Newspace parameters
Level: | \( N \) | \(=\) | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 390.bb (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.11416567883\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 8.0.17284886784.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 2x^{7} + 2x^{6} + 30x^{5} + 185x^{4} + 36x^{3} + 8x^{2} + 208x + 2704 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} + 2x^{6} + 30x^{5} + 185x^{4} + 36x^{3} + 8x^{2} + 208x + 2704 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 2225 \nu^{7} + 27304 \nu^{6} - 47714 \nu^{5} - 21770 \nu^{4} + 204731 \nu^{3} + 5488658 \nu^{2} + 258164 \nu - 320632 ) / 20561424 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 1777 \nu^{7} - 125666 \nu^{6} + 800522 \nu^{5} - 2370014 \nu^{4} - 784473 \nu^{3} - 5277648 \nu^{2} + 34618460 \nu - 62031216 ) / 6853808 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 299 \nu^{7} + 7801 \nu^{6} - 39200 \nu^{5} + 84154 \nu^{4} + 80915 \nu^{3} + 360425 \nu^{2} - 1640788 \nu + 2274116 ) / 395412 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 43733 \nu^{7} - 71918 \nu^{6} - 318186 \nu^{5} + 3350390 \nu^{4} + 3714597 \nu^{3} - 2633192 \nu^{2} - 18392236 \nu + 94417440 ) / 20561424 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -151\nu^{7} + 822\nu^{6} - 2018\nu^{5} - 2554\nu^{4} - 7135\nu^{3} + 37828\nu^{2} - 46500\nu - 3328 ) / 51792 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 123974 \nu^{7} + 362933 \nu^{6} - 209286 \nu^{5} - 5793110 \nu^{4} - 10547568 \nu^{3} + 7562729 \nu^{2} + 3493156 \nu - 117816036 ) / 10280712 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{7} - 4\beta_{6} + \beta_{5} + \beta_{4} + 9\beta_{2} + \beta _1 + 1 \)
|
\(\nu^{3}\) | \(=\) |
\( 6\beta_{7} - 10\beta_{6} + 26\beta_{5} + 10\beta_{4} + 10\beta_{3} + 18\beta_{2} + 3\beta _1 - 18 \)
|
\(\nu^{4}\) | \(=\) |
\( 23\beta_{7} + 139\beta_{5} + 5\beta_{4} + 28\beta_{3} + 67\beta_{2} - 5\beta _1 - 149 \)
|
\(\nu^{5}\) | \(=\) |
\( 250\beta_{6} + 322\beta_{5} - 72\beta_{4} + 72\beta_{3} - 76\beta_{2} - 149\beta _1 - 398 \)
|
\(\nu^{6}\) | \(=\) |
\( -471\beta_{7} + 1748\beta_{6} - 619\beta_{5} - 619\beta_{4} - 148\beta_{3} - 2095\beta_{2} - 619\beta _1 - 255 \)
|
\(\nu^{7}\) | \(=\) |
\( - 2986 \beta_{7} + 5302 \beta_{6} - 11002 \beta_{5} - 2714 \beta_{4} - 2714 \beta_{3} - 10118 \beta_{2} - 1493 \beta _1 + 7530 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).
\(n\) | \(131\) | \(157\) | \(301\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1 - \beta_{6}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121.1 |
|
−0.866025 | − | 0.500000i | −0.500000 | + | 0.866025i | 0.500000 | + | 0.866025i | − | 1.00000i | 0.866025 | − | 0.500000i | −2.01141 | + | 1.16129i | − | 1.00000i | −0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | ||||||||||||||||||||||||||
121.2 | −0.866025 | − | 0.500000i | −0.500000 | + | 0.866025i | 0.500000 | + | 0.866025i | − | 1.00000i | 0.866025 | − | 0.500000i | 1.14539 | − | 0.661290i | − | 1.00000i | −0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||
121.3 | 0.866025 | + | 0.500000i | −0.500000 | + | 0.866025i | 0.500000 | + | 0.866025i | 1.00000i | −0.866025 | + | 0.500000i | −3.15637 | + | 1.82233i | 1.00000i | −0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||
121.4 | 0.866025 | + | 0.500000i | −0.500000 | + | 0.866025i | 0.500000 | + | 0.866025i | 1.00000i | −0.866025 | + | 0.500000i | 4.02239 | − | 2.32233i | 1.00000i | −0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||
361.1 | −0.866025 | + | 0.500000i | −0.500000 | − | 0.866025i | 0.500000 | − | 0.866025i | 1.00000i | 0.866025 | + | 0.500000i | −2.01141 | − | 1.16129i | 1.00000i | −0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||
361.2 | −0.866025 | + | 0.500000i | −0.500000 | − | 0.866025i | 0.500000 | − | 0.866025i | 1.00000i | 0.866025 | + | 0.500000i | 1.14539 | + | 0.661290i | 1.00000i | −0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||
361.3 | 0.866025 | − | 0.500000i | −0.500000 | − | 0.866025i | 0.500000 | − | 0.866025i | − | 1.00000i | −0.866025 | − | 0.500000i | −3.15637 | − | 1.82233i | − | 1.00000i | −0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||
361.4 | 0.866025 | − | 0.500000i | −0.500000 | − | 0.866025i | 0.500000 | − | 0.866025i | − | 1.00000i | −0.866025 | − | 0.500000i | 4.02239 | + | 2.32233i | − | 1.00000i | −0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 390.2.bb.c | ✓ | 8 |
3.b | odd | 2 | 1 | 1170.2.bs.f | 8 | ||
5.b | even | 2 | 1 | 1950.2.bc.g | 8 | ||
5.c | odd | 4 | 1 | 1950.2.y.j | 8 | ||
5.c | odd | 4 | 1 | 1950.2.y.k | 8 | ||
13.c | even | 3 | 1 | 5070.2.b.ba | 8 | ||
13.e | even | 6 | 1 | inner | 390.2.bb.c | ✓ | 8 |
13.e | even | 6 | 1 | 5070.2.b.ba | 8 | ||
13.f | odd | 12 | 1 | 5070.2.a.bz | 4 | ||
13.f | odd | 12 | 1 | 5070.2.a.ca | 4 | ||
39.h | odd | 6 | 1 | 1170.2.bs.f | 8 | ||
65.l | even | 6 | 1 | 1950.2.bc.g | 8 | ||
65.r | odd | 12 | 1 | 1950.2.y.j | 8 | ||
65.r | odd | 12 | 1 | 1950.2.y.k | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
390.2.bb.c | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
390.2.bb.c | ✓ | 8 | 13.e | even | 6 | 1 | inner |
1170.2.bs.f | 8 | 3.b | odd | 2 | 1 | ||
1170.2.bs.f | 8 | 39.h | odd | 6 | 1 | ||
1950.2.y.j | 8 | 5.c | odd | 4 | 1 | ||
1950.2.y.j | 8 | 65.r | odd | 12 | 1 | ||
1950.2.y.k | 8 | 5.c | odd | 4 | 1 | ||
1950.2.y.k | 8 | 65.r | odd | 12 | 1 | ||
1950.2.bc.g | 8 | 5.b | even | 2 | 1 | ||
1950.2.bc.g | 8 | 65.l | even | 6 | 1 | ||
5070.2.a.bz | 4 | 13.f | odd | 12 | 1 | ||
5070.2.a.ca | 4 | 13.f | odd | 12 | 1 | ||
5070.2.b.ba | 8 | 13.c | even | 3 | 1 | ||
5070.2.b.ba | 8 | 13.e | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{8} - 21T_{7}^{6} + 389T_{7}^{4} + 504T_{7}^{3} - 900T_{7}^{2} - 1248T_{7} + 2704 \)
acting on \(S_{2}^{\mathrm{new}}(390, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - T^{2} + 1)^{2} \)
$3$
\( (T^{2} + T + 1)^{4} \)
$5$
\( (T^{2} + 1)^{4} \)
$7$
\( T^{8} - 21 T^{6} + 389 T^{4} + \cdots + 2704 \)
$11$
\( T^{8} - 6 T^{7} - 18 T^{6} + \cdots + 32761 \)
$13$
\( T^{8} + 12 T^{7} + 45 T^{6} + \cdots + 28561 \)
$17$
\( (T^{2} - 4 T + 16)^{4} \)
$19$
\( T^{8} + 6 T^{7} - 45 T^{6} + \cdots + 219024 \)
$23$
\( T^{8} - 4 T^{7} + 59 T^{6} + \cdots + 2704 \)
$29$
\( T^{8} + 8 T^{7} + 103 T^{6} + \cdots + 141376 \)
$31$
\( T^{8} + 174 T^{6} + 8777 T^{4} + \cdots + 913936 \)
$37$
\( T^{8} - 30 T^{7} + 366 T^{6} + \cdots + 644809 \)
$41$
\( T^{8} - 84 T^{6} + 6224 T^{4} + \cdots + 692224 \)
$43$
\( T^{8} - 14 T^{7} + 239 T^{6} + \cdots + 327184 \)
$47$
\( T^{8} + 228 T^{6} + 16934 T^{4} + \cdots + 1216609 \)
$53$
\( (T^{4} - 8 T^{3} - 75 T^{2} + 4 T + 52)^{2} \)
$59$
\( T^{8} - 24 T^{7} + 239 T^{6} + \cdots + 80656 \)
$61$
\( (T^{4} + 8 T^{3} + 60 T^{2} + 32 T + 16)^{2} \)
$67$
\( T^{8} - 24 T^{7} + 164 T^{6} + \cdots + 123904 \)
$71$
\( T^{8} + 12 T^{7} - 156 T^{6} + \cdots + 25240576 \)
$73$
\( T^{8} + 392 T^{6} + \cdots + 20647936 \)
$79$
\( (T^{4} + 10 T^{3} - 147 T^{2} - 860 T + 3508)^{2} \)
$83$
\( T^{8} + 456 T^{6} + \cdots + 25240576 \)
$89$
\( T^{8} - 42 T^{7} + 759 T^{6} + \cdots + 1008016 \)
$97$
\( T^{8} + 24 T^{7} + 20 T^{6} + \cdots + 29246464 \)
show more
show less