Newspace parameters
Level: | \( N \) | \(=\) | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 390.bn (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.11416567883\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{12})\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).
\(n\) | \(131\) | \(157\) | \(301\) |
\(\chi(n)\) | \(1\) | \(\zeta_{24}^{6}\) | \(\zeta_{24}^{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67.1 |
|
0.500000 | + | 0.866025i | −0.965926 | − | 0.258819i | −0.500000 | + | 0.866025i | 0.707107 | − | 2.12132i | −0.258819 | − | 0.965926i | −1.46945 | − | 0.848387i | −1.00000 | 0.866025 | + | 0.500000i | 2.19067 | − | 0.448288i | ||||||||||||||||||||||||||
67.2 | 0.500000 | + | 0.866025i | 0.965926 | + | 0.258819i | −0.500000 | + | 0.866025i | −0.707107 | + | 2.12132i | 0.258819 | + | 0.965926i | −3.26260 | − | 1.88366i | −1.00000 | 0.866025 | + | 0.500000i | −2.19067 | + | 0.448288i | |||||||||||||||||||||||||||
97.1 | 0.500000 | − | 0.866025i | −0.258819 | − | 0.965926i | −0.500000 | − | 0.866025i | −0.707107 | + | 2.12132i | −0.965926 | − | 0.258819i | −3.98004 | + | 2.29788i | −1.00000 | −0.866025 | + | 0.500000i | 1.48356 | + | 1.67303i | |||||||||||||||||||||||||||
97.2 | 0.500000 | − | 0.866025i | 0.258819 | + | 0.965926i | −0.500000 | − | 0.866025i | 0.707107 | − | 2.12132i | 0.965926 | + | 0.258819i | 2.71209 | − | 1.56583i | −1.00000 | −0.866025 | + | 0.500000i | −1.48356 | − | 1.67303i | |||||||||||||||||||||||||||
163.1 | 0.500000 | − | 0.866025i | −0.965926 | + | 0.258819i | −0.500000 | − | 0.866025i | 0.707107 | + | 2.12132i | −0.258819 | + | 0.965926i | −1.46945 | + | 0.848387i | −1.00000 | 0.866025 | − | 0.500000i | 2.19067 | + | 0.448288i | |||||||||||||||||||||||||||
163.2 | 0.500000 | − | 0.866025i | 0.965926 | − | 0.258819i | −0.500000 | − | 0.866025i | −0.707107 | − | 2.12132i | 0.258819 | − | 0.965926i | −3.26260 | + | 1.88366i | −1.00000 | 0.866025 | − | 0.500000i | −2.19067 | − | 0.448288i | |||||||||||||||||||||||||||
193.1 | 0.500000 | + | 0.866025i | −0.258819 | + | 0.965926i | −0.500000 | + | 0.866025i | −0.707107 | − | 2.12132i | −0.965926 | + | 0.258819i | −3.98004 | − | 2.29788i | −1.00000 | −0.866025 | − | 0.500000i | 1.48356 | − | 1.67303i | |||||||||||||||||||||||||||
193.2 | 0.500000 | + | 0.866025i | 0.258819 | − | 0.965926i | −0.500000 | + | 0.866025i | 0.707107 | + | 2.12132i | 0.965926 | − | 0.258819i | 2.71209 | + | 1.56583i | −1.00000 | −0.866025 | − | 0.500000i | −1.48356 | + | 1.67303i | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.o | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 390.2.bn.a | yes | 8 |
5.c | odd | 4 | 1 | 390.2.bd.a | ✓ | 8 | |
13.f | odd | 12 | 1 | 390.2.bd.a | ✓ | 8 | |
65.o | even | 12 | 1 | inner | 390.2.bn.a | yes | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
390.2.bd.a | ✓ | 8 | 5.c | odd | 4 | 1 | |
390.2.bd.a | ✓ | 8 | 13.f | odd | 12 | 1 | |
390.2.bn.a | yes | 8 | 1.a | even | 1 | 1 | trivial |
390.2.bn.a | yes | 8 | 65.o | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{8} + 12T_{7}^{7} + 48T_{7}^{6} - 388T_{7}^{4} + 4800T_{7}^{2} + 11040T_{7} + 8464 \)
acting on \(S_{2}^{\mathrm{new}}(390, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - T + 1)^{4} \)
$3$
\( T^{8} - T^{4} + 1 \)
$5$
\( (T^{4} + 8 T^{2} + 25)^{2} \)
$7$
\( T^{8} + 12 T^{7} + 48 T^{6} + \cdots + 8464 \)
$11$
\( T^{8} + 16 T^{7} + 128 T^{6} + \cdots + 36481 \)
$13$
\( (T^{4} + 24 T^{2} + 169)^{2} \)
$17$
\( T^{8} - 12 T^{7} + 72 T^{6} + \cdots + 10000 \)
$19$
\( T^{8} - 24 T^{7} + 300 T^{6} + \cdots + 150544 \)
$23$
\( T^{8} + 4 T^{7} + 38 T^{6} + \cdots + 5041 \)
$29$
\( T^{8} - 24 T^{7} + 204 T^{6} + \cdots + 2211169 \)
$31$
\( T^{8} + 4 T^{7} + 8 T^{6} - 92 T^{5} + \cdots + 529 \)
$37$
\( T^{8} - 24 T^{7} + 228 T^{6} + \cdots + 529 \)
$41$
\( T^{8} - 28 T^{7} + 344 T^{6} + \cdots + 8464 \)
$43$
\( T^{8} + 16 T^{7} + 80 T^{6} + \cdots + 625 \)
$47$
\( T^{8} + 108 T^{6} + 3830 T^{4} + \cdots + 96721 \)
$53$
\( (T^{4} + 8 T^{3} + 32 T^{2} - 704 T + 7744)^{2} \)
$59$
\( T^{8} + 32 T^{7} + 464 T^{6} + \cdots + 3411409 \)
$61$
\( T^{8} + 8 T^{7} + 188 T^{6} + \cdots + 234256 \)
$67$
\( (T^{4} + 8 T^{3} + 66 T^{2} - 16 T + 4)^{2} \)
$71$
\( T^{8} - 8 T^{7} + 128 T^{6} + \cdots + 37552384 \)
$73$
\( (T^{4} + 4 T^{3} - 160 T^{2} - 568 T + 4036)^{2} \)
$79$
\( T^{8} + 324 T^{6} + 34470 T^{4} + \cdots + 7834401 \)
$83$
\( T^{8} + 552 T^{6} + \cdots + 238764304 \)
$89$
\( T^{8} - 4 T^{7} + 200 T^{6} + \cdots + 10000 \)
$97$
\( T^{8} + 4 T^{7} + 64 T^{6} + \cdots + 150544 \)
show more
show less