Properties

 Label 390.2.bn.c.97.3 Level $390$ Weight $2$ Character 390.97 Analytic conductor $3.114$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$390 = 2 \cdot 3 \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 390.bn (of order $$12$$, degree $$4$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$3.11416567883$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$8$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

 Embedding label 97.3 Character $$\chi$$ $$=$$ 390.97 Dual form 390.2.bn.c.193.3

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 + 0.866025i) q^{2} +(-0.258819 - 0.965926i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.08182 + 1.95695i) q^{5} +(0.965926 + 0.258819i) q^{6} +(-4.11737 + 2.37716i) q^{7} +1.00000 q^{8} +(-0.866025 + 0.500000i) q^{9} +O(q^{10})$$ $$q+(-0.500000 + 0.866025i) q^{2} +(-0.258819 - 0.965926i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.08182 + 1.95695i) q^{5} +(0.965926 + 0.258819i) q^{6} +(-4.11737 + 2.37716i) q^{7} +1.00000 q^{8} +(-0.866025 + 0.500000i) q^{9} +(-2.23568 - 0.0415914i) q^{10} +(0.467101 - 0.125159i) q^{11} +(-0.707107 + 0.707107i) q^{12} +(-0.107680 - 3.60394i) q^{13} -4.75433i q^{14} +(1.61027 - 1.55146i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-5.48850 - 1.47064i) q^{17} -1.00000i q^{18} +(-1.99525 + 7.44637i) q^{19} +(1.15386 - 1.91536i) q^{20} +(3.36182 + 3.36182i) q^{21} +(-0.125159 + 0.467101i) q^{22} +(-4.08313 + 1.09407i) q^{23} +(-0.258819 - 0.965926i) q^{24} +(-2.65933 + 4.23415i) q^{25} +(3.17495 + 1.70872i) q^{26} +(0.707107 + 0.707107i) q^{27} +(4.11737 + 2.37716i) q^{28} +(2.30480 + 1.33068i) q^{29} +(0.538463 + 2.17027i) q^{30} +(-3.58682 + 3.58682i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-0.241789 - 0.418791i) q^{33} +(4.01786 - 4.01786i) q^{34} +(-9.10625 - 5.48583i) q^{35} +(0.866025 + 0.500000i) q^{36} +(4.49223 + 2.59359i) q^{37} +(-5.45112 - 5.45112i) q^{38} +(-3.45327 + 1.03678i) q^{39} +(1.08182 + 1.95695i) q^{40} +(-1.85537 - 6.92432i) q^{41} +(-4.59233 + 1.23051i) q^{42} +(-2.97402 + 11.0992i) q^{43} +(-0.341942 - 0.341942i) q^{44} +(-1.91536 - 1.15386i) q^{45} +(1.09407 - 4.08313i) q^{46} -3.72184i q^{47} +(0.965926 + 0.258819i) q^{48} +(7.80181 - 13.5131i) q^{49} +(-2.33722 - 4.42012i) q^{50} +5.68211i q^{51} +(-3.06727 + 1.89523i) q^{52} +(2.48472 - 2.48472i) q^{53} +(-0.965926 + 0.258819i) q^{54} +(0.750251 + 0.778695i) q^{55} +(-4.11737 + 2.37716i) q^{56} +7.70905 q^{57} +(-2.30480 + 1.33068i) q^{58} +(7.30964 + 1.95861i) q^{59} +(-2.14874 - 0.618811i) q^{60} +(-1.66620 - 2.88595i) q^{61} +(-1.31287 - 4.89969i) q^{62} +(2.37716 - 4.11737i) q^{63} +1.00000 q^{64} +(6.93625 - 4.10955i) q^{65} +0.483579 q^{66} +(-0.630756 + 1.09250i) q^{67} +(1.47064 + 5.48850i) q^{68} +(2.11358 + 3.66083i) q^{69} +(9.30399 - 5.14333i) q^{70} +(10.7071 + 2.86896i) q^{71} +(-0.866025 + 0.500000i) q^{72} -4.98465 q^{73} +(-4.49223 + 2.59359i) q^{74} +(4.77815 + 1.47283i) q^{75} +(7.44637 - 1.99525i) q^{76} +(-1.62570 + 1.62570i) q^{77} +(0.828758 - 3.50901i) q^{78} -10.0426i q^{79} +(-2.23568 - 0.0415914i) q^{80} +(0.500000 - 0.866025i) q^{81} +(6.92432 + 1.85537i) q^{82} -8.14212i q^{83} +(1.23051 - 4.59233i) q^{84} +(-3.05961 - 12.3317i) q^{85} +(-8.12517 - 8.12517i) q^{86} +(0.688808 - 2.57067i) q^{87} +(0.467101 - 0.125159i) q^{88} +(4.53424 + 16.9220i) q^{89} +(1.95695 - 1.08182i) q^{90} +(9.01052 + 14.5828i) q^{91} +(2.98906 + 2.98906i) q^{92} +(4.39294 + 2.53626i) q^{93} +(3.22321 + 1.86092i) q^{94} +(-16.7307 + 4.15103i) q^{95} +(-0.707107 + 0.707107i) q^{96} +(5.60832 + 9.71389i) q^{97} +(7.80181 + 13.5131i) q^{98} +(-0.341942 + 0.341942i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32 q - 16 q^{2} - 16 q^{4} - 12 q^{7} + 32 q^{8}+O(q^{10})$$ 32 * q - 16 * q^2 - 16 * q^4 - 12 * q^7 + 32 * q^8 $$32 q - 16 q^{2} - 16 q^{4} - 12 q^{7} + 32 q^{8} - 4 q^{11} + 8 q^{13} - 4 q^{15} - 16 q^{16} - 4 q^{17} + 20 q^{19} + 8 q^{21} + 8 q^{22} - 16 q^{23} - 8 q^{25} - 4 q^{26} + 12 q^{28} + 24 q^{29} + 8 q^{30} + 12 q^{31} - 16 q^{32} - 16 q^{34} + 12 q^{35} - 24 q^{37} - 4 q^{38} - 20 q^{39} - 28 q^{41} - 16 q^{42} + 4 q^{43} - 4 q^{44} - 4 q^{46} + 20 q^{49} - 8 q^{50} - 4 q^{52} - 4 q^{53} + 68 q^{55} - 12 q^{56} + 16 q^{57} - 24 q^{58} + 36 q^{59} - 4 q^{60} - 28 q^{61} - 48 q^{62} + 32 q^{64} - 28 q^{65} - 28 q^{67} + 20 q^{68} - 20 q^{69} - 24 q^{70} - 4 q^{71} - 48 q^{73} + 24 q^{74} + 24 q^{75} - 16 q^{76} + 20 q^{77} + 4 q^{78} + 16 q^{81} + 44 q^{82} + 8 q^{84} + 64 q^{85} - 8 q^{86} + 20 q^{87} - 4 q^{88} - 16 q^{89} - 40 q^{91} + 20 q^{92} - 24 q^{93} - 24 q^{94} + 68 q^{95} + 8 q^{97} + 20 q^{98} - 4 q^{99}+O(q^{100})$$ 32 * q - 16 * q^2 - 16 * q^4 - 12 * q^7 + 32 * q^8 - 4 * q^11 + 8 * q^13 - 4 * q^15 - 16 * q^16 - 4 * q^17 + 20 * q^19 + 8 * q^21 + 8 * q^22 - 16 * q^23 - 8 * q^25 - 4 * q^26 + 12 * q^28 + 24 * q^29 + 8 * q^30 + 12 * q^31 - 16 * q^32 - 16 * q^34 + 12 * q^35 - 24 * q^37 - 4 * q^38 - 20 * q^39 - 28 * q^41 - 16 * q^42 + 4 * q^43 - 4 * q^44 - 4 * q^46 + 20 * q^49 - 8 * q^50 - 4 * q^52 - 4 * q^53 + 68 * q^55 - 12 * q^56 + 16 * q^57 - 24 * q^58 + 36 * q^59 - 4 * q^60 - 28 * q^61 - 48 * q^62 + 32 * q^64 - 28 * q^65 - 28 * q^67 + 20 * q^68 - 20 * q^69 - 24 * q^70 - 4 * q^71 - 48 * q^73 + 24 * q^74 + 24 * q^75 - 16 * q^76 + 20 * q^77 + 4 * q^78 + 16 * q^81 + 44 * q^82 + 8 * q^84 + 64 * q^85 - 8 * q^86 + 20 * q^87 - 4 * q^88 - 16 * q^89 - 40 * q^91 + 20 * q^92 - 24 * q^93 - 24 * q^94 + 68 * q^95 + 8 * q^97 + 20 * q^98 - 4 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/390\mathbb{Z}\right)^\times$$.

 $$n$$ $$131$$ $$157$$ $$301$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{4}\right)$$ $$e\left(\frac{5}{12}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 + 0.866025i −0.353553 + 0.612372i
$$3$$ −0.258819 0.965926i −0.149429 0.557678i
$$4$$ −0.500000 0.866025i −0.250000 0.433013i
$$5$$ 1.08182 + 1.95695i 0.483805 + 0.875176i
$$6$$ 0.965926 + 0.258819i 0.394338 + 0.105662i
$$7$$ −4.11737 + 2.37716i −1.55622 + 0.898483i −0.558605 + 0.829434i $$0.688663\pi$$
−0.997613 + 0.0690493i $$0.978003\pi$$
$$8$$ 1.00000 0.353553
$$9$$ −0.866025 + 0.500000i −0.288675 + 0.166667i
$$10$$ −2.23568 0.0415914i −0.706984 0.0131524i
$$11$$ 0.467101 0.125159i 0.140836 0.0377370i −0.187712 0.982224i $$-0.560107\pi$$
0.328548 + 0.944487i $$0.393441\pi$$
$$12$$ −0.707107 + 0.707107i −0.204124 + 0.204124i
$$13$$ −0.107680 3.60394i −0.0298650 0.999554i
$$14$$ 4.75433i 1.27065i
$$15$$ 1.61027 1.55146i 0.415771 0.400584i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −5.48850 1.47064i −1.33116 0.356682i −0.478011 0.878354i $$-0.658642\pi$$
−0.853146 + 0.521672i $$0.825309\pi$$
$$18$$ 1.00000i 0.235702i
$$19$$ −1.99525 + 7.44637i −0.457741 + 1.70831i 0.222160 + 0.975010i $$0.428689\pi$$
−0.679901 + 0.733304i $$0.737977\pi$$
$$20$$ 1.15386 1.91536i 0.258011 0.428288i
$$21$$ 3.36182 + 3.36182i 0.733608 + 0.733608i
$$22$$ −0.125159 + 0.467101i −0.0266841 + 0.0995863i
$$23$$ −4.08313 + 1.09407i −0.851391 + 0.228129i −0.658024 0.752997i $$-0.728607\pi$$
−0.193367 + 0.981127i $$0.561941\pi$$
$$24$$ −0.258819 0.965926i −0.0528312 0.197169i
$$25$$ −2.65933 + 4.23415i −0.531865 + 0.846829i
$$26$$ 3.17495 + 1.70872i 0.622658 + 0.335107i
$$27$$ 0.707107 + 0.707107i 0.136083 + 0.136083i
$$28$$ 4.11737 + 2.37716i 0.778109 + 0.449242i
$$29$$ 2.30480 + 1.33068i 0.427990 + 0.247100i 0.698490 0.715620i $$-0.253856\pi$$
−0.270500 + 0.962720i $$0.587189\pi$$
$$30$$ 0.538463 + 2.17027i 0.0983094 + 0.396235i
$$31$$ −3.58682 + 3.58682i −0.644212 + 0.644212i −0.951588 0.307376i $$-0.900549\pi$$
0.307376 + 0.951588i $$0.400549\pi$$
$$32$$ −0.500000 0.866025i −0.0883883 0.153093i
$$33$$ −0.241789 0.418791i −0.0420901 0.0729022i
$$34$$ 4.01786 4.01786i 0.689058 0.689058i
$$35$$ −9.10625 5.48583i −1.53924 0.927274i
$$36$$ 0.866025 + 0.500000i 0.144338 + 0.0833333i
$$37$$ 4.49223 + 2.59359i 0.738517 + 0.426383i 0.821530 0.570165i $$-0.193121\pi$$
−0.0830127 + 0.996548i $$0.526454\pi$$
$$38$$ −5.45112 5.45112i −0.884288 0.884288i
$$39$$ −3.45327 + 1.03678i −0.552966 + 0.166018i
$$40$$ 1.08182 + 1.95695i 0.171051 + 0.309421i
$$41$$ −1.85537 6.92432i −0.289759 1.08140i −0.945291 0.326229i $$-0.894222\pi$$
0.655531 0.755168i $$-0.272445\pi$$
$$42$$ −4.59233 + 1.23051i −0.708611 + 0.189872i
$$43$$ −2.97402 + 11.0992i −0.453534 + 1.69261i 0.238830 + 0.971061i $$0.423236\pi$$
−0.692364 + 0.721549i $$0.743431\pi$$
$$44$$ −0.341942 0.341942i −0.0515497 0.0515497i
$$45$$ −1.91536 1.15386i −0.285525 0.172007i
$$46$$ 1.09407 4.08313i 0.161312 0.602024i
$$47$$ 3.72184i 0.542886i −0.962454 0.271443i $$-0.912499\pi$$
0.962454 0.271443i $$-0.0875009\pi$$
$$48$$ 0.965926 + 0.258819i 0.139419 + 0.0373573i
$$49$$ 7.80181 13.5131i 1.11454 1.93045i
$$50$$ −2.33722 4.42012i −0.330532 0.625099i
$$51$$ 5.68211i 0.795655i
$$52$$ −3.06727 + 1.89523i −0.425353 + 0.262820i
$$53$$ 2.48472 2.48472i 0.341303 0.341303i −0.515554 0.856857i $$-0.672414\pi$$
0.856857 + 0.515554i $$0.172414\pi$$
$$54$$ −0.965926 + 0.258819i −0.131446 + 0.0352208i
$$55$$ 0.750251 + 0.778695i 0.101164 + 0.104999i
$$56$$ −4.11737 + 2.37716i −0.550206 + 0.317662i
$$57$$ 7.70905 1.02109
$$58$$ −2.30480 + 1.33068i −0.302635 + 0.174726i
$$59$$ 7.30964 + 1.95861i 0.951634 + 0.254989i 0.701055 0.713107i $$-0.252713\pi$$
0.250578 + 0.968096i $$0.419379\pi$$
$$60$$ −2.14874 0.618811i −0.277401 0.0798882i
$$61$$ −1.66620 2.88595i −0.213336 0.369508i 0.739421 0.673244i $$-0.235099\pi$$
−0.952756 + 0.303735i $$0.901766\pi$$
$$62$$ −1.31287 4.89969i −0.166734 0.622261i
$$63$$ 2.37716 4.11737i 0.299494 0.518739i
$$64$$ 1.00000 0.125000
$$65$$ 6.93625 4.10955i 0.860336 0.509727i
$$66$$ 0.483579 0.0595244
$$67$$ −0.630756 + 1.09250i −0.0770591 + 0.133470i −0.901980 0.431778i $$-0.857886\pi$$
0.824921 + 0.565248i $$0.191220\pi$$
$$68$$ 1.47064 + 5.48850i 0.178341 + 0.665579i
$$69$$ 2.11358 + 3.66083i 0.254445 + 0.440712i
$$70$$ 9.30399 5.14333i 1.11204 0.614746i
$$71$$ 10.7071 + 2.86896i 1.27070 + 0.340482i 0.830298 0.557320i $$-0.188170\pi$$
0.440399 + 0.897802i $$0.354837\pi$$
$$72$$ −0.866025 + 0.500000i −0.102062 + 0.0589256i
$$73$$ −4.98465 −0.583409 −0.291705 0.956508i $$-0.594222\pi$$
−0.291705 + 0.956508i $$0.594222\pi$$
$$74$$ −4.49223 + 2.59359i −0.522211 + 0.301498i
$$75$$ 4.77815 + 1.47283i 0.551734 + 0.170068i
$$76$$ 7.44637 1.99525i 0.854157 0.228871i
$$77$$ −1.62570 + 1.62570i −0.185266 + 0.185266i
$$78$$ 0.828758 3.50901i 0.0938384 0.397317i
$$79$$ 10.0426i 1.12988i −0.825131 0.564941i $$-0.808899\pi$$
0.825131 0.564941i $$-0.191101\pi$$
$$80$$ −2.23568 0.0415914i −0.249957 0.00465006i
$$81$$ 0.500000 0.866025i 0.0555556 0.0962250i
$$82$$ 6.92432 + 1.85537i 0.764663 + 0.204891i
$$83$$ 8.14212i 0.893714i −0.894606 0.446857i $$-0.852543\pi$$
0.894606 0.446857i $$-0.147457\pi$$
$$84$$ 1.23051 4.59233i 0.134260 0.501064i
$$85$$ −3.05961 12.3317i −0.331861 1.33756i
$$86$$ −8.12517 8.12517i −0.876160 0.876160i
$$87$$ 0.688808 2.57067i 0.0738480 0.275605i
$$88$$ 0.467101 0.125159i 0.0497931 0.0133420i
$$89$$ 4.53424 + 16.9220i 0.480628 + 1.79373i 0.598989 + 0.800758i $$0.295569\pi$$
−0.118361 + 0.992971i $$0.537764\pi$$
$$90$$ 1.95695 1.08182i 0.206281 0.114034i
$$91$$ 9.01052 + 14.5828i 0.944559 + 1.52869i
$$92$$ 2.98906 + 2.98906i 0.311631 + 0.311631i
$$93$$ 4.39294 + 2.53626i 0.455526 + 0.262998i
$$94$$ 3.22321 + 1.86092i 0.332449 + 0.191939i
$$95$$ −16.7307 + 4.15103i −1.71653 + 0.425887i
$$96$$ −0.707107 + 0.707107i −0.0721688 + 0.0721688i
$$97$$ 5.60832 + 9.71389i 0.569438 + 0.986296i 0.996622 + 0.0821310i $$0.0261726\pi$$
−0.427183 + 0.904165i $$0.640494\pi$$
$$98$$ 7.80181 + 13.5131i 0.788101 + 1.36503i
$$99$$ −0.341942 + 0.341942i −0.0343664 + 0.0343664i
$$100$$ 4.99654 + 0.185970i 0.499654 + 0.0185970i
$$101$$ 2.70678 + 1.56276i 0.269335 + 0.155501i 0.628585 0.777741i $$-0.283634\pi$$
−0.359250 + 0.933241i $$0.616968\pi$$
$$102$$ −4.92086 2.84106i −0.487237 0.281307i
$$103$$ −1.47061 1.47061i −0.144903 0.144903i 0.630934 0.775837i $$-0.282672\pi$$
−0.775837 + 0.630934i $$0.782672\pi$$
$$104$$ −0.107680 3.60394i −0.0105589 0.353396i
$$105$$ −2.94203 + 10.2158i −0.287113 + 0.996960i
$$106$$ 0.909471 + 3.39419i 0.0883357 + 0.329673i
$$107$$ 3.06593 0.821514i 0.296395 0.0794188i −0.107557 0.994199i $$-0.534303\pi$$
0.403952 + 0.914780i $$0.367636\pi$$
$$108$$ 0.258819 0.965926i 0.0249049 0.0929463i
$$109$$ 3.63360 + 3.63360i 0.348035 + 0.348035i 0.859377 0.511342i $$-0.170851\pi$$
−0.511342 + 0.859377i $$0.670851\pi$$
$$110$$ −1.04949 + 0.260389i −0.100065 + 0.0248271i
$$111$$ 1.34254 5.01043i 0.127428 0.475569i
$$112$$ 4.75433i 0.449242i
$$113$$ 0.887463 + 0.237795i 0.0834855 + 0.0223699i 0.300320 0.953839i $$-0.402907\pi$$
−0.216835 + 0.976208i $$0.569573\pi$$
$$114$$ −3.85452 + 6.67623i −0.361009 + 0.625286i
$$115$$ −6.55826 6.80689i −0.611561 0.634746i
$$116$$ 2.66135i 0.247100i
$$117$$ 1.89523 + 3.06727i 0.175214 + 0.283569i
$$118$$ −5.35103 + 5.35103i −0.492602 + 0.492602i
$$119$$ 26.0941 6.99190i 2.39204 0.640946i
$$120$$ 1.61027 1.55146i 0.146997 0.141628i
$$121$$ −9.32376 + 5.38308i −0.847615 + 0.489371i
$$122$$ 3.33241 0.301702
$$123$$ −6.20817 + 3.58429i −0.559772 + 0.323185i
$$124$$ 4.89969 + 1.31287i 0.440005 + 0.117899i
$$125$$ −11.1629 0.623584i −0.998443 0.0557750i
$$126$$ 2.37716 + 4.11737i 0.211774 + 0.366804i
$$127$$ 0.793214 + 2.96031i 0.0703863 + 0.262685i 0.992148 0.125072i $$-0.0399163\pi$$
−0.921761 + 0.387758i $$0.873250\pi$$
$$128$$ −0.500000 + 0.866025i −0.0441942 + 0.0765466i
$$129$$ 11.4907 1.01170
$$130$$ 0.0908448 + 8.06175i 0.00796762 + 0.707062i
$$131$$ −2.20827 −0.192938 −0.0964689 0.995336i $$-0.530755\pi$$
−0.0964689 + 0.995336i $$0.530755\pi$$
$$132$$ −0.241789 + 0.418791i −0.0210451 + 0.0364511i
$$133$$ −9.48606 35.4025i −0.822546 3.06978i
$$134$$ −0.630756 1.09250i −0.0544890 0.0943777i
$$135$$ −0.618811 + 2.14874i −0.0532588 + 0.184934i
$$136$$ −5.48850 1.47064i −0.470635 0.126106i
$$137$$ −6.64175 + 3.83461i −0.567443 + 0.327613i −0.756127 0.654424i $$-0.772911\pi$$
0.188685 + 0.982038i $$0.439578\pi$$
$$138$$ −4.22716 −0.359840
$$139$$ 1.65356 0.954683i 0.140253 0.0809752i −0.428232 0.903669i $$-0.640863\pi$$
0.568485 + 0.822694i $$0.307530\pi$$
$$140$$ −0.197739 + 10.6292i −0.0167120 + 0.898328i
$$141$$ −3.59502 + 0.963283i −0.302756 + 0.0811231i
$$142$$ −7.83813 + 7.83813i −0.657761 + 0.657761i
$$143$$ −0.501365 1.66993i −0.0419262 0.139646i
$$144$$ 1.00000i 0.0833333i
$$145$$ −0.110689 + 5.94993i −0.00919226 + 0.494115i
$$146$$ 2.49233 4.31683i 0.206266 0.357264i
$$147$$ −15.0719 4.03851i −1.24311 0.333091i
$$148$$ 5.18718i 0.426383i
$$149$$ 5.39111 20.1199i 0.441657 1.64829i −0.282958 0.959132i $$-0.591316\pi$$
0.724615 0.689154i $$-0.242018\pi$$
$$150$$ −3.66459 + 3.40159i −0.299212 + 0.277738i
$$151$$ −8.81822 8.81822i −0.717617 0.717617i 0.250500 0.968117i $$-0.419405\pi$$
−0.968117 + 0.250500i $$0.919405\pi$$
$$152$$ −1.99525 + 7.44637i −0.161836 + 0.603980i
$$153$$ 5.48850 1.47064i 0.443719 0.118894i
$$154$$ −0.595048 2.22075i −0.0479504 0.178953i
$$155$$ −10.8995 3.13894i −0.875471 0.252125i
$$156$$ 2.62451 + 2.47223i 0.210129 + 0.197937i
$$157$$ 13.3775 + 13.3775i 1.06764 + 1.06764i 0.997540 + 0.0700989i $$0.0223315\pi$$
0.0700989 + 0.997540i $$0.477669\pi$$
$$158$$ 8.69716 + 5.02131i 0.691909 + 0.399474i
$$159$$ −3.04315 1.75696i −0.241338 0.139336i
$$160$$ 1.15386 1.91536i 0.0912206 0.151423i
$$161$$ 14.2109 14.2109i 1.11998 1.11998i
$$162$$ 0.500000 + 0.866025i 0.0392837 + 0.0680414i
$$163$$ 5.09500 + 8.82480i 0.399071 + 0.691212i 0.993612 0.112854i $$-0.0359992\pi$$
−0.594540 + 0.804066i $$0.702666\pi$$
$$164$$ −5.06895 + 5.06895i −0.395819 + 0.395819i
$$165$$ 0.557982 0.926228i 0.0434388 0.0721067i
$$166$$ 7.05128 + 4.07106i 0.547286 + 0.315975i
$$167$$ 0.943685 + 0.544837i 0.0730246 + 0.0421608i 0.536068 0.844175i $$-0.319909\pi$$
−0.463043 + 0.886336i $$0.653243\pi$$
$$168$$ 3.36182 + 3.36182i 0.259370 + 0.259370i
$$169$$ −12.9768 + 0.776145i −0.998216 + 0.0597034i
$$170$$ 12.2094 + 3.51616i 0.936416 + 0.269677i
$$171$$ −1.99525 7.44637i −0.152580 0.569438i
$$172$$ 11.0992 2.97402i 0.846305 0.226767i
$$173$$ 4.56875 17.0508i 0.347356 1.29635i −0.542481 0.840068i $$-0.682515\pi$$
0.889836 0.456280i $$-0.150819\pi$$
$$174$$ 1.88186 + 1.88186i 0.142663 + 0.142663i
$$175$$ 0.884164 23.7552i 0.0668365 1.79572i
$$176$$ −0.125159 + 0.467101i −0.00943424 + 0.0352091i
$$177$$ 7.56749i 0.568808i
$$178$$ −16.9220 4.53424i −1.26836 0.339855i
$$179$$ −1.93938 + 3.35910i −0.144956 + 0.251071i −0.929356 0.369184i $$-0.879637\pi$$
0.784401 + 0.620254i $$0.212971\pi$$
$$180$$ −0.0415914 + 2.23568i −0.00310004 + 0.166638i
$$181$$ 8.83587i 0.656765i 0.944545 + 0.328382i $$0.106503\pi$$
−0.944545 + 0.328382i $$0.893497\pi$$
$$182$$ −17.1343 + 0.511945i −1.27008 + 0.0379479i
$$183$$ −2.35637 + 2.35637i −0.174188 + 0.174188i
$$184$$ −4.08313 + 1.09407i −0.301012 + 0.0806559i
$$185$$ −0.215742 + 11.5969i −0.0158617 + 0.852619i
$$186$$ −4.39294 + 2.53626i −0.322106 + 0.185968i
$$187$$ −2.74775 −0.200935
$$188$$ −3.22321 + 1.86092i −0.235077 + 0.135722i
$$189$$ −4.59233 1.23051i −0.334043 0.0895064i
$$190$$ 4.77044 16.5647i 0.346084 1.20173i
$$191$$ 4.45931 + 7.72376i 0.322665 + 0.558872i 0.981037 0.193821i $$-0.0620880\pi$$
−0.658372 + 0.752692i $$0.728755\pi$$
$$192$$ −0.258819 0.965926i −0.0186787 0.0697097i
$$193$$ −6.79051 + 11.7615i −0.488792 + 0.846612i −0.999917 0.0128944i $$-0.995895\pi$$
0.511125 + 0.859506i $$0.329229\pi$$
$$194$$ −11.2166 −0.805307
$$195$$ −5.76475 5.63628i −0.412822 0.403622i
$$196$$ −15.6036 −1.11454
$$197$$ −7.86660 + 13.6254i −0.560472 + 0.970767i 0.436983 + 0.899470i $$0.356047\pi$$
−0.997455 + 0.0712967i $$0.977286\pi$$
$$198$$ −0.125159 0.467101i −0.00889469 0.0331954i
$$199$$ −9.15656 15.8596i −0.649091 1.12426i −0.983340 0.181774i $$-0.941816\pi$$
0.334249 0.942485i $$-0.391517\pi$$
$$200$$ −2.65933 + 4.23415i −0.188043 + 0.299399i
$$201$$ 1.21853 + 0.326503i 0.0859483 + 0.0230298i
$$202$$ −2.70678 + 1.56276i −0.190449 + 0.109956i
$$203$$ −12.6529 −0.888062
$$204$$ 4.92086 2.84106i 0.344529 0.198914i
$$205$$ 11.5434 11.1217i 0.806225 0.776776i
$$206$$ 2.00889 0.538280i 0.139966 0.0375037i
$$207$$ 2.98906 2.98906i 0.207754 0.207754i
$$208$$ 3.17495 + 1.70872i 0.220143 + 0.118478i
$$209$$ 3.72793i 0.257866i
$$210$$ −7.37613 7.65577i −0.509001 0.528298i
$$211$$ −11.7676 + 20.3821i −0.810115 + 1.40316i 0.102667 + 0.994716i $$0.467262\pi$$
−0.912783 + 0.408445i $$0.866071\pi$$
$$212$$ −3.39419 0.909471i −0.233114 0.0624628i
$$213$$ 11.0848i 0.759517i
$$214$$ −0.821514 + 3.06593i −0.0561576 + 0.209583i
$$215$$ −24.9379 + 6.18733i −1.70075 + 0.421972i
$$216$$ 0.707107 + 0.707107i 0.0481125 + 0.0481125i
$$217$$ 6.24180 23.2947i 0.423721 1.58135i
$$218$$ −4.96358 + 1.32999i −0.336176 + 0.0900782i
$$219$$ 1.29012 + 4.81480i 0.0871784 + 0.325354i
$$220$$ 0.299244 1.03908i 0.0201750 0.0700550i
$$221$$ −4.70910 + 19.9386i −0.316768 + 1.34122i
$$222$$ 3.66789 + 3.66789i 0.246172 + 0.246172i
$$223$$ −5.36162 3.09553i −0.359041 0.207292i 0.309619 0.950861i $$-0.399798\pi$$
−0.668660 + 0.743568i $$0.733132\pi$$
$$224$$ 4.11737 + 2.37716i 0.275103 + 0.158831i
$$225$$ 0.185970 4.99654i 0.0123980 0.333103i
$$226$$ −0.649668 + 0.649668i −0.0432153 + 0.0432153i
$$227$$ −1.50099 2.59979i −0.0996243 0.172554i 0.811905 0.583790i $$-0.198431\pi$$
−0.911529 + 0.411235i $$0.865097\pi$$
$$228$$ −3.85452 6.67623i −0.255272 0.442144i
$$229$$ −4.22979 + 4.22979i −0.279512 + 0.279512i −0.832914 0.553402i $$-0.813329\pi$$
0.553402 + 0.832914i $$0.313329\pi$$
$$230$$ 9.17407 2.27617i 0.604920 0.150086i
$$231$$ 1.99107 + 1.14955i 0.131003 + 0.0756345i
$$232$$ 2.30480 + 1.33068i 0.151317 + 0.0873631i
$$233$$ 16.3318 + 16.3318i 1.06993 + 1.06993i 0.997364 + 0.0725671i $$0.0231191\pi$$
0.0725671 + 0.997364i $$0.476881\pi$$
$$234$$ −3.60394 + 0.107680i −0.235597 + 0.00703926i
$$235$$ 7.28347 4.02637i 0.475121 0.262651i
$$236$$ −1.95861 7.30964i −0.127495 0.475817i
$$237$$ −9.70042 + 2.59922i −0.630110 + 0.168838i
$$238$$ −6.99190 + 26.0941i −0.453217 + 1.69143i
$$239$$ −8.92240 8.92240i −0.577142 0.577142i 0.356972 0.934115i $$-0.383809\pi$$
−0.934115 + 0.356972i $$0.883809\pi$$
$$240$$ 0.538463 + 2.17027i 0.0347576 + 0.140090i
$$241$$ −2.47389 + 9.23270i −0.159358 + 0.594731i 0.839335 + 0.543614i $$0.182945\pi$$
−0.998693 + 0.0511162i $$0.983722\pi$$
$$242$$ 10.7662i 0.692074i
$$243$$ −0.965926 0.258819i −0.0619642 0.0166032i
$$244$$ −1.66620 + 2.88595i −0.106668 + 0.184754i
$$245$$ 34.8847 + 0.648977i 2.22870 + 0.0414616i
$$246$$ 7.16858i 0.457052i
$$247$$ 27.0511 + 6.38894i 1.72122 + 0.406518i
$$248$$ −3.58682 + 3.58682i −0.227763 + 0.227763i
$$249$$ −7.86468 + 2.10734i −0.498404 + 0.133547i
$$250$$ 6.12151 9.35559i 0.387158 0.591700i
$$251$$ −21.4486 + 12.3834i −1.35383 + 0.781632i −0.988783 0.149358i $$-0.952279\pi$$
−0.365044 + 0.930990i $$0.618946\pi$$
$$252$$ −4.75433 −0.299494
$$253$$ −1.77030 + 1.02208i −0.111298 + 0.0642578i
$$254$$ −2.96031 0.793214i −0.185747 0.0497707i
$$255$$ −11.1196 + 6.14703i −0.696338 + 0.384942i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 2.73941 + 10.2236i 0.170880 + 0.637733i 0.997217 + 0.0745566i $$0.0237541\pi$$
−0.826337 + 0.563176i $$0.809579\pi$$
$$258$$ −5.74536 + 9.95126i −0.357691 + 0.619538i
$$259$$ −24.6615 −1.53239
$$260$$ −7.02710 3.95220i −0.435802 0.245105i
$$261$$ −2.66135 −0.164734
$$262$$ 1.10414 1.91242i 0.0682138 0.118150i
$$263$$ 4.31826 + 16.1160i 0.266275 + 0.993753i 0.961465 + 0.274927i $$0.0886536\pi$$
−0.695190 + 0.718826i $$0.744680\pi$$
$$264$$ −0.241789 0.418791i −0.0148811 0.0257748i
$$265$$ 7.55051 + 2.17446i 0.463824 + 0.133576i
$$266$$ 35.4025 + 9.48606i 2.17066 + 0.581628i
$$267$$ 15.1718 8.75947i 0.928502 0.536071i
$$268$$ 1.26151 0.0770591
$$269$$ −3.81902 + 2.20491i −0.232850 + 0.134436i −0.611886 0.790946i $$-0.709589\pi$$
0.379036 + 0.925382i $$0.376256\pi$$
$$270$$ −1.55146 1.61027i −0.0944186 0.0979982i
$$271$$ −6.52256 + 1.74771i −0.396217 + 0.106166i −0.451426 0.892309i $$-0.649084\pi$$
0.0552084 + 0.998475i $$0.482418\pi$$
$$272$$ 4.01786 4.01786i 0.243619 0.243619i
$$273$$ 11.7538 12.4778i 0.711372 0.755190i
$$274$$ 7.66923i 0.463315i
$$275$$ −0.712231 + 2.31061i −0.0429491 + 0.139335i
$$276$$ 2.11358 3.66083i 0.127223 0.220356i
$$277$$ −0.244160 0.0654225i −0.0146702 0.00393086i 0.251476 0.967863i $$-0.419084\pi$$
−0.266147 + 0.963933i $$0.585751\pi$$
$$278$$ 1.90937i 0.114516i
$$279$$ 1.31287 4.89969i 0.0785993 0.293337i
$$280$$ −9.10625 5.48583i −0.544202 0.327841i
$$281$$ 6.39000 + 6.39000i 0.381196 + 0.381196i 0.871533 0.490337i $$-0.163126\pi$$
−0.490337 + 0.871533i $$0.663126\pi$$
$$282$$ 0.963283 3.59502i 0.0573627 0.214080i
$$283$$ 10.9341 2.92979i 0.649967 0.174158i 0.0812532 0.996693i $$-0.474108\pi$$
0.568714 + 0.822535i $$0.307441\pi$$
$$284$$ −2.86896 10.7071i −0.170241 0.635349i
$$285$$ 8.33981 + 15.0862i 0.494008 + 0.893632i
$$286$$ 1.69688 + 0.400770i 0.100339 + 0.0236980i
$$287$$ 24.0995 + 24.0995i 1.42255 + 1.42255i
$$288$$ 0.866025 + 0.500000i 0.0510310 + 0.0294628i
$$289$$ 13.2384 + 7.64321i 0.778731 + 0.449601i
$$290$$ −5.09745 3.07083i −0.299332 0.180325i
$$291$$ 7.93136 7.93136i 0.464944 0.464944i
$$292$$ 2.49233 + 4.31683i 0.145852 + 0.252624i
$$293$$ −0.845332 1.46416i −0.0493848 0.0855370i 0.840276 0.542158i $$-0.182393\pi$$
−0.889661 + 0.456621i $$0.849059\pi$$
$$294$$ 11.0334 11.0334i 0.643482 0.643482i
$$295$$ 4.07481 + 16.4235i 0.237245 + 0.956212i
$$296$$ 4.49223 + 2.59359i 0.261105 + 0.150749i
$$297$$ 0.418791 + 0.241789i 0.0243007 + 0.0140300i
$$298$$ 14.7288 + 14.7288i 0.853216 + 0.853216i
$$299$$ 4.38264 + 14.5975i 0.253454 + 0.844198i
$$300$$ −1.11357 4.87442i −0.0642918 0.281425i
$$301$$ −14.1395 52.7692i −0.814984 3.04156i
$$302$$ 12.0459 3.22769i 0.693165 0.185733i
$$303$$ 0.808945 3.01902i 0.0464727 0.173438i
$$304$$ −5.45112 5.45112i −0.312643 0.312643i
$$305$$ 3.84513 6.38277i 0.220172 0.365476i
$$306$$ −1.47064 + 5.48850i −0.0840709 + 0.313757i
$$307$$ 17.7546i 1.01331i −0.862149 0.506655i $$-0.830882\pi$$
0.862149 0.506655i $$-0.169118\pi$$
$$308$$ 2.22075 + 0.595048i 0.126539 + 0.0339060i
$$309$$ −1.03988 + 1.80112i −0.0591565 + 0.102462i
$$310$$ 8.16816 7.86980i 0.463921 0.446975i
$$311$$ 25.1577i 1.42656i −0.700879 0.713281i $$-0.747209\pi$$
0.700879 0.713281i $$-0.252791\pi$$
$$312$$ −3.45327 + 1.03678i −0.195503 + 0.0586961i
$$313$$ −0.0166772 + 0.0166772i −0.000942650 + 0.000942650i −0.707578 0.706635i $$-0.750212\pi$$
0.706635 + 0.707578i $$0.250212\pi$$
$$314$$ −18.2740 + 4.89650i −1.03126 + 0.276325i
$$315$$ 10.6292 + 0.197739i 0.598885 + 0.0111413i
$$316$$ −8.69716 + 5.02131i −0.489254 + 0.282471i
$$317$$ −12.4944 −0.701755 −0.350878 0.936421i $$-0.614117\pi$$
−0.350878 + 0.936421i $$0.614117\pi$$
$$318$$ 3.04315 1.75696i 0.170651 0.0985256i
$$319$$ 1.24312 + 0.333093i 0.0696014 + 0.0186496i
$$320$$ 1.08182 + 1.95695i 0.0604757 + 0.109397i
$$321$$ −1.58704 2.74884i −0.0885802 0.153425i
$$322$$ 5.20157 + 19.4125i 0.289872 + 1.08182i
$$323$$ 21.9018 37.9351i 1.21865 2.11077i
$$324$$ −1.00000 −0.0555556
$$325$$ 15.5460 + 9.12812i 0.862336 + 0.506337i
$$326$$ −10.1900 −0.564372
$$327$$ 2.56934 4.45023i 0.142085 0.246098i
$$328$$ −1.85537 6.92432i −0.102445 0.382332i
$$329$$ 8.84742 + 15.3242i 0.487774 + 0.844850i
$$330$$ 0.523146 + 0.946340i 0.0287982 + 0.0520943i
$$331$$ −26.8411 7.19206i −1.47532 0.395311i −0.570569 0.821250i $$-0.693277\pi$$
−0.904752 + 0.425938i $$0.859944\pi$$
$$332$$ −7.05128 + 4.07106i −0.386989 + 0.223428i
$$333$$ −5.18718 −0.284255
$$334$$ −0.943685 + 0.544837i −0.0516362 + 0.0298122i
$$335$$ −2.82034 0.0524681i −0.154092 0.00286664i
$$336$$ −4.59233 + 1.23051i −0.250532 + 0.0671298i
$$337$$ −9.22124 + 9.22124i −0.502313 + 0.502313i −0.912156 0.409843i $$-0.865583\pi$$
0.409843 + 0.912156i $$0.365583\pi$$
$$338$$ 5.81624 11.6263i 0.316362 0.632388i
$$339$$ 0.918769i 0.0499007i
$$340$$ −9.14977 + 8.81555i −0.496216 + 0.478090i
$$341$$ −1.22648 + 2.12433i −0.0664178 + 0.115039i
$$342$$ 7.44637 + 1.99525i 0.402653 + 0.107891i
$$343$$ 40.9044i 2.20863i
$$344$$ −2.97402 + 11.0992i −0.160348 + 0.598428i
$$345$$ −4.87755 + 8.09654i −0.262599 + 0.435903i
$$346$$ 12.4821 + 12.4821i 0.671039 + 0.671039i
$$347$$ 8.51297 31.7708i 0.457000 1.70555i −0.225140 0.974326i $$-0.572284\pi$$
0.682140 0.731222i $$-0.261049\pi$$
$$348$$ −2.57067 + 0.688808i −0.137802 + 0.0369240i
$$349$$ 3.94625 + 14.7276i 0.211238 + 0.788351i 0.987457 + 0.157888i $$0.0504684\pi$$
−0.776219 + 0.630463i $$0.782865\pi$$
$$350$$ 20.1305 + 12.6433i 1.07602 + 0.675813i
$$351$$ 2.47223 2.62451i 0.131958 0.140086i
$$352$$ −0.341942 0.341942i −0.0182256 0.0182256i
$$353$$ 2.73423 + 1.57861i 0.145528 + 0.0840208i 0.570996 0.820953i $$-0.306557\pi$$
−0.425468 + 0.904974i $$0.639890\pi$$
$$354$$ 6.55364 + 3.78375i 0.348322 + 0.201104i
$$355$$ 5.96875 + 24.0570i 0.316788 + 1.27681i
$$356$$ 12.3878 12.3878i 0.656550 0.656550i
$$357$$ −13.5073 23.3954i −0.714883 1.23821i
$$358$$ −1.93938 3.35910i −0.102499 0.177534i
$$359$$ −14.4885 + 14.4885i −0.764671 + 0.764671i −0.977163 0.212492i $$-0.931842\pi$$
0.212492 + 0.977163i $$0.431842\pi$$
$$360$$ −1.91536 1.15386i −0.100948 0.0608138i
$$361$$ −35.0129 20.2147i −1.84278 1.06393i
$$362$$ −7.65209 4.41793i −0.402185 0.232201i
$$363$$ 7.61282 + 7.61282i 0.399569 + 0.399569i
$$364$$ 8.12380 15.0947i 0.425803 0.791179i
$$365$$ −5.39250 9.75473i −0.282256 0.510586i
$$366$$ −0.862491 3.21886i −0.0450831 0.168253i
$$367$$ −3.54857 + 0.950838i −0.185234 + 0.0496333i −0.350244 0.936659i $$-0.613901\pi$$
0.165009 + 0.986292i $$0.447235\pi$$
$$368$$ 1.09407 4.08313i 0.0570324 0.212848i
$$369$$ 5.06895 + 5.06895i 0.263879 + 0.263879i
$$370$$ −9.93531 5.98527i −0.516512 0.311160i
$$371$$ −4.32392 + 16.1371i −0.224487 + 0.837797i
$$372$$ 5.07253i 0.262998i
$$373$$ −9.14360 2.45002i −0.473438 0.126857i 0.0142076 0.999899i $$-0.495477\pi$$
−0.487645 + 0.873042i $$0.662144\pi$$
$$374$$ 1.37387 2.37962i 0.0710414 0.123047i
$$375$$ 2.28684 + 10.9440i 0.118092 + 0.565144i
$$376$$ 3.72184i 0.191939i
$$377$$ 4.54750 8.44965i 0.234208 0.435179i
$$378$$ 3.36182 3.36182i 0.172913 0.172913i
$$379$$ 24.1182 6.46245i 1.23887 0.331954i 0.420841 0.907134i $$-0.361735\pi$$
0.818026 + 0.575181i $$0.195068\pi$$
$$380$$ 11.9602 + 12.4137i 0.613548 + 0.636809i
$$381$$ 2.65415 1.53237i 0.135976 0.0785058i
$$382$$ −8.91863 −0.456317
$$383$$ −10.2864 + 5.93884i −0.525609 + 0.303460i −0.739226 0.673457i $$-0.764809\pi$$
0.213618 + 0.976917i $$0.431475\pi$$
$$384$$ 0.965926 + 0.258819i 0.0492922 + 0.0132078i
$$385$$ −4.94014 1.42270i −0.251773 0.0725076i
$$386$$ −6.79051 11.7615i −0.345628 0.598645i
$$387$$ −2.97402 11.0992i −0.151178 0.564203i
$$388$$ 5.60832 9.71389i 0.284719 0.493148i
$$389$$ −1.36456 −0.0691861 −0.0345930 0.999401i $$-0.511014\pi$$
−0.0345930 + 0.999401i $$0.511014\pi$$
$$390$$ 7.76354 2.17428i 0.393122 0.110099i
$$391$$ 24.0192 1.21470
$$392$$ 7.80181 13.5131i 0.394051 0.682516i
$$393$$ 0.571543 + 2.13303i 0.0288305 + 0.107597i
$$394$$ −7.86660 13.6254i −0.396314 0.686436i
$$395$$ 19.6529 10.8643i 0.988846 0.546643i
$$396$$ 0.467101 + 0.125159i 0.0234727 + 0.00628949i
$$397$$ −2.25580 + 1.30238i −0.113215 + 0.0653648i −0.555538 0.831491i $$-0.687488\pi$$
0.442323 + 0.896856i $$0.354154\pi$$
$$398$$ 18.3131 0.917953
$$399$$ −31.7410 + 18.3257i −1.58904 + 0.917431i
$$400$$ −2.33722 4.42012i −0.116861 0.221006i
$$401$$ 36.4992 9.77993i 1.82268 0.488387i 0.825569 0.564301i $$-0.190854\pi$$
0.997114 + 0.0759143i $$0.0241875\pi$$
$$402$$ −0.892024 + 0.892024i −0.0444901 + 0.0444901i
$$403$$ 13.3129 + 12.5405i 0.663164 + 0.624685i
$$404$$ 3.12552i 0.155501i
$$405$$ 2.23568 + 0.0415914i 0.111092 + 0.00206670i
$$406$$ 6.32646 10.9578i 0.313977 0.543824i
$$407$$ 2.42294 + 0.649224i 0.120100 + 0.0321808i
$$408$$ 5.68211i 0.281307i
$$409$$ −7.99933 + 29.8539i −0.395541 + 1.47618i 0.425315 + 0.905045i $$0.360163\pi$$
−0.820856 + 0.571135i $$0.806503\pi$$
$$410$$ 3.86001 + 15.5577i 0.190632 + 0.768342i
$$411$$ 5.42296 + 5.42296i 0.267495 + 0.267495i
$$412$$ −0.538280 + 2.00889i −0.0265192 + 0.0989708i
$$413$$ −34.7524 + 9.31187i −1.71005 + 0.458207i
$$414$$ 1.09407 + 4.08313i 0.0537706 + 0.200675i
$$415$$ 15.9337 8.80832i 0.782156 0.432383i
$$416$$ −3.06727 + 1.89523i −0.150385 + 0.0929211i
$$417$$ −1.35013 1.35013i −0.0661159 0.0661159i
$$418$$ −3.22848 1.86397i −0.157910 0.0911695i
$$419$$ −19.8423 11.4560i −0.969360 0.559660i −0.0703189 0.997525i $$-0.522402\pi$$
−0.899041 + 0.437864i $$0.855735\pi$$
$$420$$ 10.3182 2.56003i 0.503474 0.124917i
$$421$$ 24.4713 24.4713i 1.19266 1.19266i 0.216338 0.976319i $$-0.430589\pi$$
0.976319 0.216338i $$-0.0694112\pi$$
$$422$$ −11.7676 20.3821i −0.572838 0.992185i
$$423$$ 1.86092 + 3.22321i 0.0904811 + 0.156718i
$$424$$ 2.48472 2.48472i 0.120669 0.120669i
$$425$$ 20.8226 19.3282i 1.01005 0.937556i
$$426$$ 9.59971 + 5.54240i 0.465107 + 0.268530i
$$427$$ 13.7208 + 7.92168i 0.663994 + 0.383357i
$$428$$ −2.24442 2.24442i −0.108488 0.108488i
$$429$$ −1.48326 + 0.916490i −0.0716127 + 0.0442486i
$$430$$ 7.11059 24.6906i 0.342903 1.19068i
$$431$$ 5.85603 + 21.8550i 0.282075 + 1.05272i 0.950950 + 0.309344i $$0.100109\pi$$
−0.668875 + 0.743375i $$0.733224\pi$$
$$432$$ −0.965926 + 0.258819i −0.0464731 + 0.0124524i
$$433$$ 3.75119 13.9996i 0.180271 0.672779i −0.815323 0.579006i $$-0.803441\pi$$
0.995594 0.0937729i $$-0.0298927\pi$$
$$434$$ 17.0529 + 17.0529i 0.818566 + 0.818566i
$$435$$ 5.77584 1.43304i 0.276930 0.0687089i
$$436$$ 1.32999 4.96358i 0.0636949 0.237713i
$$437$$ 32.5874i 1.55887i
$$438$$ −4.81480 1.29012i −0.230060 0.0616444i
$$439$$ −4.36192 + 7.55507i −0.208183 + 0.360584i −0.951142 0.308753i $$-0.900088\pi$$
0.742959 + 0.669337i $$0.233422\pi$$
$$440$$ 0.750251 + 0.778695i 0.0357668 + 0.0371228i
$$441$$ 15.6036i 0.743029i
$$442$$ −14.9128 14.0475i −0.709329 0.668172i
$$443$$ 6.96074 6.96074i 0.330715 0.330715i −0.522143 0.852858i $$-0.674867\pi$$
0.852858 + 0.522143i $$0.174867\pi$$
$$444$$ −5.01043 + 1.34254i −0.237784 + 0.0637141i
$$445$$ −28.2103 + 27.1799i −1.33730 + 1.28845i
$$446$$ 5.36162 3.09553i 0.253880 0.146578i
$$447$$ −20.8297 −0.985209
$$448$$ −4.11737 + 2.37716i −0.194527 + 0.112310i
$$449$$ 16.3716 + 4.38676i 0.772625 + 0.207024i 0.623531 0.781799i $$-0.285698\pi$$
0.149094 + 0.988823i $$0.452364\pi$$
$$450$$ 4.23415 + 2.65933i 0.199600 + 0.125362i
$$451$$ −1.73329 3.00214i −0.0816173 0.141365i
$$452$$ −0.237795 0.887463i −0.0111849 0.0417427i
$$453$$ −6.23543 + 10.8001i −0.292966 + 0.507432i
$$454$$ 3.00198 0.140890
$$455$$ −18.7900 + 33.4091i −0.880891 + 1.56624i
$$456$$ 7.70905 0.361009
$$457$$ 1.93631 3.35379i 0.0905767 0.156883i −0.817177 0.576386i $$-0.804462\pi$$
0.907754 + 0.419503i $$0.137796\pi$$
$$458$$ −1.54821 5.77800i −0.0723431 0.269988i
$$459$$ −2.84106 4.92086i −0.132609 0.229686i
$$460$$ −2.61582 + 9.08306i −0.121963 + 0.423500i
$$461$$ −17.8876 4.79296i −0.833107 0.223230i −0.183039 0.983106i $$-0.558593\pi$$
−0.650069 + 0.759875i $$0.725260\pi$$
$$462$$ −1.99107 + 1.14955i −0.0926330 + 0.0534817i
$$463$$ 32.4579 1.50845 0.754224 0.656617i $$-0.228013\pi$$
0.754224 + 0.656617i $$0.228013\pi$$
$$464$$ −2.30480 + 1.33068i −0.106998 + 0.0617751i
$$465$$ −0.210974 + 11.3406i −0.00978367 + 0.525906i
$$466$$ −22.3096 + 5.97785i −1.03347 + 0.276918i
$$467$$ −10.9462 + 10.9462i −0.506532 + 0.506532i −0.913460 0.406929i $$-0.866600\pi$$
0.406929 + 0.913460i $$0.366600\pi$$
$$468$$ 1.70872 3.17495i 0.0789855 0.146762i
$$469$$ 5.99764i 0.276945i
$$470$$ −0.154797 + 8.32085i −0.00714024 + 0.383812i
$$471$$ 9.45930 16.3840i 0.435862 0.754935i
$$472$$ 7.30964 + 1.95861i 0.336453 + 0.0901524i
$$473$$ 5.55667i 0.255496i
$$474$$ 2.59922 9.70042i 0.119386 0.445555i
$$475$$ −26.2230 28.2505i −1.20319 1.29622i
$$476$$ −19.1022 19.1022i −0.875549 0.875549i
$$477$$ −0.909471 + 3.39419i −0.0416418 + 0.155409i
$$478$$ 12.1882 3.26583i 0.557477 0.149375i
$$479$$ −5.23155 19.5244i −0.239036 0.892093i −0.976288 0.216476i $$-0.930544\pi$$
0.737252 0.675618i $$-0.236123\pi$$
$$480$$ −2.14874 0.618811i −0.0980760 0.0282447i
$$481$$ 8.86342 16.4690i 0.404137 0.750922i
$$482$$ −6.75881 6.75881i −0.307855 0.307855i
$$483$$ −17.4048 10.0487i −0.791945 0.457230i
$$484$$ 9.32376 + 5.38308i 0.423807 + 0.244685i
$$485$$ −12.9424 + 21.4839i −0.587685 + 0.975534i
$$486$$ 0.707107 0.707107i 0.0320750 0.0320750i
$$487$$ 12.5440 + 21.7268i 0.568423 + 0.984537i 0.996722 + 0.0809002i $$0.0257795\pi$$
−0.428299 + 0.903637i $$0.640887\pi$$
$$488$$ −1.66620 2.88595i −0.0754255 0.130641i
$$489$$ 7.20542 7.20542i 0.325840 0.325840i
$$490$$ −18.0044 + 29.8865i −0.813355 + 1.35014i
$$491$$ −25.8562 14.9281i −1.16687 0.673695i −0.213933 0.976848i $$-0.568627\pi$$
−0.952942 + 0.303153i $$0.901961\pi$$
$$492$$ 6.20817 + 3.58429i 0.279886 + 0.161592i
$$493$$ −10.6929 10.6929i −0.481586 0.481586i
$$494$$ −19.0585 + 20.2325i −0.857485 + 0.910303i
$$495$$ −1.03908 0.299244i −0.0467033 0.0134500i
$$496$$ −1.31287 4.89969i −0.0589495 0.220002i
$$497$$ −50.9050 + 13.6399i −2.28340 + 0.611835i
$$498$$ 2.10734 7.86468i 0.0944319 0.352425i
$$499$$ −0.591394 0.591394i −0.0264744 0.0264744i 0.693746 0.720220i $$-0.255959\pi$$
−0.720220 + 0.693746i $$0.755959\pi$$
$$500$$ 5.04143 + 9.97918i 0.225460 + 0.446282i
$$501$$ 0.282028 1.05254i 0.0126001 0.0470242i
$$502$$ 24.7668i 1.10539i
$$503$$ 40.1917 + 10.7693i 1.79206 + 0.480181i 0.992694 0.120663i $$-0.0385019\pi$$
0.799367 + 0.600844i $$0.205169\pi$$
$$504$$ 2.37716 4.11737i 0.105887 0.183402i
$$505$$ −0.129995 + 6.98767i −0.00578470 + 0.310947i
$$506$$ 2.04417i 0.0908743i
$$507$$ 4.10834 + 12.3338i 0.182458 + 0.547761i
$$508$$ 2.16710 2.16710i 0.0961495 0.0961495i
$$509$$ −8.70333 + 2.33205i −0.385769 + 0.103366i −0.446491 0.894788i $$-0.647326\pi$$
0.0607220 + 0.998155i $$0.480660\pi$$
$$510$$ 0.236327 12.7034i 0.0104647 0.562516i
$$511$$ 20.5236 11.8493i 0.907912 0.524183i
$$512$$ 1.00000 0.0441942
$$513$$ −6.67623 + 3.85452i −0.294763 + 0.170181i
$$514$$ −10.2236 2.73941i −0.450945 0.120830i
$$515$$ 1.28698 4.46885i 0.0567109 0.196921i
$$516$$ −5.74536 9.95126i −0.252925 0.438080i
$$517$$ −0.465823 1.73848i −0.0204869 0.0764581i
$$518$$ 12.3308 21.3575i 0.541782 0.938395i
$$519$$ −17.6523 −0.774849
$$520$$ 6.93625 4.10955i 0.304175 0.180216i
$$521$$ −5.28662 −0.231611 −0.115806 0.993272i $$-0.536945\pi$$
−0.115806 + 0.993272i $$0.536945\pi$$
$$522$$ 1.33068 2.30480i 0.0582421 0.100878i
$$523$$ −3.86852 14.4375i −0.169159 0.631309i −0.997473 0.0710454i $$-0.977366\pi$$
0.828314 0.560264i $$-0.189300\pi$$
$$524$$ 1.10414 + 1.91242i 0.0482344 + 0.0835445i
$$525$$ −23.1746 + 5.29426i −1.01142 + 0.231060i
$$526$$ −16.1160 4.31826i −0.702689 0.188285i
$$527$$ 24.9612 14.4113i 1.08733 0.627768i
$$528$$ 0.483579 0.0210451
$$529$$ −4.44366 + 2.56555i −0.193203 + 0.111546i
$$530$$ −5.65839 + 5.45170i −0.245785 + 0.236807i
$$531$$ −7.30964 + 1.95861i −0.317211 + 0.0849965i
$$532$$ −25.9164 + 25.9164i −1.12362 + 1.12362i
$$533$$ −24.7551 + 7.43224i −1.07226 + 0.321926i
$$534$$ 17.5189i 0.758119i
$$535$$ 4.92446 + 5.11115i 0.212903 + 0.220974i
$$536$$ −0.630756 + 1.09250i −0.0272445 + 0.0471889i
$$537$$ 3.74659 + 1.00390i 0.161677 + 0.0433213i
$$538$$ 4.40983i 0.190121i
$$539$$ 1.95294 7.28846i 0.0841190 0.313936i
$$540$$ 2.17027 0.538463i 0.0933934 0.0231717i
$$541$$ 24.5374 + 24.5374i 1.05495 + 1.05495i 0.998400 + 0.0565474i $$0.0180092\pi$$
0.0565474 + 0.998400i $$0.481991\pi$$
$$542$$ 1.74771 6.52256i 0.0750707 0.280168i
$$543$$ 8.53479 2.28689i 0.366263 0.0981399i
$$544$$ 1.47064 + 5.48850i 0.0630531 + 0.235318i
$$545$$ −3.17987 + 11.0417i −0.136211 + 0.472973i
$$546$$ 4.92919 + 16.4180i 0.210950 + 0.702625i
$$547$$ 16.1197 + 16.1197i 0.689230 + 0.689230i 0.962062 0.272832i $$-0.0879602\pi$$
−0.272832 + 0.962062i $$0.587960\pi$$
$$548$$ 6.64175 + 3.83461i 0.283721 + 0.163807i
$$549$$ 2.88595 + 1.66620i 0.123169 + 0.0711119i
$$550$$ −1.64493 1.77212i −0.0701403 0.0755633i
$$551$$ −14.5073 + 14.5073i −0.618034 + 0.618034i
$$552$$ 2.11358 + 3.66083i 0.0899600 + 0.155815i
$$553$$ 23.8729 + 41.3491i 1.01518 + 1.75834i
$$554$$ 0.178738 0.178738i 0.00759384 0.00759384i
$$555$$ 11.2576 2.79310i 0.477857 0.118560i
$$556$$ −1.65356 0.954683i −0.0701265 0.0404876i
$$557$$ −13.1316 7.58155i −0.556405 0.321241i 0.195296 0.980744i $$-0.437433\pi$$
−0.751701 + 0.659504i $$0.770767\pi$$
$$558$$ 3.58682 + 3.58682i 0.151842 + 0.151842i
$$559$$ 40.3211 + 9.52303i 1.70540 + 0.402781i
$$560$$ 9.30399 5.14333i 0.393165 0.217345i
$$561$$ 0.711170 + 2.65412i 0.0300256 + 0.112057i
$$562$$ −8.72890 + 2.33890i −0.368207 + 0.0986607i
$$563$$ 0.973022 3.63137i 0.0410080 0.153044i −0.942386 0.334528i $$-0.891423\pi$$
0.983394 + 0.181484i $$0.0580899\pi$$
$$564$$ 2.63174 + 2.63174i 0.110816 + 0.110816i
$$565$$ 0.494723 + 1.99397i 0.0208131 + 0.0838871i
$$566$$ −2.92979 + 10.9341i −0.123148 + 0.459596i
$$567$$ 4.75433i 0.199663i
$$568$$ 10.7071 + 2.86896i 0.449259 + 0.120379i
$$569$$ 5.02462 8.70289i 0.210643 0.364844i −0.741273 0.671204i $$-0.765778\pi$$
0.951916 + 0.306359i $$0.0991109\pi$$
$$570$$ −17.2350 0.320630i −0.721894 0.0134297i
$$571$$ 10.3229i 0.432000i 0.976393 + 0.216000i $$0.0693011\pi$$
−0.976393 + 0.216000i $$0.930699\pi$$
$$572$$ −1.19552 + 1.26916i −0.0499871 + 0.0530662i
$$573$$ 6.30642 6.30642i 0.263455 0.263455i
$$574$$ −32.9205 + 8.82101i −1.37407 + 0.368182i
$$575$$ 6.22591 20.1980i 0.259638 0.842316i
$$576$$ −0.866025 + 0.500000i −0.0360844 + 0.0208333i
$$577$$ 8.72658 0.363292 0.181646 0.983364i $$-0.441857\pi$$
0.181646 + 0.983364i $$0.441857\pi$$
$$578$$ −13.2384 + 7.64321i −0.550646 + 0.317916i
$$579$$ 13.1183 + 3.51503i 0.545176 + 0.146080i
$$580$$ 5.20814 2.87911i 0.216256 0.119548i
$$581$$ 19.3551 + 33.5241i 0.802986 + 1.39081i
$$582$$ 2.90308 + 10.8344i 0.120336 + 0.449102i
$$583$$ 0.849630 1.47160i 0.0351881 0.0609476i
$$584$$ −4.98465 −0.206266
$$585$$ −3.95220 + 7.02710i −0.163403 + 0.290535i
$$586$$ 1.69066 0.0698407
$$587$$ −5.01380 + 8.68416i −0.206942 + 0.358434i −0.950750 0.309960i $$-0.899684\pi$$
0.743808 + 0.668394i $$0.233018\pi$$
$$588$$ 4.03851 + 15.0719i 0.166545 + 0.621556i
$$589$$ −19.5522 33.8654i −0.805634 1.39540i
$$590$$ −16.2606 4.68285i −0.669436 0.192790i
$$591$$ 15.1971 + 4.07205i 0.625126 + 0.167502i
$$592$$ −4.49223 + 2.59359i −0.184629 + 0.106596i
$$593$$ −33.5484 −1.37767 −0.688833 0.724920i $$-0.741877\pi$$
−0.688833 + 0.724920i $$0.741877\pi$$
$$594$$ −0.418791 + 0.241789i −0.0171832 + 0.00992074i
$$595$$ 41.9120 + 43.5010i 1.71822 + 1.78337i
$$596$$ −20.1199 + 5.39111i −0.824143 + 0.220829i
$$597$$ −12.9493 + 12.9493i −0.529981 + 0.529981i
$$598$$ −14.8332 3.50330i −0.606573 0.143260i
$$599$$ 2.25756i 0.0922415i 0.998936 + 0.0461207i $$0.0146859\pi$$
−0.998936 + 0.0461207i $$0.985314\pi$$
$$600$$ 4.77815 + 1.47283i 0.195067 + 0.0601282i
$$601$$ 10.5394 18.2548i 0.429911 0.744628i −0.566954 0.823750i $$-0.691878\pi$$
0.996865 + 0.0791216i $$0.0252115\pi$$
$$602$$ 52.7692 + 14.1395i 2.15071 + 0.576281i
$$603$$ 1.26151i 0.0513727i
$$604$$ −3.22769 + 12.0459i −0.131333 + 0.490141i
$$605$$ −20.6211 12.4226i −0.838366 0.505052i
$$606$$ 2.21008 + 2.21008i 0.0897783 + 0.0897783i
$$607$$ 9.72276 36.2858i 0.394635 1.47280i −0.427767 0.903889i $$-0.640699\pi$$
0.822401 0.568908i $$-0.192634\pi$$
$$608$$ 7.44637 1.99525i 0.301990 0.0809180i
$$609$$ 3.27482 + 12.2218i 0.132702 + 0.495252i
$$610$$ 3.60507 + 6.52137i 0.145965 + 0.264042i
$$611$$ −13.4133 + 0.400768i −0.542644 + 0.0162133i
$$612$$ −4.01786 4.01786i −0.162412 0.162412i
$$613$$ −17.6627 10.1975i −0.713388 0.411875i 0.0989261 0.995095i $$-0.468459\pi$$
−0.812314 + 0.583220i $$0.801793\pi$$
$$614$$ 15.3759 + 8.87731i 0.620523 + 0.358259i
$$615$$ −13.7304 8.27154i −0.553664 0.333541i
$$616$$ −1.62570 + 1.62570i −0.0655014 + 0.0655014i
$$617$$ 9.32288 + 16.1477i 0.375325 + 0.650082i 0.990376 0.138406i $$-0.0441977\pi$$
−0.615051 + 0.788488i $$0.710864\pi$$
$$618$$ −1.03988 1.80112i −0.0418300 0.0724517i
$$619$$ −13.6709 + 13.6709i −0.549479 + 0.549479i −0.926290 0.376811i $$-0.877020\pi$$
0.376811 + 0.926290i $$0.377020\pi$$
$$620$$ 2.73137 + 11.0087i 0.109694 + 0.442122i
$$621$$ −3.66083 2.11358i −0.146904 0.0848151i
$$622$$ 21.7872 + 12.5788i 0.873587 + 0.504365i
$$623$$ −58.8955 58.8955i −2.35960 2.35960i
$$624$$ 0.828758 3.50901i 0.0331769 0.140473i
$$625$$ −10.8560 22.5199i −0.434239 0.900798i
$$626$$ −0.00610427 0.0227815i −0.000243976 0.000910530i
$$627$$ 3.60091 0.964860i 0.143806 0.0385328i
$$628$$ 4.89650 18.2740i 0.195391 0.729211i
$$629$$ −20.8414 20.8414i −0.830999 0.830999i
$$630$$ −5.48583 + 9.10625i −0.218561 + 0.362802i
$$631$$ −3.95463 + 14.7589i −0.157431 + 0.587542i 0.841454 + 0.540329i $$0.181700\pi$$
−0.998885 + 0.0472123i $$0.984966\pi$$
$$632$$ 10.0426i 0.399474i
$$633$$ 22.7333 + 6.09136i 0.903566 + 0.242110i
$$634$$ 6.24720 10.8205i 0.248108 0.429736i
$$635$$ −4.93508 + 4.75481i −0.195843 + 0.188689i
$$636$$ 3.51393i 0.139336i
$$637$$ −49.5406 26.6622i −1.96287 1.05639i
$$638$$ −0.910027 + 0.910027i −0.0360283 + 0.0360283i
$$639$$ −10.7071 + 2.86896i −0.423566 + 0.113494i
$$640$$ −2.23568 0.0415914i −0.0883731 0.00164405i
$$641$$ 7.65295 4.41843i 0.302273 0.174518i −0.341190 0.939994i $$-0.610830\pi$$
0.643464 + 0.765477i $$0.277497\pi$$
$$642$$ 3.17409 0.125271
$$643$$ 4.89241 2.82463i 0.192938 0.111393i −0.400419 0.916332i $$-0.631136\pi$$
0.593357 + 0.804939i $$0.297802\pi$$
$$644$$ −19.4125 5.20157i −0.764960 0.204970i
$$645$$ 12.4309 + 22.4868i 0.489467 + 0.885417i
$$646$$ 21.9018 + 37.9351i 0.861717 + 1.49254i
$$647$$ −6.64822 24.8115i −0.261369 0.975441i −0.964436 0.264318i $$-0.914853\pi$$
0.703067 0.711124i $$-0.251813\pi$$
$$648$$ 0.500000 0.866025i 0.0196419 0.0340207i
$$649$$ 3.65948 0.143647
$$650$$ −15.6782 + 8.89915i −0.614949 + 0.349053i
$$651$$ −24.1164 −0.945198
$$652$$ 5.09500 8.82480i 0.199536 0.345606i
$$653$$ 3.88139 + 14.4856i 0.151891 + 0.566864i 0.999352 + 0.0360059i $$0.0114635\pi$$
−0.847461 + 0.530858i $$0.821870\pi$$
$$654$$ 2.56934 + 4.45023i 0.100469 + 0.174018i
$$655$$ −2.38896 4.32149i −0.0933443 0.168854i
$$656$$ 6.92432 + 1.85537i 0.270349 + 0.0724399i
$$657$$ 4.31683 2.49233i 0.168416 0.0972349i
$$658$$ −17.6948 −0.689817
$$659$$ −12.1812 + 7.03281i −0.474511 + 0.273959i −0.718126 0.695913i $$-0.755000\pi$$
0.243615 + 0.969872i $$0.421667\pi$$
$$660$$ −1.08113 0.0201127i −0.0420828 0.000782887i
$$661$$ −26.2706 + 7.03917i −1.02181 + 0.273792i −0.730555 0.682854i $$-0.760738\pi$$
−0.291252 + 0.956646i $$0.594072\pi$$
$$662$$ 19.6491 19.6491i 0.763683 0.763683i
$$663$$ 20.4780 0.611850i 0.795300 0.0237623i
$$664$$ 8.14212i 0.315975i
$$665$$ 59.0187 56.8629i 2.28865 2.20505i
$$666$$ 2.59359 4.49223i 0.100499 0.174070i
$$667$$ −10.8666 2.91171i −0.420758 0.112742i
$$668$$ 1.08967i 0.0421608i
$$669$$ −1.60237 + 5.98011i −0.0619511 + 0.231204i
$$670$$ 1.45561 2.41625i 0.0562350 0.0933479i
$$671$$ −1.13949 1.13949i −0.0439895 0.0439895i
$$672$$ 1.23051 4.59233i 0.0474680 0.177153i
$$673$$ 33.1949 8.89455i 1.27957 0.342860i 0.445880 0.895093i $$-0.352891\pi$$
0.833690 + 0.552233i $$0.186224\pi$$
$$674$$ −3.37521 12.5965i −0.130008 0.485197i
$$675$$ −4.87442 + 1.11357i −0.187617 + 0.0428612i
$$676$$ 7.16057 + 10.8502i 0.275406 + 0.417314i
$$677$$ −1.25853 1.25853i −0.0483691 0.0483691i 0.682509 0.730878i $$-0.260889\pi$$
−0.730878 + 0.682509i $$0.760889\pi$$
$$678$$ 0.795677 + 0.459384i 0.0305578 + 0.0176426i
$$679$$ −46.1830 26.6638i −1.77234 1.02326i
$$680$$ −3.05961 12.3317i −0.117331 0.472899i
$$681$$ −2.12272 + 2.12272i −0.0813429 + 0.0813429i
$$682$$ −1.22648 2.12433i −0.0469645 0.0813448i
$$683$$ 13.0516 + 22.6061i 0.499407 + 0.864999i 1.00000 0.000684427i $$-0.000217860\pi$$
−0.500593 + 0.865683i $$0.666885\pi$$
$$684$$ −5.45112 + 5.45112i −0.208429 + 0.208429i
$$685$$ −14.6893 8.84922i −0.561251 0.338111i
$$686$$ −35.4242 20.4522i −1.35250 0.780868i
$$687$$ 5.18041 + 2.99091i 0.197645 + 0.114110i
$$688$$ −8.12517 8.12517i −0.309769 0.309769i
$$689$$ −9.22235 8.68724i −0.351344 0.330958i
$$690$$ −4.57303 8.27236i −0.174092 0.314923i
$$691$$ 8.35072 + 31.1653i 0.317676 + 1.18558i 0.921472 + 0.388445i $$0.126988\pi$$
−0.603795 + 0.797139i $$0.706346\pi$$
$$692$$ −17.0508 + 4.56875i −0.648174 + 0.173678i
$$693$$ 0.595048 2.22075i 0.0226040 0.0843593i
$$694$$ 23.2579 + 23.2579i 0.882857 + 0.882857i
$$695$$ 3.65713 + 2.20314i 0.138723 + 0.0835699i
$$696$$ 0.688808 2.57067i 0.0261092 0.0974409i
$$697$$ 40.7327i 1.54286i
$$698$$ −14.7276 3.94625i −0.557448 0.149368i
$$699$$ 11.5483 20.0023i 0.436797 0.756555i
$$700$$ −21.0147 + 11.1119i −0.794280 + 0.419990i
$$701$$ 4.97387i 0.187860i −0.995579 0.0939302i $$-0.970057\pi$$
0.995579 0.0939302i $$-0.0299430\pi$$
$$702$$ 1.03678 + 3.45327i 0.0391307 + 0.130335i
$$703$$ −28.2759 + 28.2759i −1.06645 + 1.06645i
$$704$$ 0.467101 0.125159i 0.0176045 0.00471712i
$$705$$ −5.77427 5.99319i −0.217472 0.225717i
$$706$$ −2.73423 + 1.57861i −0.102904 + 0.0594117i
$$707$$ −14.8598 −0.558859
$$708$$ −6.55364 + 3.78375i −0.246301 + 0.142202i
$$709$$ −15.3898 4.12368i −0.577975 0.154868i −0.0420233 0.999117i $$-0.513380\pi$$
−0.535952 + 0.844249i $$0.680047\pi$$
$$710$$ −23.8183 6.85939i −0.893885 0.257428i
$$711$$ 5.02131 + 8.69716i 0.188314 + 0.326169i
$$712$$ 4.53424 + 16.9220i 0.169928 + 0.634179i
$$713$$ 10.7212 18.5697i 0.401512 0.695439i
$$714$$ 27.0146 1.01100
$$715$$ 2.72558 2.78771i 0.101931 0.104254i
$$716$$ 3.87875 0.144956
$$717$$ −6.30909 + 10.9277i −0.235617 + 0.408101i
$$718$$ −5.30314 19.7916i −0.197912 0.738616i
$$719$$ −8.13858 14.0964i −0.303518 0.525708i 0.673412 0.739267i $$-0.264828\pi$$
−0.976930 + 0.213559i $$0.931495\pi$$
$$720$$ 1.95695 1.08182i 0.0729313 0.0403171i
$$721$$ 9.55091 + 2.55916i 0.355694 + 0.0953080i
$$722$$ 35.0129 20.2147i 1.30305 0.752314i
$$723$$ 9.55839 0.355481
$$724$$ 7.65209 4.41793i 0.284388 0.164191i
$$725$$ −11.7635 + 6.22015i −0.436885 + 0.231011i
$$726$$ −10.3993 + 2.78649i −0.385954 + 0.103416i
$$727$$ 20.2899 20.2899i 0.752510 0.752510i −0.222437 0.974947i $$-0.571401\pi$$
0.974947 + 0.222437i $$0.0714013\pi$$
$$728$$ 9.01052 + 14.5828i 0.333952 + 0.540474i
$$729$$ 1.00000i 0.0370370i
$$730$$ 11.1441 + 0.207319i 0.412461 + 0.00767321i
$$731$$ 32.6458 56.5442i 1.20745 2.09136i
$$732$$ 3.21886 + 0.862491i 0.118972 + 0.0318786i
$$733$$ 10.8810i 0.401899i −0.979602 0.200950i $$-0.935597\pi$$
0.979602 0.200950i $$-0.0644027\pi$$
$$734$$ 0.950838 3.54857i 0.0350961 0.130980i
$$735$$ −8.40196 33.8640i −0.309911 1.24909i
$$736$$ 2.98906 + 2.98906i 0.110178 + 0.110178i
$$737$$ −0.157890 + 0.589254i −0.00581595 + 0.0217054i
$$738$$ −6.92432 + 1.85537i −0.254888 + 0.0682969i
$$739$$ 7.73208 + 28.8565i 0.284429 + 1.06150i 0.949255 + 0.314506i $$0.101839\pi$$
−0.664826 + 0.746998i $$0.731494\pi$$
$$740$$ 10.1511 5.61160i 0.373160 0.206286i
$$741$$ −0.830110 27.7830i −0.0304948 1.02063i
$$742$$ −11.8132 11.8132i −0.433675 0.433675i
$$743$$ 4.27056 + 2.46561i 0.156672 + 0.0904543i 0.576286 0.817248i $$-0.304501\pi$$
−0.419615 + 0.907702i $$0.637835\pi$$
$$744$$ 4.39294 + 2.53626i 0.161053 + 0.0929840i
$$745$$ 45.2059 11.2160i 1.65622 0.410922i
$$746$$ 6.69358 6.69358i 0.245069 0.245069i
$$747$$ 4.07106 + 7.05128i 0.148952 + 0.257993i
$$748$$ 1.37387 + 2.37962i 0.0502338 + 0.0870076i
$$749$$ −10.6707 + 10.6707i −0.389899 + 0.389899i
$$750$$ −10.6212 3.49152i −0.387830 0.127492i
$$751$$ −17.9533 10.3654i −0.655127 0.378238i 0.135291 0.990806i $$-0.456803\pi$$
−0.790418 + 0.612568i $$0.790136\pi$$
$$752$$ 3.22321 + 1.86092i 0.117538 + 0.0678608i
$$753$$ 17.5127 + 17.5127i 0.638200 + 0.638200i
$$754$$ 5.04386 + 8.16307i 0.183687 + 0.297282i
$$755$$ 7.71710 26.7966i 0.280854 0.975228i
$$756$$ 1.23051 + 4.59233i 0.0447532 + 0.167021i
$$757$$ 7.62904 2.04419i 0.277282 0.0742975i −0.117498 0.993073i $$-0.537487\pi$$
0.394780 + 0.918776i $$0.370821\pi$$
$$758$$ −6.46245 + 24.1182i −0.234727 + 0.876012i
$$759$$ 1.44544 + 1.44544i 0.0524663 + 0.0524663i
$$760$$ −16.7307 + 4.15103i −0.606886 + 0.150574i
$$761$$ −10.6585 + 39.7780i −0.386370 + 1.44195i 0.449626 + 0.893217i $$0.351557\pi$$
−0.835996 + 0.548736i $$0.815109\pi$$
$$762$$ 3.06474i 0.111024i
$$763$$ −23.5985 6.32320i −0.854323 0.228915i
$$764$$ 4.45931 7.72376i 0.161332 0.279436i
$$765$$ 8.81555 + 9.14977i 0.318727 + 0.330811i
$$766$$ 11.8777i 0.429158i
$$767$$ 6.27162 26.5544i 0.226455 0.958824i
$$768$$ −0.707107 + 0.707107i −0.0255155 + 0.0255155i
$$769$$ 7.73593 2.07284i 0.278965 0.0747483i −0.116624 0.993176i $$-0.537207\pi$$
0.395589 + 0.918428i $$0.370541\pi$$
$$770$$ 3.70217 3.56694i 0.133417 0.128543i
$$771$$ 9.16626 5.29214i 0.330115 0.190592i
$$772$$ 13.5810 0.488792