Properties

Label 390.2.l.a.287.1
Level $390$
Weight $2$
Character 390.287
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(53,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 287.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.287
Dual form 390.2.l.a.53.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.41421 - 1.00000i) q^{3} -1.00000i q^{4} +(0.707107 - 2.12132i) q^{5} +(1.70711 - 0.292893i) q^{6} +(0.585786 + 0.585786i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.00000 + 2.82843i) q^{9} +(1.00000 + 2.00000i) q^{10} -4.00000i q^{11} +(-1.00000 + 1.41421i) q^{12} +(-0.707107 + 0.707107i) q^{13} -0.828427 q^{14} +(-3.12132 + 2.29289i) q^{15} -1.00000 q^{16} +(-3.00000 + 3.00000i) q^{17} +(-2.70711 - 1.29289i) q^{18} -6.82843i q^{19} +(-2.12132 - 0.707107i) q^{20} +(-0.242641 - 1.41421i) q^{21} +(2.82843 + 2.82843i) q^{22} +(-2.82843 - 2.82843i) q^{23} +(-0.292893 - 1.70711i) q^{24} +(-4.00000 - 3.00000i) q^{25} -1.00000i q^{26} +(1.41421 - 5.00000i) q^{27} +(0.585786 - 0.585786i) q^{28} -6.00000 q^{29} +(0.585786 - 3.82843i) q^{30} +3.41421 q^{31} +(0.707107 - 0.707107i) q^{32} +(-4.00000 + 5.65685i) q^{33} -4.24264i q^{34} +(1.65685 - 0.828427i) q^{35} +(2.82843 - 1.00000i) q^{36} +(-2.58579 - 2.58579i) q^{37} +(4.82843 + 4.82843i) q^{38} +(1.70711 - 0.292893i) q^{39} +(2.00000 - 1.00000i) q^{40} -2.00000i q^{41} +(1.17157 + 0.828427i) q^{42} +(1.24264 - 1.24264i) q^{43} -4.00000 q^{44} +(6.70711 - 0.121320i) q^{45} +4.00000 q^{46} +(-2.24264 + 2.24264i) q^{47} +(1.41421 + 1.00000i) q^{48} -6.31371i q^{49} +(4.94975 - 0.707107i) q^{50} +(7.24264 - 1.24264i) q^{51} +(0.707107 + 0.707107i) q^{52} +(0.585786 + 0.585786i) q^{53} +(2.53553 + 4.53553i) q^{54} +(-8.48528 - 2.82843i) q^{55} +0.828427i q^{56} +(-6.82843 + 9.65685i) q^{57} +(4.24264 - 4.24264i) q^{58} +4.48528 q^{59} +(2.29289 + 3.12132i) q^{60} +4.82843 q^{61} +(-2.41421 + 2.41421i) q^{62} +(-1.07107 + 2.24264i) q^{63} +1.00000i q^{64} +(1.00000 + 2.00000i) q^{65} +(-1.17157 - 6.82843i) q^{66} +(-0.828427 - 0.828427i) q^{67} +(3.00000 + 3.00000i) q^{68} +(1.17157 + 6.82843i) q^{69} +(-0.585786 + 1.75736i) q^{70} +14.2426i q^{71} +(-1.29289 + 2.70711i) q^{72} +(-11.0711 + 11.0711i) q^{73} +3.65685 q^{74} +(2.65685 + 8.24264i) q^{75} -6.82843 q^{76} +(2.34315 - 2.34315i) q^{77} +(-1.00000 + 1.41421i) q^{78} -12.4853i q^{79} +(-0.707107 + 2.12132i) q^{80} +(-7.00000 + 5.65685i) q^{81} +(1.41421 + 1.41421i) q^{82} +(-6.82843 - 6.82843i) q^{83} +(-1.41421 + 0.242641i) q^{84} +(4.24264 + 8.48528i) q^{85} +1.75736i q^{86} +(8.48528 + 6.00000i) q^{87} +(2.82843 - 2.82843i) q^{88} +11.1716 q^{89} +(-4.65685 + 4.82843i) q^{90} -0.828427 q^{91} +(-2.82843 + 2.82843i) q^{92} +(-4.82843 - 3.41421i) q^{93} -3.17157i q^{94} +(-14.4853 - 4.82843i) q^{95} +(-1.70711 + 0.292893i) q^{96} +(9.07107 + 9.07107i) q^{97} +(4.46447 + 4.46447i) q^{98} +(11.3137 - 4.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{6} + 8 q^{7} + 4 q^{9} + 4 q^{10} - 4 q^{12} + 8 q^{14} - 4 q^{15} - 4 q^{16} - 12 q^{17} - 8 q^{18} + 16 q^{21} - 4 q^{24} - 16 q^{25} + 8 q^{28} - 24 q^{29} + 8 q^{30} + 8 q^{31} - 16 q^{33}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −1.41421 1.00000i −0.816497 0.577350i
\(4\) 1.00000i 0.500000i
\(5\) 0.707107 2.12132i 0.316228 0.948683i
\(6\) 1.70711 0.292893i 0.696923 0.119573i
\(7\) 0.585786 + 0.585786i 0.221406 + 0.221406i 0.809091 0.587684i \(-0.199960\pi\)
−0.587684 + 0.809091i \(0.699960\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.00000 + 2.82843i 0.333333 + 0.942809i
\(10\) 1.00000 + 2.00000i 0.316228 + 0.632456i
\(11\) 4.00000i 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(12\) −1.00000 + 1.41421i −0.288675 + 0.408248i
\(13\) −0.707107 + 0.707107i −0.196116 + 0.196116i
\(14\) −0.828427 −0.221406
\(15\) −3.12132 + 2.29289i −0.805921 + 0.592022i
\(16\) −1.00000 −0.250000
\(17\) −3.00000 + 3.00000i −0.727607 + 0.727607i −0.970143 0.242536i \(-0.922021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) −2.70711 1.29289i −0.638071 0.304738i
\(19\) 6.82843i 1.56655i −0.621676 0.783274i \(-0.713548\pi\)
0.621676 0.783274i \(-0.286452\pi\)
\(20\) −2.12132 0.707107i −0.474342 0.158114i
\(21\) −0.242641 1.41421i −0.0529485 0.308607i
\(22\) 2.82843 + 2.82843i 0.603023 + 0.603023i
\(23\) −2.82843 2.82843i −0.589768 0.589768i 0.347801 0.937568i \(-0.386929\pi\)
−0.937568 + 0.347801i \(0.886929\pi\)
\(24\) −0.292893 1.70711i −0.0597866 0.348462i
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 1.00000i 0.196116i
\(27\) 1.41421 5.00000i 0.272166 0.962250i
\(28\) 0.585786 0.585786i 0.110703 0.110703i
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0.585786 3.82843i 0.106949 0.698972i
\(31\) 3.41421 0.613211 0.306605 0.951837i \(-0.400807\pi\)
0.306605 + 0.951837i \(0.400807\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −4.00000 + 5.65685i −0.696311 + 0.984732i
\(34\) 4.24264i 0.727607i
\(35\) 1.65685 0.828427i 0.280059 0.140030i
\(36\) 2.82843 1.00000i 0.471405 0.166667i
\(37\) −2.58579 2.58579i −0.425101 0.425101i 0.461855 0.886956i \(-0.347184\pi\)
−0.886956 + 0.461855i \(0.847184\pi\)
\(38\) 4.82843 + 4.82843i 0.783274 + 0.783274i
\(39\) 1.70711 0.292893i 0.273356 0.0469005i
\(40\) 2.00000 1.00000i 0.316228 0.158114i
\(41\) 2.00000i 0.312348i −0.987730 0.156174i \(-0.950084\pi\)
0.987730 0.156174i \(-0.0499160\pi\)
\(42\) 1.17157 + 0.828427i 0.180778 + 0.127829i
\(43\) 1.24264 1.24264i 0.189501 0.189501i −0.605979 0.795480i \(-0.707219\pi\)
0.795480 + 0.605979i \(0.207219\pi\)
\(44\) −4.00000 −0.603023
\(45\) 6.70711 0.121320i 0.999836 0.0180854i
\(46\) 4.00000 0.589768
\(47\) −2.24264 + 2.24264i −0.327123 + 0.327123i −0.851491 0.524369i \(-0.824301\pi\)
0.524369 + 0.851491i \(0.324301\pi\)
\(48\) 1.41421 + 1.00000i 0.204124 + 0.144338i
\(49\) 6.31371i 0.901958i
\(50\) 4.94975 0.707107i 0.700000 0.100000i
\(51\) 7.24264 1.24264i 1.01417 0.174005i
\(52\) 0.707107 + 0.707107i 0.0980581 + 0.0980581i
\(53\) 0.585786 + 0.585786i 0.0804640 + 0.0804640i 0.746193 0.665729i \(-0.231879\pi\)
−0.665729 + 0.746193i \(0.731879\pi\)
\(54\) 2.53553 + 4.53553i 0.345042 + 0.617208i
\(55\) −8.48528 2.82843i −1.14416 0.381385i
\(56\) 0.828427i 0.110703i
\(57\) −6.82843 + 9.65685i −0.904447 + 1.27908i
\(58\) 4.24264 4.24264i 0.557086 0.557086i
\(59\) 4.48528 0.583934 0.291967 0.956428i \(-0.405690\pi\)
0.291967 + 0.956428i \(0.405690\pi\)
\(60\) 2.29289 + 3.12132i 0.296011 + 0.402961i
\(61\) 4.82843 0.618217 0.309108 0.951027i \(-0.399969\pi\)
0.309108 + 0.951027i \(0.399969\pi\)
\(62\) −2.41421 + 2.41421i −0.306605 + 0.306605i
\(63\) −1.07107 + 2.24264i −0.134942 + 0.282546i
\(64\) 1.00000i 0.125000i
\(65\) 1.00000 + 2.00000i 0.124035 + 0.248069i
\(66\) −1.17157 6.82843i −0.144211 0.840521i
\(67\) −0.828427 0.828427i −0.101208 0.101208i 0.654689 0.755898i \(-0.272799\pi\)
−0.755898 + 0.654689i \(0.772799\pi\)
\(68\) 3.00000 + 3.00000i 0.363803 + 0.363803i
\(69\) 1.17157 + 6.82843i 0.141041 + 0.822046i
\(70\) −0.585786 + 1.75736i −0.0700149 + 0.210045i
\(71\) 14.2426i 1.69029i 0.534537 + 0.845145i \(0.320486\pi\)
−0.534537 + 0.845145i \(0.679514\pi\)
\(72\) −1.29289 + 2.70711i −0.152369 + 0.319036i
\(73\) −11.0711 + 11.0711i −1.29577 + 1.29577i −0.364610 + 0.931160i \(0.618798\pi\)
−0.931160 + 0.364610i \(0.881202\pi\)
\(74\) 3.65685 0.425101
\(75\) 2.65685 + 8.24264i 0.306787 + 0.951778i
\(76\) −6.82843 −0.783274
\(77\) 2.34315 2.34315i 0.267026 0.267026i
\(78\) −1.00000 + 1.41421i −0.113228 + 0.160128i
\(79\) 12.4853i 1.40470i −0.711830 0.702352i \(-0.752133\pi\)
0.711830 0.702352i \(-0.247867\pi\)
\(80\) −0.707107 + 2.12132i −0.0790569 + 0.237171i
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) 1.41421 + 1.41421i 0.156174 + 0.156174i
\(83\) −6.82843 6.82843i −0.749517 0.749517i 0.224871 0.974388i \(-0.427804\pi\)
−0.974388 + 0.224871i \(0.927804\pi\)
\(84\) −1.41421 + 0.242641i −0.154303 + 0.0264743i
\(85\) 4.24264 + 8.48528i 0.460179 + 0.920358i
\(86\) 1.75736i 0.189501i
\(87\) 8.48528 + 6.00000i 0.909718 + 0.643268i
\(88\) 2.82843 2.82843i 0.301511 0.301511i
\(89\) 11.1716 1.18418 0.592092 0.805870i \(-0.298302\pi\)
0.592092 + 0.805870i \(0.298302\pi\)
\(90\) −4.65685 + 4.82843i −0.490876 + 0.508961i
\(91\) −0.828427 −0.0868428
\(92\) −2.82843 + 2.82843i −0.294884 + 0.294884i
\(93\) −4.82843 3.41421i −0.500685 0.354037i
\(94\) 3.17157i 0.327123i
\(95\) −14.4853 4.82843i −1.48616 0.495386i
\(96\) −1.70711 + 0.292893i −0.174231 + 0.0298933i
\(97\) 9.07107 + 9.07107i 0.921027 + 0.921027i 0.997102 0.0760747i \(-0.0242388\pi\)
−0.0760747 + 0.997102i \(0.524239\pi\)
\(98\) 4.46447 + 4.46447i 0.450979 + 0.450979i
\(99\) 11.3137 4.00000i 1.13707 0.402015i
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 3.17157i 0.315583i −0.987472 0.157792i \(-0.949563\pi\)
0.987472 0.157792i \(-0.0504374\pi\)
\(102\) −4.24264 + 6.00000i −0.420084 + 0.594089i
\(103\) 12.4853 12.4853i 1.23021 1.23021i 0.266329 0.963882i \(-0.414189\pi\)
0.963882 0.266329i \(-0.0858108\pi\)
\(104\) −1.00000 −0.0980581
\(105\) −3.17157 0.485281i −0.309514 0.0473586i
\(106\) −0.828427 −0.0804640
\(107\) 12.0711 12.0711i 1.16695 1.16695i 0.184034 0.982920i \(-0.441084\pi\)
0.982920 0.184034i \(-0.0589158\pi\)
\(108\) −5.00000 1.41421i −0.481125 0.136083i
\(109\) 4.92893i 0.472106i 0.971740 + 0.236053i \(0.0758539\pi\)
−0.971740 + 0.236053i \(0.924146\pi\)
\(110\) 8.00000 4.00000i 0.762770 0.381385i
\(111\) 1.07107 + 6.24264i 0.101661 + 0.592525i
\(112\) −0.585786 0.585786i −0.0553516 0.0553516i
\(113\) 7.00000 + 7.00000i 0.658505 + 0.658505i 0.955026 0.296522i \(-0.0958267\pi\)
−0.296522 + 0.955026i \(0.595827\pi\)
\(114\) −2.00000 11.6569i −0.187317 1.09176i
\(115\) −8.00000 + 4.00000i −0.746004 + 0.373002i
\(116\) 6.00000i 0.557086i
\(117\) −2.70711 1.29289i −0.250272 0.119528i
\(118\) −3.17157 + 3.17157i −0.291967 + 0.291967i
\(119\) −3.51472 −0.322194
\(120\) −3.82843 0.585786i −0.349486 0.0534747i
\(121\) −5.00000 −0.454545
\(122\) −3.41421 + 3.41421i −0.309108 + 0.309108i
\(123\) −2.00000 + 2.82843i −0.180334 + 0.255031i
\(124\) 3.41421i 0.306605i
\(125\) −9.19239 + 6.36396i −0.822192 + 0.569210i
\(126\) −0.828427 2.34315i −0.0738022 0.208744i
\(127\) −3.17157 3.17157i −0.281432 0.281432i 0.552248 0.833680i \(-0.313770\pi\)
−0.833680 + 0.552248i \(0.813770\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) −3.00000 + 0.514719i −0.264135 + 0.0453184i
\(130\) −2.12132 0.707107i −0.186052 0.0620174i
\(131\) 12.9706i 1.13324i 0.823978 + 0.566622i \(0.191750\pi\)
−0.823978 + 0.566622i \(0.808250\pi\)
\(132\) 5.65685 + 4.00000i 0.492366 + 0.348155i
\(133\) 4.00000 4.00000i 0.346844 0.346844i
\(134\) 1.17157 0.101208
\(135\) −9.60660 6.53553i −0.826805 0.562489i
\(136\) −4.24264 −0.363803
\(137\) 15.0711 15.0711i 1.28761 1.28761i 0.351372 0.936236i \(-0.385715\pi\)
0.936236 0.351372i \(-0.114285\pi\)
\(138\) −5.65685 4.00000i −0.481543 0.340503i
\(139\) 1.65685i 0.140533i 0.997528 + 0.0702663i \(0.0223849\pi\)
−0.997528 + 0.0702663i \(0.977615\pi\)
\(140\) −0.828427 1.65685i −0.0700149 0.140030i
\(141\) 5.41421 0.928932i 0.455959 0.0782302i
\(142\) −10.0711 10.0711i −0.845145 0.845145i
\(143\) 2.82843 + 2.82843i 0.236525 + 0.236525i
\(144\) −1.00000 2.82843i −0.0833333 0.235702i
\(145\) −4.24264 + 12.7279i −0.352332 + 1.05700i
\(146\) 15.6569i 1.29577i
\(147\) −6.31371 + 8.92893i −0.520746 + 0.736446i
\(148\) −2.58579 + 2.58579i −0.212550 + 0.212550i
\(149\) 22.3848 1.83383 0.916916 0.399080i \(-0.130670\pi\)
0.916916 + 0.399080i \(0.130670\pi\)
\(150\) −7.70711 3.94975i −0.629283 0.322496i
\(151\) 1.07107 0.0871623 0.0435811 0.999050i \(-0.486123\pi\)
0.0435811 + 0.999050i \(0.486123\pi\)
\(152\) 4.82843 4.82843i 0.391637 0.391637i
\(153\) −11.4853 5.48528i −0.928530 0.443459i
\(154\) 3.31371i 0.267026i
\(155\) 2.41421 7.24264i 0.193914 0.581743i
\(156\) −0.292893 1.70711i −0.0234502 0.136678i
\(157\) 16.2426 + 16.2426i 1.29630 + 1.29630i 0.930816 + 0.365488i \(0.119098\pi\)
0.365488 + 0.930816i \(0.380902\pi\)
\(158\) 8.82843 + 8.82843i 0.702352 + 0.702352i
\(159\) −0.242641 1.41421i −0.0192427 0.112154i
\(160\) −1.00000 2.00000i −0.0790569 0.158114i
\(161\) 3.31371i 0.261157i
\(162\) 0.949747 8.94975i 0.0746192 0.703159i
\(163\) 2.34315 2.34315i 0.183529 0.183529i −0.609362 0.792892i \(-0.708575\pi\)
0.792892 + 0.609362i \(0.208575\pi\)
\(164\) −2.00000 −0.156174
\(165\) 9.17157 + 12.4853i 0.714006 + 0.971978i
\(166\) 9.65685 0.749517
\(167\) 3.41421 3.41421i 0.264200 0.264200i −0.562558 0.826758i \(-0.690183\pi\)
0.826758 + 0.562558i \(0.190183\pi\)
\(168\) 0.828427 1.17157i 0.0639145 0.0903888i
\(169\) 1.00000i 0.0769231i
\(170\) −9.00000 3.00000i −0.690268 0.230089i
\(171\) 19.3137 6.82843i 1.47696 0.522183i
\(172\) −1.24264 1.24264i −0.0947505 0.0947505i
\(173\) −17.0711 17.0711i −1.29789 1.29789i −0.929784 0.368105i \(-0.880007\pi\)
−0.368105 0.929784i \(-0.619993\pi\)
\(174\) −10.2426 + 1.75736i −0.776493 + 0.133225i
\(175\) −0.585786 4.10051i −0.0442813 0.309969i
\(176\) 4.00000i 0.301511i
\(177\) −6.34315 4.48528i −0.476780 0.337134i
\(178\) −7.89949 + 7.89949i −0.592092 + 0.592092i
\(179\) −17.6569 −1.31974 −0.659868 0.751382i \(-0.729388\pi\)
−0.659868 + 0.751382i \(0.729388\pi\)
\(180\) −0.121320 6.70711i −0.00904268 0.499918i
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0.585786 0.585786i 0.0434214 0.0434214i
\(183\) −6.82843 4.82843i −0.504772 0.356928i
\(184\) 4.00000i 0.294884i
\(185\) −7.31371 + 3.65685i −0.537715 + 0.268857i
\(186\) 5.82843 1.00000i 0.427361 0.0733236i
\(187\) 12.0000 + 12.0000i 0.877527 + 0.877527i
\(188\) 2.24264 + 2.24264i 0.163561 + 0.163561i
\(189\) 3.75736 2.10051i 0.273308 0.152789i
\(190\) 13.6569 6.82843i 0.990772 0.495386i
\(191\) 2.82843i 0.204658i 0.994751 + 0.102329i \(0.0326294\pi\)
−0.994751 + 0.102329i \(0.967371\pi\)
\(192\) 1.00000 1.41421i 0.0721688 0.102062i
\(193\) 11.4142 11.4142i 0.821613 0.821613i −0.164726 0.986339i \(-0.552674\pi\)
0.986339 + 0.164726i \(0.0526741\pi\)
\(194\) −12.8284 −0.921027
\(195\) 0.585786 3.82843i 0.0419490 0.274159i
\(196\) −6.31371 −0.450979
\(197\) 3.75736 3.75736i 0.267701 0.267701i −0.560472 0.828173i \(-0.689380\pi\)
0.828173 + 0.560472i \(0.189380\pi\)
\(198\) −5.17157 + 10.8284i −0.367528 + 0.769543i
\(199\) 22.1421i 1.56961i −0.619740 0.784807i \(-0.712762\pi\)
0.619740 0.784807i \(-0.287238\pi\)
\(200\) −0.707107 4.94975i −0.0500000 0.350000i
\(201\) 0.343146 + 2.00000i 0.0242036 + 0.141069i
\(202\) 2.24264 + 2.24264i 0.157792 + 0.157792i
\(203\) −3.51472 3.51472i −0.246685 0.246685i
\(204\) −1.24264 7.24264i −0.0870023 0.507086i
\(205\) −4.24264 1.41421i −0.296319 0.0987730i
\(206\) 17.6569i 1.23021i
\(207\) 5.17157 10.8284i 0.359449 0.752628i
\(208\) 0.707107 0.707107i 0.0490290 0.0490290i
\(209\) −27.3137 −1.88933
\(210\) 2.58579 1.89949i 0.178436 0.131078i
\(211\) 1.65685 0.114063 0.0570313 0.998372i \(-0.481837\pi\)
0.0570313 + 0.998372i \(0.481837\pi\)
\(212\) 0.585786 0.585786i 0.0402320 0.0402320i
\(213\) 14.2426 20.1421i 0.975890 1.38012i
\(214\) 17.0711i 1.16695i
\(215\) −1.75736 3.51472i −0.119851 0.239702i
\(216\) 4.53553 2.53553i 0.308604 0.172521i
\(217\) 2.00000 + 2.00000i 0.135769 + 0.135769i
\(218\) −3.48528 3.48528i −0.236053 0.236053i
\(219\) 26.7279 4.58579i 1.80611 0.309879i
\(220\) −2.82843 + 8.48528i −0.190693 + 0.572078i
\(221\) 4.24264i 0.285391i
\(222\) −5.17157 3.65685i −0.347093 0.245432i
\(223\) −9.65685 + 9.65685i −0.646671 + 0.646671i −0.952187 0.305516i \(-0.901171\pi\)
0.305516 + 0.952187i \(0.401171\pi\)
\(224\) 0.828427 0.0553516
\(225\) 4.48528 14.3137i 0.299019 0.954247i
\(226\) −9.89949 −0.658505
\(227\) 2.00000 2.00000i 0.132745 0.132745i −0.637613 0.770357i \(-0.720078\pi\)
0.770357 + 0.637613i \(0.220078\pi\)
\(228\) 9.65685 + 6.82843i 0.639541 + 0.452224i
\(229\) 17.8995i 1.18283i 0.806367 + 0.591416i \(0.201431\pi\)
−0.806367 + 0.591416i \(0.798569\pi\)
\(230\) 2.82843 8.48528i 0.186501 0.559503i
\(231\) −5.65685 + 0.970563i −0.372194 + 0.0638583i
\(232\) −4.24264 4.24264i −0.278543 0.278543i
\(233\) −8.65685 8.65685i −0.567129 0.567129i 0.364194 0.931323i \(-0.381345\pi\)
−0.931323 + 0.364194i \(0.881345\pi\)
\(234\) 2.82843 1.00000i 0.184900 0.0653720i
\(235\) 3.17157 + 6.34315i 0.206891 + 0.413781i
\(236\) 4.48528i 0.291967i
\(237\) −12.4853 + 17.6569i −0.811006 + 1.14694i
\(238\) 2.48528 2.48528i 0.161097 0.161097i
\(239\) −19.8995 −1.28719 −0.643596 0.765366i \(-0.722558\pi\)
−0.643596 + 0.765366i \(0.722558\pi\)
\(240\) 3.12132 2.29289i 0.201480 0.148006i
\(241\) −3.65685 −0.235559 −0.117779 0.993040i \(-0.537578\pi\)
−0.117779 + 0.993040i \(0.537578\pi\)
\(242\) 3.53553 3.53553i 0.227273 0.227273i
\(243\) 15.5563 1.00000i 0.997940 0.0641500i
\(244\) 4.82843i 0.309108i
\(245\) −13.3934 4.46447i −0.855673 0.285224i
\(246\) −0.585786 3.41421i −0.0373484 0.217682i
\(247\) 4.82843 + 4.82843i 0.307225 + 0.307225i
\(248\) 2.41421 + 2.41421i 0.153303 + 0.153303i
\(249\) 2.82843 + 16.4853i 0.179244 + 1.04471i
\(250\) 2.00000 11.0000i 0.126491 0.695701i
\(251\) 14.3431i 0.905331i 0.891680 + 0.452666i \(0.149527\pi\)
−0.891680 + 0.452666i \(0.850473\pi\)
\(252\) 2.24264 + 1.07107i 0.141273 + 0.0674709i
\(253\) −11.3137 + 11.3137i −0.711287 + 0.711287i
\(254\) 4.48528 0.281432
\(255\) 2.48528 16.2426i 0.155634 1.01715i
\(256\) 1.00000 0.0625000
\(257\) 7.00000 7.00000i 0.436648 0.436648i −0.454234 0.890882i \(-0.650087\pi\)
0.890882 + 0.454234i \(0.150087\pi\)
\(258\) 1.75736 2.48528i 0.109408 0.154727i
\(259\) 3.02944i 0.188240i
\(260\) 2.00000 1.00000i 0.124035 0.0620174i
\(261\) −6.00000 16.9706i −0.371391 1.05045i
\(262\) −9.17157 9.17157i −0.566622 0.566622i
\(263\) 16.0000 + 16.0000i 0.986602 + 0.986602i 0.999911 0.0133092i \(-0.00423656\pi\)
−0.0133092 + 0.999911i \(0.504237\pi\)
\(264\) −6.82843 + 1.17157i −0.420261 + 0.0721053i
\(265\) 1.65685 0.828427i 0.101780 0.0508899i
\(266\) 5.65685i 0.346844i
\(267\) −15.7990 11.1716i −0.966882 0.683689i
\(268\) −0.828427 + 0.828427i −0.0506042 + 0.0506042i
\(269\) 15.1716 0.925027 0.462514 0.886612i \(-0.346948\pi\)
0.462514 + 0.886612i \(0.346948\pi\)
\(270\) 11.4142 2.17157i 0.694647 0.132158i
\(271\) −2.24264 −0.136231 −0.0681154 0.997677i \(-0.521699\pi\)
−0.0681154 + 0.997677i \(0.521699\pi\)
\(272\) 3.00000 3.00000i 0.181902 0.181902i
\(273\) 1.17157 + 0.828427i 0.0709068 + 0.0501387i
\(274\) 21.3137i 1.28761i
\(275\) −12.0000 + 16.0000i −0.723627 + 0.964836i
\(276\) 6.82843 1.17157i 0.411023 0.0705204i
\(277\) −15.8995 15.8995i −0.955308 0.955308i 0.0437351 0.999043i \(-0.486074\pi\)
−0.999043 + 0.0437351i \(0.986074\pi\)
\(278\) −1.17157 1.17157i −0.0702663 0.0702663i
\(279\) 3.41421 + 9.65685i 0.204404 + 0.578141i
\(280\) 1.75736 + 0.585786i 0.105022 + 0.0350074i
\(281\) 0.828427i 0.0494198i −0.999695 0.0247099i \(-0.992134\pi\)
0.999695 0.0247099i \(-0.00786621\pi\)
\(282\) −3.17157 + 4.48528i −0.188864 + 0.267095i
\(283\) −17.2426 + 17.2426i −1.02497 + 1.02497i −0.0252884 + 0.999680i \(0.508050\pi\)
−0.999680 + 0.0252884i \(0.991950\pi\)
\(284\) 14.2426 0.845145
\(285\) 15.6569 + 21.3137i 0.927432 + 1.26252i
\(286\) −4.00000 −0.236525
\(287\) 1.17157 1.17157i 0.0691558 0.0691558i
\(288\) 2.70711 + 1.29289i 0.159518 + 0.0761845i
\(289\) 1.00000i 0.0588235i
\(290\) −6.00000 12.0000i −0.352332 0.704664i
\(291\) −3.75736 21.8995i −0.220260 1.28377i
\(292\) 11.0711 + 11.0711i 0.647885 + 0.647885i
\(293\) −4.48528 4.48528i −0.262033 0.262033i 0.563847 0.825880i \(-0.309321\pi\)
−0.825880 + 0.563847i \(0.809321\pi\)
\(294\) −1.84924 10.7782i −0.107850 0.628596i
\(295\) 3.17157 9.51472i 0.184656 0.553968i
\(296\) 3.65685i 0.212550i
\(297\) −20.0000 5.65685i −1.16052 0.328244i
\(298\) −15.8284 + 15.8284i −0.916916 + 0.916916i
\(299\) 4.00000 0.231326
\(300\) 8.24264 2.65685i 0.475889 0.153394i
\(301\) 1.45584 0.0839135
\(302\) −0.757359 + 0.757359i −0.0435811 + 0.0435811i
\(303\) −3.17157 + 4.48528i −0.182202 + 0.257673i
\(304\) 6.82843i 0.391637i
\(305\) 3.41421 10.2426i 0.195497 0.586492i
\(306\) 12.0000 4.24264i 0.685994 0.242536i
\(307\) 7.17157 + 7.17157i 0.409303 + 0.409303i 0.881496 0.472192i \(-0.156537\pi\)
−0.472192 + 0.881496i \(0.656537\pi\)
\(308\) −2.34315 2.34315i −0.133513 0.133513i
\(309\) −30.1421 + 5.17157i −1.71473 + 0.294201i
\(310\) 3.41421 + 6.82843i 0.193914 + 0.387829i
\(311\) 28.0000i 1.58773i 0.608091 + 0.793867i \(0.291935\pi\)
−0.608091 + 0.793867i \(0.708065\pi\)
\(312\) 1.41421 + 1.00000i 0.0800641 + 0.0566139i
\(313\) 1.34315 1.34315i 0.0759191 0.0759191i −0.668128 0.744047i \(-0.732904\pi\)
0.744047 + 0.668128i \(0.232904\pi\)
\(314\) −22.9706 −1.29630
\(315\) 4.00000 + 3.85786i 0.225374 + 0.217366i
\(316\) −12.4853 −0.702352
\(317\) −1.65685 + 1.65685i −0.0930582 + 0.0930582i −0.752103 0.659045i \(-0.770961\pi\)
0.659045 + 0.752103i \(0.270961\pi\)
\(318\) 1.17157 + 0.828427i 0.0656985 + 0.0464559i
\(319\) 24.0000i 1.34374i
\(320\) 2.12132 + 0.707107i 0.118585 + 0.0395285i
\(321\) −29.1421 + 5.00000i −1.62656 + 0.279073i
\(322\) 2.34315 + 2.34315i 0.130578 + 0.130578i
\(323\) 20.4853 + 20.4853i 1.13983 + 1.13983i
\(324\) 5.65685 + 7.00000i 0.314270 + 0.388889i
\(325\) 4.94975 0.707107i 0.274563 0.0392232i
\(326\) 3.31371i 0.183529i
\(327\) 4.92893 6.97056i 0.272571 0.385473i
\(328\) 1.41421 1.41421i 0.0780869 0.0780869i
\(329\) −2.62742 −0.144854
\(330\) −15.3137 2.34315i −0.842992 0.128986i
\(331\) −32.2843 −1.77450 −0.887252 0.461285i \(-0.847389\pi\)
−0.887252 + 0.461285i \(0.847389\pi\)
\(332\) −6.82843 + 6.82843i −0.374759 + 0.374759i
\(333\) 4.72792 9.89949i 0.259089 0.542489i
\(334\) 4.82843i 0.264200i
\(335\) −2.34315 + 1.17157i −0.128020 + 0.0640099i
\(336\) 0.242641 + 1.41421i 0.0132371 + 0.0771517i
\(337\) −23.0000 23.0000i −1.25289 1.25289i −0.954419 0.298471i \(-0.903523\pi\)
−0.298471 0.954419i \(-0.596477\pi\)
\(338\) 0.707107 + 0.707107i 0.0384615 + 0.0384615i
\(339\) −2.89949 16.8995i −0.157479 0.917855i
\(340\) 8.48528 4.24264i 0.460179 0.230089i
\(341\) 13.6569i 0.739560i
\(342\) −8.82843 + 18.4853i −0.477387 + 0.999570i
\(343\) 7.79899 7.79899i 0.421106 0.421106i
\(344\) 1.75736 0.0947505
\(345\) 15.3137 + 2.34315i 0.824462 + 0.126151i
\(346\) 24.1421 1.29789
\(347\) 10.5563 10.5563i 0.566695 0.566695i −0.364506 0.931201i \(-0.618762\pi\)
0.931201 + 0.364506i \(0.118762\pi\)
\(348\) 6.00000 8.48528i 0.321634 0.454859i
\(349\) 32.7279i 1.75189i 0.482415 + 0.875943i \(0.339760\pi\)
−0.482415 + 0.875943i \(0.660240\pi\)
\(350\) 3.31371 + 2.48528i 0.177125 + 0.132844i
\(351\) 2.53553 + 4.53553i 0.135337 + 0.242089i
\(352\) −2.82843 2.82843i −0.150756 0.150756i
\(353\) 25.5563 + 25.5563i 1.36023 + 1.36023i 0.873622 + 0.486605i \(0.161765\pi\)
0.486605 + 0.873622i \(0.338235\pi\)
\(354\) 7.65685 1.31371i 0.406957 0.0698228i
\(355\) 30.2132 + 10.0711i 1.60355 + 0.534517i
\(356\) 11.1716i 0.592092i
\(357\) 4.97056 + 3.51472i 0.263070 + 0.186019i
\(358\) 12.4853 12.4853i 0.659868 0.659868i
\(359\) 23.4142 1.23575 0.617877 0.786274i \(-0.287993\pi\)
0.617877 + 0.786274i \(0.287993\pi\)
\(360\) 4.82843 + 4.65685i 0.254480 + 0.245438i
\(361\) −27.6274 −1.45407
\(362\) −4.24264 + 4.24264i −0.222988 + 0.222988i
\(363\) 7.07107 + 5.00000i 0.371135 + 0.262432i
\(364\) 0.828427i 0.0434214i
\(365\) 15.6569 + 31.3137i 0.819517 + 1.63903i
\(366\) 8.24264 1.41421i 0.430850 0.0739221i
\(367\) 14.1421 + 14.1421i 0.738213 + 0.738213i 0.972232 0.234019i \(-0.0751877\pi\)
−0.234019 + 0.972232i \(0.575188\pi\)
\(368\) 2.82843 + 2.82843i 0.147442 + 0.147442i
\(369\) 5.65685 2.00000i 0.294484 0.104116i
\(370\) 2.58579 7.75736i 0.134429 0.403286i
\(371\) 0.686292i 0.0356305i
\(372\) −3.41421 + 4.82843i −0.177019 + 0.250342i
\(373\) 4.92893 4.92893i 0.255210 0.255210i −0.567892 0.823103i \(-0.692241\pi\)
0.823103 + 0.567892i \(0.192241\pi\)
\(374\) −16.9706 −0.877527
\(375\) 19.3640 + 0.192388i 0.999951 + 0.00993488i
\(376\) −3.17157 −0.163561
\(377\) 4.24264 4.24264i 0.218507 0.218507i
\(378\) −1.17157 + 4.14214i −0.0602592 + 0.213048i
\(379\) 38.1421i 1.95923i −0.200884 0.979615i \(-0.564382\pi\)
0.200884 0.979615i \(-0.435618\pi\)
\(380\) −4.82843 + 14.4853i −0.247693 + 0.743079i
\(381\) 1.31371 + 7.65685i 0.0673033 + 0.392273i
\(382\) −2.00000 2.00000i −0.102329 0.102329i
\(383\) 1.65685 + 1.65685i 0.0846613 + 0.0846613i 0.748169 0.663508i \(-0.230933\pi\)
−0.663508 + 0.748169i \(0.730933\pi\)
\(384\) 0.292893 + 1.70711i 0.0149466 + 0.0871154i
\(385\) −3.31371 6.62742i −0.168882 0.337764i
\(386\) 16.1421i 0.821613i
\(387\) 4.75736 + 2.27208i 0.241830 + 0.115496i
\(388\) 9.07107 9.07107i 0.460514 0.460514i
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) 2.29289 + 3.12132i 0.116105 + 0.158054i
\(391\) 16.9706 0.858238
\(392\) 4.46447 4.46447i 0.225490 0.225490i
\(393\) 12.9706 18.3431i 0.654278 0.925289i
\(394\) 5.31371i 0.267701i
\(395\) −26.4853 8.82843i −1.33262 0.444206i
\(396\) −4.00000 11.3137i −0.201008 0.568535i
\(397\) −9.17157 9.17157i −0.460308 0.460308i 0.438448 0.898756i \(-0.355528\pi\)
−0.898756 + 0.438448i \(0.855528\pi\)
\(398\) 15.6569 + 15.6569i 0.784807 + 0.784807i
\(399\) −9.65685 + 1.65685i −0.483447 + 0.0829465i
\(400\) 4.00000 + 3.00000i 0.200000 + 0.150000i
\(401\) 1.79899i 0.0898373i −0.998991 0.0449186i \(-0.985697\pi\)
0.998991 0.0449186i \(-0.0143029\pi\)
\(402\) −1.65685 1.17157i −0.0826364 0.0584327i
\(403\) −2.41421 + 2.41421i −0.120261 + 0.120261i
\(404\) −3.17157 −0.157792
\(405\) 7.05025 + 18.8492i 0.350330 + 0.936626i
\(406\) 4.97056 0.246685
\(407\) −10.3431 + 10.3431i −0.512691 + 0.512691i
\(408\) 6.00000 + 4.24264i 0.297044 + 0.210042i
\(409\) 3.17157i 0.156824i −0.996921 0.0784121i \(-0.975015\pi\)
0.996921 0.0784121i \(-0.0249850\pi\)
\(410\) 4.00000 2.00000i 0.197546 0.0987730i
\(411\) −36.3848 + 6.24264i −1.79473 + 0.307927i
\(412\) −12.4853 12.4853i −0.615106 0.615106i
\(413\) 2.62742 + 2.62742i 0.129287 + 0.129287i
\(414\) 4.00000 + 11.3137i 0.196589 + 0.556038i
\(415\) −19.3137 + 9.65685i −0.948073 + 0.474036i
\(416\) 1.00000i 0.0490290i
\(417\) 1.65685 2.34315i 0.0811365 0.114744i
\(418\) 19.3137 19.3137i 0.944664 0.944664i
\(419\) −5.51472 −0.269412 −0.134706 0.990886i \(-0.543009\pi\)
−0.134706 + 0.990886i \(0.543009\pi\)
\(420\) −0.485281 + 3.17157i −0.0236793 + 0.154757i
\(421\) 27.0711 1.31936 0.659682 0.751545i \(-0.270691\pi\)
0.659682 + 0.751545i \(0.270691\pi\)
\(422\) −1.17157 + 1.17157i −0.0570313 + 0.0570313i
\(423\) −8.58579 4.10051i −0.417455 0.199373i
\(424\) 0.828427i 0.0402320i
\(425\) 21.0000 3.00000i 1.01865 0.145521i
\(426\) 4.17157 + 24.3137i 0.202113 + 1.17800i
\(427\) 2.82843 + 2.82843i 0.136877 + 0.136877i
\(428\) −12.0711 12.0711i −0.583477 0.583477i
\(429\) −1.17157 6.82843i −0.0565641 0.329680i
\(430\) 3.72792 + 1.24264i 0.179776 + 0.0599255i
\(431\) 10.9289i 0.526428i −0.964737 0.263214i \(-0.915217\pi\)
0.964737 0.263214i \(-0.0847826\pi\)
\(432\) −1.41421 + 5.00000i −0.0680414 + 0.240563i
\(433\) −16.3137 + 16.3137i −0.783987 + 0.783987i −0.980501 0.196514i \(-0.937038\pi\)
0.196514 + 0.980501i \(0.437038\pi\)
\(434\) −2.82843 −0.135769
\(435\) 18.7279 13.7574i 0.897935 0.659615i
\(436\) 4.92893 0.236053
\(437\) −19.3137 + 19.3137i −0.923900 + 0.923900i
\(438\) −15.6569 + 22.1421i −0.748113 + 1.05799i
\(439\) 18.3431i 0.875471i 0.899104 + 0.437735i \(0.144219\pi\)
−0.899104 + 0.437735i \(0.855781\pi\)
\(440\) −4.00000 8.00000i −0.190693 0.381385i
\(441\) 17.8579 6.31371i 0.850374 0.300653i
\(442\) 3.00000 + 3.00000i 0.142695 + 0.142695i
\(443\) −0.899495 0.899495i −0.0427363 0.0427363i 0.685416 0.728152i \(-0.259621\pi\)
−0.728152 + 0.685416i \(0.759621\pi\)
\(444\) 6.24264 1.07107i 0.296263 0.0508306i
\(445\) 7.89949 23.6985i 0.374472 1.12342i
\(446\) 13.6569i 0.646671i
\(447\) −31.6569 22.3848i −1.49732 1.05876i
\(448\) −0.585786 + 0.585786i −0.0276758 + 0.0276758i
\(449\) 17.7990 0.839986 0.419993 0.907527i \(-0.362032\pi\)
0.419993 + 0.907527i \(0.362032\pi\)
\(450\) 6.94975 + 13.2929i 0.327614 + 0.626633i
\(451\) −8.00000 −0.376705
\(452\) 7.00000 7.00000i 0.329252 0.329252i
\(453\) −1.51472 1.07107i −0.0711677 0.0503232i
\(454\) 2.82843i 0.132745i
\(455\) −0.585786 + 1.75736i −0.0274621 + 0.0823863i
\(456\) −11.6569 + 2.00000i −0.545882 + 0.0936586i
\(457\) −21.0711 21.0711i −0.985663 0.985663i 0.0142357 0.999899i \(-0.495468\pi\)
−0.999899 + 0.0142357i \(0.995468\pi\)
\(458\) −12.6569 12.6569i −0.591416 0.591416i
\(459\) 10.7574 + 19.2426i 0.502111 + 0.898170i
\(460\) 4.00000 + 8.00000i 0.186501 + 0.373002i
\(461\) 21.6985i 1.01060i 0.862944 + 0.505300i \(0.168618\pi\)
−0.862944 + 0.505300i \(0.831382\pi\)
\(462\) 3.31371 4.68629i 0.154168 0.218026i
\(463\) 5.65685 5.65685i 0.262896 0.262896i −0.563333 0.826230i \(-0.690481\pi\)
0.826230 + 0.563333i \(0.190481\pi\)
\(464\) 6.00000 0.278543
\(465\) −10.6569 + 7.82843i −0.494200 + 0.363035i
\(466\) 12.2426 0.567129
\(467\) 16.8995 16.8995i 0.782015 0.782015i −0.198155 0.980171i \(-0.563495\pi\)
0.980171 + 0.198155i \(0.0634950\pi\)
\(468\) −1.29289 + 2.70711i −0.0597640 + 0.125136i
\(469\) 0.970563i 0.0448164i
\(470\) −6.72792 2.24264i −0.310336 0.103445i
\(471\) −6.72792 39.2132i −0.310006 1.80685i
\(472\) 3.17157 + 3.17157i 0.145983 + 0.145983i
\(473\) −4.97056 4.97056i −0.228547 0.228547i
\(474\) −3.65685 21.3137i −0.167965 0.978971i
\(475\) −20.4853 + 27.3137i −0.939929 + 1.25324i
\(476\) 3.51472i 0.161097i
\(477\) −1.07107 + 2.24264i −0.0490408 + 0.102683i
\(478\) 14.0711 14.0711i 0.643596 0.643596i
\(479\) −24.3848 −1.11417 −0.557084 0.830456i \(-0.688080\pi\)
−0.557084 + 0.830456i \(0.688080\pi\)
\(480\) −0.585786 + 3.82843i −0.0267374 + 0.174743i
\(481\) 3.65685 0.166738
\(482\) 2.58579 2.58579i 0.117779 0.117779i
\(483\) −3.31371 + 4.68629i −0.150779 + 0.213234i
\(484\) 5.00000i 0.227273i
\(485\) 25.6569 12.8284i 1.16502 0.582509i
\(486\) −10.2929 + 11.7071i −0.466895 + 0.531045i
\(487\) 2.92893 + 2.92893i 0.132723 + 0.132723i 0.770347 0.637625i \(-0.220083\pi\)
−0.637625 + 0.770347i \(0.720083\pi\)
\(488\) 3.41421 + 3.41421i 0.154554 + 0.154554i
\(489\) −5.65685 + 0.970563i −0.255812 + 0.0438904i
\(490\) 12.6274 6.31371i 0.570449 0.285224i
\(491\) 13.7990i 0.622740i −0.950289 0.311370i \(-0.899212\pi\)
0.950289 0.311370i \(-0.100788\pi\)
\(492\) 2.82843 + 2.00000i 0.127515 + 0.0901670i
\(493\) 18.0000 18.0000i 0.810679 0.810679i
\(494\) −6.82843 −0.307225
\(495\) −0.485281 26.8284i −0.0218118 1.20585i
\(496\) −3.41421 −0.153303
\(497\) −8.34315 + 8.34315i −0.374241 + 0.374241i
\(498\) −13.6569 9.65685i −0.611978 0.432734i
\(499\) 8.00000i 0.358129i −0.983837 0.179065i \(-0.942693\pi\)
0.983837 0.179065i \(-0.0573071\pi\)
\(500\) 6.36396 + 9.19239i 0.284605 + 0.411096i
\(501\) −8.24264 + 1.41421i −0.368254 + 0.0631824i
\(502\) −10.1421 10.1421i −0.452666 0.452666i
\(503\) −16.1421 16.1421i −0.719742 0.719742i 0.248810 0.968552i \(-0.419961\pi\)
−0.968552 + 0.248810i \(0.919961\pi\)
\(504\) −2.34315 + 0.828427i −0.104372 + 0.0369011i
\(505\) −6.72792 2.24264i −0.299389 0.0997962i
\(506\) 16.0000i 0.711287i
\(507\) −1.00000 + 1.41421i −0.0444116 + 0.0628074i
\(508\) −3.17157 + 3.17157i −0.140716 + 0.140716i
\(509\) 41.2132 1.82674 0.913372 0.407127i \(-0.133469\pi\)
0.913372 + 0.407127i \(0.133469\pi\)
\(510\) 9.72792 + 13.2426i 0.430760 + 0.586394i
\(511\) −12.9706 −0.573784
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −34.1421 9.65685i −1.50741 0.426361i
\(514\) 9.89949i 0.436648i
\(515\) −17.6569 35.3137i −0.778054 1.55611i
\(516\) 0.514719 + 3.00000i 0.0226592 + 0.132068i
\(517\) 8.97056 + 8.97056i 0.394525 + 0.394525i
\(518\) 2.14214 + 2.14214i 0.0941200 + 0.0941200i
\(519\) 7.07107 + 41.2132i 0.310385 + 1.80906i
\(520\) −0.707107 + 2.12132i −0.0310087 + 0.0930261i
\(521\) 24.9706i 1.09398i −0.837139 0.546990i \(-0.815774\pi\)
0.837139 0.546990i \(-0.184226\pi\)
\(522\) 16.2426 + 7.75736i 0.710921 + 0.339530i
\(523\) −6.07107 + 6.07107i −0.265469 + 0.265469i −0.827272 0.561802i \(-0.810108\pi\)
0.561802 + 0.827272i \(0.310108\pi\)
\(524\) 12.9706 0.566622
\(525\) −3.27208 + 6.38478i −0.142805 + 0.278654i
\(526\) −22.6274 −0.986602
\(527\) −10.2426 + 10.2426i −0.446176 + 0.446176i
\(528\) 4.00000 5.65685i 0.174078 0.246183i
\(529\) 7.00000i 0.304348i
\(530\) −0.585786 + 1.75736i −0.0254449 + 0.0763348i
\(531\) 4.48528 + 12.6863i 0.194645 + 0.550538i
\(532\) −4.00000 4.00000i −0.173422 0.173422i
\(533\) 1.41421 + 1.41421i 0.0612564 + 0.0612564i
\(534\) 19.0711 3.27208i 0.825286 0.141597i
\(535\) −17.0711 34.1421i −0.738047 1.47609i
\(536\) 1.17157i 0.0506042i
\(537\) 24.9706 + 17.6569i 1.07756 + 0.761950i
\(538\) −10.7279 + 10.7279i −0.462514 + 0.462514i
\(539\) −25.2548 −1.08780
\(540\) −6.53553 + 9.60660i −0.281245 + 0.413402i
\(541\) −4.24264 −0.182405 −0.0912027 0.995832i \(-0.529071\pi\)
−0.0912027 + 0.995832i \(0.529071\pi\)
\(542\) 1.58579 1.58579i 0.0681154 0.0681154i
\(543\) −8.48528 6.00000i −0.364138 0.257485i
\(544\) 4.24264i 0.181902i
\(545\) 10.4558 + 3.48528i 0.447879 + 0.149293i
\(546\) −1.41421 + 0.242641i −0.0605228 + 0.0103841i
\(547\) −20.4142 20.4142i −0.872849 0.872849i 0.119933 0.992782i \(-0.461732\pi\)
−0.992782 + 0.119933i \(0.961732\pi\)
\(548\) −15.0711 15.0711i −0.643804 0.643804i
\(549\) 4.82843 + 13.6569i 0.206072 + 0.582860i
\(550\) −2.82843 19.7990i −0.120605 0.844232i
\(551\) 40.9706i 1.74540i
\(552\) −4.00000 + 5.65685i −0.170251 + 0.240772i
\(553\) 7.31371 7.31371i 0.311011 0.311011i
\(554\) 22.4853 0.955308
\(555\) 14.0000 + 2.14214i 0.594267 + 0.0909286i
\(556\) 1.65685 0.0702663
\(557\) 0.928932 0.928932i 0.0393601 0.0393601i −0.687153 0.726513i \(-0.741140\pi\)
0.726513 + 0.687153i \(0.241140\pi\)
\(558\) −9.24264 4.41421i −0.391272 0.186869i
\(559\) 1.75736i 0.0743284i
\(560\) −1.65685 + 0.828427i −0.0700149 + 0.0350074i
\(561\) −4.97056 28.9706i −0.209857 1.22314i
\(562\) 0.585786 + 0.585786i 0.0247099 + 0.0247099i
\(563\) −19.2426 19.2426i −0.810981 0.810981i 0.173800 0.984781i \(-0.444395\pi\)
−0.984781 + 0.173800i \(0.944395\pi\)
\(564\) −0.928932 5.41421i −0.0391151 0.227980i
\(565\) 19.7990 9.89949i 0.832950 0.416475i
\(566\) 24.3848i 1.02497i
\(567\) −7.41421 0.786797i −0.311368 0.0330423i
\(568\) −10.0711 + 10.0711i −0.422573 + 0.422573i
\(569\) −18.3431 −0.768985 −0.384492 0.923128i \(-0.625623\pi\)
−0.384492 + 0.923128i \(0.625623\pi\)
\(570\) −26.1421 4.00000i −1.09497 0.167542i
\(571\) 34.4853 1.44316 0.721582 0.692329i \(-0.243415\pi\)
0.721582 + 0.692329i \(0.243415\pi\)
\(572\) 2.82843 2.82843i 0.118262 0.118262i
\(573\) 2.82843 4.00000i 0.118159 0.167102i
\(574\) 1.65685i 0.0691558i
\(575\) 2.82843 + 19.7990i 0.117954 + 0.825675i
\(576\) −2.82843 + 1.00000i −0.117851 + 0.0416667i
\(577\) −16.0416 16.0416i −0.667822 0.667822i 0.289390 0.957211i \(-0.406548\pi\)
−0.957211 + 0.289390i \(0.906548\pi\)
\(578\) 0.707107 + 0.707107i 0.0294118 + 0.0294118i
\(579\) −27.5563 + 4.72792i −1.14520 + 0.196486i
\(580\) 12.7279 + 4.24264i 0.528498 + 0.176166i
\(581\) 8.00000i 0.331896i
\(582\) 18.1421 + 12.8284i 0.752016 + 0.531755i
\(583\) 2.34315 2.34315i 0.0970432 0.0970432i
\(584\) −15.6569 −0.647885
\(585\) −4.65685 + 4.82843i −0.192537 + 0.199631i
\(586\) 6.34315 0.262033
\(587\) −7.79899 + 7.79899i −0.321899 + 0.321899i −0.849495 0.527596i \(-0.823093\pi\)
0.527596 + 0.849495i \(0.323093\pi\)
\(588\) 8.92893 + 6.31371i 0.368223 + 0.260373i
\(589\) 23.3137i 0.960625i
\(590\) 4.48528 + 8.97056i 0.184656 + 0.369312i
\(591\) −9.07107 + 1.55635i −0.373134 + 0.0640197i
\(592\) 2.58579 + 2.58579i 0.106275 + 0.106275i
\(593\) 7.41421 + 7.41421i 0.304465 + 0.304465i 0.842758 0.538293i \(-0.180931\pi\)
−0.538293 + 0.842758i \(0.680931\pi\)
\(594\) 18.1421 10.1421i 0.744381 0.416137i
\(595\) −2.48528 + 7.45584i −0.101887 + 0.305660i
\(596\) 22.3848i 0.916916i
\(597\) −22.1421 + 31.3137i −0.906217 + 1.28158i
\(598\) −2.82843 + 2.82843i −0.115663 + 0.115663i
\(599\) 16.4853 0.673570 0.336785 0.941582i \(-0.390660\pi\)
0.336785 + 0.941582i \(0.390660\pi\)
\(600\) −3.94975 + 7.70711i −0.161248 + 0.314641i
\(601\) −17.6569 −0.720238 −0.360119 0.932906i \(-0.617264\pi\)
−0.360119 + 0.932906i \(0.617264\pi\)
\(602\) −1.02944 + 1.02944i −0.0419567 + 0.0419567i
\(603\) 1.51472 3.17157i 0.0616841 0.129156i
\(604\) 1.07107i 0.0435811i
\(605\) −3.53553 + 10.6066i −0.143740 + 0.431220i
\(606\) −0.928932 5.41421i −0.0377353 0.219937i
\(607\) 14.4853 + 14.4853i 0.587939 + 0.587939i 0.937073 0.349134i \(-0.113524\pi\)
−0.349134 + 0.937073i \(0.613524\pi\)
\(608\) −4.82843 4.82843i −0.195819 0.195819i
\(609\) 1.45584 + 8.48528i 0.0589938 + 0.343841i
\(610\) 4.82843 + 9.65685i 0.195497 + 0.390995i
\(611\) 3.17157i 0.128308i
\(612\) −5.48528 + 11.4853i −0.221729 + 0.464265i
\(613\) 10.3431 10.3431i 0.417756 0.417756i −0.466674 0.884430i \(-0.654548\pi\)
0.884430 + 0.466674i \(0.154548\pi\)
\(614\) −10.1421 −0.409303
\(615\) 4.58579 + 6.24264i 0.184917 + 0.251728i
\(616\) 3.31371 0.133513
\(617\) −10.9289 + 10.9289i −0.439982 + 0.439982i −0.892006 0.452024i \(-0.850702\pi\)
0.452024 + 0.892006i \(0.350702\pi\)
\(618\) 17.6569 24.9706i 0.710263 1.00446i
\(619\) 26.6274i 1.07025i 0.844774 + 0.535123i \(0.179735\pi\)
−0.844774 + 0.535123i \(0.820265\pi\)
\(620\) −7.24264 2.41421i −0.290871 0.0969571i
\(621\) −18.1421 + 10.1421i −0.728019 + 0.406990i
\(622\) −19.7990 19.7990i −0.793867 0.793867i
\(623\) 6.54416 + 6.54416i 0.262186 + 0.262186i
\(624\) −1.70711 + 0.292893i −0.0683390 + 0.0117251i
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 1.89949i 0.0759191i
\(627\) 38.6274 + 27.3137i 1.54263 + 1.09080i
\(628\) 16.2426 16.2426i 0.648152 0.648152i
\(629\) 15.5147 0.618612
\(630\) −5.55635 + 0.100505i −0.221370 + 0.00400422i
\(631\) 23.8995 0.951424 0.475712 0.879601i \(-0.342190\pi\)
0.475712 + 0.879601i \(0.342190\pi\)
\(632\) 8.82843 8.82843i 0.351176 0.351176i
\(633\) −2.34315 1.65685i −0.0931317 0.0658540i
\(634\) 2.34315i 0.0930582i
\(635\) −8.97056 + 4.48528i −0.355986 + 0.177993i
\(636\) −1.41421 + 0.242641i −0.0560772 + 0.00962133i
\(637\) 4.46447 + 4.46447i 0.176889 + 0.176889i
\(638\) −16.9706 16.9706i −0.671871 0.671871i
\(639\) −40.2843 + 14.2426i −1.59362 + 0.563430i
\(640\) −2.00000 + 1.00000i −0.0790569 + 0.0395285i
\(641\) 10.6863i 0.422083i −0.977477 0.211042i \(-0.932314\pi\)
0.977477 0.211042i \(-0.0676855\pi\)
\(642\) 17.0711 24.1421i 0.673741 0.952814i
\(643\) 22.1421 22.1421i 0.873201 0.873201i −0.119619 0.992820i \(-0.538167\pi\)
0.992820 + 0.119619i \(0.0381674\pi\)
\(644\) −3.31371 −0.130578
\(645\) −1.02944 + 6.72792i −0.0405341 + 0.264912i
\(646\) −28.9706 −1.13983
\(647\) 29.3137 29.3137i 1.15244 1.15244i 0.166379 0.986062i \(-0.446793\pi\)
0.986062 0.166379i \(-0.0532075\pi\)
\(648\) −8.94975 0.949747i −0.351579 0.0373096i
\(649\) 17.9411i 0.704251i
\(650\) −3.00000 + 4.00000i −0.117670 + 0.156893i
\(651\) −0.828427 4.82843i −0.0324686 0.189241i
\(652\) −2.34315 2.34315i −0.0917647 0.0917647i
\(653\) −4.24264 4.24264i −0.166027 0.166027i 0.619203 0.785231i \(-0.287456\pi\)
−0.785231 + 0.619203i \(0.787456\pi\)
\(654\) 1.44365 + 8.41421i 0.0564512 + 0.329022i
\(655\) 27.5147 + 9.17157i 1.07509 + 0.358363i
\(656\) 2.00000i 0.0780869i
\(657\) −42.3848 20.2426i −1.65359 0.789741i
\(658\) 1.85786 1.85786i 0.0724271 0.0724271i
\(659\) −25.5147 −0.993912 −0.496956 0.867776i \(-0.665549\pi\)
−0.496956 + 0.867776i \(0.665549\pi\)
\(660\) 12.4853 9.17157i 0.485989 0.357003i
\(661\) 48.5269 1.88748 0.943739 0.330691i \(-0.107282\pi\)
0.943739 + 0.330691i \(0.107282\pi\)
\(662\) 22.8284 22.8284i 0.887252 0.887252i
\(663\) −4.24264 + 6.00000i −0.164771 + 0.233021i
\(664\) 9.65685i 0.374759i
\(665\) −5.65685 11.3137i −0.219363 0.438727i
\(666\) 3.65685 + 10.3431i 0.141700 + 0.400789i
\(667\) 16.9706 + 16.9706i 0.657103 + 0.657103i
\(668\) −3.41421 3.41421i −0.132100 0.132100i
\(669\) 23.3137 4.00000i 0.901360 0.154649i
\(670\) 0.828427 2.48528i 0.0320049 0.0960148i
\(671\) 19.3137i 0.745597i
\(672\) −1.17157 0.828427i −0.0451944 0.0319573i
\(673\) −2.85786 + 2.85786i −0.110163 + 0.110163i −0.760039 0.649877i \(-0.774820\pi\)
0.649877 + 0.760039i \(0.274820\pi\)
\(674\) 32.5269 1.25289
\(675\) −20.6569 + 15.7574i −0.795083 + 0.606501i
\(676\) −1.00000 −0.0384615
\(677\) 10.3848 10.3848i 0.399119 0.399119i −0.478803 0.877922i \(-0.658929\pi\)
0.877922 + 0.478803i \(0.158929\pi\)
\(678\) 14.0000 + 9.89949i 0.537667 + 0.380188i
\(679\) 10.6274i 0.407843i
\(680\) −3.00000 + 9.00000i −0.115045 + 0.345134i
\(681\) −4.82843 + 0.828427i −0.185026 + 0.0317454i
\(682\) 9.65685 + 9.65685i 0.369780 + 0.369780i
\(683\) 8.82843 + 8.82843i 0.337810 + 0.337810i 0.855543 0.517732i \(-0.173224\pi\)
−0.517732 + 0.855543i \(0.673224\pi\)
\(684\) −6.82843 19.3137i −0.261091 0.738478i
\(685\) −21.3137 42.6274i −0.814355 1.62871i
\(686\) 11.0294i 0.421106i
\(687\) 17.8995 25.3137i 0.682908 0.965778i
\(688\) −1.24264 + 1.24264i −0.0473752 + 0.0473752i
\(689\) −0.828427 −0.0315606
\(690\) −12.4853 + 9.17157i −0.475307 + 0.349156i
\(691\) −37.6569 −1.43253 −0.716267 0.697826i \(-0.754151\pi\)
−0.716267 + 0.697826i \(0.754151\pi\)
\(692\) −17.0711 + 17.0711i −0.648945 + 0.648945i
\(693\) 8.97056 + 4.28427i 0.340764 + 0.162746i
\(694\) 14.9289i 0.566695i
\(695\) 3.51472 + 1.17157i 0.133321 + 0.0444403i
\(696\) 1.75736 + 10.2426i 0.0666125 + 0.388246i
\(697\) 6.00000 + 6.00000i 0.227266 + 0.227266i
\(698\) −23.1421 23.1421i −0.875943 0.875943i
\(699\) 3.58579 + 20.8995i 0.135627 + 0.790491i
\(700\) −4.10051 + 0.585786i −0.154985 + 0.0221406i
\(701\) 35.4558i 1.33915i 0.742745 + 0.669574i \(0.233523\pi\)
−0.742745 + 0.669574i \(0.766477\pi\)
\(702\) −5.00000 1.41421i −0.188713 0.0533761i
\(703\) −17.6569 + 17.6569i −0.665941 + 0.665941i
\(704\) 4.00000 0.150756
\(705\) 1.85786 12.1421i 0.0699712 0.457299i
\(706\) −36.1421 −1.36023
\(707\) 1.85786 1.85786i 0.0698722 0.0698722i
\(708\) −4.48528 + 6.34315i −0.168567 + 0.238390i
\(709\) 3.27208i 0.122885i 0.998111 + 0.0614427i \(0.0195702\pi\)
−0.998111 + 0.0614427i \(0.980430\pi\)
\(710\) −28.4853 + 14.2426i −1.06903 + 0.534517i
\(711\) 35.3137 12.4853i 1.32437 0.468235i
\(712\) 7.89949 + 7.89949i 0.296046 + 0.296046i
\(713\) −9.65685 9.65685i −0.361652 0.361652i
\(714\) −6.00000 + 1.02944i −0.224544 + 0.0385257i
\(715\) 8.00000 4.00000i 0.299183 0.149592i
\(716\) 17.6569i 0.659868i
\(717\) 28.1421 + 19.8995i 1.05099 + 0.743160i
\(718\) −16.5563 + 16.5563i −0.617877 + 0.617877i
\(719\) 12.4853 0.465622 0.232811 0.972522i \(-0.425208\pi\)
0.232811 + 0.972522i \(0.425208\pi\)
\(720\) −6.70711 + 0.121320i −0.249959 + 0.00452134i
\(721\) 14.6274 0.544753
\(722\) 19.5355 19.5355i 0.727037 0.727037i
\(723\) 5.17157 + 3.65685i 0.192333 + 0.136000i
\(724\) 6.00000i 0.222988i
\(725\) 24.0000 + 18.0000i 0.891338 + 0.668503i
\(726\) −8.53553 + 1.46447i −0.316783 + 0.0543514i
\(727\) −25.3137 25.3137i −0.938833 0.938833i 0.0594007 0.998234i \(-0.481081\pi\)
−0.998234 + 0.0594007i \(0.981081\pi\)
\(728\) −0.585786 0.585786i −0.0217107 0.0217107i
\(729\) −23.0000 14.1421i −0.851852 0.523783i
\(730\) −33.2132 11.0711i −1.22928 0.409759i
\(731\) 7.45584i 0.275764i
\(732\) −4.82843 + 6.82843i −0.178464 + 0.252386i
\(733\) −15.5563 + 15.5563i −0.574587 + 0.574587i −0.933407 0.358820i \(-0.883179\pi\)
0.358820 + 0.933407i \(0.383179\pi\)
\(734\) −20.0000 −0.738213
\(735\) 14.4767 + 19.7071i 0.533980 + 0.726908i
\(736\) −4.00000 −0.147442
\(737\) −3.31371 + 3.31371i −0.122062 + 0.122062i
\(738\) −2.58579 + 5.41421i −0.0951841 + 0.199300i
\(739\) 10.1421i 0.373084i −0.982447 0.186542i \(-0.940272\pi\)
0.982447 0.186542i \(-0.0597281\pi\)
\(740\) 3.65685 + 7.31371i 0.134429 + 0.268857i
\(741\) −2.00000 11.6569i −0.0734718 0.428225i
\(742\) −0.485281 0.485281i −0.0178152 0.0178152i
\(743\) 10.6274 + 10.6274i 0.389882 + 0.389882i 0.874645 0.484763i \(-0.161094\pi\)
−0.484763 + 0.874645i \(0.661094\pi\)
\(744\) −1.00000 5.82843i −0.0366618 0.213681i
\(745\) 15.8284 47.4853i 0.579909 1.73973i
\(746\) 6.97056i 0.255210i
\(747\) 12.4853 26.1421i 0.456813 0.956491i
\(748\) 12.0000 12.0000i 0.438763 0.438763i
\(749\) 14.1421 0.516742
\(750\) −13.8284 + 13.5563i −0.504943 + 0.495008i
\(751\) 36.2843 1.32403 0.662016 0.749490i \(-0.269701\pi\)
0.662016 + 0.749490i \(0.269701\pi\)
\(752\) 2.24264 2.24264i 0.0817807 0.0817807i
\(753\) 14.3431 20.2843i 0.522693 0.739200i
\(754\) 6.00000i 0.218507i
\(755\) 0.757359 2.27208i 0.0275631 0.0826894i
\(756\) −2.10051 3.75736i −0.0763946 0.136654i
\(757\) 3.41421 + 3.41421i 0.124092 + 0.124092i 0.766425 0.642334i \(-0.222034\pi\)
−0.642334 + 0.766425i \(0.722034\pi\)
\(758\) 26.9706 + 26.9706i 0.979615 + 0.979615i
\(759\) 27.3137 4.68629i 0.991425 0.170102i
\(760\) −6.82843 13.6569i −0.247693 0.495386i
\(761\) 26.4853i 0.960091i −0.877244 0.480045i \(-0.840620\pi\)
0.877244 0.480045i \(-0.159380\pi\)
\(762\) −6.34315 4.48528i −0.229788 0.162485i
\(763\) −2.88730 + 2.88730i −0.104527 + 0.104527i
\(764\) 2.82843 0.102329
\(765\) −19.7574 + 20.4853i −0.714329 + 0.740647i
\(766\) −2.34315 −0.0846613
\(767\) −3.17157 + 3.17157i −0.114519 + 0.114519i
\(768\) −1.41421 1.00000i −0.0510310 0.0360844i
\(769\) 8.62742i 0.311113i 0.987827 + 0.155556i \(0.0497170\pi\)
−0.987827 + 0.155556i \(0.950283\pi\)
\(770\) 7.02944 + 2.34315i 0.253323 + 0.0844411i
\(771\) −16.8995 + 2.89949i −0.608620 + 0.104423i
\(772\) −11.4142 11.4142i −0.410807 0.410807i
\(773\) −16.2426 16.2426i −0.584207 0.584207i 0.351849 0.936057i \(-0.385553\pi\)
−0.936057 + 0.351849i \(0.885553\pi\)
\(774\) −4.97056 + 1.75736i −0.178663 + 0.0631670i
\(775\) −13.6569 10.2426i −0.490569 0.367927i
\(776\) 12.8284i 0.460514i
\(777\) −3.02944 + 4.28427i −0.108680 + 0.153697i
\(778\) 1.41421 1.41421i 0.0507020 0.0507020i
\(779\) −13.6569 −0.489308
\(780\) −3.82843 0.585786i −0.137080 0.0209745i
\(781\) 56.9706 2.03857
\(782\) −12.0000 + 12.0000i −0.429119 + 0.429119i
\(783\) −8.48528 + 30.0000i −0.303239 + 1.07211i
\(784\) 6.31371i 0.225490i
\(785\) 45.9411 22.9706i 1.63971 0.819855i
\(786\) 3.79899 + 22.1421i 0.135505 + 0.789784i
\(787\) −5.79899 5.79899i −0.206712 0.206712i 0.596157 0.802868i \(-0.296694\pi\)
−0.802868 + 0.596157i \(0.796694\pi\)
\(788\) −3.75736 3.75736i −0.133850 0.133850i
\(789\) −6.62742 38.6274i −0.235942 1.37517i
\(790\) 24.9706 12.4853i 0.888413 0.444206i
\(791\) 8.20101i 0.291594i
\(792\) 10.8284 + 5.17157i 0.384771 + 0.183764i
\(793\) −3.41421 + 3.41421i −0.121242 + 0.121242i
\(794\) 12.9706 0.460308
\(795\) −3.17157 0.485281i −0.112484 0.0172112i
\(796\) −22.1421 −0.784807
\(797\) −6.92893 + 6.92893i −0.245435 + 0.245435i −0.819094 0.573659i \(-0.805524\pi\)
0.573659 + 0.819094i \(0.305524\pi\)
\(798\) 5.65685 8.00000i 0.200250 0.283197i
\(799\) 13.4558i 0.476034i
\(800\) −4.94975 + 0.707107i −0.175000 + 0.0250000i
\(801\) 11.1716 + 31.5980i 0.394728 + 1.11646i
\(802\) 1.27208 + 1.27208i 0.0449186 + 0.0449186i
\(803\) 44.2843 + 44.2843i 1.56276 + 1.56276i
\(804\) 2.00000 0.343146i 0.0705346 0.0121018i
\(805\) −7.02944 2.34315i −0.247755 0.0825850i
\(806\) 3.41421i 0.120261i
\(807\) −21.4558 15.1716i −0.755281 0.534065i
\(808\) 2.24264 2.24264i 0.0788958 0.0788958i
\(809\) 22.6274 0.795538 0.397769 0.917486i \(-0.369785\pi\)
0.397769 + 0.917486i \(0.369785\pi\)
\(810\) −18.3137 8.34315i −0.643478 0.293148i
\(811\) 22.1421 0.777516 0.388758 0.921340i \(-0.372904\pi\)
0.388758 + 0.921340i \(0.372904\pi\)
\(812\) −3.51472 + 3.51472i −0.123342 + 0.123342i
\(813\) 3.17157 + 2.24264i 0.111232 + 0.0786528i
\(814\) 14.6274i 0.512691i
\(815\) −3.31371 6.62742i −0.116074 0.232148i
\(816\) −7.24264 + 1.24264i −0.253543 + 0.0435011i
\(817\) −8.48528 8.48528i −0.296862 0.296862i
\(818\) 2.24264 + 2.24264i 0.0784121 + 0.0784121i
\(819\) −0.828427 2.34315i −0.0289476 0.0818761i
\(820\) −1.41421 + 4.24264i −0.0493865 + 0.148159i
\(821\) 13.6985i 0.478080i −0.971010 0.239040i \(-0.923167\pi\)
0.971010 0.239040i \(-0.0768328\pi\)
\(822\) 21.3137 30.1421i 0.743401 1.05133i
\(823\) −33.3137 + 33.3137i −1.16124 + 1.16124i −0.177039 + 0.984204i \(0.556652\pi\)
−0.984204 + 0.177039i \(0.943348\pi\)
\(824\) 17.6569 0.615106
\(825\) 32.9706 10.6274i 1.14789 0.369999i
\(826\) −3.71573 −0.129287
\(827\) −32.8284 + 32.8284i −1.14156 + 1.14156i −0.153391 + 0.988166i \(0.549019\pi\)
−0.988166 + 0.153391i \(0.950981\pi\)
\(828\) −10.8284 5.17157i −0.376314 0.179725i
\(829\) 37.5147i 1.30294i −0.758674 0.651470i \(-0.774153\pi\)
0.758674 0.651470i \(-0.225847\pi\)
\(830\) 6.82843 20.4853i 0.237018 0.711054i
\(831\) 6.58579 + 38.3848i 0.228458 + 1.33155i
\(832\) −0.707107 0.707107i −0.0245145 0.0245145i
\(833\) 18.9411 + 18.9411i 0.656271 + 0.656271i
\(834\) 0.485281 + 2.82843i 0.0168039 + 0.0979404i
\(835\) −4.82843 9.65685i −0.167095 0.334189i
\(836\) 27.3137i 0.944664i
\(837\) 4.82843 17.0711i 0.166895 0.590062i
\(838\) 3.89949 3.89949i 0.134706 0.134706i
\(839\) −20.1005 −0.693946 −0.346973 0.937875i \(-0.612791\pi\)
−0.346973 + 0.937875i \(0.612791\pi\)
\(840\) −1.89949 2.58579i −0.0655388 0.0892181i
\(841\) 7.00000 0.241379
\(842\) −19.1421 + 19.1421i −0.659682 + 0.659682i
\(843\) −0.828427 + 1.17157i −0.0285325 + 0.0403511i
\(844\) 1.65685i 0.0570313i
\(845\) −2.12132 0.707107i −0.0729756 0.0243252i
\(846\) 8.97056 3.17157i 0.308414 0.109041i
\(847\) −2.92893 2.92893i −0.100639 0.100639i
\(848\) −0.585786 0.585786i −0.0201160 0.0201160i
\(849\) 41.6274 7.14214i 1.42865 0.245117i
\(850\) −12.7279 + 16.9706i −0.436564 + 0.582086i
\(851\) 14.6274i 0.501421i
\(852\) −20.1421 14.2426i −0.690058 0.487945i
\(853\) −7.02944 + 7.02944i −0.240683 + 0.240683i −0.817133 0.576449i \(-0.804438\pi\)
0.576449 + 0.817133i \(0.304438\pi\)
\(854\) −4.00000 −0.136877
\(855\) −0.828427 45.7990i −0.0283316 1.56629i
\(856\) 17.0711 0.583477
\(857\) −20.1716 + 20.1716i −0.689048 + 0.689048i −0.962021 0.272974i \(-0.911993\pi\)
0.272974 + 0.962021i \(0.411993\pi\)
\(858\) 5.65685 + 4.00000i 0.193122 + 0.136558i
\(859\) 37.7990i 1.28968i 0.764316 + 0.644842i \(0.223077\pi\)
−0.764316 + 0.644842i \(0.776923\pi\)
\(860\) −3.51472 + 1.75736i −0.119851 + 0.0599255i
\(861\) −2.82843 + 0.485281i −0.0963925 + 0.0165383i
\(862\) 7.72792 + 7.72792i 0.263214 + 0.263214i
\(863\) 22.2426 + 22.2426i 0.757148 + 0.757148i 0.975802 0.218654i \(-0.0701666\pi\)
−0.218654 + 0.975802i \(0.570167\pi\)
\(864\) −2.53553 4.53553i −0.0862606 0.154302i
\(865\) −48.2843 + 24.1421i −1.64171 + 0.820857i
\(866\) 23.0711i 0.783987i
\(867\) −1.00000 + 1.41421i −0.0339618 + 0.0480292i
\(868\) 2.00000 2.00000i 0.0678844 0.0678844i
\(869\) −49.9411 −1.69414
\(870\) −3.51472 + 22.9706i −0.119160 + 0.778775i
\(871\) 1.17157 0.0396972
\(872\) −3.48528 + 3.48528i −0.118027 + 0.118027i
\(873\) −16.5858 + 34.7279i −0.561344 + 1.17536i
\(874\) 27.3137i 0.923900i
\(875\) −9.11270 1.65685i −0.308065 0.0560119i
\(876\) −4.58579 26.7279i −0.154939 0.903053i
\(877\) 35.3137 + 35.3137i 1.19246 + 1.19246i 0.976375 + 0.216085i \(0.0693287\pi\)
0.216085 + 0.976375i \(0.430671\pi\)
\(878\) −12.9706 12.9706i −0.437735 0.437735i
\(879\) 1.85786 + 10.8284i 0.0626642 + 0.365234i
\(880\) 8.48528 + 2.82843i 0.286039 + 0.0953463i
\(881\) 14.0000i 0.471672i −0.971793 0.235836i \(-0.924217\pi\)
0.971793 0.235836i \(-0.0757828\pi\)
\(882\) −8.16295 + 17.0919i −0.274861 + 0.575514i
\(883\) 22.2132 22.2132i 0.747534 0.747534i −0.226482 0.974015i \(-0.572722\pi\)
0.974015 + 0.226482i \(0.0727223\pi\)
\(884\) −4.24264 −0.142695
\(885\) −14.0000 + 10.2843i −0.470605 + 0.345702i
\(886\) 1.27208 0.0427363
\(887\) −4.00000 + 4.00000i −0.134307 + 0.134307i −0.771064 0.636757i \(-0.780275\pi\)
0.636757 + 0.771064i \(0.280275\pi\)
\(888\) −3.65685 + 5.17157i −0.122716 + 0.173547i
\(889\) 3.71573i 0.124622i
\(890\) 11.1716 + 22.3431i 0.374472 + 0.748944i
\(891\) 22.6274 + 28.0000i 0.758047 + 0.938035i
\(892\) 9.65685 + 9.65685i 0.323335 + 0.323335i
\(893\) 15.3137 + 15.3137i 0.512454 + 0.512454i
\(894\) 38.2132 6.55635i 1.27804 0.219277i
\(895\) −12.4853 + 37.4558i −0.417337 + 1.25201i
\(896\) 0.828427i 0.0276758i
\(897\) −5.65685 4.00000i −0.188877 0.133556i
\(898\) −12.5858 + 12.5858i −0.419993 + 0.419993i
\(899\) −20.4853 −0.683222
\(900\) −14.3137 4.48528i −0.477124 0.149509i
\(901\) −3.51472 −0.117092
\(902\) 5.65685 5.65685i 0.188353 0.188353i
\(903\) −2.05887 1.45584i −0.0685151 0.0484475i
\(904\) 9.89949i 0.329252i
\(905\) 4.24264 12.7279i 0.141030 0.423090i
\(906\) 1.82843 0.313708i 0.0607454 0.0104223i
\(907\) 5.10051 + 5.10051i 0.169359 + 0.169359i 0.786698 0.617338i \(-0.211789\pi\)
−0.617338 + 0.786698i \(0.711789\pi\)
\(908\) −2.00000 2.00000i −0.0663723 0.0663723i
\(909\) 8.97056 3.17157i 0.297535 0.105194i
\(910\) −0.828427 1.65685i −0.0274621 0.0549242i
\(911\) 1.85786i 0.0615538i 0.999526 + 0.0307769i \(0.00979814\pi\)
−0.999526 + 0.0307769i \(0.990202\pi\)
\(912\) 6.82843 9.65685i 0.226112 0.319770i
\(913\) −27.3137 + 27.3137i −0.903952 + 0.903952i
\(914\) 29.7990 0.985663
\(915\) −15.0711 + 11.0711i −0.498234 + 0.365998i
\(916\) 17.8995 0.591416
\(917\) −7.59798 + 7.59798i −0.250907 + 0.250907i
\(918\) −21.2132 6.00000i −0.700140 0.198030i
\(919\) 9.94113i 0.327927i −0.986466 0.163964i \(-0.947572\pi\)
0.986466 0.163964i \(-0.0524280\pi\)
\(920\) −8.48528 2.82843i −0.279751 0.0932505i
\(921\) −2.97056 17.3137i −0.0978834 0.570506i
\(922\) −15.3431 15.3431i −0.505300 0.505300i
\(923\) −10.0711 10.0711i −0.331493 0.331493i
\(924\) 0.970563 + 5.65685i 0.0319292 + 0.186097i
\(925\) 2.58579 + 18.1005i 0.0850201 + 0.595141i
\(926\) 8.00000i 0.262896i
\(927\) 47.7990 + 22.8284i 1.56992 + 0.749784i
\(928\) −4.24264 + 4.24264i −0.139272 + 0.139272i
\(929\) −57.1127 −1.87381 −0.936903 0.349588i \(-0.886321\pi\)
−0.936903 + 0.349588i \(0.886321\pi\)
\(930\) 2.00000 13.0711i 0.0655826 0.428617i
\(931\) −43.1127 −1.41296
\(932\) −8.65685 + 8.65685i −0.283565 + 0.283565i
\(933\) 28.0000 39.5980i 0.916679 1.29638i
\(934\) 23.8995i 0.782015i
\(935\) 33.9411 16.9706i 1.10999 0.554997i
\(936\) −1.00000 2.82843i −0.0326860 0.0924500i
\(937\) 31.9706 + 31.9706i 1.04443 + 1.04443i 0.998966 + 0.0454669i \(0.0144776\pi\)
0.0454669 + 0.998966i \(0.485522\pi\)
\(938\) 0.686292 + 0.686292i 0.0224082 + 0.0224082i
\(939\) −3.24264 + 0.556349i −0.105820 + 0.0181558i
\(940\) 6.34315 3.17157i 0.206891 0.103445i
\(941\) 38.8701i 1.26713i 0.773690 + 0.633564i \(0.218409\pi\)
−0.773690 + 0.633564i \(0.781591\pi\)
\(942\) 32.4853 + 22.9706i 1.05843 + 0.748421i
\(943\) −5.65685 + 5.65685i −0.184213 + 0.184213i
\(944\) −4.48528 −0.145983
\(945\) −1.79899 9.45584i −0.0585211 0.307599i
\(946\) 7.02944 0.228547
\(947\) −12.6274 + 12.6274i −0.410336 + 0.410336i −0.881856 0.471520i \(-0.843706\pi\)
0.471520 + 0.881856i \(0.343706\pi\)
\(948\) 17.6569 + 12.4853i 0.573468 + 0.405503i
\(949\) 15.6569i 0.508243i
\(950\) −4.82843 33.7990i −0.156655 1.09658i
\(951\) 4.00000 0.686292i 0.129709 0.0222545i
\(952\) −2.48528 2.48528i −0.0805484 0.0805484i
\(953\) 4.51472 + 4.51472i 0.146246 + 0.146246i 0.776439 0.630193i \(-0.217024\pi\)
−0.630193 + 0.776439i \(0.717024\pi\)
\(954\) −0.828427 2.34315i −0.0268213 0.0758621i
\(955\) 6.00000 + 2.00000i 0.194155 + 0.0647185i
\(956\) 19.8995i 0.643596i
\(957\) 24.0000 33.9411i 0.775810 1.09716i
\(958\) 17.2426 17.2426i 0.557084 0.557084i
\(959\) 17.6569 0.570170
\(960\) −2.29289 3.12132i −0.0740028 0.100740i
\(961\) −19.3431 −0.623972
\(962\) −2.58579 + 2.58579i −0.0833691 + 0.0833691i
\(963\) 46.2132 + 22.0711i 1.48920 + 0.711230i
\(964\) 3.65685i 0.117779i
\(965\) −16.1421 32.2843i −0.519634 1.03927i
\(966\) −0.970563 5.65685i −0.0312273 0.182006i
\(967\) 14.6274 + 14.6274i 0.470386 + 0.470386i 0.902040 0.431653i \(-0.142070\pi\)
−0.431653 + 0.902040i \(0.642070\pi\)
\(968\) −3.53553 3.53553i −0.113636 0.113636i
\(969\) −8.48528 49.4558i −0.272587 1.58875i
\(970\) −9.07107 + 27.2132i −0.291254 + 0.873763i
\(971\) 8.14214i 0.261294i 0.991429 + 0.130647i \(0.0417054\pi\)
−0.991429 + 0.130647i \(0.958295\pi\)
\(972\) −1.00000 15.5563i −0.0320750 0.498970i
\(973\) −0.970563 + 0.970563i −0.0311148 + 0.0311148i
\(974\) −4.14214 −0.132723
\(975\) −7.70711 3.94975i −0.246825 0.126493i
\(976\) −4.82843 −0.154554
\(977\) −21.4142 + 21.4142i −0.685101 + 0.685101i −0.961145 0.276044i \(-0.910977\pi\)
0.276044 + 0.961145i \(0.410977\pi\)
\(978\) 3.31371 4.68629i 0.105961 0.149851i
\(979\) 44.6863i 1.42818i
\(980\) −4.46447 + 13.3934i −0.142612 + 0.427836i
\(981\) −13.9411 + 4.92893i −0.445106 + 0.157369i
\(982\) 9.75736 + 9.75736i 0.311370 + 0.311370i
\(983\) 3.41421 + 3.41421i 0.108897 + 0.108897i 0.759456 0.650559i \(-0.225465\pi\)
−0.650559 + 0.759456i \(0.725465\pi\)
\(984\) −3.41421 + 0.585786i −0.108841 + 0.0186742i
\(985\) −5.31371 10.6274i −0.169309 0.338618i
\(986\) 25.4558i 0.810679i
\(987\) 3.71573 + 2.62742i 0.118273 + 0.0836316i
\(988\) 4.82843 4.82843i 0.153613 0.153613i
\(989\) −7.02944 −0.223523
\(990\) 19.3137 + 18.6274i 0.613830 + 0.592018i
\(991\) −5.17157 −0.164280 −0.0821402 0.996621i \(-0.526176\pi\)
−0.0821402 + 0.996621i \(0.526176\pi\)
\(992\) 2.41421 2.41421i 0.0766514 0.0766514i
\(993\) 45.6569 + 32.2843i 1.44888 + 1.02451i
\(994\) 11.7990i 0.374241i
\(995\) −46.9706 15.6569i −1.48907 0.496356i
\(996\) 16.4853 2.82843i 0.522356 0.0896221i
\(997\) 21.6985 + 21.6985i 0.687198 + 0.687198i 0.961612 0.274414i \(-0.0884838\pi\)
−0.274414 + 0.961612i \(0.588484\pi\)
\(998\) 5.65685 + 5.65685i 0.179065 + 0.179065i
\(999\) −16.5858 + 9.27208i −0.524751 + 0.293356i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.l.a.287.1 yes 4
3.2 odd 2 390.2.l.b.287.2 yes 4
5.3 odd 4 390.2.l.b.53.2 yes 4
15.8 even 4 inner 390.2.l.a.53.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.l.a.53.1 4 15.8 even 4 inner
390.2.l.a.287.1 yes 4 1.1 even 1 trivial
390.2.l.b.53.2 yes 4 5.3 odd 4
390.2.l.b.287.2 yes 4 3.2 odd 2