\)
0.892006 + 0.452024i \(0.149298\pi\)
\(618\) 24.9706 17.6569i 1.00446 0.710263i
\(619\) 26.6274i 1.07025i 0.844774 + 0.535123i \(0.179735\pi\)
−0.844774 + 0.535123i \(0.820265\pi\)
\(620\) 7.24264 + 2.41421i 0.290871 + 0.0969571i
\(621\) −18.1421 10.1421i −0.728019 0.406990i
\(622\) −19.7990 19.7990i −0.793867 0.793867i
\(623\) −6.54416 6.54416i −0.262186 0.262186i
\(624\) 1.70711 + 0.292893i 0.0683390 + 0.0117251i
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 1.89949i 0.0759191i
\(627\) 27.3137 + 38.6274i 1.09080 + 1.54263i
\(628\) 16.2426 16.2426i 0.648152 0.648152i
\(629\) −15.5147 −0.618612
\(630\) −4.38478 3.41421i −0.174694 0.136026i
\(631\) 23.8995 0.951424 0.475712 0.879601i \(-0.342190\pi\)
0.475712 + 0.879601i \(0.342190\pi\)
\(632\) −8.82843 + 8.82843i −0.351176 + 0.351176i
\(633\) 1.65685 + 2.34315i 0.0658540 + 0.0931317i
\(634\) 2.34315i 0.0930582i
\(635\) 8.97056 4.48528i 0.355986 0.177993i
\(636\) −1.41421 0.242641i −0.0560772 0.00962133i
\(637\) 4.46447 + 4.46447i 0.176889 + 0.176889i
\(638\) 16.9706 + 16.9706i 0.671871 + 0.671871i
\(639\) 40.2843 + 14.2426i 1.59362 + 0.563430i
\(640\) −2.00000 + 1.00000i −0.0790569 + 0.0395285i
\(641\) 10.6863i 0.422083i 0.977477 + 0.211042i \(0.0676855\pi\)
−0.977477 + 0.211042i \(0.932314\pi\)
\(642\) −24.1421 + 17.0711i −0.952814 + 0.673741i
\(643\) 22.1421 22.1421i 0.873201 0.873201i −0.119619 0.992820i \(-0.538167\pi\)
0.992820 + 0.119619i \(0.0381674\pi\)
\(644\) 3.31371 0.130578
\(645\) −3.21320 + 6.00000i −0.126520 + 0.236250i
\(646\) −28.9706 −1.13983
\(647\) −29.3137 + 29.3137i −1.15244 + 1.15244i −0.166379 + 0.986062i \(0.553207\pi\)
−0.986062 + 0.166379i \(0.946793\pi\)
\(648\) 0.949747 + 8.94975i 0.0373096 + 0.351579i
\(649\) 17.9411i 0.704251i
\(650\) 3.00000 4.00000i 0.117670 0.156893i
\(651\) −0.828427 + 4.82843i −0.0324686 + 0.189241i
\(652\) −2.34315 2.34315i −0.0917647 0.0917647i
\(653\) 4.24264 + 4.24264i 0.166027 + 0.166027i 0.785231 0.619203i \(-0.212544\pi\)
−0.619203 + 0.785231i \(0.712544\pi\)
\(654\) −1.44365 + 8.41421i −0.0564512 + 0.329022i
\(655\) 27.5147 + 9.17157i 1.07509 + 0.358363i
\(656\) 2.00000i 0.0780869i
\(657\) −20.2426 42.3848i −0.789741 1.65359i
\(658\) 1.85786 1.85786i 0.0724271 0.0724271i
\(659\) 25.5147 0.993912 0.496956 0.867776i \(-0.334451\pi\)
0.496956 + 0.867776i \(0.334451\pi\)
\(660\) −14.8284 + 4.48528i −0.577196 + 0.174589i
\(661\) 48.5269 1.88748 0.943739 0.330691i \(-0.107282\pi\)
0.943739 + 0.330691i \(0.107282\pi\)
\(662\) −22.8284 + 22.8284i −0.887252 + 0.887252i
\(663\) −6.00000 + 4.24264i −0.233021 + 0.164771i
\(664\) 9.65685i 0.374759i
\(665\) 5.65685 + 11.3137i 0.219363 + 0.438727i
\(666\) 3.65685 10.3431i 0.141700 0.400789i
\(667\) 16.9706 + 16.9706i 0.657103 + 0.657103i
\(668\) 3.41421 + 3.41421i 0.132100 + 0.132100i
\(669\) −23.3137 4.00000i −0.901360 0.154649i
\(670\) 0.828427 2.48528i 0.0320049 0.0960148i
\(671\) 19.3137i 0.745597i
\(672\) −0.828427 1.17157i −0.0319573 0.0451944i
\(673\) −2.85786 + 2.85786i −0.110163 + 0.110163i −0.760039 0.649877i \(-0.774820\pi\)
0.649877 + 0.760039i \(0.274820\pi\)
\(674\) −32.5269 −1.25289
\(675\) 24.2426 + 9.34315i 0.933100 + 0.359618i
\(676\) −1.00000 −0.0384615
\(677\) −10.3848 + 10.3848i −0.399119 + 0.399119i −0.877922 0.478803i \(-0.841071\pi\)
0.478803 + 0.877922i \(0.341071\pi\)
\(678\) −9.89949 14.0000i −0.380188 0.537667i
\(679\) 10.6274i 0.407843i
\(680\) 3.00000 9.00000i 0.115045 0.345134i
\(681\) −4.82843 0.828427i −0.185026 0.0317454i
\(682\) 9.65685 + 9.65685i 0.369780 + 0.369780i
\(683\) −8.82843 8.82843i −0.337810 0.337810i 0.517732 0.855543i \(-0.326776\pi\)
−0.855543 + 0.517732i \(0.826776\pi\)
\(684\) 6.82843 19.3137i 0.261091 0.738478i
\(685\) −21.3137 42.6274i −0.814355 1.62871i
\(686\) 11.0294i 0.421106i
\(687\) −25.3137 + 17.8995i −0.965778 + 0.682908i
\(688\) −1.24264 + 1.24264i −0.0473752 + 0.0473752i
\(689\) 0.828427 0.0315606
\(690\) −14.8284 + 4.48528i −0.564509 + 0.170752i
\(691\) −37.6569 −1.43253 −0.716267 0.697826i \(-0.754151\pi\)
−0.716267 + 0.697826i \(0.754151\pi\)
\(692\) 17.0711 17.0711i 0.648945 0.648945i
\(693\) −4.28427 8.97056i −0.162746 0.340764i
\(694\) 14.9289i 0.566695i
\(695\) −3.51472 1.17157i −0.133321 0.0444403i
\(696\) 1.75736 10.2426i 0.0666125 0.388246i
\(697\) 6.00000 + 6.00000i 0.227266 + 0.227266i
\(698\) 23.1421 + 23.1421i 0.875943 + 0.875943i
\(699\) −3.58579 + 20.8995i −0.135627 + 0.790491i
\(700\) −4.10051 + 0.585786i −0.154985 + 0.0221406i
\(701\) 35.4558i 1.33915i −0.742745 0.669574i \(-0.766477\pi\)
0.742745 0.669574i \(-0.233523\pi\)
\(702\) −1.41421 5.00000i −0.0533761 0.188713i
\(703\) −17.6569 + 17.6569i −0.665941 + 0.665941i
\(704\) −4.00000 −0.150756
\(705\) −5.79899 + 10.8284i −0.218403 + 0.407822i
\(706\) −36.1421 −1.36023
\(707\) −1.85786 + 1.85786i −0.0698722 + 0.0698722i
\(708\) −6.34315 + 4.48528i −0.238390 + 0.168567i
\(709\) 3.27208i 0.122885i 0.998111 + 0.0614427i \(0.0195702\pi\)
−0.998111 + 0.0614427i \(0.980430\pi\)
\(710\) 28.4853 14.2426i 1.06903 0.534517i
\(711\) 35.3137 + 12.4853i 1.32437 + 0.468235i
\(712\) 7.89949 + 7.89949i 0.296046 + 0.296046i
\(713\) 9.65685 + 9.65685i 0.361652 + 0.361652i
\(714\) 6.00000 + 1.02944i 0.224544 + 0.0385257i
\(715\) 8.00000 4.00000i 0.299183 0.149592i
\(716\) 17.6569i 0.659868i
\(717\) 19.8995 + 28.1421i 0.743160 + 1.05099i
\(718\) −16.5563 + 16.5563i −0.617877 + 0.617877i
\(719\) −12.4853 −0.465622 −0.232811 0.972522i \(-0.574792\pi\)
−0.232811 + 0.972522i \(0.574792\pi\)
\(720\) 5.29289 + 4.12132i 0.197254 + 0.153593i
\(721\) 14.6274 0.544753
\(722\) −19.5355 + 19.5355i −0.727037 + 0.727037i
\(723\) −3.65685 5.17157i −0.136000 0.192333i
\(724\) 6.00000i 0.222988i
\(725\) −24.0000 18.0000i −0.891338 0.668503i
\(726\) −8.53553 1.46447i −0.316783 0.0543514i
\(727\) −25.3137 25.3137i −0.938833 0.938833i 0.0594007 0.998234i \(-0.481081\pi\)
−0.998234 + 0.0594007i \(0.981081\pi\)
\(728\) 0.585786 + 0.585786i 0.0217107 + 0.0217107i
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) −33.2132 11.0711i −1.22928 0.409759i
\(731\) 7.45584i 0.275764i
\(732\) 6.82843 4.82843i 0.252386 0.178464i
\(733\) −15.5563 + 15.5563i −0.574587 + 0.574587i −0.933407 0.358820i \(-0.883179\pi\)
0.358820 + 0.933407i \(0.383179\pi\)
\(734\) 20.0000 0.738213
\(735\) 7.07969 + 23.4056i 0.261138 + 0.863328i
\(736\) −4.00000 −0.147442
\(737\) 3.31371 3.31371i 0.122062 0.122062i
\(738\) −5.41421 + 2.58579i −0.199300 + 0.0951841i
\(739\) 10.1421i 0.373084i −0.982447 0.186542i \(-0.940272\pi\)
0.982447 0.186542i \(-0.0597281\pi\)
\(740\) −3.65685 7.31371i −0.134429 0.268857i
\(741\) −2.00000 + 11.6569i −0.0734718 + 0.428225i
\(742\) −0.485281 0.485281i −0.0178152 0.0178152i
\(743\) −10.6274 10.6274i −0.389882 0.389882i 0.484763 0.874645i \(-0.338906\pi\)
−0.874645 + 0.484763i \(0.838906\pi\)
\(744\) 1.00000 5.82843i 0.0366618 0.213681i
\(745\) 15.8284 47.4853i 0.579909 1.73973i
\(746\) 6.97056i 0.255210i
\(747\) −26.1421 + 12.4853i −0.956491 + 0.456813i
\(748\) 12.0000 12.0000i 0.438763 0.438763i
\(749\) −14.1421 −0.516742
\(750\) 17.5563 8.17157i 0.641067 0.298384i
\(751\) 36.2843 1.32403 0.662016 0.749490i \(-0.269701\pi\)
0.662016 + 0.749490i \(0.269701\pi\)
\(752\) −2.24264 + 2.24264i −0.0817807 + 0.0817807i
\(753\) 20.2843 14.3431i 0.739200 0.522693i
\(754\) 6.00000i 0.218507i
\(755\) −0.757359 + 2.27208i −0.0275631 + 0.0826894i
\(756\) −2.10051 + 3.75736i −0.0763946 + 0.136654i
\(757\) 3.41421 + 3.41421i 0.124092 + 0.124092i 0.766425 0.642334i \(-0.222034\pi\)
−0.642334 + 0.766425i \(0.722034\pi\)
\(758\) −26.9706 26.9706i −0.979615 0.979615i
\(759\) −27.3137 4.68629i −0.991425 0.170102i
\(760\) −6.82843 13.6569i −0.247693 0.495386i
\(761\) 26.4853i 0.960091i 0.877244 + 0.480045i \(0.159380\pi\)
−0.877244 + 0.480045i \(0.840620\pi\)
\(762\) −4.48528 6.34315i −0.162485 0.229788i
\(763\) −2.88730 + 2.88730i −0.104527 + 0.104527i
\(764\) −2.82843 −0.102329
\(765\) −28.2426 + 3.51472i −1.02111 + 0.127075i
\(766\) −2.34315 −0.0846613
\(767\) 3.17157 3.17157i 0.114519 0.114519i
\(768\) 1.00000 + 1.41421i 0.0360844 + 0.0510310i
\(769\) 8.62742i 0.311113i 0.987827 + 0.155556i \(0.0497170\pi\)
−0.987827 + 0.155556i \(0.950283\pi\)
\(770\) −7.02944 2.34315i −0.253323 0.0844411i
\(771\) −16.8995 2.89949i −0.608620 0.104423i
\(772\) −11.4142 11.4142i −0.410807 0.410807i
\(773\) 16.2426 + 16.2426i 0.584207