Properties

Label 390.2.l.a.53.2
Level $390$
Weight $2$
Character 390.53
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(53,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.2
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.53
Dual form 390.2.l.a.287.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(1.41421 + 1.00000i) q^{3} +1.00000i q^{4} +(-0.707107 - 2.12132i) q^{5} +(0.292893 + 1.70711i) q^{6} +(3.41421 - 3.41421i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(1.00000 + 2.82843i) q^{9} +(1.00000 - 2.00000i) q^{10} +4.00000i q^{11} +(-1.00000 + 1.41421i) q^{12} +(0.707107 + 0.707107i) q^{13} +4.82843 q^{14} +(1.12132 - 3.70711i) q^{15} -1.00000 q^{16} +(-3.00000 - 3.00000i) q^{17} +(-1.29289 + 2.70711i) q^{18} +1.17157i q^{19} +(2.12132 - 0.707107i) q^{20} +(8.24264 - 1.41421i) q^{21} +(-2.82843 + 2.82843i) q^{22} +(2.82843 - 2.82843i) q^{23} +(-1.70711 + 0.292893i) q^{24} +(-4.00000 + 3.00000i) q^{25} +1.00000i q^{26} +(-1.41421 + 5.00000i) q^{27} +(3.41421 + 3.41421i) q^{28} -6.00000 q^{29} +(3.41421 - 1.82843i) q^{30} +0.585786 q^{31} +(-0.707107 - 0.707107i) q^{32} +(-4.00000 + 5.65685i) q^{33} -4.24264i q^{34} +(-9.65685 - 4.82843i) q^{35} +(-2.82843 + 1.00000i) q^{36} +(-5.41421 + 5.41421i) q^{37} +(-0.828427 + 0.828427i) q^{38} +(0.292893 + 1.70711i) q^{39} +(2.00000 + 1.00000i) q^{40} +2.00000i q^{41} +(6.82843 + 4.82843i) q^{42} +(-7.24264 - 7.24264i) q^{43} -4.00000 q^{44} +(5.29289 - 4.12132i) q^{45} +4.00000 q^{46} +(6.24264 + 6.24264i) q^{47} +(-1.41421 - 1.00000i) q^{48} -16.3137i q^{49} +(-4.94975 - 0.707107i) q^{50} +(-1.24264 - 7.24264i) q^{51} +(-0.707107 + 0.707107i) q^{52} +(3.41421 - 3.41421i) q^{53} +(-4.53553 + 2.53553i) q^{54} +(8.48528 - 2.82843i) q^{55} +4.82843i q^{56} +(-1.17157 + 1.65685i) q^{57} +(-4.24264 - 4.24264i) q^{58} -12.4853 q^{59} +(3.70711 + 1.12132i) q^{60} -0.828427 q^{61} +(0.414214 + 0.414214i) q^{62} +(13.0711 + 6.24264i) q^{63} -1.00000i q^{64} +(1.00000 - 2.00000i) q^{65} +(-6.82843 + 1.17157i) q^{66} +(4.82843 - 4.82843i) q^{67} +(3.00000 - 3.00000i) q^{68} +(6.82843 - 1.17157i) q^{69} +(-3.41421 - 10.2426i) q^{70} -5.75736i q^{71} +(-2.70711 - 1.29289i) q^{72} +(3.07107 + 3.07107i) q^{73} -7.65685 q^{74} +(-8.65685 + 0.242641i) q^{75} -1.17157 q^{76} +(13.6569 + 13.6569i) q^{77} +(-1.00000 + 1.41421i) q^{78} -4.48528i q^{79} +(0.707107 + 2.12132i) q^{80} +(-7.00000 + 5.65685i) q^{81} +(-1.41421 + 1.41421i) q^{82} +(-1.17157 + 1.17157i) q^{83} +(1.41421 + 8.24264i) q^{84} +(-4.24264 + 8.48528i) q^{85} -10.2426i q^{86} +(-8.48528 - 6.00000i) q^{87} +(-2.82843 - 2.82843i) q^{88} +16.8284 q^{89} +(6.65685 + 0.828427i) q^{90} +4.82843 q^{91} +(2.82843 + 2.82843i) q^{92} +(0.828427 + 0.585786i) q^{93} +8.82843i q^{94} +(2.48528 - 0.828427i) q^{95} +(-0.292893 - 1.70711i) q^{96} +(-5.07107 + 5.07107i) q^{97} +(11.5355 - 11.5355i) q^{98} +(-11.3137 + 4.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{6} + 8 q^{7} + 4 q^{9} + 4 q^{10} - 4 q^{12} + 8 q^{14} - 4 q^{15} - 4 q^{16} - 12 q^{17} - 8 q^{18} + 16 q^{21} - 4 q^{24} - 16 q^{25} + 8 q^{28} - 24 q^{29} + 8 q^{30} + 8 q^{31} - 16 q^{33}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 1.41421 + 1.00000i 0.816497 + 0.577350i
\(4\) 1.00000i 0.500000i
\(5\) −0.707107 2.12132i −0.316228 0.948683i
\(6\) 0.292893 + 1.70711i 0.119573 + 0.696923i
\(7\) 3.41421 3.41421i 1.29045 1.29045i 0.355944 0.934507i \(-0.384159\pi\)
0.934507 0.355944i \(-0.115841\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 1.00000 + 2.82843i 0.333333 + 0.942809i
\(10\) 1.00000 2.00000i 0.316228 0.632456i
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) −1.00000 + 1.41421i −0.288675 + 0.408248i
\(13\) 0.707107 + 0.707107i 0.196116 + 0.196116i
\(14\) 4.82843 1.29045
\(15\) 1.12132 3.70711i 0.289524 0.957171i
\(16\) −1.00000 −0.250000
\(17\) −3.00000 3.00000i −0.727607 0.727607i 0.242536 0.970143i \(-0.422021\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) −1.29289 + 2.70711i −0.304738 + 0.638071i
\(19\) 1.17157i 0.268777i 0.990929 + 0.134389i \(0.0429070\pi\)
−0.990929 + 0.134389i \(0.957093\pi\)
\(20\) 2.12132 0.707107i 0.474342 0.158114i
\(21\) 8.24264 1.41421i 1.79869 0.308607i
\(22\) −2.82843 + 2.82843i −0.603023 + 0.603023i
\(23\) 2.82843 2.82843i 0.589768 0.589768i −0.347801 0.937568i \(-0.613071\pi\)
0.937568 + 0.347801i \(0.113071\pi\)
\(24\) −1.70711 + 0.292893i −0.348462 + 0.0597866i
\(25\) −4.00000 + 3.00000i −0.800000 + 0.600000i
\(26\) 1.00000i 0.196116i
\(27\) −1.41421 + 5.00000i −0.272166 + 0.962250i
\(28\) 3.41421 + 3.41421i 0.645226 + 0.645226i
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 3.41421 1.82843i 0.623347 0.333824i
\(31\) 0.585786 0.105210 0.0526052 0.998615i \(-0.483248\pi\)
0.0526052 + 0.998615i \(0.483248\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) −4.00000 + 5.65685i −0.696311 + 0.984732i
\(34\) 4.24264i 0.727607i
\(35\) −9.65685 4.82843i −1.63231 0.816153i
\(36\) −2.82843 + 1.00000i −0.471405 + 0.166667i
\(37\) −5.41421 + 5.41421i −0.890091 + 0.890091i −0.994531 0.104440i \(-0.966695\pi\)
0.104440 + 0.994531i \(0.466695\pi\)
\(38\) −0.828427 + 0.828427i −0.134389 + 0.134389i
\(39\) 0.292893 + 1.70711i 0.0469005 + 0.273356i
\(40\) 2.00000 + 1.00000i 0.316228 + 0.158114i
\(41\) 2.00000i 0.312348i 0.987730 + 0.156174i \(0.0499160\pi\)
−0.987730 + 0.156174i \(0.950084\pi\)
\(42\) 6.82843 + 4.82843i 1.05365 + 0.745042i
\(43\) −7.24264 7.24264i −1.10449 1.10449i −0.993862 0.110631i \(-0.964713\pi\)
−0.110631 0.993862i \(-0.535287\pi\)
\(44\) −4.00000 −0.603023
\(45\) 5.29289 4.12132i 0.789018 0.614370i
\(46\) 4.00000 0.589768
\(47\) 6.24264 + 6.24264i 0.910583 + 0.910583i 0.996318 0.0857352i \(-0.0273239\pi\)
−0.0857352 + 0.996318i \(0.527324\pi\)
\(48\) −1.41421 1.00000i −0.204124 0.144338i
\(49\) 16.3137i 2.33053i
\(50\) −4.94975 0.707107i −0.700000 0.100000i
\(51\) −1.24264 7.24264i −0.174005 1.01417i
\(52\) −0.707107 + 0.707107i −0.0980581 + 0.0980581i
\(53\) 3.41421 3.41421i 0.468978 0.468978i −0.432605 0.901583i \(-0.642406\pi\)
0.901583 + 0.432605i \(0.142406\pi\)
\(54\) −4.53553 + 2.53553i −0.617208 + 0.345042i
\(55\) 8.48528 2.82843i 1.14416 0.381385i
\(56\) 4.82843i 0.645226i
\(57\) −1.17157 + 1.65685i −0.155179 + 0.219456i
\(58\) −4.24264 4.24264i −0.557086 0.557086i
\(59\) −12.4853 −1.62545 −0.812723 0.582651i \(-0.802016\pi\)
−0.812723 + 0.582651i \(0.802016\pi\)
\(60\) 3.70711 + 1.12132i 0.478585 + 0.144762i
\(61\) −0.828427 −0.106069 −0.0530346 0.998593i \(-0.516889\pi\)
−0.0530346 + 0.998593i \(0.516889\pi\)
\(62\) 0.414214 + 0.414214i 0.0526052 + 0.0526052i
\(63\) 13.0711 + 6.24264i 1.64680 + 0.786499i
\(64\) 1.00000i 0.125000i
\(65\) 1.00000 2.00000i 0.124035 0.248069i
\(66\) −6.82843 + 1.17157i −0.840521 + 0.144211i
\(67\) 4.82843 4.82843i 0.589886 0.589886i −0.347714 0.937601i \(-0.613042\pi\)
0.937601 + 0.347714i \(0.113042\pi\)
\(68\) 3.00000 3.00000i 0.363803 0.363803i
\(69\) 6.82843 1.17157i 0.822046 0.141041i
\(70\) −3.41421 10.2426i −0.408077 1.22423i
\(71\) 5.75736i 0.683273i −0.939832 0.341636i \(-0.889019\pi\)
0.939832 0.341636i \(-0.110981\pi\)
\(72\) −2.70711 1.29289i −0.319036 0.152369i
\(73\) 3.07107 + 3.07107i 0.359441 + 0.359441i 0.863607 0.504166i \(-0.168200\pi\)
−0.504166 + 0.863607i \(0.668200\pi\)
\(74\) −7.65685 −0.890091
\(75\) −8.65685 + 0.242641i −0.999607 + 0.0280177i
\(76\) −1.17157 −0.134389
\(77\) 13.6569 + 13.6569i 1.55634 + 1.55634i
\(78\) −1.00000 + 1.41421i −0.113228 + 0.160128i
\(79\) 4.48528i 0.504634i −0.967645 0.252317i \(-0.918807\pi\)
0.967645 0.252317i \(-0.0811925\pi\)
\(80\) 0.707107 + 2.12132i 0.0790569 + 0.237171i
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) −1.41421 + 1.41421i −0.156174 + 0.156174i
\(83\) −1.17157 + 1.17157i −0.128597 + 0.128597i −0.768476 0.639879i \(-0.778984\pi\)
0.639879 + 0.768476i \(0.278984\pi\)
\(84\) 1.41421 + 8.24264i 0.154303 + 0.899346i
\(85\) −4.24264 + 8.48528i −0.460179 + 0.920358i
\(86\) 10.2426i 1.10449i
\(87\) −8.48528 6.00000i −0.909718 0.643268i
\(88\) −2.82843 2.82843i −0.301511 0.301511i
\(89\) 16.8284 1.78381 0.891905 0.452223i \(-0.149369\pi\)
0.891905 + 0.452223i \(0.149369\pi\)
\(90\) 6.65685 + 0.828427i 0.701694 + 0.0873239i
\(91\) 4.82843 0.506157
\(92\) 2.82843 + 2.82843i 0.294884 + 0.294884i
\(93\) 0.828427 + 0.585786i 0.0859039 + 0.0607432i
\(94\) 8.82843i 0.910583i
\(95\) 2.48528 0.828427i 0.254984 0.0849948i
\(96\) −0.292893 1.70711i −0.0298933 0.174231i
\(97\) −5.07107 + 5.07107i −0.514889 + 0.514889i −0.916020 0.401132i \(-0.868617\pi\)
0.401132 + 0.916020i \(0.368617\pi\)
\(98\) 11.5355 11.5355i 1.16526 1.16526i
\(99\) −11.3137 + 4.00000i −1.13707 + 0.402015i
\(100\) −3.00000 4.00000i −0.300000 0.400000i
\(101\) 8.82843i 0.878461i 0.898374 + 0.439231i \(0.144749\pi\)
−0.898374 + 0.439231i \(0.855251\pi\)
\(102\) 4.24264 6.00000i 0.420084 0.594089i
\(103\) −4.48528 4.48528i −0.441948 0.441948i 0.450718 0.892666i \(-0.351168\pi\)
−0.892666 + 0.450718i \(0.851168\pi\)
\(104\) −1.00000 −0.0980581
\(105\) −8.82843 16.4853i −0.861566 1.60880i
\(106\) 4.82843 0.468978
\(107\) −2.07107 2.07107i −0.200218 0.200218i 0.599876 0.800093i \(-0.295217\pi\)
−0.800093 + 0.599876i \(0.795217\pi\)
\(108\) −5.00000 1.41421i −0.481125 0.136083i
\(109\) 19.0711i 1.82668i −0.407201 0.913339i \(-0.633495\pi\)
0.407201 0.913339i \(-0.366505\pi\)
\(110\) 8.00000 + 4.00000i 0.762770 + 0.381385i
\(111\) −13.0711 + 2.24264i −1.24065 + 0.212862i
\(112\) −3.41421 + 3.41421i −0.322613 + 0.322613i
\(113\) 7.00000 7.00000i 0.658505 0.658505i −0.296522 0.955026i \(-0.595827\pi\)
0.955026 + 0.296522i \(0.0958267\pi\)
\(114\) −2.00000 + 0.343146i −0.187317 + 0.0321385i
\(115\) −8.00000 4.00000i −0.746004 0.373002i
\(116\) 6.00000i 0.557086i
\(117\) −1.29289 + 2.70711i −0.119528 + 0.250272i
\(118\) −8.82843 8.82843i −0.812723 0.812723i
\(119\) −20.4853 −1.87788
\(120\) 1.82843 + 3.41421i 0.166912 + 0.311674i
\(121\) −5.00000 −0.454545
\(122\) −0.585786 0.585786i −0.0530346 0.0530346i
\(123\) −2.00000 + 2.82843i −0.180334 + 0.255031i
\(124\) 0.585786i 0.0526052i
\(125\) 9.19239 + 6.36396i 0.822192 + 0.569210i
\(126\) 4.82843 + 13.6569i 0.430150 + 1.21665i
\(127\) −8.82843 + 8.82843i −0.783396 + 0.783396i −0.980402 0.197006i \(-0.936878\pi\)
0.197006 + 0.980402i \(0.436878\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) −3.00000 17.4853i −0.264135 1.53949i
\(130\) 2.12132 0.707107i 0.186052 0.0620174i
\(131\) 20.9706i 1.83221i 0.400942 + 0.916103i \(0.368683\pi\)
−0.400942 + 0.916103i \(0.631317\pi\)
\(132\) −5.65685 4.00000i −0.492366 0.348155i
\(133\) 4.00000 + 4.00000i 0.346844 + 0.346844i
\(134\) 6.82843 0.589886
\(135\) 11.6066 0.535534i 0.998937 0.0460914i
\(136\) 4.24264 0.363803
\(137\) 0.928932 + 0.928932i 0.0793640 + 0.0793640i 0.745674 0.666310i \(-0.232127\pi\)
−0.666310 + 0.745674i \(0.732127\pi\)
\(138\) 5.65685 + 4.00000i 0.481543 + 0.340503i
\(139\) 9.65685i 0.819084i 0.912291 + 0.409542i \(0.134311\pi\)
−0.912291 + 0.409542i \(0.865689\pi\)
\(140\) 4.82843 9.65685i 0.408077 0.816153i
\(141\) 2.58579 + 15.0711i 0.217763 + 1.26921i
\(142\) 4.07107 4.07107i 0.341636 0.341636i
\(143\) −2.82843 + 2.82843i −0.236525 + 0.236525i
\(144\) −1.00000 2.82843i −0.0833333 0.235702i
\(145\) 4.24264 + 12.7279i 0.352332 + 1.05700i
\(146\) 4.34315i 0.359441i
\(147\) 16.3137 23.0711i 1.34553 1.90287i
\(148\) −5.41421 5.41421i −0.445046 0.445046i
\(149\) −14.3848 −1.17845 −0.589223 0.807970i \(-0.700566\pi\)
−0.589223 + 0.807970i \(0.700566\pi\)
\(150\) −6.29289 5.94975i −0.513813 0.485795i
\(151\) −13.0711 −1.06371 −0.531854 0.846836i \(-0.678505\pi\)
−0.531854 + 0.846836i \(0.678505\pi\)
\(152\) −0.828427 0.828427i −0.0671943 0.0671943i
\(153\) 5.48528 11.4853i 0.443459 0.928530i
\(154\) 19.3137i 1.55634i
\(155\) −0.414214 1.24264i −0.0332704 0.0998113i
\(156\) −1.70711 + 0.292893i −0.136678 + 0.0234502i
\(157\) 7.75736 7.75736i 0.619105 0.619105i −0.326197 0.945302i \(-0.605767\pi\)
0.945302 + 0.326197i \(0.105767\pi\)
\(158\) 3.17157 3.17157i 0.252317 0.252317i
\(159\) 8.24264 1.41421i 0.653684 0.112154i
\(160\) −1.00000 + 2.00000i −0.0790569 + 0.158114i
\(161\) 19.3137i 1.52213i
\(162\) −8.94975 0.949747i −0.703159 0.0746192i
\(163\) 13.6569 + 13.6569i 1.06969 + 1.06969i 0.997383 + 0.0723048i \(0.0230354\pi\)
0.0723048 + 0.997383i \(0.476965\pi\)
\(164\) −2.00000 −0.156174
\(165\) 14.8284 + 4.48528i 1.15439 + 0.349179i
\(166\) −1.65685 −0.128597
\(167\) 0.585786 + 0.585786i 0.0453295 + 0.0453295i 0.729408 0.684079i \(-0.239796\pi\)
−0.684079 + 0.729408i \(0.739796\pi\)
\(168\) −4.82843 + 6.82843i −0.372521 + 0.526825i
\(169\) 1.00000i 0.0769231i
\(170\) −9.00000 + 3.00000i −0.690268 + 0.230089i
\(171\) −3.31371 + 1.17157i −0.253406 + 0.0895924i
\(172\) 7.24264 7.24264i 0.552246 0.552246i
\(173\) −2.92893 + 2.92893i −0.222683 + 0.222683i −0.809627 0.586945i \(-0.800331\pi\)
0.586945 + 0.809627i \(0.300331\pi\)
\(174\) −1.75736 10.2426i −0.133225 0.776493i
\(175\) −3.41421 + 23.8995i −0.258090 + 1.80663i
\(176\) 4.00000i 0.301511i
\(177\) −17.6569 12.4853i −1.32717 0.938451i
\(178\) 11.8995 + 11.8995i 0.891905 + 0.891905i
\(179\) −6.34315 −0.474109 −0.237054 0.971496i \(-0.576182\pi\)
−0.237054 + 0.971496i \(0.576182\pi\)
\(180\) 4.12132 + 5.29289i 0.307185 + 0.394509i
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 3.41421 + 3.41421i 0.253078 + 0.253078i
\(183\) −1.17157 0.828427i −0.0866052 0.0612391i
\(184\) 4.00000i 0.294884i
\(185\) 15.3137 + 7.65685i 1.12589 + 0.562943i
\(186\) 0.171573 + 1.00000i 0.0125803 + 0.0733236i
\(187\) 12.0000 12.0000i 0.877527 0.877527i
\(188\) −6.24264 + 6.24264i −0.455291 + 0.455291i
\(189\) 12.2426 + 21.8995i 0.890521 + 1.59295i
\(190\) 2.34315 + 1.17157i 0.169990 + 0.0849948i
\(191\) 2.82843i 0.204658i 0.994751 + 0.102329i \(0.0326294\pi\)
−0.994751 + 0.102329i \(0.967371\pi\)
\(192\) 1.00000 1.41421i 0.0721688 0.102062i
\(193\) 8.58579 + 8.58579i 0.618018 + 0.618018i 0.945023 0.327004i \(-0.106039\pi\)
−0.327004 + 0.945023i \(0.606039\pi\)
\(194\) −7.17157 −0.514889
\(195\) 3.41421 1.82843i 0.244497 0.130936i
\(196\) 16.3137 1.16526
\(197\) 12.2426 + 12.2426i 0.872252 + 0.872252i 0.992718 0.120465i \(-0.0384387\pi\)
−0.120465 + 0.992718i \(0.538439\pi\)
\(198\) −10.8284 5.17157i −0.769543 0.367528i
\(199\) 6.14214i 0.435404i −0.976015 0.217702i \(-0.930144\pi\)
0.976015 0.217702i \(-0.0698562\pi\)
\(200\) 0.707107 4.94975i 0.0500000 0.350000i
\(201\) 11.6569 2.00000i 0.822211 0.141069i
\(202\) −6.24264 + 6.24264i −0.439231 + 0.439231i
\(203\) −20.4853 + 20.4853i −1.43778 + 1.43778i
\(204\) 7.24264 1.24264i 0.507086 0.0870023i
\(205\) 4.24264 1.41421i 0.296319 0.0987730i
\(206\) 6.34315i 0.441948i
\(207\) 10.8284 + 5.17157i 0.752628 + 0.359449i
\(208\) −0.707107 0.707107i −0.0490290 0.0490290i
\(209\) −4.68629 −0.324158
\(210\) 5.41421 17.8995i 0.373616 1.23518i
\(211\) −9.65685 −0.664805 −0.332403 0.943138i \(-0.607859\pi\)
−0.332403 + 0.943138i \(0.607859\pi\)
\(212\) 3.41421 + 3.41421i 0.234489 + 0.234489i
\(213\) 5.75736 8.14214i 0.394488 0.557890i
\(214\) 2.92893i 0.200218i
\(215\) −10.2426 + 20.4853i −0.698542 + 1.39708i
\(216\) −2.53553 4.53553i −0.172521 0.308604i
\(217\) 2.00000 2.00000i 0.135769 0.135769i
\(218\) 13.4853 13.4853i 0.913339 0.913339i
\(219\) 1.27208 + 7.41421i 0.0859591 + 0.501006i
\(220\) 2.82843 + 8.48528i 0.190693 + 0.572078i
\(221\) 4.24264i 0.285391i
\(222\) −10.8284 7.65685i −0.726756 0.513894i
\(223\) 1.65685 + 1.65685i 0.110951 + 0.110951i 0.760403 0.649452i \(-0.225002\pi\)
−0.649452 + 0.760403i \(0.725002\pi\)
\(224\) −4.82843 −0.322613
\(225\) −12.4853 8.31371i −0.832352 0.554247i
\(226\) 9.89949 0.658505
\(227\) 2.00000 + 2.00000i 0.132745 + 0.132745i 0.770357 0.637613i \(-0.220078\pi\)
−0.637613 + 0.770357i \(0.720078\pi\)
\(228\) −1.65685 1.17157i −0.109728 0.0775893i
\(229\) 1.89949i 0.125522i 0.998029 + 0.0627611i \(0.0199906\pi\)
−0.998029 + 0.0627611i \(0.980009\pi\)
\(230\) −2.82843 8.48528i −0.186501 0.559503i
\(231\) 5.65685 + 32.9706i 0.372194 + 2.16930i
\(232\) 4.24264 4.24264i 0.278543 0.278543i
\(233\) 2.65685 2.65685i 0.174056 0.174056i −0.614703 0.788759i \(-0.710724\pi\)
0.788759 + 0.614703i \(0.210724\pi\)
\(234\) −2.82843 + 1.00000i −0.184900 + 0.0653720i
\(235\) 8.82843 17.6569i 0.575903 1.15181i
\(236\) 12.4853i 0.812723i
\(237\) 4.48528 6.34315i 0.291350 0.412032i
\(238\) −14.4853 14.4853i −0.938941 0.938941i
\(239\) −0.100505 −0.00650113 −0.00325057 0.999995i \(-0.501035\pi\)
−0.00325057 + 0.999995i \(0.501035\pi\)
\(240\) −1.12132 + 3.70711i −0.0723809 + 0.239293i
\(241\) 7.65685 0.493221 0.246611 0.969115i \(-0.420683\pi\)
0.246611 + 0.969115i \(0.420683\pi\)
\(242\) −3.53553 3.53553i −0.227273 0.227273i
\(243\) −15.5563 + 1.00000i −0.997940 + 0.0641500i
\(244\) 0.828427i 0.0530346i
\(245\) −34.6066 + 11.5355i −2.21093 + 0.736978i
\(246\) −3.41421 + 0.585786i −0.217682 + 0.0373484i
\(247\) −0.828427 + 0.828427i −0.0527116 + 0.0527116i
\(248\) −0.414214 + 0.414214i −0.0263026 + 0.0263026i
\(249\) −2.82843 + 0.485281i −0.179244 + 0.0307535i
\(250\) 2.00000 + 11.0000i 0.126491 + 0.695701i
\(251\) 25.6569i 1.61945i −0.586812 0.809723i \(-0.699617\pi\)
0.586812 0.809723i \(-0.300383\pi\)
\(252\) −6.24264 + 13.0711i −0.393249 + 0.823400i
\(253\) 11.3137 + 11.3137i 0.711287 + 0.711287i
\(254\) −12.4853 −0.783396
\(255\) −14.4853 + 7.75736i −0.907104 + 0.485785i
\(256\) 1.00000 0.0625000
\(257\) 7.00000 + 7.00000i 0.436648 + 0.436648i 0.890882 0.454234i \(-0.150087\pi\)
−0.454234 + 0.890882i \(0.650087\pi\)
\(258\) 10.2426 14.4853i 0.637679 0.901814i
\(259\) 36.9706i 2.29724i
\(260\) 2.00000 + 1.00000i 0.124035 + 0.0620174i
\(261\) −6.00000 16.9706i −0.371391 1.05045i
\(262\) −14.8284 + 14.8284i −0.916103 + 0.916103i
\(263\) 16.0000 16.0000i 0.986602 0.986602i −0.0133092 0.999911i \(-0.504237\pi\)
0.999911 + 0.0133092i \(0.00423656\pi\)
\(264\) −1.17157 6.82843i −0.0721053 0.420261i
\(265\) −9.65685 4.82843i −0.593216 0.296608i
\(266\) 5.65685i 0.346844i
\(267\) 23.7990 + 16.8284i 1.45647 + 1.02988i
\(268\) 4.82843 + 4.82843i 0.294943 + 0.294943i
\(269\) 20.8284 1.26993 0.634966 0.772540i \(-0.281014\pi\)
0.634966 + 0.772540i \(0.281014\pi\)
\(270\) 8.58579 + 7.82843i 0.522514 + 0.476423i
\(271\) 6.24264 0.379213 0.189607 0.981860i \(-0.439279\pi\)
0.189607 + 0.981860i \(0.439279\pi\)
\(272\) 3.00000 + 3.00000i 0.181902 + 0.181902i
\(273\) 6.82843 + 4.82843i 0.413275 + 0.292230i
\(274\) 1.31371i 0.0793640i
\(275\) −12.0000 16.0000i −0.723627 0.964836i
\(276\) 1.17157 + 6.82843i 0.0705204 + 0.411023i
\(277\) 3.89949 3.89949i 0.234298 0.234298i −0.580186 0.814484i \(-0.697020\pi\)
0.814484 + 0.580186i \(0.197020\pi\)
\(278\) −6.82843 + 6.82843i −0.409542 + 0.409542i
\(279\) 0.585786 + 1.65685i 0.0350701 + 0.0991933i
\(280\) 10.2426 3.41421i 0.612115 0.204038i
\(281\) 4.82843i 0.288040i −0.989575 0.144020i \(-0.953997\pi\)
0.989575 0.144020i \(-0.0460029\pi\)
\(282\) −8.82843 + 12.4853i −0.525725 + 0.743488i
\(283\) −8.75736 8.75736i −0.520571 0.520571i 0.397173 0.917744i \(-0.369991\pi\)
−0.917744 + 0.397173i \(0.869991\pi\)
\(284\) 5.75736 0.341636
\(285\) 4.34315 + 1.31371i 0.257266 + 0.0778174i
\(286\) −4.00000 −0.236525
\(287\) 6.82843 + 6.82843i 0.403069 + 0.403069i
\(288\) 1.29289 2.70711i 0.0761845 0.159518i
\(289\) 1.00000i 0.0588235i
\(290\) −6.00000 + 12.0000i −0.352332 + 0.704664i
\(291\) −12.2426 + 2.10051i −0.717676 + 0.123134i
\(292\) −3.07107 + 3.07107i −0.179721 + 0.179721i
\(293\) 12.4853 12.4853i 0.729398 0.729398i −0.241102 0.970500i \(-0.577509\pi\)
0.970500 + 0.241102i \(0.0775088\pi\)
\(294\) 27.8492 4.77817i 1.62420 0.278669i
\(295\) 8.82843 + 26.4853i 0.514011 + 1.54203i
\(296\) 7.65685i 0.445046i
\(297\) −20.0000 5.65685i −1.16052 0.328244i
\(298\) −10.1716 10.1716i −0.589223 0.589223i
\(299\) 4.00000 0.231326
\(300\) −0.242641 8.65685i −0.0140089 0.499804i
\(301\) −49.4558 −2.85059
\(302\) −9.24264 9.24264i −0.531854 0.531854i
\(303\) −8.82843 + 12.4853i −0.507180 + 0.717261i
\(304\) 1.17157i 0.0671943i
\(305\) 0.585786 + 1.75736i 0.0335420 + 0.100626i
\(306\) 12.0000 4.24264i 0.685994 0.242536i
\(307\) 12.8284 12.8284i 0.732157 0.732157i −0.238890 0.971047i \(-0.576783\pi\)
0.971047 + 0.238890i \(0.0767834\pi\)
\(308\) −13.6569 + 13.6569i −0.778171 + 0.778171i
\(309\) −1.85786 10.8284i −0.105690 0.616008i
\(310\) 0.585786 1.17157i 0.0332704 0.0665409i
\(311\) 28.0000i 1.58773i −0.608091 0.793867i \(-0.708065\pi\)
0.608091 0.793867i \(-0.291935\pi\)
\(312\) −1.41421 1.00000i −0.0800641 0.0566139i
\(313\) 12.6569 + 12.6569i 0.715408 + 0.715408i 0.967661 0.252253i \(-0.0811717\pi\)
−0.252253 + 0.967661i \(0.581172\pi\)
\(314\) 10.9706 0.619105
\(315\) 4.00000 32.1421i 0.225374 1.81100i
\(316\) 4.48528 0.252317
\(317\) 9.65685 + 9.65685i 0.542383 + 0.542383i 0.924227 0.381844i \(-0.124711\pi\)
−0.381844 + 0.924227i \(0.624711\pi\)
\(318\) 6.82843 + 4.82843i 0.382919 + 0.270765i
\(319\) 24.0000i 1.34374i
\(320\) −2.12132 + 0.707107i −0.118585 + 0.0395285i
\(321\) −0.857864 5.00000i −0.0478813 0.279073i
\(322\) 13.6569 13.6569i 0.761067 0.761067i
\(323\) 3.51472 3.51472i 0.195564 0.195564i
\(324\) −5.65685 7.00000i −0.314270 0.388889i
\(325\) −4.94975 0.707107i −0.274563 0.0392232i
\(326\) 19.3137i 1.06969i
\(327\) 19.0711 26.9706i 1.05463 1.49148i
\(328\) −1.41421 1.41421i −0.0780869 0.0780869i
\(329\) 42.6274 2.35013
\(330\) 7.31371 + 13.6569i 0.402606 + 0.751785i
\(331\) 24.2843 1.33478 0.667392 0.744706i \(-0.267411\pi\)
0.667392 + 0.744706i \(0.267411\pi\)
\(332\) −1.17157 1.17157i −0.0642984 0.0642984i
\(333\) −20.7279 9.89949i −1.13588 0.542489i
\(334\) 0.828427i 0.0453295i
\(335\) −13.6569 6.82843i −0.746154 0.373077i
\(336\) −8.24264 + 1.41421i −0.449673 + 0.0771517i
\(337\) −23.0000 + 23.0000i −1.25289 + 1.25289i −0.298471 + 0.954419i \(0.596477\pi\)
−0.954419 + 0.298471i \(0.903523\pi\)
\(338\) −0.707107 + 0.707107i −0.0384615 + 0.0384615i
\(339\) 16.8995 2.89949i 0.917855 0.157479i
\(340\) −8.48528 4.24264i −0.460179 0.230089i
\(341\) 2.34315i 0.126888i
\(342\) −3.17157 1.51472i −0.171499 0.0819066i
\(343\) −31.7990 31.7990i −1.71698 1.71698i
\(344\) 10.2426 0.552246
\(345\) −7.31371 13.6569i −0.393757 0.735260i
\(346\) −4.14214 −0.222683
\(347\) −20.5563 20.5563i −1.10352 1.10352i −0.993982 0.109540i \(-0.965062\pi\)
−0.109540 0.993982i \(-0.534938\pi\)
\(348\) 6.00000 8.48528i 0.321634 0.454859i
\(349\) 7.27208i 0.389265i −0.980876 0.194633i \(-0.937649\pi\)
0.980876 0.194633i \(-0.0623515\pi\)
\(350\) −19.3137 + 14.4853i −1.03236 + 0.774271i
\(351\) −4.53553 + 2.53553i −0.242089 + 0.135337i
\(352\) 2.82843 2.82843i 0.150756 0.150756i
\(353\) −5.55635 + 5.55635i −0.295735 + 0.295735i −0.839341 0.543606i \(-0.817059\pi\)
0.543606 + 0.839341i \(0.317059\pi\)
\(354\) −3.65685 21.3137i −0.194360 1.13281i
\(355\) −12.2132 + 4.07107i −0.648210 + 0.216070i
\(356\) 16.8284i 0.891905i
\(357\) −28.9706 20.4853i −1.53328 1.08420i
\(358\) −4.48528 4.48528i −0.237054 0.237054i
\(359\) 20.5858 1.08648 0.543238 0.839579i \(-0.317198\pi\)
0.543238 + 0.839579i \(0.317198\pi\)
\(360\) −0.828427 + 6.65685i −0.0436619 + 0.350847i
\(361\) 17.6274 0.927759
\(362\) 4.24264 + 4.24264i 0.222988 + 0.222988i
\(363\) −7.07107 5.00000i −0.371135 0.262432i
\(364\) 4.82843i 0.253078i
\(365\) 4.34315 8.68629i 0.227331 0.454661i
\(366\) −0.242641 1.41421i −0.0126830 0.0739221i
\(367\) −14.1421 + 14.1421i −0.738213 + 0.738213i −0.972232 0.234019i \(-0.924812\pi\)
0.234019 + 0.972232i \(0.424812\pi\)
\(368\) −2.82843 + 2.82843i −0.147442 + 0.147442i
\(369\) −5.65685 + 2.00000i −0.294484 + 0.104116i
\(370\) 5.41421 + 16.2426i 0.281472 + 0.844415i
\(371\) 23.3137i 1.21039i
\(372\) −0.585786 + 0.828427i −0.0303716 + 0.0429519i
\(373\) 19.0711 + 19.0711i 0.987462 + 0.987462i 0.999922 0.0124599i \(-0.00396622\pi\)
−0.0124599 + 0.999922i \(0.503966\pi\)
\(374\) 16.9706 0.877527
\(375\) 6.63604 + 18.1924i 0.342684 + 0.939451i
\(376\) −8.82843 −0.455291
\(377\) −4.24264 4.24264i −0.218507 0.218507i
\(378\) −6.82843 + 24.1421i −0.351216 + 1.24174i
\(379\) 9.85786i 0.506364i 0.967419 + 0.253182i \(0.0814772\pi\)
−0.967419 + 0.253182i \(0.918523\pi\)
\(380\) 0.828427 + 2.48528i 0.0424974 + 0.127492i
\(381\) −21.3137 + 3.65685i −1.09193 + 0.187346i
\(382\) −2.00000 + 2.00000i −0.102329 + 0.102329i
\(383\) −9.65685 + 9.65685i −0.493442 + 0.493442i −0.909389 0.415947i \(-0.863450\pi\)
0.415947 + 0.909389i \(0.363450\pi\)
\(384\) 1.70711 0.292893i 0.0871154 0.0149466i
\(385\) 19.3137 38.6274i 0.984318 1.96864i
\(386\) 12.1421i 0.618018i
\(387\) 13.2426 27.7279i 0.673161 1.40949i
\(388\) −5.07107 5.07107i −0.257444 0.257444i
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) 3.70711 + 1.12132i 0.187717 + 0.0567803i
\(391\) −16.9706 −0.858238
\(392\) 11.5355 + 11.5355i 0.582632 + 0.582632i
\(393\) −20.9706 + 29.6569i −1.05782 + 1.49599i
\(394\) 17.3137i 0.872252i
\(395\) −9.51472 + 3.17157i −0.478737 + 0.159579i
\(396\) −4.00000 11.3137i −0.201008 0.568535i
\(397\) −14.8284 + 14.8284i −0.744217 + 0.744217i −0.973387 0.229169i \(-0.926399\pi\)
0.229169 + 0.973387i \(0.426399\pi\)
\(398\) 4.34315 4.34315i 0.217702 0.217702i
\(399\) 1.65685 + 9.65685i 0.0829465 + 0.483447i
\(400\) 4.00000 3.00000i 0.200000 0.150000i
\(401\) 37.7990i 1.88759i −0.330529 0.943796i \(-0.607227\pi\)
0.330529 0.943796i \(-0.392773\pi\)
\(402\) 9.65685 + 6.82843i 0.481640 + 0.340571i
\(403\) 0.414214 + 0.414214i 0.0206334 + 0.0206334i
\(404\) −8.82843 −0.439231
\(405\) 16.9497 + 10.8492i 0.842240 + 0.539103i
\(406\) −28.9706 −1.43778
\(407\) −21.6569 21.6569i −1.07349 1.07349i
\(408\) 6.00000 + 4.24264i 0.297044 + 0.210042i
\(409\) 8.82843i 0.436538i 0.975889 + 0.218269i \(0.0700410\pi\)
−0.975889 + 0.218269i \(0.929959\pi\)
\(410\) 4.00000 + 2.00000i 0.197546 + 0.0987730i
\(411\) 0.384776 + 2.24264i 0.0189796 + 0.110621i
\(412\) 4.48528 4.48528i 0.220974 0.220974i
\(413\) −42.6274 + 42.6274i −2.09756 + 2.09756i
\(414\) 4.00000 + 11.3137i 0.196589 + 0.556038i
\(415\) 3.31371 + 1.65685i 0.162664 + 0.0813318i
\(416\) 1.00000i 0.0490290i
\(417\) −9.65685 + 13.6569i −0.472898 + 0.668779i
\(418\) −3.31371 3.31371i −0.162079 0.162079i
\(419\) −22.4853 −1.09848 −0.549239 0.835665i \(-0.685082\pi\)
−0.549239 + 0.835665i \(0.685082\pi\)
\(420\) 16.4853 8.82843i 0.804399 0.430783i
\(421\) 12.9289 0.630118 0.315059 0.949072i \(-0.397976\pi\)
0.315059 + 0.949072i \(0.397976\pi\)
\(422\) −6.82843 6.82843i −0.332403 0.332403i
\(423\) −11.4142 + 23.8995i −0.554978 + 1.16203i
\(424\) 4.82843i 0.234489i
\(425\) 21.0000 + 3.00000i 1.01865 + 0.145521i
\(426\) 9.82843 1.68629i 0.476189 0.0817011i
\(427\) −2.82843 + 2.82843i −0.136877 + 0.136877i
\(428\) 2.07107 2.07107i 0.100109 0.100109i
\(429\) −6.82843 + 1.17157i −0.329680 + 0.0565641i
\(430\) −21.7279 + 7.24264i −1.04781 + 0.349271i
\(431\) 25.0711i 1.20763i 0.797124 + 0.603815i \(0.206354\pi\)
−0.797124 + 0.603815i \(0.793646\pi\)
\(432\) 1.41421 5.00000i 0.0680414 0.240563i
\(433\) 6.31371 + 6.31371i 0.303417 + 0.303417i 0.842349 0.538932i \(-0.181172\pi\)
−0.538932 + 0.842349i \(0.681172\pi\)
\(434\) 2.82843 0.135769
\(435\) −6.72792 + 22.2426i −0.322579 + 1.06645i
\(436\) 19.0711 0.913339
\(437\) 3.31371 + 3.31371i 0.158516 + 0.158516i
\(438\) −4.34315 + 6.14214i −0.207524 + 0.293483i
\(439\) 29.6569i 1.41544i −0.706491 0.707722i \(-0.749723\pi\)
0.706491 0.707722i \(-0.250277\pi\)
\(440\) −4.00000 + 8.00000i −0.190693 + 0.381385i
\(441\) 46.1421 16.3137i 2.19724 0.776843i
\(442\) 3.00000 3.00000i 0.142695 0.142695i
\(443\) 18.8995 18.8995i 0.897942 0.897942i −0.0973118 0.995254i \(-0.531024\pi\)
0.995254 + 0.0973118i \(0.0310244\pi\)
\(444\) −2.24264 13.0711i −0.106431 0.620325i
\(445\) −11.8995 35.6985i −0.564090 1.69227i
\(446\) 2.34315i 0.110951i
\(447\) −20.3431 14.3848i −0.962198 0.680377i
\(448\) −3.41421 3.41421i −0.161306 0.161306i
\(449\) −21.7990 −1.02876 −0.514379 0.857563i \(-0.671978\pi\)
−0.514379 + 0.857563i \(0.671978\pi\)
\(450\) −2.94975 14.7071i −0.139052 0.693300i
\(451\) −8.00000 −0.376705
\(452\) 7.00000 + 7.00000i 0.329252 + 0.329252i
\(453\) −18.4853 13.0711i −0.868514 0.614132i
\(454\) 2.82843i 0.132745i
\(455\) −3.41421 10.2426i −0.160061 0.480182i
\(456\) −0.343146 2.00000i −0.0160693 0.0936586i
\(457\) −6.92893 + 6.92893i −0.324122 + 0.324122i −0.850346 0.526224i \(-0.823607\pi\)
0.526224 + 0.850346i \(0.323607\pi\)
\(458\) −1.34315 + 1.34315i −0.0627611 + 0.0627611i
\(459\) 19.2426 10.7574i 0.898170 0.502111i
\(460\) 4.00000 8.00000i 0.186501 0.373002i
\(461\) 37.6985i 1.75579i 0.478850 + 0.877897i \(0.341054\pi\)
−0.478850 + 0.877897i \(0.658946\pi\)
\(462\) −19.3137 + 27.3137i −0.898555 + 1.27075i
\(463\) −5.65685 5.65685i −0.262896 0.262896i 0.563333 0.826230i \(-0.309519\pi\)
−0.826230 + 0.563333i \(0.809519\pi\)
\(464\) 6.00000 0.278543
\(465\) 0.656854 2.17157i 0.0304609 0.100704i
\(466\) 3.75736 0.174056
\(467\) −2.89949 2.89949i −0.134173 0.134173i 0.636831 0.771004i \(-0.280245\pi\)
−0.771004 + 0.636831i \(0.780245\pi\)
\(468\) −2.70711 1.29289i −0.125136 0.0597640i
\(469\) 32.9706i 1.52244i
\(470\) 18.7279 6.24264i 0.863855 0.287952i
\(471\) 18.7279 3.21320i 0.862937 0.148057i
\(472\) 8.82843 8.82843i 0.406361 0.406361i
\(473\) 28.9706 28.9706i 1.33207 1.33207i
\(474\) 7.65685 1.31371i 0.351691 0.0603406i
\(475\) −3.51472 4.68629i −0.161266 0.215022i
\(476\) 20.4853i 0.938941i
\(477\) 13.0711 + 6.24264i 0.598483 + 0.285831i
\(478\) −0.0710678 0.0710678i −0.00325057 0.00325057i
\(479\) 12.3848 0.565875 0.282937 0.959138i \(-0.408691\pi\)
0.282937 + 0.959138i \(0.408691\pi\)
\(480\) −3.41421 + 1.82843i −0.155837 + 0.0834559i
\(481\) −7.65685 −0.349123
\(482\) 5.41421 + 5.41421i 0.246611 + 0.246611i
\(483\) 19.3137 27.3137i 0.878804 1.24282i
\(484\) 5.00000i 0.227273i
\(485\) 14.3431 + 7.17157i 0.651289 + 0.325644i
\(486\) −11.7071 10.2929i −0.531045 0.466895i
\(487\) 17.0711 17.0711i 0.773564 0.773564i −0.205164 0.978728i \(-0.565773\pi\)
0.978728 + 0.205164i \(0.0657727\pi\)
\(488\) 0.585786 0.585786i 0.0265173 0.0265173i
\(489\) 5.65685 + 32.9706i 0.255812 + 1.49098i
\(490\) −32.6274 16.3137i −1.47396 0.736978i
\(491\) 25.7990i 1.16429i −0.813084 0.582146i \(-0.802213\pi\)
0.813084 0.582146i \(-0.197787\pi\)
\(492\) −2.82843 2.00000i −0.127515 0.0901670i
\(493\) 18.0000 + 18.0000i 0.810679 + 0.810679i
\(494\) −1.17157 −0.0527116
\(495\) 16.4853 + 21.1716i 0.740958 + 0.951591i
\(496\) −0.585786 −0.0263026
\(497\) −19.6569 19.6569i −0.881730 0.881730i
\(498\) −2.34315 1.65685i −0.104999 0.0742454i
\(499\) 8.00000i 0.358129i 0.983837 + 0.179065i \(0.0573071\pi\)
−0.983837 + 0.179065i \(0.942693\pi\)
\(500\) −6.36396 + 9.19239i −0.284605 + 0.411096i
\(501\) 0.242641 + 1.41421i 0.0108404 + 0.0631824i
\(502\) 18.1421 18.1421i 0.809723 0.809723i
\(503\) 12.1421 12.1421i 0.541391 0.541391i −0.382546 0.923937i \(-0.624952\pi\)
0.923937 + 0.382546i \(0.124952\pi\)
\(504\) −13.6569 + 4.82843i −0.608325 + 0.215075i
\(505\) 18.7279 6.24264i 0.833382 0.277794i
\(506\) 16.0000i 0.711287i
\(507\) −1.00000 + 1.41421i −0.0444116 + 0.0628074i
\(508\) −8.82843 8.82843i −0.391698 0.391698i
\(509\) −1.21320 −0.0537743 −0.0268871 0.999638i \(-0.508559\pi\)
−0.0268871 + 0.999638i \(0.508559\pi\)
\(510\) −15.7279 4.75736i −0.696444 0.210659i
\(511\) 20.9706 0.927683
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −5.85786 1.65685i −0.258631 0.0731519i
\(514\) 9.89949i 0.436648i
\(515\) −6.34315 + 12.6863i −0.279512 + 0.559025i
\(516\) 17.4853 3.00000i 0.769747 0.132068i
\(517\) −24.9706 + 24.9706i −1.09820 + 1.09820i
\(518\) −26.1421 + 26.1421i −1.14862 + 1.14862i
\(519\) −7.07107 + 1.21320i −0.310385 + 0.0532537i
\(520\) 0.707107 + 2.12132i 0.0310087 + 0.0930261i
\(521\) 8.97056i 0.393007i −0.980503 0.196504i \(-0.937041\pi\)
0.980503 0.196504i \(-0.0629588\pi\)
\(522\) 7.75736 16.2426i 0.339530 0.710921i
\(523\) 8.07107 + 8.07107i 0.352923 + 0.352923i 0.861196 0.508273i \(-0.169716\pi\)
−0.508273 + 0.861196i \(0.669716\pi\)
\(524\) −20.9706 −0.916103
\(525\) −28.7279 + 30.3848i −1.25379 + 1.32610i
\(526\) 22.6274 0.986602
\(527\) −1.75736 1.75736i −0.0765518 0.0765518i
\(528\) 4.00000 5.65685i 0.174078 0.246183i
\(529\) 7.00000i 0.304348i
\(530\) −3.41421 10.2426i −0.148304 0.444912i
\(531\) −12.4853 35.3137i −0.541815 1.53248i
\(532\) −4.00000 + 4.00000i −0.173422 + 0.173422i
\(533\) −1.41421 + 1.41421i −0.0612564 + 0.0612564i
\(534\) 4.92893 + 28.7279i 0.213296 + 1.24318i
\(535\) −2.92893 + 5.85786i −0.126629 + 0.253258i
\(536\) 6.82843i 0.294943i
\(537\) −8.97056 6.34315i −0.387108 0.273727i
\(538\) 14.7279 + 14.7279i 0.634966 + 0.634966i
\(539\) 65.2548 2.81072
\(540\) 0.535534 + 11.6066i 0.0230457 + 0.499469i
\(541\) 4.24264 0.182405 0.0912027 0.995832i \(-0.470929\pi\)
0.0912027 + 0.995832i \(0.470929\pi\)
\(542\) 4.41421 + 4.41421i 0.189607 + 0.189607i
\(543\) 8.48528 + 6.00000i 0.364138 + 0.257485i
\(544\) 4.24264i 0.181902i
\(545\) −40.4558 + 13.4853i −1.73294 + 0.577646i
\(546\) 1.41421 + 8.24264i 0.0605228 + 0.352752i
\(547\) −17.5858 + 17.5858i −0.751914 + 0.751914i −0.974836 0.222922i \(-0.928440\pi\)
0.222922 + 0.974836i \(0.428440\pi\)
\(548\) −0.928932 + 0.928932i −0.0396820 + 0.0396820i
\(549\) −0.828427 2.34315i −0.0353564 0.100003i
\(550\) 2.82843 19.7990i 0.120605 0.844232i
\(551\) 7.02944i 0.299464i
\(552\) −4.00000 + 5.65685i −0.170251 + 0.240772i
\(553\) −15.3137 15.3137i −0.651205 0.651205i
\(554\) 5.51472 0.234298
\(555\) 14.0000 + 26.1421i 0.594267 + 1.10967i
\(556\) −9.65685 −0.409542
\(557\) 15.0711 + 15.0711i 0.638582 + 0.638582i 0.950206 0.311624i \(-0.100873\pi\)
−0.311624 + 0.950206i \(0.600873\pi\)
\(558\) −0.757359 + 1.58579i −0.0320616 + 0.0671317i
\(559\) 10.2426i 0.433218i
\(560\) 9.65685 + 4.82843i 0.408077 + 0.204038i
\(561\) 28.9706 4.97056i 1.22314 0.209857i
\(562\) 3.41421 3.41421i 0.144020 0.144020i
\(563\) −10.7574 + 10.7574i −0.453369 + 0.453369i −0.896471 0.443102i \(-0.853878\pi\)
0.443102 + 0.896471i \(0.353878\pi\)
\(564\) −15.0711 + 2.58579i −0.634606 + 0.108881i
\(565\) −19.7990 9.89949i −0.832950 0.416475i
\(566\) 12.3848i 0.520571i
\(567\) −4.58579 + 43.2132i −0.192585 + 1.81478i
\(568\) 4.07107 + 4.07107i 0.170818 + 0.170818i
\(569\) −29.6569 −1.24328 −0.621640 0.783303i \(-0.713533\pi\)
−0.621640 + 0.783303i \(0.713533\pi\)
\(570\) 2.14214 + 4.00000i 0.0897242 + 0.167542i
\(571\) 17.5147 0.732968 0.366484 0.930424i \(-0.380561\pi\)
0.366484 + 0.930424i \(0.380561\pi\)
\(572\) −2.82843 2.82843i −0.118262 0.118262i
\(573\) −2.82843 + 4.00000i −0.118159 + 0.167102i
\(574\) 9.65685i 0.403069i
\(575\) −2.82843 + 19.7990i −0.117954 + 0.825675i
\(576\) 2.82843 1.00000i 0.117851 0.0416667i
\(577\) 32.0416 32.0416i 1.33391 1.33391i 0.432071 0.901840i \(-0.357783\pi\)
0.901840 0.432071i \(-0.142217\pi\)
\(578\) −0.707107 + 0.707107i −0.0294118 + 0.0294118i
\(579\) 3.55635 + 20.7279i 0.147797 + 0.861423i
\(580\) −12.7279 + 4.24264i −0.528498 + 0.176166i
\(581\) 8.00000i 0.331896i
\(582\) −10.1421 7.17157i −0.420405 0.297271i
\(583\) 13.6569 + 13.6569i 0.565609 + 0.565609i
\(584\) −4.34315 −0.179721
\(585\) 6.65685 + 0.828427i 0.275227 + 0.0342512i
\(586\) 17.6569 0.729398
\(587\) 31.7990 + 31.7990i 1.31248 + 1.31248i 0.919579 + 0.392906i \(0.128530\pi\)
0.392906 + 0.919579i \(0.371470\pi\)
\(588\) 23.0711 + 16.3137i 0.951435 + 0.672766i
\(589\) 0.686292i 0.0282781i
\(590\) −12.4853 + 24.9706i −0.514011 + 1.02802i
\(591\) 5.07107 + 29.5563i 0.208596 + 1.21579i
\(592\) 5.41421 5.41421i 0.222523 0.222523i
\(593\) 4.58579 4.58579i 0.188316 0.188316i −0.606652 0.794968i \(-0.707488\pi\)
0.794968 + 0.606652i \(0.207488\pi\)
\(594\) −10.1421 18.1421i −0.416137 0.744381i
\(595\) 14.4853 + 43.4558i 0.593839 + 1.78152i
\(596\) 14.3848i 0.589223i
\(597\) 6.14214 8.68629i 0.251381 0.355506i
\(598\) 2.82843 + 2.82843i 0.115663 + 0.115663i
\(599\) −0.485281 −0.0198281 −0.00991403 0.999951i \(-0.503156\pi\)
−0.00991403 + 0.999951i \(0.503156\pi\)
\(600\) 5.94975 6.29289i 0.242897 0.256906i
\(601\) −6.34315 −0.258742 −0.129371 0.991596i \(-0.541296\pi\)
−0.129371 + 0.991596i \(0.541296\pi\)
\(602\) −34.9706 34.9706i −1.42529 1.42529i
\(603\) 18.4853 + 8.82843i 0.752779 + 0.359521i
\(604\) 13.0711i 0.531854i
\(605\) 3.53553 + 10.6066i 0.143740 + 0.431220i
\(606\) −15.0711 + 2.58579i −0.612220 + 0.105040i
\(607\) −2.48528 + 2.48528i −0.100874 + 0.100874i −0.755743 0.654868i \(-0.772724\pi\)
0.654868 + 0.755743i \(0.272724\pi\)
\(608\) 0.828427 0.828427i 0.0335972 0.0335972i
\(609\) −49.4558 + 8.48528i −2.00405 + 0.343841i
\(610\) −0.828427 + 1.65685i −0.0335420 + 0.0670841i
\(611\) 8.82843i 0.357160i
\(612\) 11.4853 + 5.48528i 0.464265 + 0.221729i
\(613\) 21.6569 + 21.6569i 0.874712 + 0.874712i 0.992982 0.118269i \(-0.0377347\pi\)
−0.118269 + 0.992982i \(0.537735\pi\)
\(614\) 18.1421 0.732157
\(615\) 7.41421 + 2.24264i 0.298970 + 0.0904320i
\(616\) −19.3137 −0.778171
\(617\) −25.0711 25.0711i −1.00932 1.00932i −0.999956 0.00936706i \(-0.997018\pi\)
−0.00936706 0.999956i \(-0.502982\pi\)
\(618\) 6.34315 8.97056i 0.255159 0.360849i
\(619\) 18.6274i 0.748699i 0.927288 + 0.374350i \(0.122134\pi\)
−0.927288 + 0.374350i \(0.877866\pi\)
\(620\) 1.24264 0.414214i 0.0499057 0.0166352i
\(621\) 10.1421 + 18.1421i 0.406990 + 0.728019i
\(622\) 19.7990 19.7990i 0.793867 0.793867i
\(623\) 57.4558 57.4558i 2.30192 2.30192i
\(624\) −0.292893 1.70711i −0.0117251 0.0683390i
\(625\) 7.00000 24.0000i 0.280000 0.960000i
\(626\) 17.8995i 0.715408i
\(627\) −6.62742 4.68629i −0.264674 0.187152i
\(628\) 7.75736 + 7.75736i 0.309552 + 0.309552i
\(629\) 32.4853 1.29527
\(630\) 25.5563 19.8995i 1.01819 0.792815i
\(631\) 4.10051 0.163239 0.0816193 0.996664i \(-0.473991\pi\)
0.0816193 + 0.996664i \(0.473991\pi\)
\(632\) 3.17157 + 3.17157i 0.126158 + 0.126158i
\(633\) −13.6569 9.65685i −0.542811 0.383825i
\(634\) 13.6569i 0.542383i
\(635\) 24.9706 + 12.4853i 0.990927 + 0.495463i
\(636\) 1.41421 + 8.24264i 0.0560772 + 0.326842i
\(637\) 11.5355 11.5355i 0.457054 0.457054i
\(638\) 16.9706 16.9706i 0.671871 0.671871i
\(639\) 16.2843 5.75736i 0.644196 0.227758i
\(640\) −2.00000 1.00000i −0.0790569 0.0395285i
\(641\) 33.3137i 1.31581i 0.753100 + 0.657906i \(0.228558\pi\)
−0.753100 + 0.657906i \(0.771442\pi\)
\(642\) 2.92893 4.14214i 0.115596 0.163477i
\(643\) −6.14214 6.14214i −0.242222 0.242222i 0.575547 0.817769i \(-0.304789\pi\)
−0.817769 + 0.575547i \(0.804789\pi\)
\(644\) 19.3137 0.761067
\(645\) −34.9706 + 18.7279i −1.37696 + 0.737411i
\(646\) 4.97056 0.195564
\(647\) 6.68629 + 6.68629i 0.262865 + 0.262865i 0.826217 0.563352i \(-0.190488\pi\)
−0.563352 + 0.826217i \(0.690488\pi\)
\(648\) 0.949747 8.94975i 0.0373096 0.351579i
\(649\) 49.9411i 1.96036i
\(650\) −3.00000 4.00000i −0.117670 0.156893i
\(651\) 4.82843 0.828427i 0.189241 0.0324686i
\(652\) −13.6569 + 13.6569i −0.534844 + 0.534844i
\(653\) 4.24264 4.24264i 0.166027 0.166027i −0.619203 0.785231i \(-0.712544\pi\)
0.785231 + 0.619203i \(0.212544\pi\)
\(654\) 32.5563 5.58579i 1.27305 0.218422i
\(655\) 44.4853 14.8284i 1.73818 0.579395i
\(656\) 2.00000i 0.0780869i
\(657\) −5.61522 + 11.7574i −0.219071 + 0.458698i
\(658\) 30.1421 + 30.1421i 1.17506 + 1.17506i
\(659\) −42.4853 −1.65499 −0.827496 0.561472i \(-0.810235\pi\)
−0.827496 + 0.561472i \(0.810235\pi\)
\(660\) −4.48528 + 14.8284i −0.174589 + 0.577196i
\(661\) −16.5269 −0.642822 −0.321411 0.946940i \(-0.604157\pi\)
−0.321411 + 0.946940i \(0.604157\pi\)
\(662\) 17.1716 + 17.1716i 0.667392 + 0.667392i
\(663\) 4.24264 6.00000i 0.164771 0.233021i
\(664\) 1.65685i 0.0642984i
\(665\) 5.65685 11.3137i 0.219363 0.438727i
\(666\) −7.65685 21.6569i −0.296697 0.839186i
\(667\) −16.9706 + 16.9706i −0.657103 + 0.657103i
\(668\) −0.585786 + 0.585786i −0.0226648 + 0.0226648i
\(669\) 0.686292 + 4.00000i 0.0265336 + 0.154649i
\(670\) −4.82843 14.4853i −0.186538 0.559615i
\(671\) 3.31371i 0.127924i
\(672\) −6.82843 4.82843i −0.263412 0.186261i
\(673\) −31.1421 31.1421i −1.20044 1.20044i −0.974032 0.226409i \(-0.927302\pi\)
−0.226409 0.974032i \(-0.572698\pi\)
\(674\) −32.5269 −1.25289
\(675\) −9.34315 24.2426i −0.359618 0.933100i
\(676\) −1.00000 −0.0384615
\(677\) −26.3848 26.3848i −1.01405 1.01405i −0.999900 0.0141494i \(-0.995496\pi\)
−0.0141494 0.999900i \(-0.504504\pi\)
\(678\) 14.0000 + 9.89949i 0.537667 + 0.380188i
\(679\) 34.6274i 1.32888i
\(680\) −3.00000 9.00000i −0.115045 0.345134i
\(681\) 0.828427 + 4.82843i 0.0317454 + 0.185026i
\(682\) −1.65685 + 1.65685i −0.0634442 + 0.0634442i
\(683\) 3.17157 3.17157i 0.121357 0.121357i −0.643820 0.765177i \(-0.722651\pi\)
0.765177 + 0.643820i \(0.222651\pi\)
\(684\) −1.17157 3.31371i −0.0447962 0.126703i
\(685\) 1.31371 2.62742i 0.0501942 0.100388i
\(686\) 44.9706i 1.71698i
\(687\) −1.89949 + 2.68629i −0.0724703 + 0.102488i
\(688\) 7.24264 + 7.24264i 0.276123 + 0.276123i
\(689\) 4.82843 0.183948
\(690\) 4.48528 14.8284i 0.170752 0.564509i
\(691\) −26.3431 −1.00214 −0.501070 0.865407i \(-0.667060\pi\)
−0.501070 + 0.865407i \(0.667060\pi\)
\(692\) −2.92893 2.92893i −0.111341 0.111341i
\(693\) −24.9706 + 52.2843i −0.948553 + 1.98612i
\(694\) 29.0711i 1.10352i
\(695\) 20.4853 6.82843i 0.777051 0.259017i
\(696\) 10.2426 1.75736i 0.388246 0.0666125i
\(697\) 6.00000 6.00000i 0.227266 0.227266i
\(698\) 5.14214 5.14214i 0.194633 0.194633i
\(699\) 6.41421 1.10051i 0.242608 0.0416249i
\(700\) −23.8995 3.41421i −0.903316 0.129045i
\(701\) 15.4558i 0.583759i 0.956455 + 0.291880i \(0.0942807\pi\)
−0.956455 + 0.291880i \(0.905719\pi\)
\(702\) −5.00000 1.41421i −0.188713 0.0533761i
\(703\) −6.34315 6.34315i −0.239236 0.239236i
\(704\) 4.00000 0.150756
\(705\) 30.1421 16.1421i 1.13522 0.607948i
\(706\) −7.85786 −0.295735
\(707\) 30.1421 + 30.1421i 1.13361 + 1.13361i
\(708\) 12.4853 17.6569i 0.469226 0.663585i
\(709\) 28.7279i 1.07890i −0.842018 0.539450i \(-0.818632\pi\)
0.842018 0.539450i \(-0.181368\pi\)
\(710\) −11.5147 5.75736i −0.432140 0.216070i
\(711\) 12.6863 4.48528i 0.475773 0.168211i
\(712\) −11.8995 + 11.8995i −0.445952 + 0.445952i
\(713\) 1.65685 1.65685i 0.0620497 0.0620497i
\(714\) −6.00000 34.9706i −0.224544 1.30874i
\(715\) 8.00000 + 4.00000i 0.299183 + 0.149592i
\(716\) 6.34315i 0.237054i
\(717\) −0.142136 0.100505i −0.00530815 0.00375343i
\(718\) 14.5563 + 14.5563i 0.543238 + 0.543238i
\(719\) −4.48528 −0.167273 −0.0836364 0.996496i \(-0.526653\pi\)
−0.0836364 + 0.996496i \(0.526653\pi\)
\(720\) −5.29289 + 4.12132i −0.197254 + 0.153593i
\(721\) −30.6274 −1.14062
\(722\) 12.4645 + 12.4645i 0.463879 + 0.463879i
\(723\) 10.8284 + 7.65685i 0.402714 + 0.284761i
\(724\) 6.00000i 0.222988i
\(725\) 24.0000 18.0000i 0.891338 0.668503i
\(726\) −1.46447 8.53553i −0.0543514 0.316783i
\(727\) −2.68629 + 2.68629i −0.0996290 + 0.0996290i −0.755164 0.655535i \(-0.772443\pi\)
0.655535 + 0.755164i \(0.272443\pi\)
\(728\) −3.41421 + 3.41421i −0.126539 + 0.126539i
\(729\) −23.0000 14.1421i −0.851852 0.523783i
\(730\) 9.21320 3.07107i 0.340996 0.113665i
\(731\) 43.4558i 1.60727i
\(732\) 0.828427 1.17157i 0.0306195 0.0433026i
\(733\) 15.5563 + 15.5563i 0.574587 + 0.574587i 0.933407 0.358820i \(-0.116821\pi\)
−0.358820 + 0.933407i \(0.616821\pi\)
\(734\) −20.0000 −0.738213
\(735\) −60.4767 18.2929i −2.23072 0.674744i
\(736\) −4.00000 −0.147442
\(737\) 19.3137 + 19.3137i 0.711430 + 0.711430i
\(738\) −5.41421 2.58579i −0.199300 0.0951841i
\(739\) 18.1421i 0.667369i −0.942685 0.333685i \(-0.891708\pi\)
0.942685 0.333685i \(-0.108292\pi\)
\(740\) −7.65685 + 15.3137i −0.281472 + 0.562943i
\(741\) −2.00000 + 0.343146i −0.0734718 + 0.0126058i
\(742\) 16.4853 16.4853i 0.605194 0.605194i
\(743\) −34.6274 + 34.6274i −1.27036 + 1.27036i −0.324456 + 0.945901i \(0.605181\pi\)
−0.945901 + 0.324456i \(0.894819\pi\)
\(744\) −1.00000 + 0.171573i −0.0366618 + 0.00629017i
\(745\) 10.1716 + 30.5147i 0.372658 + 1.11797i
\(746\) 26.9706i 0.987462i
\(747\) −4.48528 2.14214i −0.164108 0.0783766i
\(748\) 12.0000 + 12.0000i 0.438763 + 0.438763i
\(749\) −14.1421 −0.516742
\(750\) −8.17157 + 17.5563i −0.298384 + 0.641067i
\(751\) −20.2843 −0.740184 −0.370092 0.928995i \(-0.620674\pi\)
−0.370092 + 0.928995i \(0.620674\pi\)
\(752\) −6.24264 6.24264i −0.227646 0.227646i
\(753\) 25.6569 36.2843i 0.934988 1.32227i
\(754\) 6.00000i 0.218507i
\(755\) 9.24264 + 27.7279i 0.336374 + 1.00912i
\(756\) −21.8995 + 12.2426i −0.796477 + 0.445261i
\(757\) 0.585786 0.585786i 0.0212908 0.0212908i −0.696381 0.717672i \(-0.745208\pi\)
0.717672 + 0.696381i \(0.245208\pi\)
\(758\) −6.97056 + 6.97056i −0.253182 + 0.253182i
\(759\) 4.68629 + 27.3137i 0.170102 + 0.991425i
\(760\) −1.17157 + 2.34315i −0.0424974 + 0.0849948i
\(761\) 9.51472i 0.344908i 0.985018 + 0.172454i \(0.0551697\pi\)
−0.985018 + 0.172454i \(0.944830\pi\)
\(762\) −17.6569 12.4853i −0.639640 0.452294i
\(763\) −65.1127 65.1127i −2.35724 2.35724i
\(764\) −2.82843 −0.102329
\(765\) −28.2426 3.51472i −1.02111 0.127075i
\(766\) −13.6569 −0.493442
\(767\) −8.82843 8.82843i −0.318776 0.318776i
\(768\) 1.41421 + 1.00000i 0.0510310 + 0.0360844i
\(769\) 36.6274i 1.32082i 0.750906 + 0.660409i \(0.229617\pi\)
−0.750906 + 0.660409i \(0.770383\pi\)
\(770\) 40.9706 13.6569i 1.47648 0.492159i
\(771\) 2.89949 + 16.8995i 0.104423 + 0.608620i
\(772\) −8.58579 + 8.58579i −0.309009 + 0.309009i
\(773\) −7.75736 + 7.75736i −0.279013 + 0.279013i −0.832715 0.553702i \(-0.813215\pi\)
0.553702 + 0.832715i \(0.313215\pi\)
\(774\) 28.9706 10.2426i 1.04133 0.368164i
\(775\) −2.34315 + 1.75736i −0.0841683 + 0.0631262i
\(776\) 7.17157i 0.257444i
\(777\) −36.9706 + 52.2843i −1.32631 + 1.87569i
\(778\) −1.41421 1.41421i −0.0507020 0.0507020i
\(779\) −2.34315 −0.0839519
\(780\) 1.82843 + 3.41421i 0.0654682 + 0.122248i
\(781\) 23.0294 0.824058
\(782\) −12.0000 12.0000i −0.429119 0.429119i
\(783\) 8.48528 30.0000i 0.303239 1.07211i
\(784\) 16.3137i 0.582632i
\(785\) −21.9411 10.9706i −0.783112 0.391556i
\(786\) −35.7990 + 6.14214i −1.27691 + 0.219083i
\(787\) 33.7990 33.7990i 1.20480 1.20480i 0.232116 0.972688i \(-0.425435\pi\)
0.972688 0.232116i \(-0.0745648\pi\)
\(788\) −12.2426 + 12.2426i −0.436126 + 0.436126i
\(789\) 38.6274 6.62742i 1.37517 0.235942i
\(790\) −8.97056 4.48528i −0.319158 0.159579i
\(791\) 47.7990i 1.69954i
\(792\) 5.17157 10.8284i 0.183764 0.384771i
\(793\) −0.585786 0.585786i −0.0208019 0.0208019i
\(794\) −20.9706 −0.744217
\(795\) −8.82843 16.4853i −0.313112 0.584673i
\(796\) 6.14214 0.217702
\(797\) −21.0711 21.0711i −0.746376 0.746376i 0.227421 0.973797i \(-0.426971\pi\)
−0.973797 + 0.227421i \(0.926971\pi\)
\(798\) −5.65685 + 8.00000i −0.200250 + 0.283197i
\(799\) 37.4558i 1.32509i
\(800\) 4.94975 + 0.707107i 0.175000 + 0.0250000i
\(801\) 16.8284 + 47.5980i 0.594603 + 1.68179i
\(802\) 26.7279 26.7279i 0.943796 0.943796i
\(803\) −12.2843 + 12.2843i −0.433503 + 0.433503i
\(804\) 2.00000 + 11.6569i 0.0705346 + 0.411106i
\(805\) −40.9706 + 13.6569i −1.44402 + 0.481341i
\(806\) 0.585786i 0.0206334i
\(807\) 29.4558 + 20.8284i 1.03689 + 0.733195i
\(808\) −6.24264 6.24264i −0.219615 0.219615i
\(809\) −22.6274 −0.795538 −0.397769 0.917486i \(-0.630215\pi\)
−0.397769 + 0.917486i \(0.630215\pi\)
\(810\) 4.31371 + 19.6569i 0.151568 + 0.690671i
\(811\) −6.14214 −0.215680 −0.107840 0.994168i \(-0.534393\pi\)
−0.107840 + 0.994168i \(0.534393\pi\)
\(812\) −20.4853 20.4853i −0.718892 0.718892i
\(813\) 8.82843 + 6.24264i 0.309626 + 0.218939i
\(814\) 30.6274i 1.07349i
\(815\) 19.3137 38.6274i 0.676530 1.35306i
\(816\) 1.24264 + 7.24264i 0.0435011 + 0.253543i
\(817\) 8.48528 8.48528i 0.296862 0.296862i
\(818\) −6.24264 + 6.24264i −0.218269 + 0.218269i
\(819\) 4.82843 + 13.6569i 0.168719 + 0.477209i
\(820\) 1.41421 + 4.24264i 0.0493865 + 0.148159i
\(821\) 45.6985i 1.59489i −0.603393 0.797444i \(-0.706185\pi\)
0.603393 0.797444i \(-0.293815\pi\)
\(822\) −1.31371 + 1.85786i −0.0458208 + 0.0648005i
\(823\) −10.6863 10.6863i −0.372501 0.372501i 0.495887 0.868387i \(-0.334843\pi\)
−0.868387 + 0.495887i \(0.834843\pi\)
\(824\) 6.34315 0.220974
\(825\) −0.970563 34.6274i −0.0337907 1.20557i
\(826\) −60.2843 −2.09756
\(827\) −27.1716 27.1716i −0.944848 0.944848i 0.0537085 0.998557i \(-0.482896\pi\)
−0.998557 + 0.0537085i \(0.982896\pi\)
\(828\) −5.17157 + 10.8284i −0.179725 + 0.376314i
\(829\) 54.4853i 1.89235i 0.323652 + 0.946176i \(0.395089\pi\)
−0.323652 + 0.946176i \(0.604911\pi\)
\(830\) 1.17157 + 3.51472i 0.0406659 + 0.121998i
\(831\) 9.41421 1.61522i 0.326575 0.0560315i
\(832\) 0.707107 0.707107i 0.0245145 0.0245145i
\(833\) −48.9411 + 48.9411i −1.69571 + 1.69571i
\(834\) −16.4853 + 2.82843i −0.570839 + 0.0979404i
\(835\) 0.828427 1.65685i 0.0286689 0.0573378i
\(836\) 4.68629i 0.162079i
\(837\) −0.828427 + 2.92893i −0.0286346 + 0.101239i
\(838\) −15.8995 15.8995i −0.549239 0.549239i
\(839\) −39.8995 −1.37748 −0.688742 0.725007i \(-0.741837\pi\)
−0.688742 + 0.725007i \(0.741837\pi\)
\(840\) 17.8995 + 5.41421i 0.617591 + 0.186808i
\(841\) 7.00000 0.241379
\(842\) 9.14214 + 9.14214i 0.315059 + 0.315059i
\(843\) 4.82843 6.82843i 0.166300 0.235184i
\(844\) 9.65685i 0.332403i
\(845\) 2.12132 0.707107i 0.0729756 0.0243252i
\(846\) −24.9706 + 8.82843i −0.858506 + 0.303528i
\(847\) −17.0711 + 17.0711i −0.586569 + 0.586569i
\(848\) −3.41421 + 3.41421i −0.117245 + 0.117245i
\(849\) −3.62742 21.1421i −0.124493 0.725596i
\(850\) 12.7279 + 16.9706i 0.436564 + 0.582086i
\(851\) 30.6274i 1.04989i
\(852\) 8.14214 + 5.75736i 0.278945 + 0.197244i
\(853\) −40.9706 40.9706i −1.40281 1.40281i −0.791037 0.611768i \(-0.790458\pi\)
−0.611768 0.791037i \(-0.709542\pi\)
\(854\) −4.00000 −0.136877
\(855\) 4.82843 + 6.20101i 0.165129 + 0.212070i
\(856\) 2.92893 0.100109
\(857\) −25.8284 25.8284i −0.882282 0.882282i 0.111484 0.993766i \(-0.464440\pi\)
−0.993766 + 0.111484i \(0.964440\pi\)
\(858\) −5.65685 4.00000i −0.193122 0.136558i
\(859\) 1.79899i 0.0613807i 0.999529 + 0.0306904i \(0.00977058\pi\)
−0.999529 + 0.0306904i \(0.990229\pi\)
\(860\) −20.4853 10.2426i −0.698542 0.349271i
\(861\) 2.82843 + 16.4853i 0.0963925 + 0.561817i
\(862\) −17.7279 + 17.7279i −0.603815 + 0.603815i
\(863\) 13.7574 13.7574i 0.468306 0.468306i −0.433059 0.901365i \(-0.642566\pi\)
0.901365 + 0.433059i \(0.142566\pi\)
\(864\) 4.53553 2.53553i 0.154302 0.0862606i
\(865\) 8.28427 + 4.14214i 0.281674 + 0.140837i
\(866\) 8.92893i 0.303417i
\(867\) −1.00000 + 1.41421i −0.0339618 + 0.0480292i
\(868\) 2.00000 + 2.00000i 0.0678844 + 0.0678844i
\(869\) 17.9411 0.608611
\(870\) −20.4853 + 10.9706i −0.694516 + 0.371937i
\(871\) 6.82843 0.231372
\(872\) 13.4853 + 13.4853i 0.456669 + 0.456669i
\(873\) −19.4142 9.27208i −0.657072 0.313812i
\(874\) 4.68629i 0.158516i
\(875\) 53.1127 9.65685i 1.79554 0.326461i
\(876\) −7.41421 + 1.27208i −0.250503 + 0.0429795i
\(877\) 12.6863 12.6863i 0.428386 0.428386i −0.459693 0.888078i \(-0.652040\pi\)
0.888078 + 0.459693i \(0.152040\pi\)
\(878\) 20.9706 20.9706i 0.707722 0.707722i
\(879\) 30.1421 5.17157i 1.01667 0.174433i
\(880\) −8.48528 + 2.82843i −0.286039 + 0.0953463i
\(881\) 14.0000i 0.471672i 0.971793 + 0.235836i \(0.0757828\pi\)
−0.971793 + 0.235836i \(0.924217\pi\)
\(882\) 44.1630 + 21.0919i 1.48704 + 0.710201i
\(883\) −20.2132 20.2132i −0.680228 0.680228i 0.279823 0.960052i \(-0.409724\pi\)
−0.960052 + 0.279823i \(0.909724\pi\)
\(884\) 4.24264 0.142695
\(885\) −14.0000 + 46.2843i −0.470605 + 1.55583i
\(886\) 26.7279 0.897942
\(887\) −4.00000 4.00000i −0.134307 0.134307i 0.636757 0.771064i \(-0.280275\pi\)
−0.771064 + 0.636757i \(0.780275\pi\)
\(888\) 7.65685 10.8284i 0.256947 0.363378i
\(889\) 60.2843i 2.02187i
\(890\) 16.8284 33.6569i 0.564090 1.12818i
\(891\) −22.6274 28.0000i −0.758047 0.938035i
\(892\) −1.65685 + 1.65685i −0.0554756 + 0.0554756i
\(893\) −7.31371 + 7.31371i −0.244744 + 0.244744i
\(894\) −4.21320 24.5563i −0.140911 0.821287i
\(895\) 4.48528 + 13.4558i 0.149926 + 0.449779i
\(896\) 4.82843i 0.161306i
\(897\) 5.65685 + 4.00000i 0.188877 + 0.133556i
\(898\) −15.4142 15.4142i −0.514379 0.514379i
\(899\) −3.51472 −0.117222
\(900\) 8.31371 12.4853i 0.277124 0.416176i
\(901\) −20.4853 −0.682464
\(902\) −5.65685 5.65685i −0.188353 0.188353i
\(903\) −69.9411 49.4558i −2.32749 1.64579i
\(904\) 9.89949i 0.329252i
\(905\) −4.24264 12.7279i −0.141030 0.423090i
\(906\) −3.82843 22.3137i −0.127191 0.741323i
\(907\) 24.8995 24.8995i 0.826774 0.826774i −0.160295 0.987069i \(-0.551245\pi\)
0.987069 + 0.160295i \(0.0512446\pi\)
\(908\) −2.00000 + 2.00000i −0.0663723 + 0.0663723i
\(909\) −24.9706 + 8.82843i −0.828221 + 0.292820i
\(910\) 4.82843 9.65685i 0.160061 0.320122i
\(911\) 30.1421i 0.998654i −0.866414 0.499327i \(-0.833581\pi\)
0.866414 0.499327i \(-0.166419\pi\)
\(912\) 1.17157 1.65685i 0.0387947 0.0548639i
\(913\) −4.68629 4.68629i −0.155094 0.155094i
\(914\) −9.79899 −0.324122
\(915\) −0.928932 + 3.07107i −0.0307096 + 0.101526i
\(916\) −1.89949 −0.0627611
\(917\) 71.5980 + 71.5980i 2.36437 + 2.36437i
\(918\) 21.2132 + 6.00000i 0.700140 + 0.198030i
\(919\) 57.9411i 1.91130i −0.294503 0.955651i \(-0.595154\pi\)
0.294503 0.955651i \(-0.404846\pi\)
\(920\) 8.48528 2.82843i 0.279751 0.0932505i
\(921\) 30.9706 5.31371i 1.02051 0.175093i
\(922\) −26.6569 + 26.6569i −0.877897 + 0.877897i
\(923\) 4.07107 4.07107i 0.134001 0.134001i
\(924\) −32.9706 + 5.65685i −1.08465 + 0.186097i
\(925\) 5.41421 37.8995i 0.178018 1.24613i
\(926\) 8.00000i 0.262896i
\(927\) 8.20101 17.1716i 0.269357 0.563988i
\(928\) 4.24264 + 4.24264i 0.139272 + 0.139272i
\(929\) 5.11270 0.167742 0.0838711 0.996477i \(-0.473272\pi\)
0.0838711 + 0.996477i \(0.473272\pi\)
\(930\) 2.00000 1.07107i 0.0655826 0.0351217i
\(931\) 19.1127 0.626393
\(932\) 2.65685 + 2.65685i 0.0870282 + 0.0870282i
\(933\) 28.0000 39.5980i 0.916679 1.29638i
\(934\) 4.10051i 0.134173i
\(935\) −33.9411 16.9706i −1.10999 0.554997i
\(936\) −1.00000 2.82843i −0.0326860 0.0924500i
\(937\) −1.97056 + 1.97056i −0.0643755 + 0.0643755i −0.738562 0.674186i \(-0.764495\pi\)
0.674186 + 0.738562i \(0.264495\pi\)
\(938\) 23.3137 23.3137i 0.761220 0.761220i
\(939\) 5.24264 + 30.5563i 0.171087 + 0.997169i
\(940\) 17.6569 + 8.82843i 0.575903 + 0.287952i
\(941\) 14.8701i 0.484750i 0.970183 + 0.242375i \(0.0779264\pi\)
−0.970183 + 0.242375i \(0.922074\pi\)
\(942\) 15.5147 + 10.9706i 0.505497 + 0.357440i
\(943\) 5.65685 + 5.65685i 0.184213 + 0.184213i
\(944\) 12.4853 0.406361
\(945\) 37.7990 41.4558i 1.22960 1.34856i
\(946\) 40.9706 1.33207
\(947\) 32.6274 + 32.6274i 1.06025 + 1.06025i 0.998065 + 0.0621839i \(0.0198065\pi\)
0.0621839 + 0.998065i \(0.480193\pi\)
\(948\) 6.34315 + 4.48528i 0.206016 + 0.145675i
\(949\) 4.34315i 0.140984i
\(950\) 0.828427 5.79899i 0.0268777 0.188144i
\(951\) 4.00000 + 23.3137i 0.129709 + 0.755999i
\(952\) 14.4853 14.4853i 0.469471 0.469471i
\(953\) 21.4853 21.4853i 0.695977 0.695977i −0.267564 0.963540i \(-0.586219\pi\)
0.963540 + 0.267564i \(0.0862186\pi\)
\(954\) 4.82843 + 13.6569i 0.156326 + 0.442157i
\(955\) 6.00000 2.00000i 0.194155 0.0647185i
\(956\) 0.100505i 0.00325057i
\(957\) 24.0000 33.9411i 0.775810 1.09716i
\(958\) 8.75736 + 8.75736i 0.282937 + 0.282937i
\(959\) 6.34315 0.204831
\(960\) −3.70711 1.12132i −0.119646 0.0361905i
\(961\) −30.6569 −0.988931
\(962\) −5.41421 5.41421i −0.174561 0.174561i
\(963\) 3.78680 7.92893i 0.122028 0.255506i
\(964\) 7.65685i 0.246611i
\(965\) 12.1421 24.2843i 0.390869 0.781738i
\(966\) 32.9706 5.65685i 1.06081 0.182006i
\(967\) −30.6274 + 30.6274i −0.984911 + 0.984911i −0.999888 0.0149765i \(-0.995233\pi\)
0.0149765 + 0.999888i \(0.495233\pi\)
\(968\) 3.53553 3.53553i 0.113636 0.113636i
\(969\) 8.48528 1.45584i 0.272587 0.0467685i
\(970\) 5.07107 + 15.2132i 0.162822 + 0.488467i
\(971\) 20.1421i 0.646392i 0.946332 + 0.323196i \(0.104757\pi\)
−0.946332 + 0.323196i \(0.895243\pi\)
\(972\) −1.00000 15.5563i −0.0320750 0.498970i
\(973\) 32.9706 + 32.9706i 1.05699 + 1.05699i
\(974\) 24.1421 0.773564
\(975\) −6.29289 5.94975i −0.201534 0.190544i
\(976\) 0.828427 0.0265173
\(977\) −18.5858 18.5858i −0.594612 0.594612i 0.344262 0.938874i \(-0.388129\pi\)
−0.938874 + 0.344262i \(0.888129\pi\)
\(978\) −19.3137 + 27.3137i −0.617584 + 0.873396i
\(979\) 67.3137i 2.15136i
\(980\) −11.5355 34.6066i −0.368489 1.10547i
\(981\) 53.9411 19.0711i 1.72221 0.608892i
\(982\) 18.2426 18.2426i 0.582146 0.582146i
\(983\) 0.585786 0.585786i 0.0186837 0.0186837i −0.697703 0.716387i \(-0.745795\pi\)
0.716387 + 0.697703i \(0.245795\pi\)
\(984\) −0.585786 3.41421i −0.0186742 0.108841i
\(985\) 17.3137 34.6274i 0.551661 1.10332i
\(986\) 25.4558i 0.810679i
\(987\) 60.2843 + 42.6274i 1.91887 + 1.35685i
\(988\) −0.828427 0.828427i −0.0263558 0.0263558i
\(989\) −40.9706 −1.30279
\(990\) −3.31371 + 26.6274i −0.105317 + 0.846275i
\(991\) −10.8284 −0.343976 −0.171988 0.985099i \(-0.555019\pi\)
−0.171988 + 0.985099i \(0.555019\pi\)
\(992\) −0.414214 0.414214i −0.0131513 0.0131513i
\(993\) 34.3431 + 24.2843i 1.08985 + 0.770638i
\(994\) 27.7990i 0.881730i
\(995\) −13.0294 + 4.34315i −0.413061 + 0.137687i
\(996\) −0.485281 2.82843i −0.0153767 0.0896221i
\(997\) −37.6985 + 37.6985i −1.19392 + 1.19392i −0.217967 + 0.975956i \(0.569942\pi\)
−0.975956 + 0.217967i \(0.930058\pi\)
\(998\) −5.65685 + 5.65685i −0.179065 + 0.179065i
\(999\) −19.4142 34.7279i −0.614239 1.09874i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.l.a.53.2 4
3.2 odd 2 390.2.l.b.53.1 yes 4
5.2 odd 4 390.2.l.b.287.1 yes 4
15.2 even 4 inner 390.2.l.a.287.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.l.a.53.2 4 1.1 even 1 trivial
390.2.l.a.287.2 yes 4 15.2 even 4 inner
390.2.l.b.53.1 yes 4 3.2 odd 2
390.2.l.b.287.1 yes 4 5.2 odd 4