Properties

Label 390.2.i.b.211.1
Level $390$
Weight $2$
Character 390.211
Analytic conductor $3.114$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [390,2,Mod(61,390)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("390.61"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(390, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,1,-1,2,1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 211.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 390.211
Dual form 390.2.i.b.61.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.00000 q^{5} +(0.500000 - 0.866025i) q^{6} +(1.50000 - 2.59808i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.500000 - 0.866025i) q^{10} +(-0.500000 - 0.866025i) q^{11} -1.00000 q^{12} +(2.50000 + 2.59808i) q^{13} -3.00000 q^{14} +(0.500000 + 0.866025i) q^{15} +(-0.500000 - 0.866025i) q^{16} +1.00000 q^{18} +(2.50000 - 4.33013i) q^{19} +(-0.500000 + 0.866025i) q^{20} +3.00000 q^{21} +(-0.500000 + 0.866025i) q^{22} +(2.00000 + 3.46410i) q^{23} +(0.500000 + 0.866025i) q^{24} +1.00000 q^{25} +(1.00000 - 3.46410i) q^{26} -1.00000 q^{27} +(1.50000 + 2.59808i) q^{28} +(0.500000 - 0.866025i) q^{30} +10.0000 q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.500000 - 0.866025i) q^{33} +(1.50000 - 2.59808i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(0.500000 + 0.866025i) q^{37} -5.00000 q^{38} +(-1.00000 + 3.46410i) q^{39} +1.00000 q^{40} +(-3.00000 - 5.19615i) q^{41} +(-1.50000 - 2.59808i) q^{42} +(1.00000 - 1.73205i) q^{43} +1.00000 q^{44} +(-0.500000 + 0.866025i) q^{45} +(2.00000 - 3.46410i) q^{46} -9.00000 q^{47} +(0.500000 - 0.866025i) q^{48} +(-1.00000 - 1.73205i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(-3.50000 + 0.866025i) q^{52} -13.0000 q^{53} +(0.500000 + 0.866025i) q^{54} +(-0.500000 - 0.866025i) q^{55} +(1.50000 - 2.59808i) q^{56} +5.00000 q^{57} +(-2.00000 + 3.46410i) q^{59} -1.00000 q^{60} +(1.00000 - 1.73205i) q^{61} +(-5.00000 - 8.66025i) q^{62} +(1.50000 + 2.59808i) q^{63} +1.00000 q^{64} +(2.50000 + 2.59808i) q^{65} -1.00000 q^{66} +(6.00000 + 10.3923i) q^{67} +(-2.00000 + 3.46410i) q^{69} -3.00000 q^{70} +(1.00000 - 1.73205i) q^{71} +(-0.500000 + 0.866025i) q^{72} -16.0000 q^{73} +(0.500000 - 0.866025i) q^{74} +(0.500000 + 0.866025i) q^{75} +(2.50000 + 4.33013i) q^{76} -3.00000 q^{77} +(3.50000 - 0.866025i) q^{78} -10.0000 q^{79} +(-0.500000 - 0.866025i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.00000 + 5.19615i) q^{82} +12.0000 q^{83} +(-1.50000 + 2.59808i) q^{84} -2.00000 q^{86} +(-0.500000 - 0.866025i) q^{88} +(-0.500000 - 0.866025i) q^{89} +1.00000 q^{90} +(10.5000 - 2.59808i) q^{91} -4.00000 q^{92} +(5.00000 + 8.66025i) q^{93} +(4.50000 + 7.79423i) q^{94} +(2.50000 - 4.33013i) q^{95} -1.00000 q^{96} +(-6.00000 + 10.3923i) q^{97} +(-1.00000 + 1.73205i) q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{3} - q^{4} + 2 q^{5} + q^{6} + 3 q^{7} + 2 q^{8} - q^{9} - q^{10} - q^{11} - 2 q^{12} + 5 q^{13} - 6 q^{14} + q^{15} - q^{16} + 2 q^{18} + 5 q^{19} - q^{20} + 6 q^{21} - q^{22}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.00000 0.447214
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) 1.50000 2.59808i 0.566947 0.981981i −0.429919 0.902867i \(-0.641458\pi\)
0.996866 0.0791130i \(-0.0252088\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.500000 0.866025i −0.158114 0.273861i
\(11\) −0.500000 0.866025i −0.150756 0.261116i 0.780750 0.624844i \(-0.214837\pi\)
−0.931505 + 0.363727i \(0.881504\pi\)
\(12\) −1.00000 −0.288675
\(13\) 2.50000 + 2.59808i 0.693375 + 0.720577i
\(14\) −3.00000 −0.801784
\(15\) 0.500000 + 0.866025i 0.129099 + 0.223607i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 1.00000 0.235702
\(19\) 2.50000 4.33013i 0.573539 0.993399i −0.422659 0.906289i \(-0.638903\pi\)
0.996199 0.0871106i \(-0.0277634\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 3.00000 0.654654
\(22\) −0.500000 + 0.866025i −0.106600 + 0.184637i
\(23\) 2.00000 + 3.46410i 0.417029 + 0.722315i 0.995639 0.0932891i \(-0.0297381\pi\)
−0.578610 + 0.815604i \(0.696405\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 1.00000 0.200000
\(26\) 1.00000 3.46410i 0.196116 0.679366i
\(27\) −1.00000 −0.192450
\(28\) 1.50000 + 2.59808i 0.283473 + 0.490990i
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0.500000 0.866025i 0.0912871 0.158114i
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0.500000 0.866025i 0.0870388 0.150756i
\(34\) 0 0
\(35\) 1.50000 2.59808i 0.253546 0.439155i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −5.00000 −0.811107
\(39\) −1.00000 + 3.46410i −0.160128 + 0.554700i
\(40\) 1.00000 0.158114
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) −1.50000 2.59808i −0.231455 0.400892i
\(43\) 1.00000 1.73205i 0.152499 0.264135i −0.779647 0.626219i \(-0.784601\pi\)
0.932145 + 0.362084i \(0.117935\pi\)
\(44\) 1.00000 0.150756
\(45\) −0.500000 + 0.866025i −0.0745356 + 0.129099i
\(46\) 2.00000 3.46410i 0.294884 0.510754i
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) 0 0
\(52\) −3.50000 + 0.866025i −0.485363 + 0.120096i
\(53\) −13.0000 −1.78569 −0.892844 0.450367i \(-0.851293\pi\)
−0.892844 + 0.450367i \(0.851293\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) −0.500000 0.866025i −0.0674200 0.116775i
\(56\) 1.50000 2.59808i 0.200446 0.347183i
\(57\) 5.00000 0.662266
\(58\) 0 0
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) −1.00000 −0.129099
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) −5.00000 8.66025i −0.635001 1.09985i
\(63\) 1.50000 + 2.59808i 0.188982 + 0.327327i
\(64\) 1.00000 0.125000
\(65\) 2.50000 + 2.59808i 0.310087 + 0.322252i
\(66\) −1.00000 −0.123091
\(67\) 6.00000 + 10.3923i 0.733017 + 1.26962i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.222571 + 0.974916i \(0.571445\pi\)
\(68\) 0 0
\(69\) −2.00000 + 3.46410i −0.240772 + 0.417029i
\(70\) −3.00000 −0.358569
\(71\) 1.00000 1.73205i 0.118678 0.205557i −0.800566 0.599245i \(-0.795468\pi\)
0.919244 + 0.393688i \(0.128801\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0.500000 0.866025i 0.0581238 0.100673i
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) 2.50000 + 4.33013i 0.286770 + 0.496700i
\(77\) −3.00000 −0.341882
\(78\) 3.50000 0.866025i 0.396297 0.0980581i
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.00000 + 5.19615i −0.331295 + 0.573819i
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) −1.50000 + 2.59808i −0.163663 + 0.283473i
\(85\) 0 0
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) −0.500000 0.866025i −0.0533002 0.0923186i
\(89\) −0.500000 0.866025i −0.0529999 0.0917985i 0.838308 0.545197i \(-0.183545\pi\)
−0.891308 + 0.453398i \(0.850212\pi\)
\(90\) 1.00000 0.105409
\(91\) 10.5000 2.59808i 1.10070 0.272352i
\(92\) −4.00000 −0.417029
\(93\) 5.00000 + 8.66025i 0.518476 + 0.898027i
\(94\) 4.50000 + 7.79423i 0.464140 + 0.803913i
\(95\) 2.50000 4.33013i 0.256495 0.444262i
\(96\) −1.00000 −0.102062
\(97\) −6.00000 + 10.3923i −0.609208 + 1.05518i 0.382164 + 0.924095i \(0.375179\pi\)
−0.991371 + 0.131084i \(0.958154\pi\)
\(98\) −1.00000 + 1.73205i −0.101015 + 0.174964i
\(99\) 1.00000 0.100504
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −2.00000 3.46410i −0.199007 0.344691i 0.749199 0.662344i \(-0.230438\pi\)
−0.948207 + 0.317653i \(0.897105\pi\)
\(102\) 0 0
\(103\) −9.00000 −0.886796 −0.443398 0.896325i \(-0.646227\pi\)
−0.443398 + 0.896325i \(0.646227\pi\)
\(104\) 2.50000 + 2.59808i 0.245145 + 0.254762i
\(105\) 3.00000 0.292770
\(106\) 6.50000 + 11.2583i 0.631336 + 1.09351i
\(107\) 3.00000 + 5.19615i 0.290021 + 0.502331i 0.973814 0.227345i \(-0.0730044\pi\)
−0.683793 + 0.729676i \(0.739671\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −0.500000 + 0.866025i −0.0476731 + 0.0825723i
\(111\) −0.500000 + 0.866025i −0.0474579 + 0.0821995i
\(112\) −3.00000 −0.283473
\(113\) −8.00000 + 13.8564i −0.752577 + 1.30350i 0.193993 + 0.981003i \(0.437856\pi\)
−0.946570 + 0.322498i \(0.895477\pi\)
\(114\) −2.50000 4.33013i −0.234146 0.405554i
\(115\) 2.00000 + 3.46410i 0.186501 + 0.323029i
\(116\) 0 0
\(117\) −3.50000 + 0.866025i −0.323575 + 0.0800641i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0.500000 + 0.866025i 0.0456435 + 0.0790569i
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) −2.00000 −0.181071
\(123\) 3.00000 5.19615i 0.270501 0.468521i
\(124\) −5.00000 + 8.66025i −0.449013 + 0.777714i
\(125\) 1.00000 0.0894427
\(126\) 1.50000 2.59808i 0.133631 0.231455i
\(127\) −2.50000 4.33013i −0.221839 0.384237i 0.733527 0.679660i \(-0.237873\pi\)
−0.955366 + 0.295423i \(0.904539\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 2.00000 0.176090
\(130\) 1.00000 3.46410i 0.0877058 0.303822i
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 0.500000 + 0.866025i 0.0435194 + 0.0753778i
\(133\) −7.50000 12.9904i −0.650332 1.12641i
\(134\) 6.00000 10.3923i 0.518321 0.897758i
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −8.00000 + 13.8564i −0.683486 + 1.18383i 0.290424 + 0.956898i \(0.406204\pi\)
−0.973910 + 0.226935i \(0.927130\pi\)
\(138\) 4.00000 0.340503
\(139\) 4.50000 7.79423i 0.381685 0.661098i −0.609618 0.792695i \(-0.708677\pi\)
0.991303 + 0.131597i \(0.0420106\pi\)
\(140\) 1.50000 + 2.59808i 0.126773 + 0.219578i
\(141\) −4.50000 7.79423i −0.378968 0.656392i
\(142\) −2.00000 −0.167836
\(143\) 1.00000 3.46410i 0.0836242 0.289683i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 8.00000 + 13.8564i 0.662085 + 1.14676i
\(147\) 1.00000 1.73205i 0.0824786 0.142857i
\(148\) −1.00000 −0.0821995
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 0.500000 0.866025i 0.0408248 0.0707107i
\(151\) −6.00000 −0.488273 −0.244137 0.969741i \(-0.578505\pi\)
−0.244137 + 0.969741i \(0.578505\pi\)
\(152\) 2.50000 4.33013i 0.202777 0.351220i
\(153\) 0 0
\(154\) 1.50000 + 2.59808i 0.120873 + 0.209359i
\(155\) 10.0000 0.803219
\(156\) −2.50000 2.59808i −0.200160 0.208013i
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) 5.00000 + 8.66025i 0.397779 + 0.688973i
\(159\) −6.50000 11.2583i −0.515484 0.892844i
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) 12.0000 0.945732
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) 10.0000 17.3205i 0.783260 1.35665i −0.146772 0.989170i \(-0.546888\pi\)
0.930033 0.367477i \(-0.119778\pi\)
\(164\) 6.00000 0.468521
\(165\) 0.500000 0.866025i 0.0389249 0.0674200i
\(166\) −6.00000 10.3923i −0.465690 0.806599i
\(167\) 6.50000 + 11.2583i 0.502985 + 0.871196i 0.999994 + 0.00345033i \(0.00109828\pi\)
−0.497009 + 0.867745i \(0.665568\pi\)
\(168\) 3.00000 0.231455
\(169\) −0.500000 + 12.9904i −0.0384615 + 0.999260i
\(170\) 0 0
\(171\) 2.50000 + 4.33013i 0.191180 + 0.331133i
\(172\) 1.00000 + 1.73205i 0.0762493 + 0.132068i
\(173\) 4.50000 7.79423i 0.342129 0.592584i −0.642699 0.766119i \(-0.722185\pi\)
0.984828 + 0.173534i \(0.0555188\pi\)
\(174\) 0 0
\(175\) 1.50000 2.59808i 0.113389 0.196396i
\(176\) −0.500000 + 0.866025i −0.0376889 + 0.0652791i
\(177\) −4.00000 −0.300658
\(178\) −0.500000 + 0.866025i −0.0374766 + 0.0649113i
\(179\) −6.00000 10.3923i −0.448461 0.776757i 0.549825 0.835280i \(-0.314694\pi\)
−0.998286 + 0.0585225i \(0.981361\pi\)
\(180\) −0.500000 0.866025i −0.0372678 0.0645497i
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) −7.50000 7.79423i −0.555937 0.577747i
\(183\) 2.00000 0.147844
\(184\) 2.00000 + 3.46410i 0.147442 + 0.255377i
\(185\) 0.500000 + 0.866025i 0.0367607 + 0.0636715i
\(186\) 5.00000 8.66025i 0.366618 0.635001i
\(187\) 0 0
\(188\) 4.50000 7.79423i 0.328196 0.568453i
\(189\) −1.50000 + 2.59808i −0.109109 + 0.188982i
\(190\) −5.00000 −0.362738
\(191\) 9.00000 15.5885i 0.651217 1.12794i −0.331611 0.943416i \(-0.607592\pi\)
0.982828 0.184525i \(-0.0590746\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) −8.00000 13.8564i −0.575853 0.997406i −0.995948 0.0899262i \(-0.971337\pi\)
0.420096 0.907480i \(-0.361996\pi\)
\(194\) 12.0000 0.861550
\(195\) −1.00000 + 3.46410i −0.0716115 + 0.248069i
\(196\) 2.00000 0.142857
\(197\) 7.50000 + 12.9904i 0.534353 + 0.925526i 0.999194 + 0.0401324i \(0.0127780\pi\)
−0.464841 + 0.885394i \(0.653889\pi\)
\(198\) −0.500000 0.866025i −0.0355335 0.0615457i
\(199\) 1.00000 1.73205i 0.0708881 0.122782i −0.828403 0.560133i \(-0.810750\pi\)
0.899291 + 0.437351i \(0.144083\pi\)
\(200\) 1.00000 0.0707107
\(201\) −6.00000 + 10.3923i −0.423207 + 0.733017i
\(202\) −2.00000 + 3.46410i −0.140720 + 0.243733i
\(203\) 0 0
\(204\) 0 0
\(205\) −3.00000 5.19615i −0.209529 0.362915i
\(206\) 4.50000 + 7.79423i 0.313530 + 0.543050i
\(207\) −4.00000 −0.278019
\(208\) 1.00000 3.46410i 0.0693375 0.240192i
\(209\) −5.00000 −0.345857
\(210\) −1.50000 2.59808i −0.103510 0.179284i
\(211\) 7.50000 + 12.9904i 0.516321 + 0.894295i 0.999820 + 0.0189499i \(0.00603229\pi\)
−0.483499 + 0.875345i \(0.660634\pi\)
\(212\) 6.50000 11.2583i 0.446422 0.773225i
\(213\) 2.00000 0.137038
\(214\) 3.00000 5.19615i 0.205076 0.355202i
\(215\) 1.00000 1.73205i 0.0681994 0.118125i
\(216\) −1.00000 −0.0680414
\(217\) 15.0000 25.9808i 1.01827 1.76369i
\(218\) 5.00000 + 8.66025i 0.338643 + 0.586546i
\(219\) −8.00000 13.8564i −0.540590 0.936329i
\(220\) 1.00000 0.0674200
\(221\) 0 0
\(222\) 1.00000 0.0671156
\(223\) −5.50000 9.52628i −0.368307 0.637927i 0.620994 0.783815i \(-0.286729\pi\)
−0.989301 + 0.145889i \(0.953396\pi\)
\(224\) 1.50000 + 2.59808i 0.100223 + 0.173591i
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) 16.0000 1.06430
\(227\) 10.0000 17.3205i 0.663723 1.14960i −0.315906 0.948790i \(-0.602309\pi\)
0.979630 0.200812i \(-0.0643581\pi\)
\(228\) −2.50000 + 4.33013i −0.165567 + 0.286770i
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 2.00000 3.46410i 0.131876 0.228416i
\(231\) −1.50000 2.59808i −0.0986928 0.170941i
\(232\) 0 0
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 2.50000 + 2.59808i 0.163430 + 0.169842i
\(235\) −9.00000 −0.587095
\(236\) −2.00000 3.46410i −0.130189 0.225494i
\(237\) −5.00000 8.66025i −0.324785 0.562544i
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0.500000 0.866025i 0.0322749 0.0559017i
\(241\) −7.50000 + 12.9904i −0.483117 + 0.836784i −0.999812 0.0193858i \(-0.993829\pi\)
0.516695 + 0.856170i \(0.327162\pi\)
\(242\) −10.0000 −0.642824
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 1.00000 + 1.73205i 0.0640184 + 0.110883i
\(245\) −1.00000 1.73205i −0.0638877 0.110657i
\(246\) −6.00000 −0.382546
\(247\) 17.5000 4.33013i 1.11350 0.275519i
\(248\) 10.0000 0.635001
\(249\) 6.00000 + 10.3923i 0.380235 + 0.658586i
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) −5.50000 + 9.52628i −0.347157 + 0.601293i −0.985743 0.168257i \(-0.946186\pi\)
0.638586 + 0.769550i \(0.279520\pi\)
\(252\) −3.00000 −0.188982
\(253\) 2.00000 3.46410i 0.125739 0.217786i
\(254\) −2.50000 + 4.33013i −0.156864 + 0.271696i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 12.0000 + 20.7846i 0.748539 + 1.29651i 0.948523 + 0.316709i \(0.102578\pi\)
−0.199983 + 0.979799i \(0.564089\pi\)
\(258\) −1.00000 1.73205i −0.0622573 0.107833i
\(259\) 3.00000 0.186411
\(260\) −3.50000 + 0.866025i −0.217061 + 0.0537086i
\(261\) 0 0
\(262\) 7.50000 + 12.9904i 0.463352 + 0.802548i
\(263\) −1.50000 2.59808i −0.0924940 0.160204i 0.816066 0.577959i \(-0.196151\pi\)
−0.908560 + 0.417755i \(0.862817\pi\)
\(264\) 0.500000 0.866025i 0.0307729 0.0533002i
\(265\) −13.0000 −0.798584
\(266\) −7.50000 + 12.9904i −0.459855 + 0.796491i
\(267\) 0.500000 0.866025i 0.0305995 0.0529999i
\(268\) −12.0000 −0.733017
\(269\) 10.0000 17.3205i 0.609711 1.05605i −0.381577 0.924337i \(-0.624619\pi\)
0.991288 0.131713i \(-0.0420477\pi\)
\(270\) 0.500000 + 0.866025i 0.0304290 + 0.0527046i
\(271\) 12.0000 + 20.7846i 0.728948 + 1.26258i 0.957328 + 0.289003i \(0.0933238\pi\)
−0.228380 + 0.973572i \(0.573343\pi\)
\(272\) 0 0
\(273\) 7.50000 + 7.79423i 0.453921 + 0.471728i
\(274\) 16.0000 0.966595
\(275\) −0.500000 0.866025i −0.0301511 0.0522233i
\(276\) −2.00000 3.46410i −0.120386 0.208514i
\(277\) −11.5000 + 19.9186i −0.690968 + 1.19679i 0.280553 + 0.959839i \(0.409482\pi\)
−0.971521 + 0.236953i \(0.923851\pi\)
\(278\) −9.00000 −0.539784
\(279\) −5.00000 + 8.66025i −0.299342 + 0.518476i
\(280\) 1.50000 2.59808i 0.0896421 0.155265i
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) −4.50000 + 7.79423i −0.267971 + 0.464140i
\(283\) −1.00000 1.73205i −0.0594438 0.102960i 0.834772 0.550596i \(-0.185599\pi\)
−0.894216 + 0.447636i \(0.852266\pi\)
\(284\) 1.00000 + 1.73205i 0.0593391 + 0.102778i
\(285\) 5.00000 0.296174
\(286\) −3.50000 + 0.866025i −0.206959 + 0.0512092i
\(287\) −18.0000 −1.06251
\(288\) −0.500000 0.866025i −0.0294628 0.0510310i
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) 8.00000 13.8564i 0.468165 0.810885i
\(293\) −6.50000 + 11.2583i −0.379734 + 0.657719i −0.991023 0.133689i \(-0.957318\pi\)
0.611289 + 0.791407i \(0.290651\pi\)
\(294\) −2.00000 −0.116642
\(295\) −2.00000 + 3.46410i −0.116445 + 0.201688i
\(296\) 0.500000 + 0.866025i 0.0290619 + 0.0503367i
\(297\) 0.500000 + 0.866025i 0.0290129 + 0.0502519i
\(298\) −6.00000 −0.347571
\(299\) −4.00000 + 13.8564i −0.231326 + 0.801337i
\(300\) −1.00000 −0.0577350
\(301\) −3.00000 5.19615i −0.172917 0.299501i
\(302\) 3.00000 + 5.19615i 0.172631 + 0.299005i
\(303\) 2.00000 3.46410i 0.114897 0.199007i
\(304\) −5.00000 −0.286770
\(305\) 1.00000 1.73205i 0.0572598 0.0991769i
\(306\) 0 0
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) 1.50000 2.59808i 0.0854704 0.148039i
\(309\) −4.50000 7.79423i −0.255996 0.443398i
\(310\) −5.00000 8.66025i −0.283981 0.491869i
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) −1.00000 + 3.46410i −0.0566139 + 0.196116i
\(313\) −34.0000 −1.92179 −0.960897 0.276907i \(-0.910691\pi\)
−0.960897 + 0.276907i \(0.910691\pi\)
\(314\) −0.500000 0.866025i −0.0282166 0.0488726i
\(315\) 1.50000 + 2.59808i 0.0845154 + 0.146385i
\(316\) 5.00000 8.66025i 0.281272 0.487177i
\(317\) 19.0000 1.06715 0.533573 0.845754i \(-0.320849\pi\)
0.533573 + 0.845754i \(0.320849\pi\)
\(318\) −6.50000 + 11.2583i −0.364502 + 0.631336i
\(319\) 0 0
\(320\) 1.00000 0.0559017
\(321\) −3.00000 + 5.19615i −0.167444 + 0.290021i
\(322\) −6.00000 10.3923i −0.334367 0.579141i
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 2.50000 + 2.59808i 0.138675 + 0.144115i
\(326\) −20.0000 −1.10770
\(327\) −5.00000 8.66025i −0.276501 0.478913i
\(328\) −3.00000 5.19615i −0.165647 0.286910i
\(329\) −13.5000 + 23.3827i −0.744279 + 1.28913i
\(330\) −1.00000 −0.0550482
\(331\) −14.0000 + 24.2487i −0.769510 + 1.33283i 0.168320 + 0.985732i \(0.446166\pi\)
−0.937829 + 0.347097i \(0.887167\pi\)
\(332\) −6.00000 + 10.3923i −0.329293 + 0.570352i
\(333\) −1.00000 −0.0547997
\(334\) 6.50000 11.2583i 0.355664 0.616028i
\(335\) 6.00000 + 10.3923i 0.327815 + 0.567792i
\(336\) −1.50000 2.59808i −0.0818317 0.141737i
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 11.5000 6.06218i 0.625518 0.329739i
\(339\) −16.0000 −0.869001
\(340\) 0 0
\(341\) −5.00000 8.66025i −0.270765 0.468979i
\(342\) 2.50000 4.33013i 0.135185 0.234146i
\(343\) 15.0000 0.809924
\(344\) 1.00000 1.73205i 0.0539164 0.0933859i
\(345\) −2.00000 + 3.46410i −0.107676 + 0.186501i
\(346\) −9.00000 −0.483843
\(347\) 14.0000 24.2487i 0.751559 1.30174i −0.195507 0.980702i \(-0.562635\pi\)
0.947067 0.321037i \(-0.104031\pi\)
\(348\) 0 0
\(349\) −18.0000 31.1769i −0.963518 1.66886i −0.713545 0.700609i \(-0.752912\pi\)
−0.249973 0.968253i \(-0.580422\pi\)
\(350\) −3.00000 −0.160357
\(351\) −2.50000 2.59808i −0.133440 0.138675i
\(352\) 1.00000 0.0533002
\(353\) 18.0000 + 31.1769i 0.958043 + 1.65938i 0.727245 + 0.686378i \(0.240800\pi\)
0.230799 + 0.973002i \(0.425866\pi\)
\(354\) 2.00000 + 3.46410i 0.106299 + 0.184115i
\(355\) 1.00000 1.73205i 0.0530745 0.0919277i
\(356\) 1.00000 0.0529999
\(357\) 0 0
\(358\) −6.00000 + 10.3923i −0.317110 + 0.549250i
\(359\) 34.0000 1.79445 0.897226 0.441572i \(-0.145579\pi\)
0.897226 + 0.441572i \(0.145579\pi\)
\(360\) −0.500000 + 0.866025i −0.0263523 + 0.0456435i
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) −3.00000 5.19615i −0.157676 0.273104i
\(363\) 10.0000 0.524864
\(364\) −3.00000 + 10.3923i −0.157243 + 0.544705i
\(365\) −16.0000 −0.837478
\(366\) −1.00000 1.73205i −0.0522708 0.0905357i
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) 2.00000 3.46410i 0.104257 0.180579i
\(369\) 6.00000 0.312348
\(370\) 0.500000 0.866025i 0.0259938 0.0450225i
\(371\) −19.5000 + 33.7750i −1.01239 + 1.75351i
\(372\) −10.0000 −0.518476
\(373\) −5.00000 + 8.66025i −0.258890 + 0.448411i −0.965945 0.258748i \(-0.916690\pi\)
0.707055 + 0.707159i \(0.250023\pi\)
\(374\) 0 0
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) −9.00000 −0.464140
\(377\) 0 0
\(378\) 3.00000 0.154303
\(379\) 0.500000 + 0.866025i 0.0256833 + 0.0444847i 0.878581 0.477593i \(-0.158491\pi\)
−0.852898 + 0.522077i \(0.825157\pi\)
\(380\) 2.50000 + 4.33013i 0.128247 + 0.222131i
\(381\) 2.50000 4.33013i 0.128079 0.221839i
\(382\) −18.0000 −0.920960
\(383\) 14.0000 24.2487i 0.715367 1.23905i −0.247451 0.968900i \(-0.579593\pi\)
0.962818 0.270151i \(-0.0870736\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) −3.00000 −0.152894
\(386\) −8.00000 + 13.8564i −0.407189 + 0.705273i
\(387\) 1.00000 + 1.73205i 0.0508329 + 0.0880451i
\(388\) −6.00000 10.3923i −0.304604 0.527589i
\(389\) −16.0000 −0.811232 −0.405616 0.914044i \(-0.632943\pi\)
−0.405616 + 0.914044i \(0.632943\pi\)
\(390\) 3.50000 0.866025i 0.177229 0.0438529i
\(391\) 0 0
\(392\) −1.00000 1.73205i −0.0505076 0.0874818i
\(393\) −7.50000 12.9904i −0.378325 0.655278i
\(394\) 7.50000 12.9904i 0.377845 0.654446i
\(395\) −10.0000 −0.503155
\(396\) −0.500000 + 0.866025i −0.0251259 + 0.0435194i
\(397\) 16.5000 28.5788i 0.828111 1.43433i −0.0714068 0.997447i \(-0.522749\pi\)
0.899518 0.436884i \(-0.143918\pi\)
\(398\) −2.00000 −0.100251
\(399\) 7.50000 12.9904i 0.375470 0.650332i
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) −12.5000 21.6506i −0.624220 1.08118i −0.988691 0.149966i \(-0.952083\pi\)
0.364471 0.931215i \(-0.381250\pi\)
\(402\) 12.0000 0.598506
\(403\) 25.0000 + 25.9808i 1.24534 + 1.29419i
\(404\) 4.00000 0.199007
\(405\) −0.500000 0.866025i −0.0248452 0.0430331i
\(406\) 0 0
\(407\) 0.500000 0.866025i 0.0247841 0.0429273i
\(408\) 0 0
\(409\) −8.50000 + 14.7224i −0.420298 + 0.727977i −0.995968 0.0897044i \(-0.971408\pi\)
0.575670 + 0.817682i \(0.304741\pi\)
\(410\) −3.00000 + 5.19615i −0.148159 + 0.256620i
\(411\) −16.0000 −0.789222
\(412\) 4.50000 7.79423i 0.221699 0.383994i
\(413\) 6.00000 + 10.3923i 0.295241 + 0.511372i
\(414\) 2.00000 + 3.46410i 0.0982946 + 0.170251i
\(415\) 12.0000 0.589057
\(416\) −3.50000 + 0.866025i −0.171602 + 0.0424604i
\(417\) 9.00000 0.440732
\(418\) 2.50000 + 4.33013i 0.122279 + 0.211793i
\(419\) 14.0000 + 24.2487i 0.683945 + 1.18463i 0.973767 + 0.227547i \(0.0730704\pi\)
−0.289822 + 0.957080i \(0.593596\pi\)
\(420\) −1.50000 + 2.59808i −0.0731925 + 0.126773i
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) 7.50000 12.9904i 0.365094 0.632362i
\(423\) 4.50000 7.79423i 0.218797 0.378968i
\(424\) −13.0000 −0.631336
\(425\) 0 0
\(426\) −1.00000 1.73205i −0.0484502 0.0839181i
\(427\) −3.00000 5.19615i −0.145180 0.251459i
\(428\) −6.00000 −0.290021
\(429\) 3.50000 0.866025i 0.168982 0.0418121i
\(430\) −2.00000 −0.0964486
\(431\) −18.0000 31.1769i −0.867029 1.50174i −0.865018 0.501741i \(-0.832693\pi\)
−0.00201168 0.999998i \(-0.500640\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −8.00000 + 13.8564i −0.384455 + 0.665896i −0.991693 0.128624i \(-0.958944\pi\)
0.607238 + 0.794520i \(0.292277\pi\)
\(434\) −30.0000 −1.44005
\(435\) 0 0
\(436\) 5.00000 8.66025i 0.239457 0.414751i
\(437\) 20.0000 0.956730
\(438\) −8.00000 + 13.8564i −0.382255 + 0.662085i
\(439\) 5.00000 + 8.66025i 0.238637 + 0.413331i 0.960323 0.278889i \(-0.0899661\pi\)
−0.721686 + 0.692220i \(0.756633\pi\)
\(440\) −0.500000 0.866025i −0.0238366 0.0412861i
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) −0.500000 0.866025i −0.0237289 0.0410997i
\(445\) −0.500000 0.866025i −0.0237023 0.0410535i
\(446\) −5.50000 + 9.52628i −0.260433 + 0.451082i
\(447\) 6.00000 0.283790
\(448\) 1.50000 2.59808i 0.0708683 0.122748i
\(449\) 7.50000 12.9904i 0.353947 0.613054i −0.632990 0.774160i \(-0.718173\pi\)
0.986937 + 0.161106i \(0.0515060\pi\)
\(450\) 1.00000 0.0471405
\(451\) −3.00000 + 5.19615i −0.141264 + 0.244677i
\(452\) −8.00000 13.8564i −0.376288 0.651751i
\(453\) −3.00000 5.19615i −0.140952 0.244137i
\(454\) −20.0000 −0.938647
\(455\) 10.5000 2.59808i 0.492248 0.121800i
\(456\) 5.00000 0.234146
\(457\) −11.0000 19.0526i −0.514558 0.891241i −0.999857 0.0168929i \(-0.994623\pi\)
0.485299 0.874348i \(-0.338711\pi\)
\(458\) 5.00000 + 8.66025i 0.233635 + 0.404667i
\(459\) 0 0
\(460\) −4.00000 −0.186501
\(461\) 6.00000 10.3923i 0.279448 0.484018i −0.691800 0.722089i \(-0.743182\pi\)
0.971248 + 0.238071i \(0.0765153\pi\)
\(462\) −1.50000 + 2.59808i −0.0697863 + 0.120873i
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 5.00000 + 8.66025i 0.231869 + 0.401610i
\(466\) −5.00000 8.66025i −0.231621 0.401179i
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 1.00000 3.46410i 0.0462250 0.160128i
\(469\) 36.0000 1.66233
\(470\) 4.50000 + 7.79423i 0.207570 + 0.359521i
\(471\) 0.500000 + 0.866025i 0.0230388 + 0.0399043i
\(472\) −2.00000 + 3.46410i −0.0920575 + 0.159448i
\(473\) −2.00000 −0.0919601
\(474\) −5.00000 + 8.66025i −0.229658 + 0.397779i
\(475\) 2.50000 4.33013i 0.114708 0.198680i
\(476\) 0 0
\(477\) 6.50000 11.2583i 0.297615 0.515484i
\(478\) 1.00000 + 1.73205i 0.0457389 + 0.0792222i
\(479\) 4.00000 + 6.92820i 0.182765 + 0.316558i 0.942821 0.333300i \(-0.108162\pi\)
−0.760056 + 0.649857i \(0.774829\pi\)
\(480\) −1.00000 −0.0456435
\(481\) −1.00000 + 3.46410i −0.0455961 + 0.157949i
\(482\) 15.0000 0.683231
\(483\) 6.00000 + 10.3923i 0.273009 + 0.472866i
\(484\) 5.00000 + 8.66025i 0.227273 + 0.393648i
\(485\) −6.00000 + 10.3923i −0.272446 + 0.471890i
\(486\) −1.00000 −0.0453609
\(487\) −17.5000 + 30.3109i −0.793001 + 1.37352i 0.131100 + 0.991369i \(0.458149\pi\)
−0.924101 + 0.382148i \(0.875184\pi\)
\(488\) 1.00000 1.73205i 0.0452679 0.0784063i
\(489\) 20.0000 0.904431
\(490\) −1.00000 + 1.73205i −0.0451754 + 0.0782461i
\(491\) −12.5000 21.6506i −0.564117 0.977079i −0.997131 0.0756923i \(-0.975883\pi\)
0.433014 0.901387i \(-0.357450\pi\)
\(492\) 3.00000 + 5.19615i 0.135250 + 0.234261i
\(493\) 0 0
\(494\) −12.5000 12.9904i −0.562402 0.584465i
\(495\) 1.00000 0.0449467
\(496\) −5.00000 8.66025i −0.224507 0.388857i
\(497\) −3.00000 5.19615i −0.134568 0.233079i
\(498\) 6.00000 10.3923i 0.268866 0.465690i
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) −6.50000 + 11.2583i −0.290399 + 0.502985i
\(502\) 11.0000 0.490954
\(503\) 0.500000 0.866025i 0.0222939 0.0386142i −0.854663 0.519183i \(-0.826236\pi\)
0.876957 + 0.480569i \(0.159570\pi\)
\(504\) 1.50000 + 2.59808i 0.0668153 + 0.115728i
\(505\) −2.00000 3.46410i −0.0889988 0.154150i
\(506\) −4.00000 −0.177822
\(507\) −11.5000 + 6.06218i −0.510733 + 0.269231i
\(508\) 5.00000 0.221839
\(509\) −9.00000 15.5885i −0.398918 0.690946i 0.594675 0.803966i \(-0.297281\pi\)
−0.993593 + 0.113020i \(0.963948\pi\)
\(510\) 0 0
\(511\) −24.0000 + 41.5692i −1.06170 + 1.83891i
\(512\) 1.00000 0.0441942
\(513\) −2.50000 + 4.33013i −0.110378 + 0.191180i
\(514\) 12.0000 20.7846i 0.529297 0.916770i
\(515\) −9.00000 −0.396587
\(516\) −1.00000 + 1.73205i −0.0440225 + 0.0762493i
\(517\) 4.50000 + 7.79423i 0.197910 + 0.342790i
\(518\) −1.50000 2.59808i −0.0659062 0.114153i
\(519\) 9.00000 0.395056
\(520\) 2.50000 + 2.59808i 0.109632 + 0.113933i
\(521\) 33.0000 1.44576 0.722878 0.690976i \(-0.242819\pi\)
0.722878 + 0.690976i \(0.242819\pi\)
\(522\) 0 0
\(523\) −3.00000 5.19615i −0.131181 0.227212i 0.792951 0.609285i \(-0.208544\pi\)
−0.924132 + 0.382073i \(0.875210\pi\)
\(524\) 7.50000 12.9904i 0.327639 0.567487i
\(525\) 3.00000 0.130931
\(526\) −1.50000 + 2.59808i −0.0654031 + 0.113282i
\(527\) 0 0
\(528\) −1.00000 −0.0435194
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 6.50000 + 11.2583i 0.282342 + 0.489031i
\(531\) −2.00000 3.46410i −0.0867926 0.150329i
\(532\) 15.0000 0.650332
\(533\) 6.00000 20.7846i 0.259889 0.900281i
\(534\) −1.00000 −0.0432742
\(535\) 3.00000 + 5.19615i 0.129701 + 0.224649i
\(536\) 6.00000 + 10.3923i 0.259161 + 0.448879i
\(537\) 6.00000 10.3923i 0.258919 0.448461i
\(538\) −20.0000 −0.862261
\(539\) −1.00000 + 1.73205i −0.0430730 + 0.0746047i
\(540\) 0.500000 0.866025i 0.0215166 0.0372678i
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 12.0000 20.7846i 0.515444 0.892775i
\(543\) 3.00000 + 5.19615i 0.128742 + 0.222988i
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 3.00000 10.3923i 0.128388 0.444750i
\(547\) 34.0000 1.45374 0.726868 0.686778i \(-0.240975\pi\)
0.726868 + 0.686778i \(0.240975\pi\)
\(548\) −8.00000 13.8564i −0.341743 0.591916i
\(549\) 1.00000 + 1.73205i 0.0426790 + 0.0739221i
\(550\) −0.500000 + 0.866025i −0.0213201 + 0.0369274i
\(551\) 0 0
\(552\) −2.00000 + 3.46410i −0.0851257 + 0.147442i
\(553\) −15.0000 + 25.9808i −0.637865 + 1.10481i
\(554\) 23.0000 0.977176
\(555\) −0.500000 + 0.866025i −0.0212238 + 0.0367607i
\(556\) 4.50000 + 7.79423i 0.190843 + 0.330549i
\(557\) 1.50000 + 2.59808i 0.0635570 + 0.110084i 0.896053 0.443947i \(-0.146422\pi\)
−0.832496 + 0.554031i \(0.813089\pi\)
\(558\) 10.0000 0.423334
\(559\) 7.00000 1.73205i 0.296068 0.0732579i
\(560\) −3.00000 −0.126773
\(561\) 0 0
\(562\) −5.00000 8.66025i −0.210912 0.365311i
\(563\) −12.0000 + 20.7846i −0.505740 + 0.875967i 0.494238 + 0.869326i \(0.335447\pi\)
−0.999978 + 0.00664037i \(0.997886\pi\)
\(564\) 9.00000 0.378968
\(565\) −8.00000 + 13.8564i −0.336563 + 0.582943i
\(566\) −1.00000 + 1.73205i −0.0420331 + 0.0728035i
\(567\) −3.00000 −0.125988
\(568\) 1.00000 1.73205i 0.0419591 0.0726752i
\(569\) 5.50000 + 9.52628i 0.230572 + 0.399362i 0.957977 0.286846i \(-0.0926069\pi\)
−0.727405 + 0.686209i \(0.759274\pi\)
\(570\) −2.50000 4.33013i −0.104713 0.181369i
\(571\) 7.00000 0.292941 0.146470 0.989215i \(-0.453209\pi\)
0.146470 + 0.989215i \(0.453209\pi\)
\(572\) 2.50000 + 2.59808i 0.104530 + 0.108631i
\(573\) 18.0000 0.751961
\(574\) 9.00000 + 15.5885i 0.375653 + 0.650650i
\(575\) 2.00000 + 3.46410i 0.0834058 + 0.144463i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 8.50000 14.7224i 0.353553 0.612372i
\(579\) 8.00000 13.8564i 0.332469 0.575853i
\(580\) 0 0
\(581\) 18.0000 31.1769i 0.746766 1.29344i
\(582\) 6.00000 + 10.3923i 0.248708 + 0.430775i
\(583\) 6.50000 + 11.2583i 0.269202 + 0.466272i
\(584\) −16.0000 −0.662085
\(585\) −3.50000 + 0.866025i −0.144707 + 0.0358057i
\(586\) 13.0000 0.537025
\(587\) 9.00000 + 15.5885i 0.371470 + 0.643404i 0.989792 0.142520i \(-0.0455206\pi\)
−0.618322 + 0.785925i \(0.712187\pi\)
\(588\) 1.00000 + 1.73205i 0.0412393 + 0.0714286i
\(589\) 25.0000 43.3013i 1.03011 1.78420i
\(590\) 4.00000 0.164677
\(591\) −7.50000 + 12.9904i −0.308509 + 0.534353i
\(592\) 0.500000 0.866025i 0.0205499 0.0355934i
\(593\) 28.0000 1.14982 0.574911 0.818216i \(-0.305037\pi\)
0.574911 + 0.818216i \(0.305037\pi\)
\(594\) 0.500000 0.866025i 0.0205152 0.0355335i
\(595\) 0 0
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) 2.00000 0.0818546
\(598\) 14.0000 3.46410i 0.572503 0.141658i
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0.500000 + 0.866025i 0.0204124 + 0.0353553i
\(601\) 13.5000 + 23.3827i 0.550676 + 0.953800i 0.998226 + 0.0595404i \(0.0189635\pi\)
−0.447549 + 0.894259i \(0.647703\pi\)
\(602\) −3.00000 + 5.19615i −0.122271 + 0.211779i
\(603\) −12.0000 −0.488678
\(604\) 3.00000 5.19615i 0.122068 0.211428i
\(605\) 5.00000 8.66025i 0.203279 0.352089i
\(606\) −4.00000 −0.162489
\(607\) −18.5000 + 32.0429i −0.750892 + 1.30058i 0.196499 + 0.980504i \(0.437043\pi\)
−0.947391 + 0.320079i \(0.896291\pi\)
\(608\) 2.50000 + 4.33013i 0.101388 + 0.175610i
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) −22.5000 23.3827i −0.910253 0.945962i
\(612\) 0 0
\(613\) −11.5000 19.9186i −0.464481 0.804504i 0.534697 0.845044i \(-0.320426\pi\)
−0.999178 + 0.0405396i \(0.987092\pi\)
\(614\) −9.00000 15.5885i −0.363210 0.629099i
\(615\) 3.00000 5.19615i 0.120972 0.209529i
\(616\) −3.00000 −0.120873
\(617\) 3.00000 5.19615i 0.120775 0.209189i −0.799298 0.600935i \(-0.794795\pi\)
0.920074 + 0.391745i \(0.128129\pi\)
\(618\) −4.50000 + 7.79423i −0.181017 + 0.313530i
\(619\) −31.0000 −1.24600 −0.622998 0.782224i \(-0.714085\pi\)
−0.622998 + 0.782224i \(0.714085\pi\)
\(620\) −5.00000 + 8.66025i −0.200805 + 0.347804i
\(621\) −2.00000 3.46410i −0.0802572 0.139010i
\(622\) 6.00000 + 10.3923i 0.240578 + 0.416693i
\(623\) −3.00000 −0.120192
\(624\) 3.50000 0.866025i 0.140112 0.0346688i
\(625\) 1.00000 0.0400000
\(626\) 17.0000 + 29.4449i 0.679457 + 1.17685i
\(627\) −2.50000 4.33013i −0.0998404 0.172929i
\(628\) −0.500000 + 0.866025i −0.0199522 + 0.0345582i
\(629\) 0 0
\(630\) 1.50000 2.59808i 0.0597614 0.103510i
\(631\) 2.00000 3.46410i 0.0796187 0.137904i −0.823467 0.567365i \(-0.807963\pi\)
0.903085 + 0.429461i \(0.141296\pi\)
\(632\) −10.0000 −0.397779
\(633\) −7.50000 + 12.9904i −0.298098 + 0.516321i
\(634\) −9.50000 16.4545i −0.377293 0.653491i
\(635\) −2.50000 4.33013i −0.0992095 0.171836i
\(636\) 13.0000 0.515484
\(637\) 2.00000 6.92820i 0.0792429 0.274505i
\(638\) 0 0
\(639\) 1.00000 + 1.73205i 0.0395594 + 0.0685189i
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) 4.50000 7.79423i 0.177739 0.307854i −0.763367 0.645966i \(-0.776455\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(642\) 6.00000 0.236801
\(643\) 22.0000 38.1051i 0.867595 1.50272i 0.00314839 0.999995i \(-0.498998\pi\)
0.864447 0.502724i \(-0.167669\pi\)
\(644\) −6.00000 + 10.3923i −0.236433 + 0.409514i
\(645\) 2.00000 0.0787499
\(646\) 0 0
\(647\) −4.50000 7.79423i −0.176913 0.306423i 0.763908 0.645325i \(-0.223278\pi\)
−0.940822 + 0.338902i \(0.889945\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 4.00000 0.157014
\(650\) 1.00000 3.46410i 0.0392232 0.135873i
\(651\) 30.0000 1.17579
\(652\) 10.0000 + 17.3205i 0.391630 + 0.678323i
\(653\) −20.5000 35.5070i −0.802227 1.38950i −0.918147 0.396239i \(-0.870315\pi\)
0.115920 0.993259i \(-0.463018\pi\)
\(654\) −5.00000 + 8.66025i −0.195515 + 0.338643i
\(655\) −15.0000 −0.586098
\(656\) −3.00000 + 5.19615i −0.117130 + 0.202876i
\(657\) 8.00000 13.8564i 0.312110 0.540590i
\(658\) 27.0000 1.05257
\(659\) −2.00000 + 3.46410i −0.0779089 + 0.134942i −0.902348 0.431009i \(-0.858158\pi\)
0.824439 + 0.565951i \(0.191491\pi\)
\(660\) 0.500000 + 0.866025i 0.0194625 + 0.0337100i
\(661\) −7.00000 12.1244i −0.272268 0.471583i 0.697174 0.716902i \(-0.254441\pi\)
−0.969442 + 0.245319i \(0.921107\pi\)
\(662\) 28.0000 1.08825
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) −7.50000 12.9904i −0.290838 0.503745i
\(666\) 0.500000 + 0.866025i 0.0193746 + 0.0335578i
\(667\) 0 0
\(668\) −13.0000 −0.502985
\(669\) 5.50000 9.52628i 0.212642 0.368307i
\(670\) 6.00000 10.3923i 0.231800 0.401490i
\(671\) −2.00000 −0.0772091
\(672\) −1.50000 + 2.59808i −0.0578638 + 0.100223i
\(673\) 16.0000 + 27.7128i 0.616755 + 1.06825i 0.990074 + 0.140548i \(0.0448863\pi\)
−0.373319 + 0.927703i \(0.621780\pi\)
\(674\) −1.00000 1.73205i −0.0385186 0.0667161i
\(675\) −1.00000 −0.0384900
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) −26.0000 −0.999261 −0.499631 0.866239i \(-0.666531\pi\)
−0.499631 + 0.866239i \(0.666531\pi\)
\(678\) 8.00000 + 13.8564i 0.307238 + 0.532152i
\(679\) 18.0000 + 31.1769i 0.690777 + 1.19646i
\(680\) 0 0
\(681\) 20.0000 0.766402
\(682\) −5.00000 + 8.66025i −0.191460 + 0.331618i
\(683\) 13.0000 22.5167i 0.497431 0.861576i −0.502564 0.864540i \(-0.667610\pi\)
0.999996 + 0.00296369i \(0.000943372\pi\)
\(684\) −5.00000 −0.191180
\(685\) −8.00000 + 13.8564i −0.305664 + 0.529426i
\(686\) −7.50000 12.9904i −0.286351 0.495975i
\(687\) −5.00000 8.66025i −0.190762 0.330409i
\(688\) −2.00000 −0.0762493
\(689\) −32.5000 33.7750i −1.23815 1.28672i
\(690\) 4.00000 0.152277
\(691\) −16.5000 28.5788i −0.627690 1.08719i −0.988014 0.154363i \(-0.950667\pi\)
0.360325 0.932827i \(-0.382666\pi\)
\(692\) 4.50000 + 7.79423i 0.171064 + 0.296292i
\(693\) 1.50000 2.59808i 0.0569803 0.0986928i
\(694\) −28.0000 −1.06287
\(695\) 4.50000 7.79423i 0.170695 0.295652i
\(696\) 0 0
\(697\) 0 0
\(698\) −18.0000 + 31.1769i −0.681310 + 1.18006i
\(699\) 5.00000 + 8.66025i 0.189117 + 0.327561i
\(700\) 1.50000 + 2.59808i 0.0566947 + 0.0981981i
\(701\) 4.00000 0.151078 0.0755390 0.997143i \(-0.475932\pi\)
0.0755390 + 0.997143i \(0.475932\pi\)
\(702\) −1.00000 + 3.46410i −0.0377426 + 0.130744i
\(703\) 5.00000 0.188579
\(704\) −0.500000 0.866025i −0.0188445 0.0326396i
\(705\) −4.50000 7.79423i −0.169480 0.293548i
\(706\) 18.0000 31.1769i 0.677439 1.17336i
\(707\) −12.0000 −0.451306
\(708\) 2.00000 3.46410i 0.0751646 0.130189i
\(709\) −2.00000 + 3.46410i −0.0751116 + 0.130097i −0.901135 0.433539i \(-0.857265\pi\)
0.826023 + 0.563636i \(0.190598\pi\)
\(710\) −2.00000 −0.0750587
\(711\) 5.00000 8.66025i 0.187515 0.324785i
\(712\) −0.500000 0.866025i −0.0187383 0.0324557i
\(713\) 20.0000 + 34.6410i 0.749006 + 1.29732i
\(714\) 0 0
\(715\) 1.00000 3.46410i 0.0373979 0.129550i
\(716\) 12.0000 0.448461
\(717\) −1.00000 1.73205i −0.0373457 0.0646846i
\(718\) −17.0000 29.4449i −0.634434 1.09887i
\(719\) −18.0000 + 31.1769i −0.671287 + 1.16270i 0.306253 + 0.951950i \(0.400925\pi\)
−0.977539 + 0.210752i \(0.932409\pi\)
\(720\) 1.00000 0.0372678
\(721\) −13.5000 + 23.3827i −0.502766 + 0.870817i
\(722\) −3.00000 + 5.19615i −0.111648 + 0.193381i
\(723\) −15.0000 −0.557856
\(724\) −3.00000 + 5.19615i −0.111494 + 0.193113i
\(725\) 0 0
\(726\) −5.00000 8.66025i −0.185567 0.321412i
\(727\) −37.0000 −1.37225 −0.686127 0.727482i \(-0.740691\pi\)
−0.686127 + 0.727482i \(0.740691\pi\)
\(728\) 10.5000 2.59808i 0.389156 0.0962911i
\(729\) 1.00000 0.0370370
\(730\) 8.00000 + 13.8564i 0.296093 + 0.512849i
\(731\) 0 0
\(732\) −1.00000 + 1.73205i −0.0369611 + 0.0640184i
\(733\) −5.00000 −0.184679 −0.0923396 0.995728i \(-0.529435\pi\)
−0.0923396 + 0.995728i \(0.529435\pi\)
\(734\) 0 0
\(735\) 1.00000 1.73205i 0.0368856 0.0638877i
\(736\) −4.00000 −0.147442
\(737\) 6.00000 10.3923i 0.221013 0.382805i
\(738\) −3.00000 5.19615i −0.110432 0.191273i
\(739\) −17.5000 30.3109i −0.643748 1.11500i −0.984589 0.174883i \(-0.944045\pi\)
0.340841 0.940121i \(-0.389288\pi\)
\(740\) −1.00000 −0.0367607
\(741\) 12.5000 + 12.9904i 0.459199 + 0.477214i
\(742\) 39.0000 1.43174
\(743\) −12.0000 20.7846i −0.440237 0.762513i 0.557470 0.830197i \(-0.311772\pi\)
−0.997707 + 0.0676840i \(0.978439\pi\)
\(744\) 5.00000 + 8.66025i 0.183309 + 0.317500i
\(745\) 3.00000 5.19615i 0.109911 0.190372i
\(746\) 10.0000 0.366126
\(747\) −6.00000 + 10.3923i −0.219529 + 0.380235i
\(748\) 0 0
\(749\) 18.0000 0.657706
\(750\) 0.500000 0.866025i 0.0182574 0.0316228i
\(751\) −22.0000 38.1051i −0.802791 1.39048i −0.917772 0.397108i \(-0.870014\pi\)
0.114981 0.993368i \(-0.463319\pi\)
\(752\) 4.50000 + 7.79423i 0.164098 + 0.284226i
\(753\) −11.0000 −0.400862
\(754\) 0 0
\(755\) −6.00000 −0.218362
\(756\) −1.50000 2.59808i −0.0545545 0.0944911i
\(757\) −19.5000 33.7750i −0.708740 1.22757i −0.965325 0.261051i \(-0.915931\pi\)
0.256585 0.966522i \(-0.417403\pi\)
\(758\) 0.500000 0.866025i 0.0181608 0.0314555i
\(759\) 4.00000 0.145191
\(760\) 2.50000 4.33013i 0.0906845 0.157070i
\(761\) −22.5000 + 38.9711i −0.815624 + 1.41270i 0.0932544 + 0.995642i \(0.470273\pi\)
−0.908879 + 0.417061i \(0.863060\pi\)
\(762\) −5.00000 −0.181131
\(763\) −15.0000 + 25.9808i −0.543036 + 0.940567i
\(764\) 9.00000 + 15.5885i 0.325609 + 0.563971i
\(765\) 0 0
\(766\) −28.0000 −1.01168
\(767\) −14.0000 + 3.46410i −0.505511 + 0.125081i
\(768\) −1.00000 −0.0360844
\(769\) 13.0000 + 22.5167i 0.468792 + 0.811972i 0.999364 0.0356685i \(-0.0113561\pi\)
−0.530572 + 0.847640i \(0.678023\pi\)
\(770\) 1.50000 + 2.59808i 0.0540562 + 0.0936282i
\(771\) −12.0000 + 20.7846i −0.432169 + 0.748539i
\(772\) 16.0000 0.575853
\(773\) 18.5000 32.0429i 0.665399 1.15250i −0.313778 0.949496i \(-0.601595\pi\)
0.979177 0.203008i \(-0.0650718\pi\)
\(774\) 1.00000 1.73205i 0.0359443 0.0622573i
\(775\) 10.0000 0.359211
\(776\) −6.00000 + 10.3923i −0.215387 + 0.373062i
\(777\) 1.50000 + 2.59808i 0.0538122 + 0.0932055i
\(778\) 8.00000 + 13.8564i 0.286814 + 0.496776i
\(779\) −30.0000 −1.07486
\(780\) −2.50000 2.59808i −0.0895144 0.0930261i
\(781\) −2.00000 −0.0715656
\(782\) 0 0
\(783\) 0 0
\(784\) −1.00000 + 1.73205i −0.0357143 + 0.0618590i
\(785\) 1.00000 0.0356915
\(786\) −7.50000 + 12.9904i −0.267516 + 0.463352i
\(787\) −8.00000 + 13.8564i −0.285169 + 0.493928i −0.972650 0.232275i \(-0.925383\pi\)
0.687481 + 0.726202i \(0.258716\pi\)
\(788\) −15.0000 −0.534353
\(789\) 1.50000 2.59808i 0.0534014 0.0924940i
\(790\) 5.00000 + 8.66025i 0.177892 + 0.308118i
\(791\) 24.0000 + 41.5692i 0.853342 + 1.47803i
\(792\) 1.00000 0.0355335
\(793\) 7.00000 1.73205i 0.248577 0.0615069i
\(794\) −33.0000 −1.17113
\(795\) −6.50000 11.2583i −0.230531 0.399292i
\(796\) 1.00000 + 1.73205i 0.0354441 + 0.0613909i
\(797\) 7.00000 12.1244i 0.247953 0.429467i −0.715005 0.699119i \(-0.753576\pi\)
0.962958 + 0.269653i \(0.0869089\pi\)
\(798\) −15.0000 −0.530994
\(799\) 0 0
\(800\) −0.500000 + 0.866025i −0.0176777 + 0.0306186i
\(801\) 1.00000 0.0353333
\(802\) −12.5000 + 21.6506i −0.441390 + 0.764511i
\(803\) 8.00000 + 13.8564i 0.282314 + 0.488982i
\(804\) −6.00000 10.3923i −0.211604 0.366508i
\(805\) 12.0000 0.422944
\(806\) 10.0000 34.6410i 0.352235 1.22018i
\(807\) 20.0000 0.704033
\(808\) −2.00000 3.46410i −0.0703598 0.121867i
\(809\) 9.00000 + 15.5885i 0.316423 + 0.548061i 0.979739 0.200279i \(-0.0641847\pi\)
−0.663316 + 0.748340i \(0.730851\pi\)
\(810\) −0.500000 + 0.866025i −0.0175682 + 0.0304290i
\(811\) 33.0000 1.15879 0.579393 0.815048i \(-0.303290\pi\)
0.579393 + 0.815048i \(0.303290\pi\)
\(812\) 0 0
\(813\) −12.0000 + 20.7846i −0.420858 + 0.728948i
\(814\) −1.00000 −0.0350500
\(815\) 10.0000 17.3205i 0.350285 0.606711i
\(816\) 0 0
\(817\) −5.00000 8.66025i −0.174928 0.302984i
\(818\) 17.0000 0.594391
\(819\) −3.00000 + 10.3923i −0.104828 + 0.363137i
\(820\) 6.00000 0.209529
\(821\) −9.00000 15.5885i −0.314102 0.544041i 0.665144 0.746715i \(-0.268370\pi\)
−0.979246 + 0.202674i \(0.935037\pi\)
\(822\) 8.00000 + 13.8564i 0.279032 + 0.483298i
\(823\) 2.50000 4.33013i 0.0871445 0.150939i −0.819159 0.573567i \(-0.805559\pi\)
0.906303 + 0.422628i \(0.138892\pi\)
\(824\) −9.00000 −0.313530
\(825\) 0.500000 0.866025i 0.0174078 0.0301511i
\(826\) 6.00000 10.3923i 0.208767 0.361595i
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 2.00000 3.46410i 0.0695048 0.120386i
\(829\) 22.0000 + 38.1051i 0.764092 + 1.32345i 0.940726 + 0.339169i \(0.110146\pi\)
−0.176634 + 0.984277i \(0.556521\pi\)
\(830\) −6.00000 10.3923i −0.208263 0.360722i
\(831\) −23.0000 −0.797861
\(832\) 2.50000 + 2.59808i 0.0866719 + 0.0900721i
\(833\) 0 0
\(834\) −4.50000 7.79423i −0.155822 0.269892i
\(835\) 6.50000 + 11.2583i 0.224942 + 0.389611i
\(836\) 2.50000 4.33013i 0.0864643 0.149761i
\(837\) −10.0000 −0.345651
\(838\) 14.0000 24.2487i 0.483622 0.837658i
\(839\) 27.0000 46.7654i 0.932144 1.61452i 0.152493 0.988304i \(-0.451270\pi\)
0.779650 0.626215i \(-0.215397\pi\)
\(840\) 3.00000 0.103510
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) −10.0000 17.3205i −0.344623 0.596904i
\(843\) 5.00000 + 8.66025i 0.172209 + 0.298275i
\(844\) −15.0000 −0.516321
\(845\) −0.500000 + 12.9904i −0.0172005 + 0.446883i
\(846\) −9.00000 −0.309426
\(847\) −15.0000 25.9808i −0.515406 0.892710i
\(848\) 6.50000 + 11.2583i 0.223211 + 0.386613i
\(849\) 1.00000 1.73205i 0.0343199 0.0594438i
\(850\) 0 0
\(851\) −2.00000 + 3.46410i −0.0685591 + 0.118748i
\(852\) −1.00000 + 1.73205i −0.0342594 + 0.0593391i
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) −3.00000 + 5.19615i −0.102658 + 0.177809i
\(855\) 2.50000 + 4.33013i 0.0854982 + 0.148087i
\(856\) 3.00000 + 5.19615i 0.102538 + 0.177601i
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) −2.50000 2.59808i −0.0853486 0.0886969i
\(859\) 19.0000 0.648272 0.324136 0.946011i \(-0.394927\pi\)
0.324136 + 0.946011i \(0.394927\pi\)
\(860\) 1.00000 + 1.73205i 0.0340997 + 0.0590624i
\(861\) −9.00000 15.5885i −0.306719 0.531253i
\(862\) −18.0000 + 31.1769i −0.613082 + 1.06189i
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) 0.500000 0.866025i 0.0170103 0.0294628i
\(865\) 4.50000 7.79423i 0.153005 0.265012i
\(866\) 16.0000 0.543702
\(867\) −8.50000 + 14.7224i −0.288675 + 0.500000i
\(868\) 15.0000 + 25.9808i 0.509133 + 0.881845i
\(869\) 5.00000 + 8.66025i 0.169613 + 0.293779i
\(870\) 0 0
\(871\) −12.0000 + 41.5692i −0.406604 + 1.40852i
\(872\) −10.0000 −0.338643
\(873\) −6.00000 10.3923i −0.203069 0.351726i
\(874\) −10.0000 17.3205i −0.338255 0.585875i
\(875\) 1.50000 2.59808i 0.0507093 0.0878310i
\(876\) 16.0000 0.540590
\(877\) −19.0000 + 32.9090i −0.641584 + 1.11126i 0.343495 + 0.939155i \(0.388389\pi\)
−0.985079 + 0.172102i \(0.944944\pi\)
\(878\) 5.00000 8.66025i 0.168742 0.292269i
\(879\) −13.0000 −0.438479
\(880\) −0.500000 + 0.866025i −0.0168550 + 0.0291937i
\(881\) −2.50000 4.33013i −0.0842271 0.145886i 0.820834 0.571166i \(-0.193509\pi\)
−0.905062 + 0.425280i \(0.860175\pi\)
\(882\) −1.00000 1.73205i −0.0336718 0.0583212i
\(883\) 42.0000 1.41341 0.706706 0.707507i \(-0.250180\pi\)
0.706706 + 0.707507i \(0.250180\pi\)
\(884\) 0 0
\(885\) −4.00000 −0.134459
\(886\) 9.00000 + 15.5885i 0.302361 + 0.523704i
\(887\) 6.50000 + 11.2583i 0.218249 + 0.378018i 0.954273 0.298938i \(-0.0966323\pi\)
−0.736024 + 0.676955i \(0.763299\pi\)
\(888\) −0.500000 + 0.866025i −0.0167789 + 0.0290619i
\(889\) −15.0000 −0.503084
\(890\) −0.500000 + 0.866025i −0.0167600 + 0.0290292i
\(891\) −0.500000 + 0.866025i −0.0167506 + 0.0290129i
\(892\) 11.0000 0.368307
\(893\) −22.5000 + 38.9711i −0.752934 + 1.30412i
\(894\) −3.00000 5.19615i −0.100335 0.173785i
\(895\) −6.00000 10.3923i −0.200558 0.347376i
\(896\) −3.00000 −0.100223
\(897\) −14.0000 + 3.46410i −0.467446 + 0.115663i
\(898\) −15.0000 −0.500556
\(899\) 0 0
\(900\) −0.500000 0.866025i −0.0166667 0.0288675i
\(901\) 0 0
\(902\) 6.00000 0.199778
\(903\) 3.00000 5.19615i 0.0998337 0.172917i
\(904\) −8.00000 + 13.8564i −0.266076 + 0.460857i
\(905\) 6.00000 0.199447
\(906\) −3.00000 + 5.19615i −0.0996683 + 0.172631i
\(907\) −21.0000 36.3731i −0.697294 1.20775i −0.969401 0.245481i \(-0.921054\pi\)
0.272108 0.962267i \(-0.412279\pi\)
\(908\) 10.0000 + 17.3205i 0.331862 + 0.574801i
\(909\) 4.00000 0.132672
\(910\) −7.50000 7.79423i −0.248623 0.258376i
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) −2.50000 4.33013i −0.0827833 0.143385i
\(913\) −6.00000 10.3923i −0.198571 0.343935i
\(914\) −11.0000 + 19.0526i −0.363848 + 0.630203i
\(915\) 2.00000 0.0661180
\(916\) 5.00000 8.66025i 0.165205 0.286143i
\(917\) −22.5000 + 38.9711i −0.743015 + 1.28694i
\(918\) 0 0
\(919\) −17.0000 + 29.4449i −0.560778 + 0.971296i 0.436650 + 0.899631i \(0.356165\pi\)
−0.997429 + 0.0716652i \(0.977169\pi\)
\(920\) 2.00000 + 3.46410i 0.0659380 + 0.114208i
\(921\) 9.00000 + 15.5885i 0.296560 + 0.513657i
\(922\) −12.0000 −0.395199
\(923\) 7.00000 1.73205i 0.230408 0.0570111i
\(924\) 3.00000 0.0986928
\(925\) 0.500000 + 0.866025i 0.0164399 + 0.0284747i
\(926\) 8.00000 + 13.8564i 0.262896 + 0.455350i
\(927\) 4.50000 7.79423i 0.147799 0.255996i
\(928\) 0 0
\(929\) −17.0000 + 29.4449i −0.557752 + 0.966055i 0.439932 + 0.898031i \(0.355003\pi\)
−0.997684 + 0.0680235i \(0.978331\pi\)
\(930\) 5.00000 8.66025i 0.163956 0.283981i
\(931\) −10.0000 −0.327737
\(932\) −5.00000 + 8.66025i −0.163780 + 0.283676i
\(933\) −6.00000 10.3923i −0.196431 0.340229i
\(934\) 18.0000 + 31.1769i 0.588978 + 1.02014i
\(935\) 0 0
\(936\) −3.50000 + 0.866025i −0.114401 + 0.0283069i
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) −18.0000 31.1769i −0.587721 1.01796i
\(939\) −17.0000 29.4449i −0.554774 0.960897i
\(940\) 4.50000 7.79423i 0.146774 0.254220i
\(941\) 24.0000 0.782378 0.391189 0.920310i \(-0.372064\pi\)
0.391189 + 0.920310i \(0.372064\pi\)
\(942\) 0.500000 0.866025i 0.0162909 0.0282166i
\(943\) 12.0000 20.7846i 0.390774 0.676840i
\(944\) 4.00000 0.130189
\(945\) −1.50000 + 2.59808i −0.0487950 + 0.0845154i
\(946\) 1.00000 + 1.73205i 0.0325128 + 0.0563138i
\(947\) 19.0000 + 32.9090i 0.617417 + 1.06940i 0.989955 + 0.141381i \(0.0451542\pi\)
−0.372538 + 0.928017i \(0.621512\pi\)
\(948\) 10.0000 0.324785
\(949\) −40.0000 41.5692i −1.29845 1.34939i
\(950\) −5.00000 −0.162221
\(951\) 9.50000 + 16.4545i 0.308059 + 0.533573i
\(952\) 0 0
\(953\) −11.0000 + 19.0526i −0.356325 + 0.617173i −0.987344 0.158595i \(-0.949304\pi\)
0.631019 + 0.775768i \(0.282637\pi\)
\(954\) −13.0000 −0.420891
\(955\) 9.00000 15.5885i 0.291233 0.504431i
\(956\) 1.00000 1.73205i 0.0323423 0.0560185i
\(957\) 0 0
\(958\) 4.00000 6.92820i 0.129234 0.223840i
\(959\) 24.0000 + 41.5692i 0.775000 + 1.34234i
\(960\) 0.500000 + 0.866025i 0.0161374 + 0.0279508i
\(961\) 69.0000 2.22581
\(962\) 3.50000 0.866025i 0.112845 0.0279218i
\(963\) −6.00000 −0.193347
\(964\) −7.50000 12.9904i −0.241559 0.418392i
\(965\) −8.00000 13.8564i −0.257529 0.446054i
\(966\) 6.00000 10.3923i 0.193047 0.334367i
\(967\) 7.00000 0.225105 0.112552 0.993646i \(-0.464097\pi\)
0.112552 + 0.993646i \(0.464097\pi\)
\(968\) 5.00000 8.66025i 0.160706 0.278351i
\(969\) 0 0
\(970\) 12.0000 0.385297
\(971\) −13.5000 + 23.3827i −0.433236 + 0.750386i −0.997150 0.0754473i \(-0.975962\pi\)
0.563914 + 0.825833i \(0.309295\pi\)
\(972\) 0.500000 + 0.866025i 0.0160375 + 0.0277778i
\(973\) −13.5000 23.3827i −0.432790 0.749614i
\(974\) 35.0000 1.12147
\(975\) −1.00000 + 3.46410i −0.0320256 + 0.110940i
\(976\) −2.00000 −0.0640184
\(977\) −24.0000 41.5692i −0.767828 1.32992i −0.938738 0.344631i \(-0.888004\pi\)
0.170910 0.985287i \(-0.445329\pi\)
\(978\) −10.0000 17.3205i −0.319765 0.553849i
\(979\) −0.500000 + 0.866025i −0.0159801 + 0.0276783i
\(980\) 2.00000 0.0638877
\(981\) 5.00000 8.66025i 0.159638 0.276501i
\(982\) −12.5000 + 21.6506i −0.398891 + 0.690900i
\(983\) 53.0000 1.69044 0.845219 0.534421i \(-0.179470\pi\)
0.845219 + 0.534421i \(0.179470\pi\)
\(984\) 3.00000 5.19615i 0.0956365 0.165647i
\(985\) 7.50000 + 12.9904i 0.238970 + 0.413908i
\(986\) 0 0
\(987\) −27.0000 −0.859419
\(988\) −5.00000 + 17.3205i −0.159071 + 0.551039i
\(989\) 8.00000 0.254385
\(990\) −0.500000 0.866025i −0.0158910 0.0275241i
\(991\) −19.0000 32.9090i −0.603555 1.04539i −0.992278 0.124033i \(-0.960417\pi\)
0.388723 0.921355i \(-0.372916\pi\)
\(992\) −5.00000 + 8.66025i −0.158750 + 0.274963i
\(993\) −28.0000 −0.888553
\(994\) −3.00000 + 5.19615i −0.0951542 + 0.164812i
\(995\) 1.00000 1.73205i 0.0317021 0.0549097i
\(996\) −12.0000 −0.380235
\(997\) 3.50000 6.06218i 0.110846 0.191991i −0.805266 0.592914i \(-0.797977\pi\)
0.916112 + 0.400923i \(0.131311\pi\)
\(998\) −10.0000 17.3205i −0.316544 0.548271i
\(999\) −0.500000 0.866025i −0.0158193 0.0273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.i.b.211.1 yes 2
3.2 odd 2 1170.2.i.j.991.1 2
5.2 odd 4 1950.2.z.i.1849.2 4
5.3 odd 4 1950.2.z.i.1849.1 4
5.4 even 2 1950.2.i.o.601.1 2
13.2 odd 12 5070.2.b.a.1351.1 2
13.3 even 3 5070.2.a.q.1.1 1
13.9 even 3 inner 390.2.i.b.61.1 2
13.10 even 6 5070.2.a.c.1.1 1
13.11 odd 12 5070.2.b.a.1351.2 2
39.35 odd 6 1170.2.i.j.451.1 2
65.9 even 6 1950.2.i.o.451.1 2
65.22 odd 12 1950.2.z.i.1699.1 4
65.48 odd 12 1950.2.z.i.1699.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.i.b.61.1 2 13.9 even 3 inner
390.2.i.b.211.1 yes 2 1.1 even 1 trivial
1170.2.i.j.451.1 2 39.35 odd 6
1170.2.i.j.991.1 2 3.2 odd 2
1950.2.i.o.451.1 2 65.9 even 6
1950.2.i.o.601.1 2 5.4 even 2
1950.2.z.i.1699.1 4 65.22 odd 12
1950.2.z.i.1699.2 4 65.48 odd 12
1950.2.z.i.1849.1 4 5.3 odd 4
1950.2.z.i.1849.2 4 5.2 odd 4
5070.2.a.c.1.1 1 13.10 even 6
5070.2.a.q.1.1 1 13.3 even 3
5070.2.b.a.1351.1 2 13.2 odd 12
5070.2.b.a.1351.2 2 13.11 odd 12