Properties

Label 390.2.bd.b.37.3
Level $390$
Weight $2$
Character 390.37
Analytic conductor $3.114$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.bd (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} - 180 x^{7} + 358 x^{6} - 336 x^{5} + 390 x^{4} - 344 x^{3} + 164 x^{2} - 40 x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.3
Root \(2.69978 + 0.355433i\) of defining polynomial
Character \(\chi\) \(=\) 390.37
Dual form 390.2.bd.b.253.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.965926 + 0.258819i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.48905 - 1.66815i) q^{5} +(-0.965926 + 0.258819i) q^{6} +(0.328411 - 0.568824i) q^{7} +1.00000i q^{8} +(0.866025 + 0.500000i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.965926 + 0.258819i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.48905 - 1.66815i) q^{5} +(-0.965926 + 0.258819i) q^{6} +(0.328411 - 0.568824i) q^{7} +1.00000i q^{8} +(0.866025 + 0.500000i) q^{9} +(-0.455475 + 2.18919i) q^{10} +(-1.26026 - 0.337686i) q^{11} +(0.707107 - 0.707107i) q^{12} +(3.54536 - 0.656060i) q^{13} +0.656821i q^{14} +(1.87006 - 1.22592i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.47202 - 5.49364i) q^{17} -1.00000 q^{18} +(0.425167 + 1.58674i) q^{19} +(-0.700141 - 2.12363i) q^{20} +(0.464443 - 0.464443i) q^{21} +(1.26026 - 0.337686i) q^{22} +(-0.0557460 + 0.208047i) q^{23} +(-0.258819 + 0.965926i) q^{24} +(-0.565478 - 4.96792i) q^{25} +(-2.74234 + 2.34084i) q^{26} +(0.707107 + 0.707107i) q^{27} +(-0.328411 - 0.568824i) q^{28} +(0.0656377 - 0.0378960i) q^{29} +(-1.00656 + 1.99671i) q^{30} +(5.13765 + 5.13765i) q^{31} +(0.866025 + 0.500000i) q^{32} +(-1.12992 - 0.652360i) q^{33} +(4.02163 + 4.02163i) q^{34} +(-0.459867 - 1.39484i) q^{35} +(0.866025 - 0.500000i) q^{36} +(0.462173 + 0.800508i) q^{37} +(-1.16158 - 1.16158i) q^{38} +(3.59436 + 0.283902i) q^{39} +(1.66815 + 1.48905i) q^{40} +(-2.01318 + 7.51330i) q^{41} +(-0.169998 + 0.634441i) q^{42} +(9.17603 - 2.45871i) q^{43} +(-0.922576 + 0.922576i) q^{44} +(2.12363 - 0.700141i) q^{45} +(-0.0557460 - 0.208047i) q^{46} -7.92499 q^{47} +(-0.258819 - 0.965926i) q^{48} +(3.28429 + 5.68856i) q^{49} +(2.97368 + 4.01961i) q^{50} -5.68744i q^{51} +(1.20452 - 3.39840i) q^{52} +(2.58944 - 2.58944i) q^{53} +(-0.965926 - 0.258819i) q^{54} +(-2.43990 + 1.59948i) q^{55} +(0.568824 + 0.328411i) q^{56} +1.64272i q^{57} +(-0.0378960 + 0.0656377i) q^{58} +(-4.72918 + 1.26718i) q^{59} +(-0.126648 - 2.23248i) q^{60} +(1.60754 - 2.78433i) q^{61} +(-7.01816 - 1.88051i) q^{62} +(0.568824 - 0.328411i) q^{63} -1.00000 q^{64} +(4.18480 - 6.89111i) q^{65} +1.30472 q^{66} +(-11.5042 + 6.64195i) q^{67} +(-5.49364 - 1.47202i) q^{68} +(-0.107693 + 0.186530i) q^{69} +(1.09568 + 0.978038i) q^{70} +(-3.94410 + 1.05682i) q^{71} +(-0.500000 + 0.866025i) q^{72} -3.44819i q^{73} +(-0.800508 - 0.462173i) q^{74} +(0.739583 - 4.94500i) q^{75} +(1.58674 + 0.425167i) q^{76} +(-0.605967 + 0.605967i) q^{77} +(-3.25476 + 1.55131i) q^{78} +11.0648i q^{79} +(-2.18919 - 0.455475i) q^{80} +(0.500000 + 0.866025i) q^{81} +(-2.01318 - 7.51330i) q^{82} +2.20398 q^{83} +(-0.169998 - 0.634441i) q^{84} +(-11.3561 - 5.72474i) q^{85} +(-6.71732 + 6.71732i) q^{86} +(0.0732094 - 0.0196164i) q^{87} +(0.337686 - 1.26026i) q^{88} +(1.59876 - 5.96664i) q^{89} +(-1.48905 + 1.66815i) q^{90} +(0.791152 - 2.23214i) q^{91} +(0.152301 + 0.152301i) q^{92} +(3.63287 + 6.29231i) q^{93} +(6.86325 - 3.96250i) q^{94} +(3.28003 + 1.65349i) q^{95} +(0.707107 + 0.707107i) q^{96} +(-11.8381 - 6.83472i) q^{97} +(-5.68856 - 3.28429i) q^{98} +(-0.922576 - 0.922576i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 4 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{4} + 4 q^{5} + 4 q^{7} + 12 q^{11} - 8 q^{13} + 12 q^{15} - 8 q^{16} + 16 q^{17} - 16 q^{18} + 4 q^{19} - 4 q^{20} - 12 q^{22} - 4 q^{23} - 4 q^{25} + 4 q^{26} - 4 q^{28} + 48 q^{29} - 8 q^{30} + 16 q^{31} + 20 q^{34} + 12 q^{35} + 20 q^{37} - 4 q^{38} - 4 q^{39} - 12 q^{41} + 4 q^{43} + 12 q^{44} - 4 q^{46} - 64 q^{47} + 4 q^{49} + 16 q^{50} - 16 q^{52} + 32 q^{53} - 44 q^{55} - 24 q^{56} - 12 q^{58} - 4 q^{59} + 12 q^{60} + 4 q^{61} - 20 q^{62} - 24 q^{63} - 16 q^{64} - 8 q^{65} + 32 q^{66} - 36 q^{67} - 4 q^{68} - 4 q^{69} - 36 q^{71} - 8 q^{72} - 12 q^{74} + 8 q^{76} - 4 q^{77} - 12 q^{78} - 8 q^{80} + 8 q^{81} - 12 q^{82} + 24 q^{83} - 52 q^{85} + 16 q^{86} - 12 q^{87} + 24 q^{89} - 4 q^{90} - 8 q^{92} - 36 q^{94} - 44 q^{95} + 60 q^{97} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0.965926 + 0.258819i 0.557678 + 0.149429i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.48905 1.66815i 0.665922 0.746021i
\(6\) −0.965926 + 0.258819i −0.394338 + 0.105662i
\(7\) 0.328411 0.568824i 0.124128 0.214995i −0.797264 0.603631i \(-0.793720\pi\)
0.921392 + 0.388636i \(0.127053\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.866025 + 0.500000i 0.288675 + 0.166667i
\(10\) −0.455475 + 2.18919i −0.144034 + 0.692282i
\(11\) −1.26026 0.337686i −0.379983 0.101816i 0.0637713 0.997965i \(-0.479687\pi\)
−0.443755 + 0.896148i \(0.646354\pi\)
\(12\) 0.707107 0.707107i 0.204124 0.204124i
\(13\) 3.54536 0.656060i 0.983306 0.181958i
\(14\) 0.656821i 0.175543i
\(15\) 1.87006 1.22592i 0.482847 0.316531i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.47202 5.49364i −0.357017 1.33240i −0.877928 0.478793i \(-0.841074\pi\)
0.520911 0.853611i \(-0.325592\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0.425167 + 1.58674i 0.0975399 + 0.364024i 0.997392 0.0721707i \(-0.0229926\pi\)
−0.899852 + 0.436195i \(0.856326\pi\)
\(20\) −0.700141 2.12363i −0.156556 0.474858i
\(21\) 0.464443 0.464443i 0.101350 0.101350i
\(22\) 1.26026 0.337686i 0.268689 0.0719949i
\(23\) −0.0557460 + 0.208047i −0.0116238 + 0.0433808i −0.971494 0.237063i \(-0.923815\pi\)
0.959870 + 0.280444i \(0.0904818\pi\)
\(24\) −0.258819 + 0.965926i −0.0528312 + 0.197169i
\(25\) −0.565478 4.96792i −0.113096 0.993584i
\(26\) −2.74234 + 2.34084i −0.537818 + 0.459077i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) −0.328411 0.568824i −0.0620638 0.107498i
\(29\) 0.0656377 0.0378960i 0.0121886 0.00703710i −0.493893 0.869523i \(-0.664427\pi\)
0.506082 + 0.862485i \(0.331093\pi\)
\(30\) −1.00656 + 1.99671i −0.183772 + 0.364547i
\(31\) 5.13765 + 5.13765i 0.922749 + 0.922749i 0.997223 0.0744742i \(-0.0237278\pi\)
−0.0744742 + 0.997223i \(0.523728\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −1.12992 0.652360i −0.196694 0.113561i
\(34\) 4.02163 + 4.02163i 0.689703 + 0.689703i
\(35\) −0.459867 1.39484i −0.0777317 0.235772i
\(36\) 0.866025 0.500000i 0.144338 0.0833333i
\(37\) 0.462173 + 0.800508i 0.0759808 + 0.131603i 0.901512 0.432753i \(-0.142458\pi\)
−0.825532 + 0.564356i \(0.809125\pi\)
\(38\) −1.16158 1.16158i −0.188433 0.188433i
\(39\) 3.59436 + 0.283902i 0.575558 + 0.0454607i
\(40\) 1.66815 + 1.48905i 0.263758 + 0.235439i
\(41\) −2.01318 + 7.51330i −0.314406 + 1.17338i 0.610135 + 0.792298i \(0.291115\pi\)
−0.924541 + 0.381082i \(0.875551\pi\)
\(42\) −0.169998 + 0.634441i −0.0262312 + 0.0978963i
\(43\) 9.17603 2.45871i 1.39933 0.374950i 0.521226 0.853418i \(-0.325475\pi\)
0.878105 + 0.478469i \(0.158808\pi\)
\(44\) −0.922576 + 0.922576i −0.139084 + 0.139084i
\(45\) 2.12363 0.700141i 0.316572 0.104371i
\(46\) −0.0557460 0.208047i −0.00821930 0.0306748i
\(47\) −7.92499 −1.15598 −0.577990 0.816044i \(-0.696163\pi\)
−0.577990 + 0.816044i \(0.696163\pi\)
\(48\) −0.258819 0.965926i −0.0373573 0.139419i
\(49\) 3.28429 + 5.68856i 0.469185 + 0.812652i
\(50\) 2.97368 + 4.01961i 0.420542 + 0.568458i
\(51\) 5.68744i 0.796400i
\(52\) 1.20452 3.39840i 0.167036 0.471274i
\(53\) 2.58944 2.58944i 0.355687 0.355687i −0.506533 0.862220i \(-0.669073\pi\)
0.862220 + 0.506533i \(0.169073\pi\)
\(54\) −0.965926 0.258819i −0.131446 0.0352208i
\(55\) −2.43990 + 1.59948i −0.328996 + 0.215674i
\(56\) 0.568824 + 0.328411i 0.0760123 + 0.0438857i
\(57\) 1.64272i 0.217583i
\(58\) −0.0378960 + 0.0656377i −0.00497598 + 0.00861866i
\(59\) −4.72918 + 1.26718i −0.615686 + 0.164973i −0.553166 0.833071i \(-0.686581\pi\)
−0.0625204 + 0.998044i \(0.519914\pi\)
\(60\) −0.126648 2.23248i −0.0163502 0.288212i
\(61\) 1.60754 2.78433i 0.205824 0.356497i −0.744571 0.667543i \(-0.767346\pi\)
0.950395 + 0.311046i \(0.100679\pi\)
\(62\) −7.01816 1.88051i −0.891307 0.238825i
\(63\) 0.568824 0.328411i 0.0716651 0.0413758i
\(64\) −1.00000 −0.125000
\(65\) 4.18480 6.89111i 0.519061 0.854737i
\(66\) 1.30472 0.160600
\(67\) −11.5042 + 6.64195i −1.40546 + 0.811443i −0.994946 0.100411i \(-0.967984\pi\)
−0.410515 + 0.911854i \(0.634651\pi\)
\(68\) −5.49364 1.47202i −0.666202 0.178508i
\(69\) −0.107693 + 0.186530i −0.0129647 + 0.0224555i
\(70\) 1.09568 + 0.978038i 0.130959 + 0.116898i
\(71\) −3.94410 + 1.05682i −0.468079 + 0.125421i −0.485146 0.874433i \(-0.661234\pi\)
0.0170676 + 0.999854i \(0.494567\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) 3.44819i 0.403581i −0.979429 0.201790i \(-0.935324\pi\)
0.979429 0.201790i \(-0.0646759\pi\)
\(74\) −0.800508 0.462173i −0.0930571 0.0537265i
\(75\) 0.739583 4.94500i 0.0853997 0.570999i
\(76\) 1.58674 + 0.425167i 0.182012 + 0.0487699i
\(77\) −0.605967 + 0.605967i −0.0690564 + 0.0690564i
\(78\) −3.25476 + 1.55131i −0.368528 + 0.175651i
\(79\) 11.0648i 1.24489i 0.782663 + 0.622446i \(0.213861\pi\)
−0.782663 + 0.622446i \(0.786139\pi\)
\(80\) −2.18919 0.455475i −0.244759 0.0509237i
\(81\) 0.500000 + 0.866025i 0.0555556 + 0.0962250i
\(82\) −2.01318 7.51330i −0.222319 0.829705i
\(83\) 2.20398 0.241918 0.120959 0.992658i \(-0.461403\pi\)
0.120959 + 0.992658i \(0.461403\pi\)
\(84\) −0.169998 0.634441i −0.0185483 0.0692231i
\(85\) −11.3561 5.72474i −1.23175 0.620935i
\(86\) −6.71732 + 6.71732i −0.724347 + 0.724347i
\(87\) 0.0732094 0.0196164i 0.00784887 0.00210310i
\(88\) 0.337686 1.26026i 0.0359975 0.134344i
\(89\) 1.59876 5.96664i 0.169468 0.632462i −0.827960 0.560787i \(-0.810499\pi\)
0.997428 0.0716755i \(-0.0228346\pi\)
\(90\) −1.48905 + 1.66815i −0.156959 + 0.175839i
\(91\) 0.791152 2.23214i 0.0829352 0.233992i
\(92\) 0.152301 + 0.152301i 0.0158785 + 0.0158785i
\(93\) 3.63287 + 6.29231i 0.376711 + 0.652482i
\(94\) 6.86325 3.96250i 0.707890 0.408700i
\(95\) 3.28003 + 1.65349i 0.336523 + 0.169645i
\(96\) 0.707107 + 0.707107i 0.0721688 + 0.0721688i
\(97\) −11.8381 6.83472i −1.20198 0.693961i −0.240982 0.970530i \(-0.577469\pi\)
−0.960994 + 0.276569i \(0.910803\pi\)
\(98\) −5.68856 3.28429i −0.574632 0.331764i
\(99\) −0.922576 0.922576i −0.0927224 0.0927224i
\(100\) −4.58508 1.99424i −0.458508 0.199424i
\(101\) −9.11777 + 5.26415i −0.907252 + 0.523802i −0.879546 0.475814i \(-0.842154\pi\)
−0.0277059 + 0.999616i \(0.508820\pi\)
\(102\) 2.84372 + 4.92547i 0.281570 + 0.487694i
\(103\) −9.71646 9.71646i −0.957391 0.957391i 0.0417373 0.999129i \(-0.486711\pi\)
−0.999129 + 0.0417373i \(0.986711\pi\)
\(104\) 0.656060 + 3.54536i 0.0643319 + 0.347651i
\(105\) −0.0831851 1.46634i −0.00811803 0.143100i
\(106\) −0.947801 + 3.53724i −0.0920586 + 0.343567i
\(107\) −3.31625 + 12.3764i −0.320594 + 1.19647i 0.598073 + 0.801442i \(0.295933\pi\)
−0.918667 + 0.395033i \(0.870733\pi\)
\(108\) 0.965926 0.258819i 0.0929463 0.0249049i
\(109\) −13.0240 + 13.0240i −1.24748 + 1.24748i −0.290646 + 0.956831i \(0.593870\pi\)
−0.956831 + 0.290646i \(0.906130\pi\)
\(110\) 1.31328 2.60514i 0.125216 0.248391i
\(111\) 0.239238 + 0.892850i 0.0227075 + 0.0847456i
\(112\) −0.656821 −0.0620638
\(113\) 0.603092 + 2.25077i 0.0567341 + 0.211735i 0.988474 0.151392i \(-0.0483757\pi\)
−0.931740 + 0.363127i \(0.881709\pi\)
\(114\) −0.821359 1.42263i −0.0769273 0.133242i
\(115\) 0.264046 + 0.402784i 0.0246224 + 0.0375598i
\(116\) 0.0757919i 0.00703710i
\(117\) 3.39840 + 1.20452i 0.314182 + 0.111358i
\(118\) 3.46200 3.46200i 0.318703 0.318703i
\(119\) −3.60834 0.966852i −0.330776 0.0886312i
\(120\) 1.22592 + 1.87006i 0.111911 + 0.170712i
\(121\) −8.05205 4.64885i −0.732005 0.422623i
\(122\) 3.21507i 0.291079i
\(123\) −3.88917 + 6.73624i −0.350675 + 0.607386i
\(124\) 7.01816 1.88051i 0.630249 0.168875i
\(125\) −9.12928 6.45416i −0.816548 0.577278i
\(126\) −0.328411 + 0.568824i −0.0292571 + 0.0506749i
\(127\) −1.21222 0.324813i −0.107567 0.0288225i 0.204634 0.978839i \(-0.434400\pi\)
−0.312201 + 0.950016i \(0.601066\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 9.49972 0.836404
\(130\) −0.178587 + 8.06028i −0.0156631 + 0.706933i
\(131\) 14.7382 1.28768 0.643842 0.765159i \(-0.277340\pi\)
0.643842 + 0.765159i \(0.277340\pi\)
\(132\) −1.12992 + 0.652360i −0.0983469 + 0.0567806i
\(133\) 1.04221 + 0.279258i 0.0903708 + 0.0242148i
\(134\) 6.64195 11.5042i 0.573777 0.993811i
\(135\) 2.23248 0.126648i 0.192141 0.0109001i
\(136\) 5.49364 1.47202i 0.471076 0.126224i
\(137\) 8.11924 14.0629i 0.693674 1.20148i −0.276952 0.960884i \(-0.589324\pi\)
0.970626 0.240595i \(-0.0773424\pi\)
\(138\) 0.215386i 0.0183349i
\(139\) 6.66282 + 3.84678i 0.565133 + 0.326280i 0.755203 0.655491i \(-0.227538\pi\)
−0.190070 + 0.981770i \(0.560872\pi\)
\(140\) −1.43790 0.299166i −0.121525 0.0252841i
\(141\) −7.65496 2.05114i −0.644664 0.172737i
\(142\) 2.88728 2.88728i 0.242295 0.242295i
\(143\) −4.68963 0.370412i −0.392166 0.0309754i
\(144\) 1.00000i 0.0833333i
\(145\) 0.0345214 0.165923i 0.00286684 0.0137791i
\(146\) 1.72410 + 2.98622i 0.142687 + 0.247142i
\(147\) 1.70008 + 6.34477i 0.140220 + 0.523308i
\(148\) 0.924347 0.0759808
\(149\) 3.77709 + 14.0963i 0.309431 + 1.15481i 0.929063 + 0.369921i \(0.120615\pi\)
−0.619632 + 0.784893i \(0.712718\pi\)
\(150\) 1.83200 + 4.65229i 0.149582 + 0.379858i
\(151\) −8.69302 + 8.69302i −0.707428 + 0.707428i −0.965994 0.258566i \(-0.916750\pi\)
0.258566 + 0.965994i \(0.416750\pi\)
\(152\) −1.58674 + 0.425167i −0.128702 + 0.0344856i
\(153\) 1.47202 5.49364i 0.119006 0.444135i
\(154\) 0.221799 0.827767i 0.0178731 0.0667034i
\(155\) 16.2206 0.920190i 1.30287 0.0739114i
\(156\) 2.04304 2.97085i 0.163574 0.237859i
\(157\) −3.31162 3.31162i −0.264296 0.264296i 0.562501 0.826797i \(-0.309839\pi\)
−0.826797 + 0.562501i \(0.809839\pi\)
\(158\) −5.53242 9.58244i −0.440136 0.762338i
\(159\) 3.17140 1.83101i 0.251509 0.145209i
\(160\) 2.12363 0.700141i 0.167888 0.0553510i
\(161\) 0.100034 + 0.100034i 0.00788382 + 0.00788382i
\(162\) −0.866025 0.500000i −0.0680414 0.0392837i
\(163\) −1.58838 0.917052i −0.124412 0.0718291i 0.436503 0.899703i \(-0.356217\pi\)
−0.560914 + 0.827874i \(0.689550\pi\)
\(164\) 5.50012 + 5.50012i 0.429487 + 0.429487i
\(165\) −2.77074 + 0.913487i −0.215702 + 0.0711149i
\(166\) −1.90870 + 1.10199i −0.148144 + 0.0855309i
\(167\) 10.0982 + 17.4905i 0.781420 + 1.35346i 0.931115 + 0.364726i \(0.118837\pi\)
−0.149695 + 0.988732i \(0.547829\pi\)
\(168\) 0.464443 + 0.464443i 0.0358325 + 0.0358325i
\(169\) 12.1392 4.65194i 0.933782 0.357841i
\(170\) 12.6971 0.720302i 0.973822 0.0552447i
\(171\) −0.425167 + 1.58674i −0.0325133 + 0.121341i
\(172\) 2.45871 9.17603i 0.187475 0.699665i
\(173\) −9.81276 + 2.62932i −0.746051 + 0.199904i −0.611766 0.791039i \(-0.709540\pi\)
−0.134285 + 0.990943i \(0.542874\pi\)
\(174\) −0.0535930 + 0.0535930i −0.00406287 + 0.00406287i
\(175\) −3.01158 1.30986i −0.227654 0.0990161i
\(176\) 0.337686 + 1.26026i 0.0254541 + 0.0949958i
\(177\) −4.89600 −0.368006
\(178\) 1.59876 + 5.96664i 0.119832 + 0.447218i
\(179\) 0.597467 + 1.03484i 0.0446568 + 0.0773478i 0.887490 0.460827i \(-0.152447\pi\)
−0.842833 + 0.538175i \(0.819114\pi\)
\(180\) 0.455475 2.18919i 0.0339491 0.163172i
\(181\) 21.0296i 1.56312i −0.623831 0.781559i \(-0.714425\pi\)
0.623831 0.781559i \(-0.285575\pi\)
\(182\) 0.430914 + 2.32867i 0.0319415 + 0.172612i
\(183\) 2.27340 2.27340i 0.168054 0.168054i
\(184\) −0.208047 0.0557460i −0.0153374 0.00410965i
\(185\) 2.02357 + 0.421017i 0.148776 + 0.0309538i
\(186\) −6.29231 3.63287i −0.461374 0.266375i
\(187\) 7.42051i 0.542641i
\(188\) −3.96250 + 6.86325i −0.288995 + 0.500554i
\(189\) 0.634441 0.169998i 0.0461488 0.0123655i
\(190\) −3.66733 + 0.208047i −0.266056 + 0.0150933i
\(191\) 4.06177 7.03518i 0.293899 0.509048i −0.680829 0.732442i \(-0.738380\pi\)
0.974728 + 0.223394i \(0.0717137\pi\)
\(192\) −0.965926 0.258819i −0.0697097 0.0186787i
\(193\) 3.88620 2.24370i 0.279735 0.161505i −0.353568 0.935409i \(-0.615032\pi\)
0.633303 + 0.773904i \(0.281698\pi\)
\(194\) 13.6694 0.981409
\(195\) 5.82576 5.57320i 0.417191 0.399105i
\(196\) 6.56859 0.469185
\(197\) 9.97443 5.75874i 0.710649 0.410293i −0.100652 0.994922i \(-0.532093\pi\)
0.811301 + 0.584628i \(0.198760\pi\)
\(198\) 1.26026 + 0.337686i 0.0895629 + 0.0239983i
\(199\) 1.75484 3.03947i 0.124397 0.215462i −0.797100 0.603847i \(-0.793634\pi\)
0.921497 + 0.388385i \(0.126967\pi\)
\(200\) 4.96792 0.565478i 0.351285 0.0399853i
\(201\) −12.8313 + 3.43813i −0.905047 + 0.242507i
\(202\) 5.26415 9.11777i 0.370384 0.641524i
\(203\) 0.0497817i 0.00349399i
\(204\) −4.92547 2.84372i −0.344852 0.199100i
\(205\) 9.53562 + 14.5460i 0.665996 + 1.01593i
\(206\) 13.2729 + 3.55647i 0.924769 + 0.247791i
\(207\) −0.152301 + 0.152301i −0.0105856 + 0.0105856i
\(208\) −2.34084 2.74234i −0.162308 0.190147i
\(209\) 2.14329i 0.148254i
\(210\) 0.805210 + 1.22829i 0.0555648 + 0.0847604i
\(211\) 9.02202 + 15.6266i 0.621102 + 1.07578i 0.989281 + 0.146025i \(0.0466479\pi\)
−0.368179 + 0.929755i \(0.620019\pi\)
\(212\) −0.947801 3.53724i −0.0650952 0.242939i
\(213\) −4.08323 −0.279778
\(214\) −3.31625 12.3764i −0.226694 0.846035i
\(215\) 9.56203 18.9682i 0.652125 1.29362i
\(216\) −0.707107 + 0.707107i −0.0481125 + 0.0481125i
\(217\) 4.60967 1.23516i 0.312925 0.0838480i
\(218\) 4.76713 17.7912i 0.322871 1.20497i
\(219\) 0.892458 3.33070i 0.0603067 0.225068i
\(220\) 0.165240 + 2.91276i 0.0111405 + 0.196378i
\(221\) −8.82299 18.5112i −0.593498 1.24520i
\(222\) −0.653612 0.653612i −0.0438675 0.0438675i
\(223\) 13.7968 + 23.8968i 0.923905 + 1.60025i 0.793313 + 0.608814i \(0.208354\pi\)
0.130592 + 0.991436i \(0.458312\pi\)
\(224\) 0.568824 0.328411i 0.0380061 0.0219429i
\(225\) 1.99424 4.58508i 0.132949 0.305672i
\(226\) −1.64768 1.64768i −0.109602 0.109602i
\(227\) 10.7895 + 6.22930i 0.716122 + 0.413453i 0.813324 0.581812i \(-0.197656\pi\)
−0.0972019 + 0.995265i \(0.530989\pi\)
\(228\) 1.42263 + 0.821359i 0.0942163 + 0.0543958i
\(229\) −12.4079 12.4079i −0.819937 0.819937i 0.166162 0.986099i \(-0.446863\pi\)
−0.986099 + 0.166162i \(0.946863\pi\)
\(230\) −0.430063 0.216799i −0.0283575 0.0142953i
\(231\) −0.742155 + 0.428484i −0.0488302 + 0.0281922i
\(232\) 0.0378960 + 0.0656377i 0.00248799 + 0.00430933i
\(233\) 21.0823 + 21.0823i 1.38115 + 1.38115i 0.842582 + 0.538567i \(0.181034\pi\)
0.538567 + 0.842582i \(0.318966\pi\)
\(234\) −3.54536 + 0.656060i −0.231768 + 0.0428880i
\(235\) −11.8007 + 13.2201i −0.769792 + 0.862385i
\(236\) −1.26718 + 4.72918i −0.0824863 + 0.307843i
\(237\) −2.86379 + 10.6878i −0.186023 + 0.694248i
\(238\) 3.60834 0.966852i 0.233894 0.0626717i
\(239\) 0.526226 0.526226i 0.0340388 0.0340388i −0.689883 0.723921i \(-0.742338\pi\)
0.723921 + 0.689883i \(0.242338\pi\)
\(240\) −1.99671 1.00656i −0.128887 0.0649731i
\(241\) 4.41998 + 16.4956i 0.284716 + 1.06258i 0.949046 + 0.315136i \(0.102050\pi\)
−0.664330 + 0.747439i \(0.731283\pi\)
\(242\) 9.29771 0.597679
\(243\) 0.258819 + 0.965926i 0.0166032 + 0.0619642i
\(244\) −1.60754 2.78433i −0.102912 0.178249i
\(245\) 14.3799 + 2.99183i 0.918696 + 0.191141i
\(246\) 7.77834i 0.495929i
\(247\) 2.54837 + 5.34664i 0.162149 + 0.340199i
\(248\) −5.13765 + 5.13765i −0.326241 + 0.326241i
\(249\) 2.12888 + 0.570431i 0.134912 + 0.0361496i
\(250\) 11.1333 + 1.02483i 0.704130 + 0.0648159i
\(251\) −12.1516 7.01575i −0.767004 0.442830i 0.0648005 0.997898i \(-0.479359\pi\)
−0.831805 + 0.555068i \(0.812692\pi\)
\(252\) 0.656821i 0.0413758i
\(253\) 0.140509 0.243369i 0.00883373 0.0153005i
\(254\) 1.21222 0.324813i 0.0760613 0.0203806i
\(255\) −9.48752 8.46886i −0.594132 0.530341i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 16.7017 + 4.47521i 1.04182 + 0.279156i 0.738869 0.673849i \(-0.235360\pi\)
0.302955 + 0.953005i \(0.402027\pi\)
\(258\) −8.22700 + 4.74986i −0.512191 + 0.295713i
\(259\) 0.607130 0.0377252
\(260\) −3.87548 7.06970i −0.240347 0.438444i
\(261\) 0.0757919 0.00469140
\(262\) −12.7637 + 7.36910i −0.788542 + 0.455265i
\(263\) −25.0956 6.72435i −1.54746 0.414641i −0.618794 0.785553i \(-0.712378\pi\)
−0.928668 + 0.370912i \(0.879045\pi\)
\(264\) 0.652360 1.12992i 0.0401500 0.0695418i
\(265\) −0.463788 8.17539i −0.0284903 0.502210i
\(266\) −1.04221 + 0.279258i −0.0639018 + 0.0171224i
\(267\) 3.08856 5.34954i 0.189017 0.327387i
\(268\) 13.2839i 0.811443i
\(269\) −21.6715 12.5121i −1.32134 0.762873i −0.337394 0.941364i \(-0.609545\pi\)
−0.983942 + 0.178490i \(0.942879\pi\)
\(270\) −1.87006 + 1.22592i −0.113808 + 0.0746071i
\(271\) 2.53478 + 0.679193i 0.153977 + 0.0412580i 0.334984 0.942224i \(-0.391269\pi\)
−0.181007 + 0.983482i \(0.557936\pi\)
\(272\) −4.02163 + 4.02163i −0.243847 + 0.243847i
\(273\) 1.34191 1.95132i 0.0812164 0.118099i
\(274\) 16.2385i 0.981003i
\(275\) −0.964948 + 6.45184i −0.0581886 + 0.389060i
\(276\) 0.107693 + 0.186530i 0.00648235 + 0.0112278i
\(277\) −7.60904 28.3973i −0.457183 1.70623i −0.681589 0.731735i \(-0.738711\pi\)
0.224406 0.974496i \(-0.427956\pi\)
\(278\) −7.69356 −0.461429
\(279\) 1.88051 + 7.01816i 0.112583 + 0.420166i
\(280\) 1.39484 0.459867i 0.0833579 0.0274823i
\(281\) −10.3701 + 10.3701i −0.618630 + 0.618630i −0.945180 0.326550i \(-0.894114\pi\)
0.326550 + 0.945180i \(0.394114\pi\)
\(282\) 7.65496 2.05114i 0.455846 0.122144i
\(283\) 3.02271 11.2809i 0.179681 0.670580i −0.816025 0.578016i \(-0.803827\pi\)
0.995707 0.0925637i \(-0.0295062\pi\)
\(284\) −1.05682 + 3.94410i −0.0627106 + 0.234039i
\(285\) 2.74031 + 2.44608i 0.162322 + 0.144893i
\(286\) 4.24654 2.02403i 0.251103 0.119683i
\(287\) 3.61259 + 3.61259i 0.213245 + 0.213245i
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) −13.2908 + 7.67347i −0.781814 + 0.451381i
\(290\) 0.0530650 + 0.160954i 0.00311608 + 0.00945154i
\(291\) −9.66576 9.66576i −0.566617 0.566617i
\(292\) −2.98622 1.72410i −0.174755 0.100895i
\(293\) 9.90790 + 5.72033i 0.578825 + 0.334185i 0.760666 0.649143i \(-0.224872\pi\)
−0.181841 + 0.983328i \(0.558206\pi\)
\(294\) −4.64469 4.64469i −0.270884 0.270884i
\(295\) −4.92812 + 9.77589i −0.286926 + 0.569174i
\(296\) −0.800508 + 0.462173i −0.0465286 + 0.0268633i
\(297\) −0.652360 1.12992i −0.0378538 0.0655646i
\(298\) −10.3192 10.3192i −0.597775 0.597775i
\(299\) −0.0611485 + 0.774174i −0.00353631 + 0.0447716i
\(300\) −3.91270 3.11300i −0.225900 0.179729i
\(301\) 1.61493 6.02701i 0.0930831 0.347391i
\(302\) 3.18187 11.8749i 0.183096 0.683323i
\(303\) −10.1695 + 2.72492i −0.584225 + 0.156543i
\(304\) 1.16158 1.16158i 0.0666210 0.0666210i
\(305\) −2.25100 6.82762i −0.128892 0.390948i
\(306\) 1.47202 + 5.49364i 0.0841496 + 0.314051i
\(307\) −26.9028 −1.53543 −0.767713 0.640794i \(-0.778605\pi\)
−0.767713 + 0.640794i \(0.778605\pi\)
\(308\) 0.221799 + 0.827767i 0.0126382 + 0.0471664i
\(309\) −6.87058 11.9002i −0.390853 0.676978i
\(310\) −13.5873 + 8.90720i −0.771709 + 0.505895i
\(311\) 7.38647i 0.418849i −0.977825 0.209424i \(-0.932841\pi\)
0.977825 0.209424i \(-0.0671590\pi\)
\(312\) −0.283902 + 3.59436i −0.0160728 + 0.203490i
\(313\) 13.9012 13.9012i 0.785742 0.785742i −0.195051 0.980793i \(-0.562487\pi\)
0.980793 + 0.195051i \(0.0624873\pi\)
\(314\) 4.52376 + 1.21214i 0.255291 + 0.0684049i
\(315\) 0.299166 1.43790i 0.0168561 0.0810168i
\(316\) 9.58244 + 5.53242i 0.539054 + 0.311223i
\(317\) 24.2313i 1.36097i 0.732763 + 0.680484i \(0.238230\pi\)
−0.732763 + 0.680484i \(0.761770\pi\)
\(318\) −1.83101 + 3.17140i −0.102678 + 0.177844i
\(319\) −0.0955177 + 0.0255939i −0.00534797 + 0.00143298i
\(320\) −1.48905 + 1.66815i −0.0832403 + 0.0932527i
\(321\) −6.40651 + 11.0964i −0.357577 + 0.619341i
\(322\) −0.136650 0.0366151i −0.00761518 0.00204048i
\(323\) 8.09115 4.67143i 0.450203 0.259925i
\(324\) 1.00000 0.0555556
\(325\) −5.26408 17.2421i −0.291998 0.956419i
\(326\) 1.83410 0.101582
\(327\) −15.9511 + 9.20939i −0.882099 + 0.509280i
\(328\) −7.51330 2.01318i −0.414852 0.111159i
\(329\) −2.60265 + 4.50793i −0.143489 + 0.248530i
\(330\) 1.94279 2.17647i 0.106947 0.119811i
\(331\) 7.54624 2.02201i 0.414779 0.111140i −0.0453937 0.998969i \(-0.514454\pi\)
0.460173 + 0.887830i \(0.347788\pi\)
\(332\) 1.10199 1.90870i 0.0604795 0.104754i
\(333\) 0.924347i 0.0506539i
\(334\) −17.4905 10.0982i −0.957040 0.552547i
\(335\) −6.05049 + 29.0809i −0.330573 + 1.58886i
\(336\) −0.634441 0.169998i −0.0346116 0.00927414i
\(337\) −3.21147 + 3.21147i −0.174940 + 0.174940i −0.789146 0.614206i \(-0.789476\pi\)
0.614206 + 0.789146i \(0.289476\pi\)
\(338\) −8.18686 + 10.0983i −0.445307 + 0.549274i
\(339\) 2.33017i 0.126557i
\(340\) −10.6358 + 6.97234i −0.576810 + 0.378128i
\(341\) −4.73987 8.20970i −0.256678 0.444580i
\(342\) −0.425167 1.58674i −0.0229904 0.0858012i
\(343\) 8.91213 0.481210
\(344\) 2.45871 + 9.17603i 0.132565 + 0.494738i
\(345\) 0.150800 + 0.457400i 0.00811882 + 0.0246256i
\(346\) 7.18344 7.18344i 0.386184 0.386184i
\(347\) 18.0264 4.83017i 0.967710 0.259297i 0.259849 0.965649i \(-0.416327\pi\)
0.707861 + 0.706352i \(0.249660\pi\)
\(348\) 0.0196164 0.0732094i 0.00105155 0.00392444i
\(349\) 0.712266 2.65821i 0.0381267 0.142291i −0.944239 0.329261i \(-0.893200\pi\)
0.982366 + 0.186971i \(0.0598669\pi\)
\(350\) 3.26304 0.371418i 0.174417 0.0198531i
\(351\) 2.97085 + 2.04304i 0.158572 + 0.109050i
\(352\) −0.922576 0.922576i −0.0491735 0.0491735i
\(353\) −1.21485 2.10419i −0.0646602 0.111995i 0.831883 0.554951i \(-0.187263\pi\)
−0.896543 + 0.442956i \(0.853930\pi\)
\(354\) 4.24006 2.44800i 0.225357 0.130110i
\(355\) −4.11001 + 8.15302i −0.218137 + 0.432717i
\(356\) −4.36788 4.36788i −0.231497 0.231497i
\(357\) −3.23515 1.86781i −0.171222 0.0988552i
\(358\) −1.03484 0.597467i −0.0546931 0.0315771i
\(359\) −21.3084 21.3084i −1.12462 1.12462i −0.991038 0.133578i \(-0.957353\pi\)
−0.133578 0.991038i \(-0.542647\pi\)
\(360\) 0.700141 + 2.12363i 0.0369006 + 0.111925i
\(361\) 14.1175 8.15074i 0.743026 0.428986i
\(362\) 10.5148 + 18.2122i 0.552646 + 0.957211i
\(363\) −6.57447 6.57447i −0.345070 0.345070i
\(364\) −1.53752 1.80123i −0.0805878 0.0944100i
\(365\) −5.75212 5.13452i −0.301080 0.268753i
\(366\) −0.832121 + 3.10552i −0.0434957 + 0.162328i
\(367\) −2.85418 + 10.6519i −0.148987 + 0.556027i 0.850559 + 0.525880i \(0.176264\pi\)
−0.999545 + 0.0301464i \(0.990403\pi\)
\(368\) 0.208047 0.0557460i 0.0108452 0.00290596i
\(369\) −5.50012 + 5.50012i −0.286325 + 0.286325i
\(370\) −1.96297 + 0.647172i −0.102050 + 0.0336449i
\(371\) −0.622536 2.32334i −0.0323204 0.120622i
\(372\) 7.26573 0.376711
\(373\) 0.766184 + 2.85944i 0.0396715 + 0.148056i 0.982921 0.184030i \(-0.0589143\pi\)
−0.943249 + 0.332086i \(0.892248\pi\)
\(374\) −3.71025 6.42635i −0.191853 0.332299i
\(375\) −7.14775 8.59707i −0.369108 0.443951i
\(376\) 7.92499i 0.408700i
\(377\) 0.207847 0.177417i 0.0107047 0.00913745i
\(378\) −0.464443 + 0.464443i −0.0238884 + 0.0238884i
\(379\) −19.7782 5.29955i −1.01594 0.272220i −0.287830 0.957682i \(-0.592934\pi\)
−0.728109 + 0.685462i \(0.759600\pi\)
\(380\) 3.07198 2.01384i 0.157589 0.103308i
\(381\) −1.08684 0.627490i −0.0556807 0.0321473i
\(382\) 8.12353i 0.415636i
\(383\) 12.5222 21.6891i 0.639855 1.10826i −0.345610 0.938378i \(-0.612328\pi\)
0.985464 0.169882i \(-0.0543388\pi\)
\(384\) 0.965926 0.258819i 0.0492922 0.0132078i
\(385\) 0.108533 + 1.91316i 0.00553136 + 0.0975037i
\(386\) −2.24370 + 3.88620i −0.114201 + 0.197803i
\(387\) 9.17603 + 2.45871i 0.466444 + 0.124983i
\(388\) −11.8381 + 6.83472i −0.600988 + 0.346981i
\(389\) −13.9873 −0.709182 −0.354591 0.935022i \(-0.615380\pi\)
−0.354591 + 0.935022i \(0.615380\pi\)
\(390\) −2.25866 + 7.73941i −0.114371 + 0.391900i
\(391\) 1.22499 0.0619506
\(392\) −5.68856 + 3.28429i −0.287316 + 0.165882i
\(393\) 14.2360 + 3.81453i 0.718112 + 0.192418i
\(394\) −5.75874 + 9.97443i −0.290121 + 0.502505i
\(395\) 18.4579 + 16.4761i 0.928716 + 0.829001i
\(396\) −1.26026 + 0.337686i −0.0633306 + 0.0169694i
\(397\) 10.4625 18.1215i 0.525096 0.909494i −0.474476 0.880268i \(-0.657363\pi\)
0.999573 0.0292254i \(-0.00930406\pi\)
\(398\) 3.50967i 0.175924i
\(399\) 0.934417 + 0.539486i 0.0467793 + 0.0270081i
\(400\) −4.01961 + 2.97368i −0.200980 + 0.148684i
\(401\) 28.6705 + 7.68224i 1.43174 + 0.383633i 0.889632 0.456678i \(-0.150961\pi\)
0.542105 + 0.840311i \(0.317628\pi\)
\(402\) 9.39313 9.39313i 0.468487 0.468487i
\(403\) 21.5854 + 14.8442i 1.07525 + 0.739443i
\(404\) 10.5283i 0.523802i
\(405\) 2.18919 + 0.455475i 0.108782 + 0.0226328i
\(406\) 0.0248909 + 0.0431123i 0.00123531 + 0.00213963i
\(407\) −0.312139 1.16492i −0.0154722 0.0577429i
\(408\) 5.68744 0.281570
\(409\) −3.61041 13.4742i −0.178523 0.666259i −0.995925 0.0901897i \(-0.971253\pi\)
0.817401 0.576069i \(-0.195414\pi\)
\(410\) −15.5311 7.82935i −0.767024 0.386664i
\(411\) 11.4823 11.4823i 0.566382 0.566382i
\(412\) −13.2729 + 3.55647i −0.653910 + 0.175215i
\(413\) −0.832310 + 3.10622i −0.0409553 + 0.152847i
\(414\) 0.0557460 0.208047i 0.00273977 0.0102249i
\(415\) 3.28183 3.67657i 0.161098 0.180476i
\(416\) 3.39840 + 1.20452i 0.166620 + 0.0590563i
\(417\) 5.44017 + 5.44017i 0.266406 + 0.266406i
\(418\) 1.07164 + 1.85614i 0.0524158 + 0.0907867i
\(419\) 6.36248 3.67338i 0.310827 0.179456i −0.336469 0.941694i \(-0.609233\pi\)
0.647297 + 0.762238i \(0.275899\pi\)
\(420\) −1.31148 0.661129i −0.0639936 0.0322598i
\(421\) 11.2103 + 11.2103i 0.546356 + 0.546356i 0.925385 0.379029i \(-0.123742\pi\)
−0.379029 + 0.925385i \(0.623742\pi\)
\(422\) −15.6266 9.02202i −0.760691 0.439185i
\(423\) −6.86325 3.96250i −0.333702 0.192663i
\(424\) 2.58944 + 2.58944i 0.125754 + 0.125754i
\(425\) −26.4596 + 10.4194i −1.28348 + 0.505415i
\(426\) 3.53618 2.04162i 0.171329 0.0989166i
\(427\) −1.05586 1.82881i −0.0510968 0.0885022i
\(428\) 9.06017 + 9.06017i 0.437940 + 0.437940i
\(429\) −4.43396 1.57156i −0.214074 0.0758754i
\(430\) 1.20312 + 21.2079i 0.0580196 + 1.02274i
\(431\) 9.52492 35.5475i 0.458799 1.71226i −0.217872 0.975977i \(-0.569912\pi\)
0.676672 0.736285i \(-0.263422\pi\)
\(432\) 0.258819 0.965926i 0.0124524 0.0464731i
\(433\) 8.17993 2.19180i 0.393102 0.105331i −0.0568530 0.998383i \(-0.518107\pi\)
0.449955 + 0.893051i \(0.351440\pi\)
\(434\) −3.37452 + 3.37452i −0.161982 + 0.161982i
\(435\) 0.0762890 0.151334i 0.00365778 0.00725592i
\(436\) 4.76713 + 17.7912i 0.228304 + 0.852042i
\(437\) −0.353818 −0.0169254
\(438\) 0.892458 + 3.33070i 0.0426433 + 0.159147i
\(439\) 8.93023 + 15.4676i 0.426216 + 0.738229i 0.996533 0.0831963i \(-0.0265129\pi\)
−0.570317 + 0.821425i \(0.693180\pi\)
\(440\) −1.59948 2.43990i −0.0762523 0.116318i
\(441\) 6.56859i 0.312790i
\(442\) 16.8965 + 11.6197i 0.803686 + 0.552692i
\(443\) −2.70502 + 2.70502i −0.128519 + 0.128519i −0.768440 0.639921i \(-0.778967\pi\)
0.639921 + 0.768440i \(0.278967\pi\)
\(444\) 0.892850 + 0.239238i 0.0423728 + 0.0113538i
\(445\) −7.57265 11.5516i −0.358978 0.547597i
\(446\) −23.8968 13.7968i −1.13155 0.653299i
\(447\) 14.5936i 0.690252i
\(448\) −0.328411 + 0.568824i −0.0155159 + 0.0268744i
\(449\) −11.5315 + 3.08986i −0.544205 + 0.145819i −0.520440 0.853898i \(-0.674232\pi\)
−0.0237652 + 0.999718i \(0.507565\pi\)
\(450\) 0.565478 + 4.96792i 0.0266569 + 0.234190i
\(451\) 5.07427 8.78890i 0.238938 0.413853i
\(452\) 2.25077 + 0.603092i 0.105867 + 0.0283671i
\(453\) −10.6467 + 6.14689i −0.500227 + 0.288806i
\(454\) −12.4586 −0.584711
\(455\) −2.54550 4.64353i −0.119335 0.217692i
\(456\) −1.64272 −0.0769273
\(457\) 35.2137 20.3307i 1.64723 0.951028i 0.669062 0.743207i \(-0.266696\pi\)
0.978167 0.207821i \(-0.0666373\pi\)
\(458\) 16.9495 + 4.54161i 0.791998 + 0.212215i
\(459\) 2.84372 4.92547i 0.132733 0.229901i
\(460\) 0.480844 0.0272782i 0.0224195 0.00127185i
\(461\) 30.0601 8.05459i 1.40004 0.375139i 0.521681 0.853141i \(-0.325305\pi\)
0.878359 + 0.478001i \(0.158639\pi\)
\(462\) 0.428484 0.742155i 0.0199349 0.0345282i
\(463\) 13.3638i 0.621069i 0.950562 + 0.310534i \(0.100508\pi\)
−0.950562 + 0.310534i \(0.899492\pi\)
\(464\) −0.0656377 0.0378960i −0.00304716 0.00175928i
\(465\) 15.9060 + 3.30936i 0.737625 + 0.153468i
\(466\) −28.7990 7.71667i −1.33409 0.357468i
\(467\) −15.7888 + 15.7888i −0.730619 + 0.730619i −0.970742 0.240123i \(-0.922812\pi\)
0.240123 + 0.970742i \(0.422812\pi\)
\(468\) 2.74234 2.34084i 0.126765 0.108206i
\(469\) 8.72514i 0.402890i
\(470\) 3.60964 17.3493i 0.166500 0.800263i
\(471\) −2.34167 4.05589i −0.107898 0.186886i
\(472\) −1.26718 4.72918i −0.0583267 0.217678i
\(473\) −12.3945 −0.569898
\(474\) −2.86379 10.6878i −0.131538 0.490908i
\(475\) 7.64239 3.00946i 0.350657 0.138084i
\(476\) −2.64149 + 2.64149i −0.121072 + 0.121072i
\(477\) 3.53724 0.947801i 0.161959 0.0433968i
\(478\) −0.192612 + 0.718839i −0.00880988 + 0.0328789i
\(479\) 8.34864 31.1575i 0.381459 1.42362i −0.462215 0.886768i \(-0.652945\pi\)
0.843674 0.536856i \(-0.180388\pi\)
\(480\) 2.23248 0.126648i 0.101898 0.00578066i
\(481\) 2.16375 + 2.53488i 0.0986586 + 0.115580i
\(482\) −12.0756 12.0756i −0.550029 0.550029i
\(483\) 0.0707350 + 0.122517i 0.00321855 + 0.00557470i
\(484\) −8.05205 + 4.64885i −0.366002 + 0.211312i
\(485\) −29.0288 + 9.57053i −1.31813 + 0.434576i
\(486\) −0.707107 0.707107i −0.0320750 0.0320750i
\(487\) −11.4410 6.60545i −0.518440 0.299321i 0.217856 0.975981i \(-0.430094\pi\)
−0.736296 + 0.676659i \(0.763427\pi\)
\(488\) 2.78433 + 1.60754i 0.126041 + 0.0727697i
\(489\) −1.29691 1.29691i −0.0586482 0.0586482i
\(490\) −13.9492 + 4.59893i −0.630163 + 0.207759i
\(491\) −21.0123 + 12.1315i −0.948274 + 0.547486i −0.892544 0.450960i \(-0.851082\pi\)
−0.0557297 + 0.998446i \(0.517749\pi\)
\(492\) 3.88917 + 6.73624i 0.175337 + 0.303693i
\(493\) −0.304807 0.304807i −0.0137278 0.0137278i
\(494\) −4.88027 3.35614i −0.219574 0.151000i
\(495\) −2.91276 + 0.165240i −0.130919 + 0.00742699i
\(496\) 1.88051 7.01816i 0.0844374 0.315125i
\(497\) −0.694141 + 2.59057i −0.0311365 + 0.116203i
\(498\) −2.12888 + 0.570431i −0.0953973 + 0.0255616i
\(499\) 23.6665 23.6665i 1.05946 1.05946i 0.0613431 0.998117i \(-0.480462\pi\)
0.998117 0.0613431i \(-0.0195384\pi\)
\(500\) −10.1541 + 4.67911i −0.454106 + 0.209256i
\(501\) 5.22720 + 19.5082i 0.233534 + 0.871560i
\(502\) 14.0315 0.626257
\(503\) 5.71583 + 21.3318i 0.254856 + 0.951137i 0.968170 + 0.250292i \(0.0805267\pi\)
−0.713314 + 0.700845i \(0.752807\pi\)
\(504\) 0.328411 + 0.568824i 0.0146286 + 0.0253374i
\(505\) −4.79538 + 23.0484i −0.213392 + 1.02564i
\(506\) 0.281018i 0.0124928i
\(507\) 12.9295 1.35158i 0.574221 0.0600256i
\(508\) −0.887405 + 0.887405i −0.0393722 + 0.0393722i
\(509\) −17.4786 4.68339i −0.774727 0.207588i −0.150268 0.988645i \(-0.548014\pi\)
−0.624459 + 0.781058i \(0.714680\pi\)
\(510\) 12.4509 + 2.59049i 0.551334 + 0.114709i
\(511\) −1.96141 1.13242i −0.0867679 0.0500955i
\(512\) 1.00000i 0.0441942i
\(513\) −0.821359 + 1.42263i −0.0362639 + 0.0628109i
\(514\) −16.7017 + 4.47521i −0.736681 + 0.197393i
\(515\) −30.6768 + 1.74029i −1.35178 + 0.0766863i
\(516\) 4.74986 8.22700i 0.209101 0.362173i
\(517\) 9.98757 + 2.67616i 0.439253 + 0.117697i
\(518\) −0.525790 + 0.303565i −0.0231019 + 0.0133379i
\(519\) −10.1589 −0.445927
\(520\) 6.89111 + 4.18480i 0.302195 + 0.183516i
\(521\) 30.3276 1.32868 0.664339 0.747432i \(-0.268713\pi\)
0.664339 + 0.747432i \(0.268713\pi\)
\(522\) −0.0656377 + 0.0378960i −0.00287289 + 0.00165866i
\(523\) −44.0321 11.7984i −1.92539 0.515906i −0.983849 0.179001i \(-0.942713\pi\)
−0.941539 0.336905i \(-0.890620\pi\)
\(524\) 7.36910 12.7637i 0.321921 0.557583i
\(525\) −2.56995 2.04468i −0.112162 0.0892373i
\(526\) 25.0956 6.72435i 1.09422 0.293196i
\(527\) 20.6617 35.7871i 0.900038 1.55891i
\(528\) 1.30472i 0.0567806i
\(529\) 19.8784 + 11.4768i 0.864279 + 0.498991i
\(530\) 4.48935 + 6.84820i 0.195005 + 0.297467i
\(531\) −4.72918 1.26718i −0.205229 0.0549909i
\(532\) 0.762948 0.762948i 0.0330780 0.0330780i
\(533\) −2.20829 + 27.9581i −0.0956515 + 1.21100i
\(534\) 6.17712i 0.267310i
\(535\) 15.7077 + 23.9611i 0.679105 + 1.03593i
\(536\) −6.64195 11.5042i −0.286888 0.496905i
\(537\) 0.309271 + 1.15422i 0.0133461 + 0.0498081i
\(538\) 25.0241 1.07887
\(539\) −2.21812 8.27814i −0.0955412 0.356565i
\(540\) 1.00656 1.99671i 0.0433154 0.0859246i
\(541\) −7.31140 + 7.31140i −0.314342 + 0.314342i −0.846589 0.532247i \(-0.821348\pi\)
0.532247 + 0.846589i \(0.321348\pi\)
\(542\) −2.53478 + 0.679193i −0.108878 + 0.0291738i
\(543\) 5.44286 20.3130i 0.233576 0.871716i
\(544\) 1.47202 5.49364i 0.0631122 0.235538i
\(545\) 2.33270 + 41.1195i 0.0999219 + 1.76137i
\(546\) −0.186473 + 2.36085i −0.00798030 + 0.101035i
\(547\) −30.7225 30.7225i −1.31360 1.31360i −0.918742 0.394857i \(-0.870794\pi\)
−0.394857 0.918742i \(-0.629206\pi\)
\(548\) −8.11924 14.0629i −0.346837 0.600739i
\(549\) 2.78433 1.60754i 0.118832 0.0686079i
\(550\) −2.39025 6.06993i −0.101921 0.258823i
\(551\) 0.0880381 + 0.0880381i 0.00375055 + 0.00375055i
\(552\) −0.186530 0.107693i −0.00793923 0.00458372i
\(553\) 6.29395 + 3.63381i 0.267646 + 0.154525i
\(554\) 20.7883 + 20.7883i 0.883210 + 0.883210i
\(555\) 1.84565 + 0.930409i 0.0783434 + 0.0394937i
\(556\) 6.66282 3.84678i 0.282566 0.163140i
\(557\) −8.17126 14.1530i −0.346227 0.599683i 0.639349 0.768917i \(-0.279204\pi\)
−0.985576 + 0.169234i \(0.945871\pi\)
\(558\) −5.13765 5.13765i −0.217494 0.217494i
\(559\) 30.9193 14.7370i 1.30775 0.623310i
\(560\) −0.978038 + 1.09568i −0.0413296 + 0.0463009i
\(561\) −1.92057 + 7.16766i −0.0810865 + 0.302619i
\(562\) 3.79573 14.1659i 0.160113 0.597551i
\(563\) 18.2012 4.87699i 0.767088 0.205541i 0.146003 0.989284i \(-0.453359\pi\)
0.621085 + 0.783743i \(0.286692\pi\)
\(564\) −5.60382 + 5.60382i −0.235963 + 0.235963i
\(565\) 4.65267 + 2.34545i 0.195739 + 0.0986739i
\(566\) 3.02271 + 11.2809i 0.127054 + 0.474171i
\(567\) 0.656821 0.0275839
\(568\) −1.05682 3.94410i −0.0443431 0.165491i
\(569\) 5.61694 + 9.72882i 0.235474 + 0.407853i 0.959410 0.282014i \(-0.0910023\pi\)
−0.723936 + 0.689867i \(0.757669\pi\)
\(570\) −3.59622 0.748217i −0.150629 0.0313394i
\(571\) 38.3139i 1.60339i −0.597735 0.801693i \(-0.703933\pi\)
0.597735 0.801693i \(-0.296067\pi\)
\(572\) −2.66560 + 3.87613i −0.111454 + 0.162069i
\(573\) 5.74420 5.74420i 0.239968 0.239968i
\(574\) −4.93489 1.32230i −0.205978 0.0551918i
\(575\) 1.06508 + 0.159296i 0.0444170 + 0.00664309i
\(576\) −0.866025 0.500000i −0.0360844 0.0208333i
\(577\) 18.0766i 0.752540i −0.926510 0.376270i \(-0.877207\pi\)
0.926510 0.376270i \(-0.122793\pi\)
\(578\) 7.67347 13.2908i 0.319174 0.552826i
\(579\) 4.33450 1.16143i 0.180136 0.0482672i
\(580\) −0.126433 0.112858i −0.00524983 0.00468616i
\(581\) 0.723809 1.25367i 0.0300287 0.0520112i
\(582\) 13.2037 + 3.53791i 0.547310 + 0.146651i
\(583\) −4.13779 + 2.38896i −0.171370 + 0.0989404i
\(584\) 3.44819 0.142687
\(585\) 7.06970 3.87548i 0.292296 0.160231i
\(586\) −11.4407 −0.472609
\(587\) 13.0229 7.51880i 0.537514 0.310334i −0.206557 0.978435i \(-0.566226\pi\)
0.744071 + 0.668101i \(0.232892\pi\)
\(588\) 6.34477 + 1.70008i 0.261654 + 0.0701099i
\(589\) −5.96777 + 10.3365i −0.245898 + 0.425907i
\(590\) −0.620069 10.9302i −0.0255278 0.449990i
\(591\) 11.1250 2.98094i 0.457623 0.122620i
\(592\) 0.462173 0.800508i 0.0189952 0.0329007i
\(593\) 36.6579i 1.50536i 0.658387 + 0.752680i \(0.271239\pi\)
−0.658387 + 0.752680i \(0.728761\pi\)
\(594\) 1.12992 + 0.652360i 0.0463612 + 0.0267666i
\(595\) −6.98585 + 4.57958i −0.286392 + 0.187745i
\(596\) 14.0963 + 3.77709i 0.577407 + 0.154716i
\(597\) 2.48171 2.48171i 0.101570 0.101570i
\(598\) −0.334131 0.701028i −0.0136636 0.0286672i
\(599\) 9.07935i 0.370972i −0.982647 0.185486i \(-0.940614\pi\)
0.982647 0.185486i \(-0.0593860\pi\)
\(600\) 4.94500 + 0.739583i 0.201879 + 0.0301933i
\(601\) 17.2295 + 29.8423i 0.702805 + 1.21729i 0.967478 + 0.252956i \(0.0814027\pi\)
−0.264673 + 0.964338i \(0.585264\pi\)
\(602\) 1.61493 + 6.02701i 0.0658197 + 0.245643i
\(603\) −13.2839 −0.540962
\(604\) 3.18187 + 11.8749i 0.129468 + 0.483182i
\(605\) −19.7449 + 6.50970i −0.802744 + 0.264657i
\(606\) 7.44463 7.44463i 0.302417 0.302417i
\(607\) 27.8240 7.45542i 1.12934 0.302606i 0.354683 0.934987i \(-0.384589\pi\)
0.774658 + 0.632381i \(0.217922\pi\)
\(608\) −0.425167 + 1.58674i −0.0172428 + 0.0643509i
\(609\) 0.0128845 0.0480855i 0.000522105 0.00194852i
\(610\) 5.36323 + 4.78739i 0.217151 + 0.193836i
\(611\) −28.0970 + 5.19927i −1.13668 + 0.210340i
\(612\) −4.02163 4.02163i −0.162565 0.162565i
\(613\) −7.99836 13.8536i −0.323051 0.559540i 0.658065 0.752961i \(-0.271375\pi\)
−0.981116 + 0.193421i \(0.938042\pi\)
\(614\) 23.2985 13.4514i 0.940253 0.542855i
\(615\) 5.44593 + 16.5183i 0.219601 + 0.666083i
\(616\) −0.605967 0.605967i −0.0244151 0.0244151i
\(617\) −5.29972 3.05979i −0.213359 0.123183i 0.389513 0.921021i \(-0.372643\pi\)
−0.602871 + 0.797838i \(0.705977\pi\)
\(618\) 11.9002 + 6.87058i 0.478696 + 0.276375i
\(619\) −1.83202 1.83202i −0.0736353 0.0736353i 0.669330 0.742965i \(-0.266581\pi\)
−0.742965 + 0.669330i \(0.766581\pi\)
\(620\) 7.31339 14.5075i 0.293713 0.582637i
\(621\) −0.186530 + 0.107693i −0.00748518 + 0.00432157i
\(622\) 3.69324 + 6.39687i 0.148085 + 0.256491i
\(623\) −2.86892 2.86892i −0.114941 0.114941i
\(624\) −1.55131 3.25476i −0.0621022 0.130294i
\(625\) −24.3605 + 5.61850i −0.974419 + 0.224740i
\(626\) −5.08819 + 18.9894i −0.203365 + 0.758968i
\(627\) 0.554723 2.07025i 0.0221535 0.0826780i
\(628\) −4.52376 + 1.21214i −0.180518 + 0.0483696i
\(629\) 3.71738 3.71738i 0.148221 0.148221i
\(630\) 0.459867 + 1.39484i 0.0183215 + 0.0555720i
\(631\) 7.50451 + 28.0072i 0.298750 + 1.11495i 0.938193 + 0.346111i \(0.112498\pi\)
−0.639444 + 0.768838i \(0.720835\pi\)
\(632\) −11.0648 −0.440136
\(633\) 4.67014 + 17.4292i 0.185622 + 0.692749i
\(634\) −12.1157 20.9850i −0.481175 0.833419i
\(635\) −2.34689 + 1.53850i −0.0931334 + 0.0610537i
\(636\) 3.66202i 0.145209i
\(637\) 15.3760 + 18.0133i 0.609221 + 0.713714i
\(638\) 0.0699238 0.0699238i 0.00276831 0.00276831i
\(639\) −3.94410 1.05682i −0.156026 0.0418071i
\(640\) 0.455475 2.18919i 0.0180042 0.0865352i
\(641\) −18.3265 10.5808i −0.723851 0.417916i 0.0923172 0.995730i \(-0.470573\pi\)
−0.816169 + 0.577814i \(0.803906\pi\)
\(642\) 12.8130i 0.505690i
\(643\) 6.77343 11.7319i 0.267118 0.462662i −0.700998 0.713163i \(-0.747262\pi\)
0.968116 + 0.250501i \(0.0805953\pi\)
\(644\) 0.136650 0.0366151i 0.00538475 0.00144284i
\(645\) 14.1455 15.8470i 0.556980 0.623975i
\(646\) −4.67143 + 8.09115i −0.183795 + 0.318342i
\(647\) −37.8041 10.1296i −1.48623 0.398235i −0.577769 0.816200i \(-0.696077\pi\)
−0.908463 + 0.417966i \(0.862743\pi\)
\(648\) −0.866025 + 0.500000i −0.0340207 + 0.0196419i
\(649\) 6.38791 0.250747
\(650\) 13.1799 + 12.3000i 0.516957 + 0.482448i
\(651\) 4.77229 0.187041
\(652\) −1.58838 + 0.917052i −0.0622058 + 0.0359145i
\(653\) −11.6566 3.12337i −0.456157 0.122227i 0.0234221 0.999726i \(-0.492544\pi\)
−0.479579 + 0.877499i \(0.659210\pi\)
\(654\) 9.20939 15.9511i 0.360115 0.623738i
\(655\) 21.9459 24.5856i 0.857497 0.960639i
\(656\) 7.51330 2.01318i 0.293345 0.0786015i
\(657\) 1.72410 2.98622i 0.0672634 0.116504i
\(658\) 5.20530i 0.202924i
\(659\) 18.1821 + 10.4974i 0.708273 + 0.408921i 0.810421 0.585848i \(-0.199238\pi\)
−0.102149 + 0.994769i \(0.532572\pi\)
\(660\) −0.594268 + 2.85628i −0.0231318 + 0.111180i
\(661\) −20.7944 5.57184i −0.808808 0.216719i −0.169360 0.985554i \(-0.554170\pi\)
−0.639448 + 0.768835i \(0.720837\pi\)
\(662\) −5.52423 + 5.52423i −0.214705 + 0.214705i
\(663\) −3.73130 20.1640i −0.144912 0.783106i
\(664\) 2.20398i 0.0855309i
\(665\) 2.01774 1.32273i 0.0782446 0.0512934i
\(666\) −0.462173 0.800508i −0.0179088 0.0310190i
\(667\) 0.00422510 + 0.0157683i 0.000163596 + 0.000610550i
\(668\) 20.1963 0.781420
\(669\) 7.14177 + 26.6535i 0.276117 + 1.03048i
\(670\) −9.30059 28.2101i −0.359313 1.08985i
\(671\) −2.96615 + 2.96615i −0.114507 + 0.114507i
\(672\) 0.634441 0.169998i 0.0244741 0.00655781i
\(673\) 3.70159 13.8145i 0.142686 0.532511i −0.857162 0.515048i \(-0.827774\pi\)
0.999848 0.0174635i \(-0.00555908\pi\)
\(674\) 1.17548 4.38695i 0.0452778 0.168979i
\(675\) 3.11300 3.91270i 0.119819 0.150600i
\(676\) 2.04089 12.8388i 0.0784958 0.493800i
\(677\) −23.0498 23.0498i −0.885875 0.885875i 0.108249 0.994124i \(-0.465476\pi\)
−0.994124 + 0.108249i \(0.965476\pi\)
\(678\) −1.16508 2.01799i −0.0447448 0.0775003i
\(679\) −7.77551 + 4.48919i −0.298397 + 0.172279i
\(680\) 5.72474 11.3561i 0.219534 0.435488i
\(681\) 8.80956 + 8.80956i 0.337583 + 0.337583i
\(682\) 8.20970 + 4.73987i 0.314366 + 0.181499i
\(683\) −8.90514 5.14139i −0.340746 0.196730i 0.319856 0.947466i \(-0.396365\pi\)
−0.660602 + 0.750736i \(0.729699\pi\)
\(684\) 1.16158 + 1.16158i 0.0444140 + 0.0444140i
\(685\) −11.3692 34.4845i −0.434396 1.31759i
\(686\) −7.71813 + 4.45607i −0.294680 + 0.170133i
\(687\) −8.77371 15.1965i −0.334738 0.579783i
\(688\) −6.71732 6.71732i −0.256095 0.256095i
\(689\) 7.48168 10.8793i 0.285029 0.414469i
\(690\) −0.359297 0.320720i −0.0136782 0.0122096i
\(691\) 2.69876 10.0719i 0.102666 0.383153i −0.895404 0.445254i \(-0.853113\pi\)
0.998070 + 0.0621008i \(0.0197800\pi\)
\(692\) −2.62932 + 9.81276i −0.0999518 + 0.373025i
\(693\) −0.827767 + 0.221799i −0.0314443 + 0.00842546i
\(694\) −13.1963 + 13.1963i −0.500923 + 0.500923i
\(695\) 16.3383 5.38657i 0.619746 0.204324i
\(696\) 0.0196164 + 0.0732094i 0.000743558 + 0.00277499i
\(697\) 44.2388 1.67566
\(698\) 0.712266 + 2.65821i 0.0269597 + 0.100615i
\(699\) 14.9075 + 25.8205i 0.563852 + 0.976620i
\(700\) −2.64016 + 1.95317i −0.0997888 + 0.0738231i
\(701\) 48.0206i 1.81371i 0.421440 + 0.906856i \(0.361525\pi\)
−0.421440 + 0.906856i \(0.638475\pi\)
\(702\) −3.59436 0.283902i −0.135660 0.0107152i
\(703\) −1.07370 + 1.07370i −0.0404953 + 0.0404953i
\(704\) 1.26026 + 0.337686i 0.0474979 + 0.0127270i
\(705\) −14.8202 + 9.71541i −0.558161 + 0.365903i
\(706\) 2.10419 + 1.21485i 0.0791922 + 0.0457217i
\(707\) 6.91520i 0.260073i
\(708\) −2.44800 + 4.24006i −0.0920016 + 0.159351i
\(709\) −16.6659 + 4.46562i −0.625901 + 0.167710i −0.557809 0.829969i \(-0.688358\pi\)
−0.0680921 + 0.997679i \(0.521691\pi\)
\(710\) −0.517133 9.11573i −0.0194077 0.342107i
\(711\) −5.53242 + 9.58244i −0.207482 + 0.359369i
\(712\) 5.96664 + 1.59876i 0.223609 + 0.0599159i
\(713\) −1.35527 + 0.782468i −0.0507554 + 0.0293037i
\(714\) 3.73563 0.139802
\(715\) −7.60098 + 7.27146i −0.284261 + 0.271937i
\(716\) 1.19493 0.0446568
\(717\) 0.644493 0.372098i 0.0240690 0.0138963i
\(718\) 29.1079 + 7.79943i 1.08630 + 0.291072i
\(719\) −9.27325 + 16.0617i −0.345834 + 0.599002i −0.985505 0.169647i \(-0.945737\pi\)
0.639671 + 0.768649i \(0.279071\pi\)
\(720\) −1.66815 1.48905i −0.0621684 0.0554935i
\(721\) −8.71794 + 2.33597i −0.324673 + 0.0869959i
\(722\) −8.15074 + 14.1175i −0.303339 + 0.525399i
\(723\) 17.0775i 0.635119i
\(724\) −18.2122 10.5148i −0.676850 0.390780i
\(725\) −0.225381 0.304654i −0.00837043 0.0113146i
\(726\) 8.98090 + 2.40642i 0.333312 + 0.0893108i
\(727\) 3.86950 3.86950i 0.143512 0.143512i −0.631701 0.775212i \(-0.717643\pi\)
0.775212 + 0.631701i \(0.217643\pi\)
\(728\) 2.23214 + 0.791152i 0.0827287 + 0.0293220i
\(729\) 1.00000i 0.0370370i
\(730\) 7.54874 + 1.57057i 0.279391 + 0.0581293i
\(731\) −27.0145 46.7905i −0.999169 1.73061i
\(732\) −0.832121 3.10552i −0.0307561 0.114783i
\(733\) −45.7696 −1.69054 −0.845270 0.534339i \(-0.820561\pi\)
−0.845270 + 0.534339i \(0.820561\pi\)
\(734\) −2.85418 10.6519i −0.105350 0.393170i
\(735\) 13.1155 + 6.61167i 0.483774 + 0.243875i
\(736\) −0.152301 + 0.152301i −0.00561388 + 0.00561388i
\(737\) 16.7412 4.48579i 0.616670 0.165236i
\(738\) 2.01318 7.51330i 0.0741063 0.276568i
\(739\) −2.54621 + 9.50257i −0.0936637 + 0.349558i −0.996813 0.0797679i \(-0.974582\pi\)
0.903150 + 0.429326i \(0.141249\pi\)
\(740\) 1.37640 1.54195i 0.0505973 0.0566833i
\(741\) 1.07772 + 5.82403i 0.0395911 + 0.213951i
\(742\) 1.70080 + 1.70080i 0.0624383 + 0.0624383i
\(743\) −15.5785 26.9827i −0.571518 0.989899i −0.996410 0.0846546i \(-0.973021\pi\)
0.424892 0.905244i \(-0.360312\pi\)
\(744\) −6.29231 + 3.63287i −0.230687 + 0.133187i
\(745\) 29.1391 + 14.6893i 1.06757 + 0.538173i
\(746\) −2.09325 2.09325i −0.0766395 0.0766395i
\(747\) 1.90870 + 1.10199i 0.0698357 + 0.0403196i
\(748\) 6.42635 + 3.71025i 0.234971 + 0.135660i
\(749\) 5.95091 + 5.95091i 0.217442 + 0.217442i
\(750\) 10.4887 + 3.87141i 0.382992 + 0.141364i
\(751\) 13.1964 7.61892i 0.481542 0.278018i −0.239517 0.970892i \(-0.576989\pi\)
0.721059 + 0.692874i \(0.243656\pi\)
\(752\) 3.96250 + 6.86325i 0.144497 + 0.250277i
\(753\) −9.92177 9.92177i −0.361569 0.361569i
\(754\) −0.0912926 + 0.257572i −0.00332468 + 0.00938020i
\(755\) 1.55698 + 27.4456i 0.0566644 + 0.998848i
\(756\) 0.169998 0.634441i 0.00618276 0.0230744i
\(757\) −12.3801 + 46.2033i −0.449964 + 1.67929i 0.252524 + 0.967591i \(0.418739\pi\)
−0.702487 + 0.711696i \(0.747927\pi\)
\(758\) 19.7782 5.29955i 0.718377 0.192488i
\(759\) 0.198710 0.198710i 0.00721271 0.00721271i
\(760\) −1.65349 + 3.28003i −0.0599784 + 0.118979i
\(761\) 5.54307 + 20.6870i 0.200936 + 0.749904i 0.990650 + 0.136429i \(0.0435624\pi\)
−0.789714 + 0.613476i \(0.789771\pi\)
\(762\) 1.25498 0.0454631
\(763\) 3.13115 + 11.6856i 0.113355 + 0.423048i
\(764\) −4.06177 7.03518i −0.146950 0.254524i
\(765\) −6.97234 10.6358i −0.252086 0.384540i
\(766\) 25.0444i 0.904891i
\(767\) −15.9353 + 7.59523i −0.575390 + 0.274248i
\(768\) −0.707107 + 0.707107i −0.0255155 + 0.0255155i
\(769\) 22.8775 + 6.13001i 0.824984 + 0.221054i 0.646524 0.762893i \(-0.276222\pi\)
0.178460